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A study is made of the behavior of a positive muon in the matrix of a real, nonmagnetic
metal containing defects. The temperature dependence is found for the relaxation rate of the
muon spin due to the dipole-dipole interaction between the magnetic moment of the
muon and the magnetic moment of the nuclei of the matrix. Data from \muSR experiments
with a series of metals are analyzed and it is shown that the data can be consistently
interpreted within the framework of a unified approach that explains the observed muon spin
relaxation by the capture of the muon in a trap.

1. INTRODUCTION

The same abbreviation /iSR is used to designate muon
spin resonance, muon spin rotation, and muon spin relax-
ation. The method of /xSR is effective for the study of local
magnetic fields and their time dependence in crystals. This
method makes it possible to determine a number of impor-
tant characteristics of magnets and superconductors. A
large numbers of papers have been devoted to a description
of the technique of /iSR experiments (see, e.g., the reviews,
Refs. 1 and 2.). A polarized beam of positive muons pro-
duced by the decay of IT mesons is incident on the sample.
When they enter the sample the muons are thermalized in
a time of the order of 10~12 to 10~13 s.

The muons are then depolarized under the action of
random magnetic fields. The time dependence of the muon
polarization P(t) is determined by observations of the
asymmetry of the emission of the positrons produced by
the decay of the muon into a positron, an electron neutrino
and a muon antineutrino

with a characteristic time 7^=2.2 fj,s.
In the case of measurements in a transverse magnetic

field (perpendicular to the initial polarization of the beam)
the time dependence P(t) is used to determine the preces-
sion frequency and the muon spin relaxation rate, while in
measurements in a longitudinal field, and in particular, in
zero field, only the latter is determined.

However, to obtain information on the local magnetic
fields it is necessary to know the behavior of a muon in a
crystal: whether it is captured in a trap or if it moves
through the crystal. Qualitatively, a positive muon can be
regarded as a very light hydrogen isotope that retains its
mobility in an ideal crystal even at the lowest tempera-
tures, tunneling quantum mechanically from one equiva-
lent interstitial site to another.

In the case of the fast motion of a muon through a
crystal the random field acting on its spin is effectively
averaged and the relaxation rate decreases. This is the well-
known effect of motional narrowing of resonance lines.

In nonmagnetic metals the muon spin is acted on by
the magnetic field that is produced by the dipole moments
of the matrix nuclei, which remains practically unchanged
during the time of observation. The fields that act on the
muon in neighboring interstitial sites are essentially uncor-
related. In this case the relaxation rate will be the greatest
when the muon remains in the same interstitial site during
its entire lifetime after thermalization until it decays.

Experimental data have recently been obtained for the
frequency of hopping of hydrogen between neighboring
equivalent interstitial sites in a metal matrix. Since the
muon is nine times lighter than the proton, its hopping
frequency should be much greater. Even if we use the min-
imum estimate obtained for hydrogen for this quantity, it
turns out that during the time of observation, a time of the
order of 10 ̂ s, there can be no significant relaxation of the
muon spin.

From this result it follows that in a real crystal the
muon spin relaxes because of the nonideality of the crystal,
i.e., the crystal contains traps. As will be shown below, any
defect of the crystal lattice can act as a trap. When the
temperature is lowered below some characteristic value the
muon in the equilibrium state will with overwhelming
probability be captured in a trap.

However, the initial spatial distribution of the muons is
not an equilibrium distribution. According to the "stan-
dard model", the muon after thermalization can occupy
with equal probability any of the equivalent interstitial
sites. Therefore, the relation between the time of capture of
the muon by a trap and its spin relaxation time in that trap
plays an important role.

An analysis of ^SR experimental data in pure metals
shows that almost all the data can be accounted for if it is
assumed that the cause of muon spin relaxation is the cap-
ture of the muon by point defects. Then a matter of im-
portance is the possibility of a point defect creating several
energy minima (traps) of different depths for the muon.
Frequently, a muon must overcome a potential barrier to
be captured in a trap. In this case, the fraction of the
muons that are captured in such a trap will be appreciable
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only at temperatures where the probability of surmounting
the potential barrier is sufficiently high.

The technique of /uSR can be used under certain con-
ditions to study the quantum mechanical diffusion of a
muon. In the case of metals this possibility is practically
unique (the other objects of study are the metal hydrides),
since the ninefold smaller mass than that of hydrogen in-
creases by a large factor the quantum mechanical contri-
bution to the diffusion coefficient of the muons. We shall
discuss how the data on the diffusion coefficient can be
extracted from the results of /xSR experiments.

In Sec. 2 we consider the behavior of a muon in a pure
crystal. In Section 3 we describe the interaction between a
muon and point defects and the bound states that are
formed. Section 4 gives a description of muon spin relax-
ation in a crystal with traps, and in Sec. 5 we make a
comparison with experimental data. Finally, we present a
synopsis of the work and our conclusions.

