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From the fact of observation of squeezed light follows the possibility of a nonperturbing or
nondemolition measurement (observation) of a single microscopic object in a widely
distributed quantum-mechanical state. Macroscopic bodies—objects of classical mechanics—
are usually found in states with narrow wave packets, although quantum mechanics

does not forbid them to be in states with wide wave packets. The absence of macroscopic
bodies in such states requires explanation. In this article it is shown that in virtue of

a special, geometrical nature of the gravitational field the absence in nature of macroscopic
bodies in widely distributed states can be due to the focusing action of the self-
gravitational field of a macroscopic body on its wave packet. Thus, the gravitational field can
play an important role in the relaxation of the classical limit of quantum mechanics.

In the present paper we would like to draw attention to
those consequences for the quantum-mechanical descrip-
tion of the motion of macroscopic bodies which follow
from the fact of observation of squeezed light. This obser-
vation turned out, without any doubt, to be one of the most
important achievements of optics in recent years which
will have numerous scientific extensions and practical ap-
plications. However, as we see it, the most important con-
sequence of observing squeezed light is the change in the
quantum-mechanical description of the motion of macro-
scopic bodies required by the fact of such an observation.
Essentially, in observing squeezed light radical changes oc-
curred in the procedure of measuring the parameters of
macroscopic quantum states, and they occurred impercep-
tibly.

In Sec. 1 a simple example is given of a quantum-
mechanical description of rectilinear and uniform motion
of a macroscopic body and a concept is introduced of con-
centrated and distributed wave packets of such bodies. In
Secs. 2 and 3 using the examples of a mechanical oscillator
and a body moving in a gravitational field it is shown that
the concentrated and distributed wave packets arise always
in going over to macroscopic bodies. Attention is drawn to
the fact that the distributed wave packets require a statis-
tical or ensemble interpretation while for concentrated
wave packets this is not obligatory.

In Sec. 4 squeezed light is discussed. Attention is
drawn to the nonstandard nature of the measuring proce-
dure of squeezed light and it is shown that observation of it
is observation of a single object—the field of a selected
mode of an optical resonator of a parametric generator
occurring, in particular, in a distributed state (wide wave
packet). It is noted that from the identity of the descrip-
tion of a mechanical and an electromagnetic oscillator fol-
lows the possibility in principle of observing an individual
mechanical object in a distributed quantum mechanical
state. Since from the theoretical point of view concentrated
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and distributed wave packets are equally valid, the ques-
tion can be posed as to why macroscopic bodies in a dis-
tributed quantum-mechanical state are not observed in the
world surrounding us. In Sec. 5 the reflection of an elec-
tromagnetic pulse from a macroscopic body (mirror) oc-
curring in a distributed state is investigated. This investi-
gation shows that the variance of a quantum-mechanical
state of an individual macroscopic body can be determined
in a nonperturbing manner by the same means that have
been developed for observing squeezed light.

Thus, it is shown that the observation of squeezed light
indicates the possibility of observing individual macro-
scopic bodies in distributed quantum mechanical states and
requires an explanation of the absence of such bodies in the
world surrounding us.

In conclusion attention is drawn to the significant di-
vergence in the quantum-mechanical description of macro-
scopic objects in optics and in mechanics and a possible
method of overcoming this divergence is discussed.

1. QUANTUM MECHANICAL DESCRIPTION OF MOTION OF
MACROSCOPIC BODIES

Thus, let us turn to the quantum-mechanical descrip-
tion of the motion of macroscopic bodies. We shall take
macroscopic bodies to mean bodies of considerable mass
(for example, 1 g; subsequently a possible estimate of this
quantity will be made more precise). Thus, we examine the
quantum-mechanical description of motion of bodies
which, as is well known, obey the laws of classicai mechan-
ics.

Let us first examine a simple example—uniform and
rectilinear motion of a macroscopic body of mass m in free
space with a velocity v. It is described by a wave packet! of
the form

r2—2iver+ivtrt

C
W(r)t)=(1+it7,—1)32exp - 202(1+l-t7,—1)

(1.1)
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of a characteristic dimension a associated with the time 7
of spreading out of the packet by the relationship

(1.2)

For a macroscopic body m=1 g with a characteristic size
of the packet of the order of the dimensions of an atom
(a=10"% cm) the packet (1.1) describes a well defined
rectilinear trajectory over a large time interval 7=10''s
(=3 - 10° years).