2. MUON SPIN RELAXATION IN A PURE CRYSTAL

2.1. Diffusion mechanism

Let us first consider the nature of the motion of a muon
in a hypothetical defect-free crystal. At the lowest temper-
atures the muon will tunnel quantum mechanically from
one equivalent interstitial site to another, and it can be
described in the language of a Bloch wave. The character-
istic band width of hydrogen in niobium, determined on
the basis of experiments on the absorption of ultrasound
and inelastic scattering of neutrons, is 1-10 К (Refs. 3,4).
Because the muon mass is nine times smaller than that of
hydrogen the width of the muon band, £=2ze0, where z is
the number of nearest-neighbor equivalent interstitial sites
and £0 is the tunneling matrix element for the muon, must
be considerably larger and reach values of tens of degrees.
In a pure metal the mean free path of a muon in the region
of band motion is determined by its scattering by conduc-
tion electrons. These processes have been examined in
Refs. 5-7. In the temperature range Г>£ the mean free
time т of a muon is

т"1 = 2irgT7H, (1)

where g;=2iV2(0) F2,, JV(0) is the density of electrons at the
Fermi surface, and F0 is the amplitude for scattering of an
electron by a muon. For characteristic metallic values of
N(0) and У0, we findg~0.1-l.

Let us estimate the muon diffusion coefficient D using
the kinetic relation

D=(v2)rlr/l, (2)

where (v2) is the mean square velocity of the muon and rtr

is the transport time of free flight of the muon. For Т > f
we find т,г~т and {и2)=£2о?2/й2, where d is the inter-
atomic spacing. Then6'7

The interaction of electrons with a muon also leads to
a renormalization of the muon band width in a metal—the
electron polaron effect.8 The renormalized value of f is

(4)

where £0 is the muon band width in the absence of the
interaction with the electrons, EQ is the width of the con-
duction band, and /3~g. Therefore, for T>£ the temper-
ature dependence of the diffusion coefficient has the form8

In the temperature range 7>£, we have, according to
Refs. 6 and 7

(5)

/rtr~T>

and consequently

', (6)

since £ no longer depends on Т when Т < £.
In the case of a semimetal, the dependence D(T) is

more complicated.7 In the superconducting phase, because
of the formation of a gap A in the spectrum of electron
excitations, the mean free time т^ due to muon scattering
by electrons is

= т[1+ехр(Д/Г)]/2, (7)

and the quantity тах(Г,£0) in formula (4) is replaced by
тах(Г,£о,Д) (Ref. 9).

Thus, for Г< Д the scattering of a muon by electrons
in a superconductor is unimportant, since the number of
electronic excitations is exponentially small, and, as in an
insulator, the main role is played by scattering by phonons.
Since for T^®, where 0 is the Debye temperature, the
mean free path of quantum particles due to scattering by
phonons is much greater than the interatomic spacing d
(Refs. 10, 11), in a pure superconductor at temperatures
7ХД band motion of the muons occurs. The diffusion
coefficient of the muons depends on the temperature as10'11

— 9 (8)

Let us turn now to a consideration of the motion of a
muon in a normal metal. As the temperature increases with
Т > T'o the quantity r~' exceeds £ and mean free path of
the muons becomes smaller than the interatomic spacing.
Here the description in the language of Bloch functions is
inapplicable.

With a further increase in temperature, Т > 7\
> T'0, the diffusion of a muon can be regarded as a Mar-
kovian process of quantum mechanical hopping between
neighboring interstitial sites.12 At higher temperatures the
main diffusion mechanism is the classical barrier-
surmounting mechanism. A consistent description of the
diffusion coefficient does not exist for the region T'Q
< т < TV

An analysis of the diffusion coefficient of light particles
in a metal that takes into account interactions with elec-
trons and with phonons has been carried out in Ref. 8.

In the temperature range Г<® the role of the inter-
action with phonons reduces to a polaron narrowing of the
muon band:
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FIG. 1. Temperature dependence of the normalized hopping frequency
for 0=0.3 and Eo/6=\00.

fo=£ooexp(-S), (9)

where £QQ is the band width in the absence of the phonon
interaction and S is the dimensionless muon-phonon cou-
pling constant:

S=ul/w2
0, (10)

where «p is the displacement of a lattice atom from a site
nearest the muon and w0 is the amplitude of the zero-point
oscillations of the atom.

In the temperature range 0.1® < Т < 0 there is a sharp
increase in the diffusion coefficient due to the fast increase
in the rate of quantum mechanical hopping between adja-
cent interstitial sites. For Т > ® the quantum diffusion be-
comes activated, as in the case of insulators.

A compact analytical expression for the hopping prob-
ability with allowance for interactions with the electrons
and phonons is lacking, but the results of a numerical cal-
culation carried out by Kondo8 are shown in Fig. 1.

We can estimate the maximum time тЦ13" between two
hops as

inax J»rj4' /тс^ ( 1 1 ^

where rmin is the temperature corresponding to the mini-
mum probability of a hop (Fig. 1). Its value is rmin=0.1 ®.

2.2. Relaxation rate

Let us now consider the muon spin relaxation rate in
each of the above-mentioned temperature intervals. In a
nonmagnetic metal the relaxation is due to the dipole-
dipole interaction between the magnetic moment of the
muon and the magnetic moments of the nuclei of the ma-
trix, while the characteristic relaxation time in the region
of band motion is given by the time of scattering of a Bloch

wave with a spin flip due to this interaction.13 The analo-
gous problem for a conduction electron in a semiconductor
has been examined in Ref. 14.

In the case of uncorrelated nuclear spins the muon spin
relaxation time rs is given by the formula

|=Й (Vi/2,-i/2(k-k')|
IL\L I***••' •/

2XS(£(k)

(12)

where k and k' are the initial and final quasimomenta of
the muon, ft is the volume of the unit cell, e(k) is the
muon dispersion relation, and ^i/2,_i/2(k—k') is the am-
plitude for scattering of a muon by an individual nucleus
with a spin flip.

If Т > ̂ , then the characteristic values of k are of the
order of the Brillouin momentum kB and in order of mag-
nitude TS are equal to

T-l=a<jK/$, (13)

where OQI is the muon relaxation time in the absence of
diffusion, and CTO (8H), where (8H) is the characteristic
magnitude of the fluctuations of the magnetic field.

The dependence TS( T) in this temperature range is due
to the temperature dependence of £ (see formula (4)).
Thus

(14)h E
For T^g the characteristic thermal momentum of the
muon is k~kB(T/Qm. In this case from Eq. (12) we
obtain13

(15)

This same temperature dependence for rs(T) was pre-
dicted in the work of Kondo15 on the basis of an assump-
tion of the form of the correlation function of the dipole
field.

For characteristic values <r0~105-106s6 ~ 1 meV,
0-0,1, Г~ 1 - 10 К and E0~ 104- 105 we obtain the es-
timate rs^10 K, which is many orders of magnitude
greater than the time of observation t0~ 10 /is. Conse-
quently the muon spin relaxation in a pure metal in the
low-temperature region must be experimentally unobserv-
able.

In the range of temperatures where the diffusion of
muons is a succession of uncorrelated hops from one in-
terstitial site to another, the time dependence of the muon
polarization for an experiment in a transverse magnetic
field is described by the formula16

P(t)=P(0)G(t)
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(16a)

and for Tha0-<l it is a Lorentzian

(16b)

Here it is assumed that the dipole fields acting on the muon
spin in neighboring interstitial sites are not correlated.

For the case of relaxation in a zero magnetic field there
is no simple analytical expression for the function G(t) for
an arbitrary relation between CTO and rh. In the limiting
case a0Th>l, G(t) is described by the formula of Kubo and
Toyabe17

GUM+fd-Zog/^Xexpf-og/2). (17)

For measurements in both longitudinal and transverse
magnetic fields the muon spin relaxation rate t~} in the
region of hopping diffusion can be written as

r-1 = 2^rh(2a0Th+l)-1. (18)

Let us estimate the value of t~ ' for the maximum value
Cax given by formula (11):

n/£e0. (19)

For the values given above for CTO and £ and for
rmin~ 20-50 К we obtain TS~ 0.1-10 s, which is much
greater than the observation time.

Thus the observation of the muon spin relaxation rate
in a pure metal is possible only when the value of £0 for the
muon in the metal has the anomalously low value of
e0<\0~3K.

For the real values £0~ 1 to 10 К it is not possible to
observe the muon spin relaxation rate in an ideal crystal.

where n=R/R and W(n) changes sign with a change in
the direction of the vector n relative to the crystallographic
axes.

The interaction via the Friedel oscillations of the elec-
tron density can be written in the Born approximation as

=N(0)flV0(2kF)Vl(2kf)cos(2kfR)

(22)

where kf is the Fermi momentum of the electrons, Fj(k)
is the amplitude for scattering of an electron by a point
defect, and £ ( k ) is the permittivity of the metal.

For R~d, both interactions have energies of the order
of ff=0.01-0.1 eV for values of the physical parameters
characteristic of metals. Because cos(2kFR) and W(n)
change sign regardless of the sign of the short-range part of
the interaction between the muon and the point defect,
there is a set of interstitial sites with W (R) <0, where the
state with the highest binding energy W0 is located at a
distance R~d from the defect. Thus any point defect in a
metal creates a large number of bound states for a muon.

The difference in energy between muons in localized
interstitial sites i and j is given by

(23)

where the summation is over all the point defects, rm are
their coordinates, and r/j are the coordinates of the inter-
stitial site. The mean square spread in the energies of
neighboring interstitial sites, due to the presence of ran-
domly distributed impurities with a concentration x, is of
the order of

3. INTERACTION OF A MUON WITH POINT DEFECTS

On the basis of the discussion of the last Section it can
be concluded that the muon spin relaxation rate observed
experimentally is due to the presence in the crystal of traps,
which can be any point defect in the metal.18'19

Of course, a muon can also be captured by dislocations
and planar defects of the crystal lattice. However, then the
muon can move rapidly along the dislocation or in the
plane of the two-dimensional stacking fault. Therefore the
effect of averaging of the random field at the muon spin is
not eliminated.

The long-range part of the interaction potential be-
tween the muon and a point defect (as between any two
point defects) is made up of an elastic interaction, i.e., an
indirect interaction via acoustic phonons and an interac-
tion via Friedel oscillations in the electron density, caused
by the defects, i.e., an indirect interaction via the conduc-
tion electrons:

Both of these long-range components fall off with the
distance R between the muon and the defect as R~3.

The elastic interaction at a distance R >c? has the form

(21)

and for *~ 10~4-10~5 can be much less than £ and does
not inhibit band motion of the muon far from the defect.

Let us now consider the equilibrium spatial distribu-
tion of the muons in a crystal with defects. Obviously, at a
high temperature the muons are distributed with equal
probability over the interstitial sites of a given kind, while
at low temperatures they are in the bound state with the
lowest energy.