However, quantum mechanics does not forbid large
values of the parameter @ comparable, let us say, with the
optical wave length or even with the geometrical dimen-
sions of a macroscopic body of arbitrary mass. Narrow
wave packets much smaller then the geometrical dimen-
sions of the body or smaller even than a characteristic
optical wave length (10~® m), can be naturally ascribed to
macroscopic classical objects, since in this case the exist-
ence of the packet can be in general neglected, taken to be
a point. But to what do broad wave packets correspond?
No macroscopic classical objects with a large indefiniteness
of position so far have been noticed in the world surround-
ing us. If such objects existed then there would have been
no such science as classical mechanics with its strictly de-
fined trajectories. This circumstance characteristic for
quantum mechanics has been noted a long time ago and
was reflected in the accepted interpretation of the distrib-
uted solutions of the Schrodinger equation. These solutions
received an ensemble, i.e., statistical interpretation. It was
accepted that in measuring the coordinates of a particular
body described, for example, by the packet (1.1) one can
obtain any value of it, but, if such measurements were to be
carried out on many bodies with identically prepared
states, the distribution of the probability of obtaining in an
experiment of some one value of the coordinate is de-
scribed by the square of the modulus of the wave function
Y (r,t). Thus, for example, in the textbook by A. Messiah?
in discussing the distributed solutions of the Schrédinger
equation it is stated: “In the classical approximation the
function ¥ describes the ““liquid” made up of classical non-
interacting particles of mass m (statistical ensemble)...”.
An analogous treatment of the distributed solution is given
in the textbook by L. Schiff.!

In this methodological note attention is drawn to a
certain discontinuity in the quantum-mechanical descrip-
tion of macroscopic objects in optics and in mechanics
which appears in an analysis of experiments with squeezed
light.

r=ma*/#i.

2. MECHANICAL OSCILLATOR

We recall the principal elements of the quantum de-
scription of a mechanical oscillator (Fig. 1). This simplest
system is described by the Hamiltonian®

1 1
—_ 2
H—2 D +2xQ2, 2.1)

where P,Q are canonically conjugate variables—the opera-
tors of the momentum and the coordinate obeying the

commutation relation
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FIG. 1. Mechanical oscillator.

QP— PQ=i#, (2.2)

m is the mass and x is the stiffness of the restoring force of

the oscillator. In the variables p=Pm~"?% g=0m'? the

Hamiltonian has the more commonly accepted form
x

H=Y{P+o*¢) (w2=;). (2.3)

An important role is played by the operators of creation a™*
and annihilation a of excitations of the oscillator:

1
a+=W (wg—ip),

1

0= )2 (wg+ip). (2.4)

A coherent state of the oscillator |z) (Fig. 2a) repre-
sents the eigenstate of the annihilation operator a|z)
=z|z); for z=zye ™" it is the solution of the time-
dependent Schrdinger equation and in the coordinate
representation is described by the wave function

© i\ 172 12
Weon(g) =4 exp —379 (;) z (2.5)
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FIG. 2. Quantum-mechanical states of an oscillator. a—Coherent state.
b—Stationary states.
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The coordinate distribution for this state is shown in Fig.
2a; in the course of time it represents a harmonic right-left
motion with frequencies . Since the width of this distri-
bution, equal to

AQ o= (A/2mw)*?,

is small compared to the amplitude of oscillations for
|z|>1(Q@=1 cm, AQ/Q~10""*) this state is a typical
concentrated state and describes in a natural manner the
classical oscillations of a mechanical oscillator.

However there also exist steady states of the oscillator
|n) (Fig. 2b; n is an integer), which represent the eigen-
states of the operator of the number of particles (of the
number of excitations of the oscillator) a*a|n)=n|n),
where n is an integer. The state

]n(t))=e‘"’"”]n)

is also a solution of the time-dependent Schrédinger equa-
tion and in the coordinate representation is described by
the wave function

Wi (9) =AH,((w/#)2q)exp( —wg?/2#), (2.6)

where H,, is the Hermite polynomial of the nth degree. The
indefiniteness in the coordinate in this state for a suffi-
ciently large energy E=nfio(n>»1) is great
AQ~w '(E/m)"?2, of the order of the amplitude of the
oscillations in the coherent state at the same energy
(n= |z]2).

Thus, stationary states are typical distributed states.
They are macroscopic since they can have a high energy
(n>1) and correspond to an oscillator of large mass m. In
classical mechanics there are no motions of individual ob-
jects corresponding to such states and therefore they re-
quire an ensemble, statistical interpretation about which
we have spoken earlier.

3. MACROSCOPIC BODY IN A GRAVITATIONAL FIELD

The motion of a material point of mass m in the grav-
itational field V(r) which varies slowly in space can be
described by the Gaussian wave packet*

¥(r,0)=C(Dexp| — (p.Fp) +5(po(Dp+E(1) |,
(3.1)

where p=r—ry(t) and the quantities r4(z) and py(¢) obey
the classical Hamiltonian equations

To=po/m, Po= —grad, U(ro); (3.2)

the quantity F(z) represents a symmetric matrix of dimen-
sionality 3X3 with complex time-dependent elements,
with the real part of the matrix F determining the geomet-
rical size of the wave packet.