Let us estimate the temperature T0 of capture of
muons by defects starting from the following simple
model.18 The average value of W (n) over a unit sphere is
equal to zero, and cos(2kFR) oscillates rapidly with a
characteristic period of the order of d. Therefore we as-
sume that in a spherical shell of radius R and a thickness
dR constructed around the defect there will be 4irR2dR/tl
states, whose energies a£e equally distributed in the interval
from — Wfl/R3 to + Wfl/R3. The minimum distance be-
tween the muon and the defect is rmin~d, and the maxi-
mum distance is rmax~x ~l/2d. The probability of a particle
being found in a particular spherical shell is

dw(R) -jr.
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(24)

where A is found from the normalization condition. This
model takes into account the presence of a large number of
bound states for the muon, but does not include many-
particle effects in the analysis. For 7> T0 the average dis-
tance between the muon and a defect is (r) ~rmax, and for
Г<Г0 it is (r)~rmin. The transition from one limiting
case to the other occurs in the interval of temperatures
TO/ | In x I near the temperature

I - (25)

The principal role in the case of potential (20) is played by
the states with the lowest energies, and the fact that there
are a large number of bound states plays little role in the
determination of T0. The fraction of muons in states with
energies ЩН) < — Т is equal to

W0
(26)

where y~ 1. For Г> Г0, the value of к is practically zero,
while for T^T0 it is equal to unity with exponential ac-
curacy.

4. MUON SPIN RELAXATION RATE IN A CRYSTAL WITH
TRAPS

4.1. Muon diffusion

Let us consider first the motion of muons in a crystal
with defects. As noted above, there exists a region of the
crystal in which the characteristic values of

W,= I W(r,-rn) and $tj
m

do not exceed £. In this region of space for Т £ £ the be-
havior of the muon does not differ qualitatively from that
in the pure crystal. It is only necessary to take into account
an additional mechanism of scattering of the muon by non-
uniformities of the crystal lattice. For low defect concen-
trations this region occupies the entire volume of the crys-
tal except for a sphere of radius

1/3 (27)

about each defect. Since cos(2kFR) oscillates rapidly over
atomic distances, the value of f,-, is comparable to £ prac-
tically up to the boundary.

Near the defect, where \W(\, |£,7| >£, the motion of
the muon takes on the nature of transitions between states
that with good accuracy are localized in the corresponding
interstitial sites. The nonequivalence of the interstitial sites
makes possible one-phonon transitions between them. In
order of magnitude the probability of a transition from an
interstitial site / into a neighboring crystallographically in-
equivalent interstitial site j of a given type is20

1 -exp( -£,7/Г) ]}-i, (28)

where E is an energy on the atomic scale and

ео=£оо[тах(7>оо,£,7)/£о]^ (29)

where ЕЮ is the bare value of the tunneling matrix element.
For 7> |£y| we find (г^)рЬ ее Tl+2(i. Neglecting the

quantity j0<l, we obtain the relation (T,yj,)ph ос Т, which
nearly always has been interpreted experimentally as the
observation of one-phonon processes. However, this same
temperature dependence of T,7;h is also obtained for transi-
tions between interstitial sites caused by the interaction
between the muon and electrons. In this case21'22

For

1 -exp( -f у/Г) ]}-». (30)

the value of (т~^ь)л is also proportional to
the temperature, and the ratio of the transition rates is of
the order of

In the region of temperatures Г<0 the principal
mechanism that induces transitions of the muon between
interstitial sites in a normal metal is the interaction with
conduction electrons, and therefore the observation that
T^1 ее Т is not evidence for the one-phonon mechanism.

In a superconductor with 7ХД, where the number of
electronic excitations is exponentially small, the phonon
transition mechanism may become the determining one.

4.2. Muon spin relaxation

Let us now examine muon spin relaxation in a crystal
with defects. Because the interstitial sites are no longer
equivalent and the motion of the muons near a defect is
different from that far the defect we cannot describe the
behavior of the muon polarization by a function of the type
(16) with a single characteristic time rh. Unfortunately, in
the work of Refs. 23 and 24 only the function ть(Т) was
calculated in this model, and not A( T), the experimentally
measurable muon spin relaxation rate as a function of the
temperature.

4.2.1. Two-state model

This model is based on the assumption that the muon
can be found either in the free state or in the trapped state.
Each state is characterized by its own relaxation rate: af

and atr, respectively. The characteristic time of capture of
a muon by a trap is т\, while the characteristic time of
release of a muon from a trap is r2, and the concentration
of traps is x.25

It is clear that within this model the large number of
bound states that are created by one defect is replaced by
one effective trap.

Let us consider the relaxation function G ( t ) in the
framework of the given model:

<7(0= I
n=l

«.*(')). (32)

where the functions Gn<f(t) and Gntr(t) obey the following
recursion relations:
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G1>tr(r) = x(0)exp( -r/T2)G0,tr(»;

Cr»+i.f(0=- fc?n,tr(t/)exp[-(f-M)/T1]
T2 Jo

1 Г'
)=- Gn,f(M)exp[-(f-«)/T2]

TI Jo

XG0,tr(f-«)dM,

(33)

(34)

(35)

(36)

and describe the relaxation of the spins of a group of
muons that are found n times in the free and the trapped
states, respectively. In the case of relaxation in a transverse
magnetic field the function Go f ( t r )(r) is given by formula
(16a), and for relaxation in zero magnetic field it is given
by formula (17).26

The quantity pc(0) is the fraction of trapped muons at
the initial instant of time (immediately after thermaliza-
tion). According to the standard model, the value of x(0)
is proportional to the number of interstitial sites that are
traps, i.e., x(Q) =x, and for *< 1 is negligibly small.