This wave packet satisfies the Schrodinger equation in
the case when in the expansion of the potential energy near
the point r,

U(ro+p) = U(ro) + (pgrad, U(ry)) +} (p,U"p) + ..
(3.3)
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one can neglect terms of the third and higher degrees in
terms of p denoted by multiple dots. The matrix of the
second derivatives U” of dimensionality 3 X 3 is symmetric;
its real elements

Uu azU(r)' 3 4)
aB(t) _axaaxﬂ r_rO(t) ( .
depend on the time through the vector ry(¢). As long as the
dimensions of the wave packet are so small that terms of
the third and higher degrees in the potential energy are
insignificant, it moves along the classical trajectory (3.2).
In this case the matrix F(z) which determines, in particu-
lar, the dimensions of the packet must satisfy the matrix

equation

.2
ifF=— F2_1U", (3.5)
m
reminiscent of the Riccati equation, while the quantities
C(t) and E(t) are equal to

1/l
C(1) =C0exp[ ~n J:) dt(F11+F22+F33)},

: (P
E()= J.O dt(z—r;— U(ro)).

The trajectory of the motion of the body in the gravi-
tational potential (3.2) does not depend on the mass m,
since py and U(ry) are proportional to m. Separating out
explicitly the proportionality of U(r;) to the mass m we
obtain from (3.5) the equation

(3.6)

P=20>—1 V(®=F#m~!, mV=U"), (3.7)

in which all the quantities are independent of the mass m.
From this it can be seen that as the mass m increases (or
#i decreases) F also increases, and this means that the di-
mensions of the wave packet decrease and it becomes more
and more concentrated near the classical trajectory (3.2).
Consequently, the wave packet (3.1) describes the motion
of a macroscopic body in a natural manner within the
framework of quantum mechanics.

But this is not the only method of transition to the
description of a classical motion of macroscopic bodies
within the framework of quantum mechanics. Another
method is associated with the widespread method of the
eikonal’, or, in other words, with the Hamilton—Jacobi
equation. For sufficiently large m and, consequently, for
short de Broglie wavelengths A =#/(2mE)" 2 (E is th en-
ergy of the state) and the steady-state solution of the

Schrodinger equation can be sought in the form
W(r,t)=A(r)exp[i(S(r)A~'—Ehi~1)], (3.8)

where S(r) is a function of the coordinates that varies little
over lengths of the order of A which is called the eikonal

and obeys the equation
(gradS(r))*=1—(U/E). (3.9)

The function of A(r) also varies little over lengths of the
order of A and satisfies the equation
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FIG. 3. System of orbits in a gravitational field forming the eikonal
solution of the Schridinger equation. /—trajectory 2—wave front
3—caustic lines.

(grad S(r)grad 4(r))+3;AAS=0. (3.10)

It can be easily shown that for the gravitational field U
and E are proportional to m, and then .S does not depend
on m. Lines orthogonal to the wave surfaces S(r) =const
are classical trajectories of a material point. The eikonal
function S(r) is broad both in the longitudinal and in the
transverse (with respect to the trajectories) directions. In
the transverse direction it can be limited only by possible
caustic surfaces. Figure 3 shows schematically the eikonal
solution describing the motion of a macroscopic body in a
centrally-symmetric gravitational (newtonian) field. The
eikonal function occupies the region between two concen-
tric circles and essentially there are no restrictions on the
width of this ring region. If such a distributed solution is
regarded as relating to a single specific body, then there are
no corresponding motions in classical mechanics.

Thus, in the case of a quantum-mechanical description
of the motion of a macroscopic body in a gravitational
field, just as in previously discussed cases, both concen-
trated solutions are possible that go over naturally into the
solutions of classical mechanics, and also distributed solu-
tions which for correspondence with the classical approach
require a statistical, ensemble interpretation.

In conclusion of this section we note that transition to
the classical description in quantum mechanics is not as
automatic as, say, in the theory of relativity. There it is
sufficient for the ratio of the velocity of the body to the
velocity of light to become small in order for classical me-
chanics to arise from relativistic mechanics. In quantum
mechanics only a part of the states (and specifically, con-
centrated wave packets) go over into classical motion as
the mass of the body increases. But the other part of the
states—the distributed solutions—go over into the classical
motion only in a statistical, ensemble sense.

4. SQUEEZED LIGHT AND OBSERVATION OF IT

We now turn to a discussion of squeezed light. Simi-
larly to laser light, squeezed light is generated in an optical
resonator. The field in the resonator represents a superpo-
sition of fields of individual modes, or resonances, with, as
can be seen in practice, it being possible in an optical res-
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onator to excite an individual mode. Since the spatial dis-
tribution of the field of a mode is determined by the bound-
ary conditions, the mode can be regarded as a system with
one degree of freedom, the coordinate of which is the elec-
tric field of the mode at some chosen point of the resonator.
Then the quantum theory of field of the mode coincides
with the theory of a mechanical oscillator,—this field is
described by the same Hamiltonian (2.3) in which the
coordinate q is the electric field at the chosen point of the
resonator. In particular, different states of the field are
possible—coherent and steady state ones—mentioned
above.