For the case where, because of the same reasons cited
in Section 2 the relaxation of the spins of the free muon can
be neglected, the system of equations is obtained from Eqs.
(32)-(36) with G0f(t) = l. The solution of the system of
equations (32)-(36) is found by the method of Laplace
transforms.25 The optimum values of the parameters a{,
atr, T! , and т2 are found by a comparison of the experi-
mentally determined G(t) with the calculated function.

However, as shown in Refs. 13 and 27, there exists a
temperature range in which the expression for the muon
spin relaxation rate Я can be obtained analytically.

Within the standard model the initial spatial distribu-
tion of muons is a nonequilibrium distribution, since in
equilibrium the muon has a high probability of occupying
an interstitial site that corresponds to a trap. If the time TJ
is much less than the muon spin relaxation time TS, then
the spatial distribution relaxes to the equilibrium distribu-
tion much faster than the muon spin, and experimentally it
can be regarded as an equilibrium distribution. Then be-
cause of ergodicity the fraction of captured muons к is

= 1 - [ 1 +x (37)

where W0 is the binding energy of a muon in a trap and the
muon spin relaxation rate in the two-state model is given
by the expression

The relaxation rate т"/ in the free state is negligible, while
the rate in the trapped state is given by formula (18),
where

00=<7tr and т/, = т2.

If it is assumed that r2 has the usual exponential de-
pendence on T of the form

(39)

where TO is a constant, then we can introduce the charac-
teristic temperature TI, for which T2(T\)atr=l:

(40)

If Г, < T0, i.e.,

*>a,rTo, (41)

then the condition of ergodicity is satisfied over the entire
temperature range, and the т~' increases sharply with de-
creasing temperature, for T=Tl with x=l, and

' = 4tr = 2o2

rT2(2atrT2 + (42)

The function TS (T) has the form shown in Fig. 2, and it
remains practically unchanged as the concentration in-
creases up to the point where inequality (41) is violated.

In the opposite case, Tl > TO(X<£(TUTO), ergodicity can
be used in the region of high temperatures
T> r*(Ts(r*)=Ti), and in the entire range of interest to
us t ;S Tl, the spatial distribution function of the muons is
quite far from equilibrium. To obtain information on the
muon spin relaxation rate in this temperature range we
carried out a numerical simulation and found the solution
to the system of equations (32)-(36) for a wide range of
values of r{ and т2 (in units of <7t7'). The relaxation rate Я
was determined by approximating the function G(t) by the
functions exp(—Я2?2) and ехр(-Яг) (Ref. 26).

Over the entire investigated regirangeon of values of TJ
and т2 we find that with an accuracy of the order of 10%
Я is well approximated by the formula

(43)

Since in the simulation we did not use a specific form
for the functions r\(T) and т2(Г), formula (43) is appli-
cable for an arbitrary temperature dependence of TI and r2.

For T< Г,, where ст,гт2>1,

= {т1+[(т1+т2)/т2(т,г]}- (44)

and Я will be observed to increase with decreasing temper-
ature for T=T0. For T < T0, we have т2>т1, а,7* and the
release of the muon from the trap can be neglected. Then

Я=(т1 + с7-1)-1. (45)

When T! and r2 are both constant, then the function Я(Г)
is as shown in Fig. 2. Since rf ' x the value of Я that
corresponds to the low-temperature plateau increases with
trap concentration, and assumes a constant value equal to
crtr for т^сг^1. However, if rt depends on the temperature,
then one can recover the function r\(T) from the temper-
ature dependence of Я below T0 and draw conclusions
about the temperature dependence of the diffusion coeffi-
cient of muons in a metal.

In addition it should be noted that in a real metal, as
will be shown below, the time т{ is not the characteristic
time for a muon to encounter a trap, since not each en-
counter results in capture of the muon by the trap. There-
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FIG. 3. Potential acting on a muon from the direction of the defect. The
R axis denotes the position corresponding to the potential minimum of
the metal matrix.

FIG. 2. Theoretical temperature dependence of the muon spin relaxation
rate for Г,<Г0(1) and T0< Г,(2,3); xm>xr.(3)

fore /iSR data cannot, unfortunately, give information on
the value of the diffusion coefficient in a pure metal.

4.2.2. Beyond the two-state model

Let us see what sort of qualitative factors were not
taken into account in the model investigated above. As
noted above, each defect creates about itself a large number
of bound states. A trap is understood to be an interstitial
site with an energy W/<—T. We note that in the higher
temperature region the main contribution to the muon re-
laxation comes from the deepest minimum closest to the
defect, but at low temperatures the muon is trapped in an
interstitial site that is rather distant from the defect. Here
the quadrupole interaction with the defect becomes much
weaker. This is the reason for the difficulty in identifying
the type of interstitial site in which the muon is localized.
While the type of interstitial site can be determined
uniquely at higher temperatures, at low temperatures such
a conclusion cannot be made,28 or else the experimental
data are interpreted as a change in the type of interstitial
site.29"31

Since the energy of interaction of a muon with a defect
falls off quite rapidly with distance from the defect, the
deepest energy minimum is separated from the next one in
depth, but the shallower minimum (or minima) will be
separated by a rather high potential barrier (Fig. 3). In
this case the deepest minimum may be a trap only at low
temperatures if it in general lies in the region of the static
distortion of the energy levels, |r,— rm| <K

The potential barrier is penetrable by a muon only at
rather high temperatures, while at low temperatures the
muon is reflected from it with overwhelming probability.
Therefore the capture of a muon in a deep energy mini-
mum and the relaxation of the muon spin is observed at
high temperatures. As the temperature is raised further,
the relaxation rate Я falls off because of the decrease in the
time T2 for the release of a muon from a trap. The charac-
teristic form of Я(Т') in this case is shown in Fig. 4. The
low-temperature plateau on the curve of A (T) is due to the
contribution from shallower energy minima and may be
absent if the muon is incident in the region of a small static
distortion of the levels. This dependence of Я(Г) has been
observed in Al and Au with Gd and Er impurities.32"34

If there are a large number of minima near the defect,
then the temperature dependence A ( T ) becomes more
complicated.

From our point of view, a quantitative theoretical de-
scription of muon spin relaxation in a metal with defects in
the case тг £ ст47' is possible only by mathematical simula-
tion, including a calculation of the energy of the interstitial
sites around a defect and the muon spin relaxation rate in
them, as well as a simulation of the motion of a muon in a
metal with defects.

At high concentrations, where т^ег^1, the function
Я( Т) shown in Fig. 2 has been observed experimentally for
the case Tl < T0. As has previously been stated, TI can
depend strongly on the temperature, and the condition

be violated for T<Tl<T0.

5. ANALYSIS OF EXPERIMENTAL DATA

In this Section we shall analyze the experimental data
on /iSR in metals and show that essentially all the data can
be interpreted consistently within the framework of a uni-
fied model that explains the observed muon spin relaxation
by the capture of the muon in traps.

5.1. Niobium

The muon spin relaxation in niobium has been the
subject of many investigations.28'29'35^41 The dependence of
the observed relaxation rate on the concentration and kind
of impurities has led to the conclusion that the muon spin
relaxation in niobium (and also in a number of other met-
als except copper) is due to the presence of traps.42 Mod-
ern data on the value of £0 f°r hydrogen in niobium3'4

wholly support this conclusion.

FIG. 4. Muon spin relaxation rate vs the temperature when there are two
types of bound states (a and b in Fig. 3) separated by a potential barrier.
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FIG. 5. Muon spin relaxation rate vs the temperature in niobium.37 a)
3700 ppm of N, O, C. b) Less than 60 ppm of N, O, C. c) 10-20 ppm N,
o,c.

The temperature dependence of the muon spin relax-
ation rate is shown in Figs. 5 and 6.

A characteristic feature of niobium is the presence of a
minimum in A( T) in the vicinity of 20 K. When there is a
large concentration of impurities this minimum vanishes
and Я(Г) takes the form shown in Fig. 2 (curve /).

In principle, the presence of this minimum can be ex-
plained in two ways. First, one can assume that in the
region of 20 К there is a maximum in т{, with rfax S: at7'.
Second, one can assume that there are two kinds of traps of
different depth. The high- and the low-temperature parts of
the plateau correspond to the capture of a muon in the trap
with a large and small binding energy, respectively. The
minimum of Л(Т) is due to the presence of the potential
barrier around the deeper trap. For Г~20 К the muon
cannot overcome this barrier but falls into the deep trap,
while the shallower trap, even though it captures a muon,
the time тг of residence in it is short in comparison with
a,7', which also leads to a small value of A; i.e., the situ-
ation depicted in Fig. 4 occurs, but the valley between the
high- and the low-temperature plateau occupies a narrow
temperature range.

To make a choice between these two hypotheses,
Petzinger43 carried out measurements in zero magnetic
field and studied the asymptotic behavior of the relaxation
function G(t). If the muon falls into a trap and remains
there during the entire time of observation, then the value
of G(t) tends to 1/3 as t increases. However, if the muon
jumps from trap to trap, then G(t) tends to zero as t in-
creases. The measurements show that in the region of the
plateau the muon remains in a trap during the entire mea-
surement time, while for Г=18.5 К in the region where
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niobium with oxygen impurity.38
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the relaxation rate falls off with temperature, G(t) tends to
zero with increasing t.w Thus the decrease of Я after the
low-temperature plateau is due to the escape of the muon
from the trap (a reduction of the time т2) and not to an
increase in the trapping time.

It was assumed in Ref. 41 that the presence of two
kinds of traps is due to the presence of two types of impu-
rities (N and Та). However it is possible that because of
the oscillatory nature of the interaction of the muon with a
point defect both energy minima are created by the same
defect.

The disappearance of the minimum in Я(Г) with in-
creasing defect concentration is related both to the reduc-
tion in the time т\ (where TJ (r\ a x~ ' ) ) and to the appear-
ance of new types of energy minima caused by the action of
two (or more) close-lying defects. The muon does not en-
ter these minima by overcoming a high potential barrier,
but the depth is sufficient that at Т ~ 20 К the value of r2

would greatly exceed at7 ' .
In Ref. 36 it was shown that in the region of the high-

temperature falloff of Я(Г) the value of G(t) is well de-
scribed by formula (16) under the assumption that

where v0=1092±02 s'1 and £a=50±2 meV.
Using formula (30) for r2 we obtain the following es-

timate for the value of £0 in the tunneling of a muon from
a deep minimum to a neighboring interstitial site: £0=2-3
K. The evidence that this transition is indeed quantum
mechanical tunneling and not hopping over a barrier is the

small value of v0. In the case of hopping over a barrier the
value would be of the order of the local phonon frequency.
However, if the muon escapes from a trap mainly by one-
phonon processes, then for an estimate of £0

 one must use
formula (28).