But these two kinds of states are not the only possible
ones both in the mechanical and in the electromagnetic
oscillator. Squeezed states unite in themselves properties of
concentrated and distributed states.>® They represent the
eigenstates of the operator ya+va*

(na+vaH)|O)=¢1O (lu]*~|v|*=D), 4.1

where p, v, £ are complex parameters with the first two of
them satisfying the relationship |u|>— |v|>=1. In the case
of the relationship u=pue™, v=vye™ " they are solutions
of the time-dependent Schrédinger equation. Among the
squeezed states the most representative one is the state of
squeezed vaccuum corresponding to {=0. In the coordi-
nate representation it is described by the Gaussian wave

packet

i)

Ve(q)=A exp(— % iy

(4.2)

The variance of the squeezed state

#i
D= |+ [vI*~2u| - | v]cos(¥o-+201)]
(4.3)

varies with double the frequency of the oscillator and can
be both smaller than the variance of the coherent state:

fi
Dryn=5-(lu| = |v])*< Dg=5_,
and also greater than it
fi
—_ 2 S
Dlznax'_za)( I”" + |V| > Dzoh_za)

(Fig. 4). The moments, when the variance is small, have
served as the basis for the name—squeezed states.
Squeezed states are characterized by the squeezing coeffi-
cient

K= Dcoh/Dmin+ (Dmax/Dmin)l/2
=|ul+vi=(pl—1vDL (4.4)

Energy restrictions exist on the squeezing coefficient; in the
case that the number of photons in the oscillator is equal to
N the maximum possible squeezing coeflicient is equal to

Kopax=(N+ 1DV NV2, (4.5)

The main properties of squeezed states can be qualita-
tively understood from Fig. 4 which shows the oscillations
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FIG. 4. Dependence on the time of the field and of its indeterminacy.
a—Coherent state. b—Squeezed state. c—Squeezed vacuum.

of the coordinate of a mechanical oscillator, or of the field
of an electromagnetic oscillator, as a function of the time.
In Fig. 4a the oscillations correspond to a coherent state,
with the constant small variance of the state being repre-
sented by the thickness of the line in the sinusoid. In the
case of the usual laser intensity, say, with an energy of 1 J
stored in the resonator, the ratio of the variance to the
amplitude of the oscillations is small =10"°—10"1°, In
Fig. 4b oscillations are shown in the squeezed state—here
the variance changes with time and at certain instances is
comparable with the amplitude of the oscillations. Fig. 4c
corresponds to the state of squeezed vacuum—now there
are practically no oscillations with the principal frequency
o and there are only changes in the variance with doubled
frequency. We emphasize that in spite of the absence of
oscillations and the use of the term squeezed vaccuum this
is a highly excited macroscopic state with high energy.

Squeezed light has been observed in a number of
laboratories.”® One of the simplest schemes for observing it
(Fig. 5) represents a degenerate parametric generator
pumped by the second harmonic of a neodymium laser. In
the parametric generator the first harmonic arises again,
but not already in the state of a squeezed vacuum. The
present scheme differs from the early schemes of observing
parametric generation of light9'10 only by the special
receiver-analyser of the squeezed state. This receiver com-
pares the signal of the parametric generator with a refer-
ence (laser) signal and measures the variance of the
squeezed light. In Fig. 6 the results of measurements are
schematically shown. It can be seen that the variance of the
signal of the parametric generator undergoes two oscilla-
tions during a period of the high frequency field—the pe-
riod of its change is 7, and not 27. It can also be seen that
for certain values of the phase 6 the variance of the
squeezed light becomes less than the variance of the coher-
ent state (dotted line). This is exactly what indicates that
the light is in a squeezed state.

We call attention to the nonstandard nature of the
measuring procedure. A parameter of the state—its disper-
sion is measured directly; and the measurement occurs in a
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FIG. 5. Laboratory arrangement for observing squeezed light:
a—Pumping system. b—Parametric generator. c—Receiver-analyzer.

nonperturbing (or a nondemolition) manner. Indeed, the
measurements are made on the beam exiting from the res-
onator of the parametric generator and this beam is not
returned to the resonator independently of the fact whether
measurements on it have performed or not. If such mea-
surements are made, then the information concerning this
cannot in any way enter the resonator and, consequently,

A sre)

1’0-. -—T RN — —

FIG. 6. Variance of squeezed light as a function of the phase of the
reference signal.
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the state of the field in the resonator is not perturbed by the
measurement. At the same time, on the basis of the results
of measurements made on the beam exiting from the res-
onator, one can obtain information concerning the state of
the field in this resonator.