5.2. Vanadium

The relaxation of muon spins in vanadium has been
studied less thoroughly than in niobium. In particular, the
measurements were carried out only with polycrystalline
samples.29^7

The temperature dependence of the relaxation rate for
vanadium containing different amounts of impurities is
shown in Fig. 7.

A characteristic feature of juSR in vanadium with a
small concentration of defects is the presence of a sharp
peak in the relaxation rate in the region 80-100 K. The
absence of a plateau on the curve of Я( Г) and also the fact
that the temperature that corresponds to the high-
temperature decay of Я(Г) increases with increasing de-
fect concentration indicates that the case T0<T^ occurs in
vanadium with a low concentration of defects.

The initial increase of Я with a reduction in tempera-
ture is due to the increase in the fraction of muons that are
captured by traps, while the decay after the peak at 80-100
К is due to the fact that rl increases with a decrease in the
temperature because of the presence of a potential barrier
in front of the trap.

The increase in Я as the temperature is lowered still
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FIG. 8. Muon spin relaxation rate vs the temperature in aluminum. /)
Normal metal; 2) superconductor.

further is due to the presence of shallower minima, as in
the case of niobium. The "healing" of the minimum of
Я(Г), which takes place at 30 К as the concentration of
impurities increases,46'47 is of the same nature as for nio-
bium. The absence of a plateau on the curve of Я(Г) in the
region of low temperatures indicates that rl ( T ) £ a^ ' a^so

in the range Т < 30 К.

5.3. Aluminum

Aluminum is the metal that has been studied the most
by /zSR.26'30'48"56 Its distinguishing feature is the absence of
observable relaxation in the pure metal. This is due both to
the high purity of the samples and the shallower energy
minima created by the impurities in aluminum.

A characteristic curve of A ( T ) in aluminum with a
small amount of Ag, Li, Mg, and Mn impurities52 is shown
in Fig. 8. It is similar to that for vanadium, i.e., in alumi-
num we also have the case T$ < 71]. As the concentration
of defects increases the relaxation rate increases and A( T)
takes on the shape shown in Fig. 2 (curve /).48-50'52

The minimum on the curve of A ( t ) in the temperature
region rmin = 2-4 K, as for vanadium, is related to the
presence of two types of energy minima of different depths.
Since Я(Г)=0 in pure aluminum, we can state with con-
fidence that both types of minima are created by the same
defect.

The fact that the minima in which the muon is located
at temperatures above and below !Tmin are of a different
nature is confirmed by the difference in the electric field
gradient acting on the muon in a trap,30 which is usually
interpreted as a transition of a muon from a tetrahedral
interstitial site to an octahedral site,30'31 but it also might
be related to the fact that the shallower minimum is lo-
cated farther from the defect that acts as the trap.30

That the temperature dependence A( T) for T < Tmin is
determined by the temperature dependence of rl (see for-
mula (45)) is proved by /uSR experiments carried out in a
zero magnetic field in superconducting aluminum.55'56 The
transition to the superconducting state at T=TC decreases
the value of т,, since in the superconducting phase both the
renormalized value of e0 and the number of electronic ex-
citations are decreased, which leads to an increase in the
mean free time of a muon (formula (7)). As a result, rt

becomes smaller than cr^1 in the superconducting phase
and A ( T ) assumes a constant value for T< Tc (Fig. 8).

0.2 -

0.1

A ,

x'r<T

•-1,
o-2

0,02 10
_ «

10 Юг 7, К

FIG. 9. Muon spin relaxation rate vs the temperature in copper before
(/) and after (2) purification.62

However, a comparison of т^(Т) with the predictions
of the theory for the diffusion coefficient in an ideal crystal
does not, in our opinion, either confirm or refute the latter
prediction, since the probability of capture of a /iSR when
it encounters a defect also depends on T, which leads to an
exponential increase of т\ when there is a potential barrier
in front of the trap. Therefore from the dependence т\(Т)
it is not possible to draw any direct conclusions about the
temperature dependence of the diffusion coefficient of a
muon in a pure metal.

5.4. Copper

The relaxation of the spin of a muon in copper has
been studied in Refs. 23, 24, 50, and 57-64. While in the
case of high concentrations the curve of Я(Г) is described
by the curve shown in Fig. 2, in pure copper below T=2 К
we find that Я falls off with increasing temperature, and for
Г<0.5 К there is a low-temperature plateau in
Я(Г).50'60'62 Such a curve is shown in Fig. 9.

Ordinarily this dependence is interpreted as the diffu-
sion of a muon in the pure material without any traps. We
believe that there are a number of insurmountable difficul-
ties associated with this interpretation.

1. To explain the low rate of transition from intersti-
tial site to site it is necessary, as is shown below, to assume
that in copper e0~ 10~3 K, i.e., many orders of magnitude
smaller than in other metals.

2. The decay of Я( Т), which, according to experiment
is exponential in the region of 100 К (Refs. 57, 29), is
interpreted as a manifestation of incoherent diffusion due
to interaction with phonons. In this case

However, the temperature dependence for rh is exponential
for Г>0 (Refs. 8, 12), and the Debye temperature of
copper is 0Cu = 315 K. An exponential dependence is also
observed at T -100 K.

3. The falloff of Я(Г) with a reduction in the temper-
ature below 2 К is explained by the appearance of coherent
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diffusion. The rate of this diffusion increases as the tem-
perature decreases. However, it remains unclear what
causes the low-temperature plateau at Г<0.5 К.

An alternate explanation, based on the assumption
that the observed relaxation rate is due to traps, removes
the first two objections. It is assumed that, as in the case of
niobium, the observed hopping rate is rj"1, and, using the
data of Refs. 57 and 29 for v0 and £a (v0=40.7±3.8 MHz
and £„=48.4±1.5 meV according to Ref. 57 and
v0=44.7±10 MHz and £„=53.4*3.6 meV according to
Ref. 29) we find from formula (30) that £0=0.5-1 K.

The decrease in Я(Г) for 7X2 К as the temperature
is lowered, as we assume, is analogous to the minimum in
Я(Г) in niobium at Г~20 К and has the same cause. A
muon is unable in the time of observation to fall into a deep
minimum, while the time r2 for the shallower minimum is
comparable to o^1. This is confirmed by the nature of the
dependence G(t) measured in zero magnetic field.24'64 In
the temperature range 30 К < Т < 100 К the value of G(t)
for large t tends to the value 1/3, which indicates the lo-
calization of the muon in a single interstitial site, while for
Г<30 K, G(/)—0, which indicates transitions of the
muon from site to site. The introduction of impurities re-
moves the falloff of Я(Г) in copper as it does for the
minimum of A(T) in niobium.

If our interpretation is correct, then as the temperature
is further reduced one should again see the static relaxation
function, which for large t tends to the value 1/3. The
question of the nature of the spin relaxation in copper
requires further study.

5.5. Tantalum

There have been fewer studies of ^SR for tantalum
than for copper or aluminum.29'39'45'65

As is the case for copper, when there is a high concen-
tration of impurities the curve of Я(Г) is like that shown
in Fig. 2, while for pure tantalum it is the same as that
shown in Fig. 10 (Ref. 39). The falloff of А(Г) in the
region of 10-20 К has not been studied thoroughly, but it
seems entirely probable that its nature is like that of the
minimum of Я(Г) for niobium. On the basis of the data
v0=3 • 109 s-1 and £a=42 meV from Ref. 65, obtained

FIG. 11. Muon spin relaxation rate vs the temperature in bismuth in zero
field (ZF) and a transverse magnetic field (TF) for various orientations
of the sample;69 RT—at room temperature.

with an approximation to G(t) by formula (16) in the
region of 50 K, we can, as in the case of Nb and Cu,
estimate the value of the tunneling matrix element e0,
which turns out to be 4-5 K.

5.6. Bismuth

A number of studies have been devoted to ^uSR in
bismuth.61'66"69 The observed temperature dependence of
the relaxation rate is shown in Fig. 11. It is characterized
by the presence of two plateaus at Г < 10 К and at 90 < Г
< 100 К.67 These sections of the curve correspond to a
muon that is quickly localized in a trap and remains there
during the entire measurement time.

As in the case of niobium, the decrease in the relax-
ation rate in the region 20 < Г80 К is due to a) the pres-
ence of a potential barrier around the deepest energy min-
imum; b) insufficiently high binding energy in the shallow
minimum.

The difference in the observed electric field gradient for
temperatures that correspond to the low-temperature and
the high-temperature plateau is due to the difference in the
distance between the interstitial site in which the muon is
localized and the point defect—the trap. As in the case of
niobium, doping causes the dip in the curve of Я(Г) to
disappear.61 Since bismuth is a semimetal, and in it the
value of N(Q) and consequently the value of g are small,
the time t2 for the release of a muon from the shallower
minimum is due to one-phonon processes (formula (28)),
and the release from the deep minimum is most likely to
occur by means of surmounting a barrier, as is indicated by
the large values v0= 1.44 • 1011 Hz and £„=128 meV, ob-
tained with the approximation for G(t) in the region 100-
200 К by formula (16), with т,Г1 = у0ехр(-£а/Г) (Refs.
69 and 67).
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6. CONCLUSIONS

We have shown that the experimentally observed
muon spin relaxation in metals (or at least in most metals)
results from the muon being captured in a trap, which can
be any point defect or extended defect in the crystal lattice.

Since the mutual position of the muon and the trap is
an important factor that has a large influence on the muon
spin relaxation rate, to obtain quantitative information on
the local magnetic fields and on the quantum mechanical
diffusion of the muon in a metal it is necessary to:

1. Carry out /iSR investigations in ultrapure metals
containing a controlled concentration of well-defined im-
purities in order to study the temperature and concentra-
tion dependences of the spin relaxation rate.

2. Study these samples in a zero and/or longitudinal
magnetic field in order to determine from the dependence
G(t) in what temperature range the muon remains in the
trap during the entire observation time.

3. Distinguish the contribution of the electrons to the
rate of capture of muons by traps by comparing the tem-
perature dependence of the muon spin relaxation rate in
metals in the normal and superconducting phases.

4. Carry out a numerical simulation of the muon spin
relaxation in a metal with defects starting from the calcu-
lated potential of the interaction between a muon and a
defect and the energy distribution created by the muon
among the interstitial sites.

5. Determine by numerical simulation the tempera-
ture dependence of the probability of capture of a muon by
a trap when the muon is located at the boundary of the
region of strong static distortion of the energy levels in the
interstitial sites, and determine the temperature depen-
dence of the diffusion coefficient in the pure crystal from
the observed data for т\(Т).

6. Determine which of the energy minima that serve as
traps in the capture of a muon in niobium by impurities of
oxygen and nitrogen correspond to a two-level system and
compare the data with results of experimental investiga-
tions of hydrogen in niobium.3'4
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