We note that as a result of the dynamic equilibrium
between pumping and losses the field in a resonator of the
parametric generator is in a steady state. Consequently,
having once made a measurement one can be confident
that the field in the resonator is in a state, say, of a
squeezed vacuum after an hour or two after the measure-
ment. Thus, the observation of squeezed light shows that
there exists a macroscopic (the number of photons is
great) quantum mechanical object—the electromagnetic
field of the selected mode of the resonator, the variance of
the state of which can be measured, leaving the object in
the same state in which it was prior to the measurement.

The greatest attention of investigators of squeezed light
has been attracted to the instants of time when its variance
is less than the variance of the coherent state. This is nat-
ural, since quantum-mechanical indeterminacies, like
noise, hinder the exact measurements of the corresponding
quantities. The smaller are these indeterminacies, the more
accurately can the corresponding quantity be measured,
and thi$ is the merit of states with a small variance in the
squeezed light. However, from the investigator’s point of
view the states with a large variance are the most interest-
ing ones; they are less ‘“classical” and more “quantum-
mechanical”. For the subject of this article, they are im-
portant since observation of them, taking into account
what has been said above concerning the measurements of
squeezed light, testifies concerning the possibility of mea-
suring the variance of a distributed state of an individual
object without destroying this distributed state.

Naturally, if such measurements are possible on an
electromagnetic oscillator, they are possible also on a me-
chanical oscillator; we shall comment on this thought in
the next section.

5. MACROSCOPIC BODIES IN DISTRIBUTED STATES AND
THE NONPERTURBING MEASUREMENT OF THEIR
POSITION

Thus, in experiments with squeezed light something
greater has been shown than simply the possibility of gen-
erating them. It is also shown that the quantum-
mechanical state of a specific macroscopic object (the field
of a certain selected mode of the resonator) can be deter-
mined in a nonperturbing manner. In particular, it can be
shown that this object is in a distributed state with a large,
macroscopic, indeterminacy of the coordinate, equal ap-
proximately to the amplitude of the oscillations in a coher-
ent state when the energies of both states are equal.

If such a nonperturbing determination of the state is
possible with respect to the electromagnetic oscillator,
then, of course, it is possible also with respect to the me-
chanical oscillator and even also with respect to a body
freely moving in space, since it is only a particular case of
an oscillator corresponding to its zero frequency. Such a
conclusion, naturally, follows from the identity of the the-
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FIG. 7. Reflection of light from a mirror with a large quantum-
mechanical indeterminacy.

oretical description of the electromagnetic and mechanical
oscillators, but the possibility of a nonperturbing determi-
nation of the state of a mechanical oscillator will be dem-
onstrated more directly below. One can ask why macro-
scopic bodies in distributed states are not observed in the
world surrounding us. Quantum mechanics does not forbid
such states (see Sec. 1), and in some cases they might even
be the preferred ones.

One of the possible and widespread explanations of this
consists of the assertion that in each observation of a body
in such a state its localization occurs, i.e., the transition
from a distributed state into a concentrated one (reduction
of the wave packet). As we shall see, the problem exam-
ined below concerning the reflection of an electromagnetic
signal from a mirror with a large quantum-mechanical in-
determinacy of its coordinate does not confirm this
assertion'! and reduces the problem of investigating the
state of a macroscopic body to the same measurements
which are made with squeezed light.

A full theoretical description of reflection is quite com-
plicated and we shall examine the simplest variant, when it
is assumed that the mirror has only two degrees of freedom
(Fig. 7). One—the transverse oscillator—describes the
motion of the negative charges (bound electrons) along the
mirror (displacement O, conjugate momentum P, surface
mass density p, surface charge density o). The motion of
the negative charges along the mirror is what actually leads
to the reflection of the electromagnetic signal. The second
degree of freedom—a longitudinal oscillator—describes
the motion of the mirror along the direction of propagation
of radiation (coordinate ¢, conjugate momentum p, surface
mass density p). It is also assumed that only those waves
are present which have normal incidence on the mirror.
The mirror is assumed to be infinitely thin and oriented
perpendicular to the z axis along which the electromag-
netic waves are propagated. The electric field and the dis-
placement Q of the charges are directed along the x axis.
The region of space occupied by the field has the same
shape as the mirror; the area of the mirror is equal to s.
Then the quantum system mirror - field is described by the
Hamiltonian

1P0s 21KQ21dlaA
=z_p;( —?A(‘f’) +as +5Sf Zl%(az)
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1 1

+4mc [] +5“—sp2+5 sxg?, (5.1)
where K and x are the stiffness, respectively, of the trans-
verse and longitudinal oscillators, A(z) is the vector poten-
tial of electromagnetic field and I1(z) is the momentum
canonically conjugate to it.

The oscillators of the field (plane waves) are at the
initial moment in coherent states, so phased that the field

forms a rectangular pulse filled with a high frequency,

(Ein(z,)) =Eq sin wgt 1] (7o,1), (5.2)
where II(z) is a function describing the rectangular shape
of the pulse of duration 2ry=4wny/w, (2ny is the number
of periods in the pulse), t=t—t—(z/c) and f is the mo-
ment of arrival of the pulse at the origin. The transverse
oscillator in the initial moment is in the ground vacuum
state, and the longitudinal oscillator is in the squeezed state
described by the wave function

¥ (g) = (27F) ~Viexp(—g*/43"), (5.3)

where g>=#/(2suvK"?); K is the squeezing coefficient.
The additional parameter in the wave function (5.3)—the
squeezing coefficient—will enable us later to vary the pa-
rameters u,v of the longitudinal oscillator without chang-
ing its distribution (5.3); in particular, the transition will
become possible to motion in free space (v—0).

The investigation of this problem completely within
the framework of quantum mechanics shows that the av-
erage value of the field of the reflected signal in the steady-
state regime and at resonance (=) is equal to

(Er(z,t)) =Ege= 2V sin[Q(r—D)], (5.4)

where A=A/2r=¢/Q) and T=t+ (z/c), while since the
average value of the square of the field of the reflected
signal which is proportional to the energy density of the
electric field in it, is equal to

1 _
(BR(2,0)) =5 Bo{1—e ™™ Moos[2Q(r—1)1}. (5.5)

As we can see with a small indeterminacy in the position of
the mirror (§<A) the reflected signal preserves the prop-
erties of coherent light; in particular, (ER)zz(E,z(). But
when the indeterminacy of the position of the mirror is
great (7> A), the average value of the field is close to zero,
while the average value of the square of the field retains its
finite value; only the oscillations of the energy density of
the field of doubled frequency are close to zero. One can
say that the amplitude coefficient of reflection tends to zero
as the indeterminacy of the position of the mirror in-
creases, while the coefficient of reflection with respect to
power retains its finite value. This means that the reflected
signal is in an essentially quantum state, although it is a
macroscopic one, since only in such a state is the inequality
((E)*)<((E*)) possible.

One can also show that the length of the reflected sig-
nal is approximately by g greater than the length of the
incident signal.
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The consequence of this investigation is the conclusion
that there exists an experimental possibility of observing a
distributed quantum mechanical state of a macroscopic
body (mirror) by means of probing this body by an elec-
tromagnetic pulse without an essential change in the state
of this body. Indeed, as we have seen, the reflected pulse
carries information concerning the distribution character-
ization of the state of the mirror and, it being macroscopic,
can be analyzed by the existing experimental means similar
to those which are used for analysis of squeezed light.”® At
the same time it can be shown'! that the process of reflec-
tion does not lead to an essential change in the quantum-
mechanical state of the mirror. Indeed, the phenomenon of
recoil accompanying the reflection of the pulse from the
mirror leads to a small shift of the longitudinal distribution
as the whole, but in the first order of perturbation theory
does not affect its width, i.e., its variance. Consequently, if
one repeatedly probes the mirror by a light pulse the mea-
sured value of the variance will turn out to be the same as
in the first probing. This, more than anything else, con-
vinces us that no reduction occurs of the wave packet in
probing the mirror. But the possibility of observing a single
object (mirror) in a distributed state contradicts the usual
interpretation of such a state as describing an ensemble of
objects.!”?

One should also note that the reflected pulse (E%) is
lengthened in comparison with the incident pulse due to
the partial reflection of the incident pulse from different
layers of the distribution of the longitudinal coordinate of
the mirror. A human eye with its low time resolution can-
not, of course, notice such a lengthening of the pulse (ap-
proximately by g). However, in the case of oblique inci-
dence of light from a point source onto the mirror partial
reflection from different layers of the longitudinal distribu-
tion will go over into the angular distribution of the rays.
Since the angular resolution of the human eye is sufficiently
high, the body with a large quantum-mechanical indeter-
minacy will appear simply as somewhat smeared out. Con-
sequently, if bodies with a large quantum-mechanical in-
determinacy existed in the world surrounding us they
would have been visible to a literally unaided eye.

6. CONCLUSION

Thus, on the one hand, quantum mechanics does not
forbid macroscopic bodies from existing in widely distrib-
uted states, and what has been presented in the last section
indicates the possibility of a nondemolition observation of
individual, macroscopic bodies in such states, for example,
with the same means that are utilized in experiments with
squeezed light, or even simply with an unaided eye. On the
other hand, macroscopic bodies in widely distributed states
have never been observed by anybody, and, because of this,
widely distributed solutions of the Schrodinger equation
have been interpreted as describing an ensemble of bodies
and not individual samples. The main purpose of this
methodological note consists of attracting the attention to
this breakdown in the similarity of the descriptions of mac-
roscopic objects in optics and mechanics. This equation is
not only speculative; for its clarification experimental at-
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tempts of exciting mechanical oscillators into a nonclassi-
cal widely distributed state would be very useful. As is
clear from the material presented above the most promis-
ing method of such excitation is parametric resonance. As
a mechanical oscillator in such experiments one could use
for example a microdust particle levitating in fields formed
by an oscillating potential.

One might attempt to explain the absence of macro-
scopic bodies in widely distributed states by saying that
they at a certain initial moment were formed in a concen-
trated state and have been gradually spreading from that
time. However, one cannot see reasons for their being
formed at the initial moment specifically in the concen-
trated state.

Also one cannot explain the concentrated nature of
wave packets of macroscopic bodies by taking into account
their interaction with some kind of a field. Indeed, since
bodies consist of charged particles they must interact with
the electromagnetic field. However, such an interaction
will lead only to the formation of an accompanying (non-
radiating) field since such fields are possessed by all parti-
cles in uniform rectilinear motion. Analogous consider-
ations refer also to other fields. In all cases the wave packet
(1.1) will describe the motion of the centre of inertia of a
macroscopic body and the fields accompanying it, and,
consequently, the question of the large values of the pa-
rameter a in (1.1) and concerning the possibility of dis-
tributed states of macroscopic bodies cannot be solved in
such a manner.

Without claiming the finality of our argument we shall
describe one of the possible methods of solving this prob-
lem. It is based on simple physics considerations. We have
already spoken above concerning the interaction of a body
with different fields surrounding and accompanying it. In
this respect the gravitational field forms an exception.'?!?
Indeed, according to the general theory of relativity the
gravitational field produced by the body can be regarded as
a deformation of space, its deviation from a euclidean na-
ture, with such a deformation occurring not only in the
region occupied by the body but also in its neighborhood.
If the mass associated with some part of the wave packet
deforms space then the remaining parts of the packet move
in this deformed space. In general any portion of a wave
packet moves in the space deformed by this part and also
all the other of its parts. Consequently, an action of the
wave packet on itself occurs, or a self-action of the wave
packet due to its interaction with the gravitational field. As
will be shown below, this self-action will lead to the for-
mation of a potential well being in which the wave packet
preserves its concentrated form in a steady state. More-
over, the formation of such a potential well, evidently, is
energetically favorable, and this explains the concentrated
nature of wave packets of macroscopic bodies.

Since in this case we are dealing with macroscopic
bodies of ordinary density (of the order of 1 g/cm?), the
gravitational potential is weak and, consequently, in calcu-
lations it is sufficient to utilize the newtonian expression for
the potential.

Let us consider a homogeneous sphere-like body of
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FIG. 8. Attraction of two interpenetrating spheres.

radius R with density v. Since subsequently we shall be
calculating the gravitational action of one part of the wave
packet on another, and the dimensions of the wave packet
are much smaller than the geometrical dimensions of the
body, then as a preliminary consideration we shall examine
the attraction of two interpenetrating massive spheres the
centers of which are displaced by a distance s much smaller
than R. As can be seen from Fig. 8, in order to calculate
the force of attraction between the spheres it is sufficient to
take into account the attraction to the first sphere of a layer
of thickness 2s covering one half of the surface of the first
sphere. Taking into account only the component of the
forces of attraction of elementary masses along a line join-
ing the centers of the spheres we obtain for the force of
attraction between the spheres the following expression:

16172 /2 8172
=—3— GV2R3SJ. d@ sin 6 cos 0=—§— GV2R3S.
0

(6.1)

Consequently the potential energy of interaction of the two
spheres is equal to

U,=Bs, B=%7*GVR> (6.2)

Taking this expression into account we arrive at the
following Schroédinger equation describing the wave pack-
ets of macroscopic bodies:

_ﬁa\l/(r,t) # v v 3
: T=_EA (r,t) +U(r)¥(r,1), (6.3)
where

U(l')=del"(l'—r')2|\l’(r,t)|2. (6.4)

From this equation one can see that the effect of the grav-
itational self-interaction of the wave packet of a macro-
scopic body is analogous to the optical effect of self-
focussing. The difference consists only of the fact that self-
focussing occurs in two directions, perpendicular to the
direction of propagation of the waves, while the gravita-
tional self-action occurrs in all three directions.

Let us find the steady-state and spherically symmetri-
cal solution of equation (6.3). For ¥=¥(r) and Im ¥=0
we have in accordance with (6.4)
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TABLE 1.

m.g R,cm rg.cm
10% 1.3-10° 1,2510°%
10" 6,2:10° 1,25-10"
1 0.62 1,25-107"
107" 6,2-107° 1,25-10°°
10" 6,2:10°° 4107
U(r)=a+Br, (6.5)

where a=pB[dr’?|¥(r’')|? is a nonessential constant.
Thus, for the determination of W(r) we have the equation

7 1d ﬂdw PV =EV 6.6)
—z—m?d—r( dr)+'B =E¥. (6.
The solution of this equation has the form
v : r 6.7)
(nN= r(g)/z exP( —po)’ (6.
where
B\ PR3\ 1/
o= (agm) = (56w) )

is the characteristic size of the wave packet determined by
the gravitational self-action. Such a concentrated wave
packet can be regarded as a soliton solution of the Schro-
dinger equation (6.3). In Table I some estimates are pro-
vided (translator’s comment: Table I from rp98 should be
inserted here followed by the following text). The columns
give respectively the mass, the geometrical size of the mac-
roscopic body with a density of v=1 g/cm? and the size of
its wave packet. In the third line of the table data are given
for a typical macroscopic body (m=1 g). In the first line
are given data for a body with a mass of the order of the
mass of the earth. The last line gives data for a mass of
10~ "% g, for which the geometrical dimensions become ap-
proximately equal to the dimensions of the wave packet.
The size corresponding to the condition 7, =r,=R, can be
determined from (6.8):

9ﬁ2 1/10
For= (32&#“?)

Condition (6.9) gives a quantitative criterion for division
of bodies according to their sizes into macroscopic and
microscopic ones. From (6.0) one can obtain also the cri-
teria for a similar division according to masses. Bodies with
a mass greater than

327T1’ﬁ6 1/10
ma={ 1)

(6.9)

=\ 316" (6.10)
should be regarded as macroscopic.

Thus, for masses greater than 10~ g, the dimensions
of the wave packet are negligibly small not only compared
with the geometrical dimensions of these masses, but also
in comparison with the typical optical wavelength
(10~*-107°). These considerations explain the absence in
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the world surrounding us of macroscopic bodies in states
with a large quantum-mechanical indeterminacy of their
center of mass. However, this explanation is obtained at a
high price, specifically by renouncing the principle of su-
perposition and the linearity of Schrédinger’s equation,'
as can be seen from equation (6.3). It is true that one
should note that the violation of the principle of superpo-
sition is not a very strong one. In particular, it completely
does not affect the region of microscopic, atomic
phenomena—the principal field of application of quantum
mechanics.

Moreover, renunciation of the principle of superposi-
tion can turn out to be temporary. After the time when
quantum theory will be unified with gravitation, the con-
siderations discussed in this section may turn out to be
something like the semiclassical theory in quantum elec-
trodynamics, when the medium is described quantum-
mechanically, and the field classically. In the quantum-
mechanical description both of gravitation and also of
matter the principle of superposition might become rees-
tablished.

We also note that the potential well about which we
spoke above is not a very deep one. Therefore by expending
some energy a macroscopic body can be brought into the
distributed state with a large dimension of the wave packet.
Observation and investigation of distributed states of mac-
roscopic bodies would be of first-rank scientific signifi-
cance.

Thus, observation of squeezed light has clearly shown
that there exists a practical possibility of establishing the
distributed nature of a quantum-mechanical state of an
individual macroscopic object. In squeezed light such an
object is the field of the selected mode of an optical reso-
nator. However, the identity of the theoretical descriptions
of the electromagnetic and the mechanical oscillators, and
also the specific system of probing the distributed mirror
described above have shown that the distributed nature of
the quantum-mechanical state of an individual macro-
scopic body can also be established. In our opinion this
conclusion is the principal consequence of the experimental
observation of squeezed light.

This conclusion leads to the question: why are macro-
scopic bodies not observed in the world surrounding us in
distributed states, but only in concentrated states whose
wave packets move according to the laws of classical me-
chanics? In the conclusion we have proposed a possible
explanation of this fact, from which follows the important
role played by gravitation in the transition from a
quantum-mechanical description of motion of macroscopic
bodies to a classical description.

The considerations presented above also show that
macroscopic bodies can be brought into the distributed
state, and it would be important to observe such states
experimentally. Macroscopic bodies in such states would
be a new object of investigation in physics. A natural
method of obtaining such states is the parametric excita-
tion of a mechanical oscillator.

It is not difficult to understand why the distributed
states were first observed for the electromagnetic field and
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not in mechanical systems. The mass of the electromag-
netic field is not great under ordinary intensities and can-
not appreciably deform space, not even speaking of the fact
that the space of the states of the field is not the usual
three-dimensional space, but the abstract Hilbert space.
Therefore the concentrated state of the field does not have
any advantages over the distributed one.

In connection with all that has been discussed above it
is justified to mention the article by A. Einstein,'* in which
for the first time the question was raised concerning the
correct quantum-mechanical description of the motion of
macroscopic bodies.
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