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The methods of calculating the energy levels of multielectron, multiply charged ions based on
a perfected model of the Bohr atom are reviewed. In addition to the electrostatic
interaction, account is taken of the electrons in different orbits in the form of interaction of
electric currents. The interaction constants for different electron configurations are
chosen empirically. The calculated energy levels of He-, Li-, Be-, and B-like ions agree with
the experimental values with a relative accuracy of 10~3-10~4. An application of this
method of calculation to atoms at constant volume is presented. A semiempirical equation of
state of solids is derived, starting with a model of an isolated atomic cell. By using the
experimental values of the bulk moduli, the effective energy of the unit atomic cell is calculated
for more than 100 elements and compounds. Attention is called to the fact that different
phases of solids differ not only in crystal structure, but also as a rule in the electronic states of
the atoms.

INTRODUCTION

The quantum model of the atom created by N. Bohr in
1913 has played an extremely important role in the devel-
opment of science. On the one hand, it summed up exper-
imental and theoretical studies of atomic spectra of more
than 50 years. On the other hand, it marked the beginning
of the fundamental change of view of the microworld that
culminated in the creation of wave quantum mechanics.

Spectral analysis as a method of studying materials
was proposed and introduced into practice by R. Bunsen
and G. Kirchhoffin 1859.1. Balmer in 1885 discovered the
first laws in the spectrum of the hydrogen atom for the
series of lines in the visible region of the spectrum. He
showed that their wavelengths are described to high accu-
racy by a single formula operating with the squares of
integers. Much material on the spectroscopy of atoms was
obtained and generalized by Rydberg. The fundamental
law in atomic spectroscopy, which was established empir-
ically in 1908, is the combination principle of Ritz, accord-
ing to which the whole variety of spectral lines of an atom
can be obtained by pairwise combination of a far smaller
number of quantities called the spectral terms. The view
that energy can be transferred in discrete portions arose in
explaining the laws of emission of an absolute black body
(M. Planck, 1900). The quantum character of the emission
was confirmed by study of the photoelectric effect and
Compton scattering.

Important steps in the study of the properties of atoms
were the planetary model of the atom and the proof by E.
Rutherford based on experimental data on large-angle scat-
tering of a-particles of the fact that the entire mass of an
atom is concentrated at its center in the positively charged
nucleus. A system consisting of a nucleus and an electron
revolving around it is unstable from the standpoint of clas-
sical electrodynamics. Continuous emission of energy by
the electron should cause it to fall into the nucleus, which
does not actually happen. N. Bohr formulated postulates

that remove this contradiction, and constructed the first
quantum theory of the atom.1'2

Bohr's theory of the hydrogen atom gave a graphic and
extremely exact description of the energy levels of one-
electron ions. It allowed deriving the spectral laws discov-
ered earlier (the Balmer series and others), to predict new
spectral series, and to determine the Rydberg constant
from known elementary constants. On its basis an under-
standing of the isotope shift of spectral lines was gained.
The theory explained the Ritz combination principle, re-
vealed the physical meaning of the spectral terms, which,
as it turned out, are determined by the energy levels of the
atom. A generalization of Bohr's theory to the case of
elliptical orbits of electrons and an explanation of the fine
splitting of spectral lines was given by A. Sommerfeld in
1916 (see Ref. 3).

Bohr's theory in its initial formulation1'2 was not re-
stricted to the hydrogen atom and hydrogen-like ions. In
Refs. 1 and 2 Bohr, moreover, studied models of states of
the atoms of helium, lithium, beryllium, and proposed a
model of the electronic structure of the molecule and the
molecular ion of hydrogen, and drew a general picture of
the structure of complex atoms. However, for complex
atomic systems, it was not then possible to obtain the im-
pressive agreement with the experimental data that was
found for one-electron ions at the instant of creation of the
theory, and which was subsequently confirmed.

The significance of Bohr's theory reaches far beyond
the framework of calculating the wavelengths of spectral
lines. It facilitated the development of physical concepts of
atomic phenomena as a whole, and ultimately led to the
creation of wave quantum mechanics. The de Broglie hy-
pothesis, the matrix mechanics of Heisenberg, and the
wave mechanics of Schrodinger were the basis of the new
understanding of phenomena of the microworld. At the
same time P. Dirac derived the relativistic equation, which
takes account also of the spin of the electron.

Recently considerable attention has been paid to the
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experimental and theoretical study of ions of high ioniza-
tion multiplicity with a large nuclear charge Z. In this case
one must take accurate account in the calculations of rel-
ativistic and radiation effects. The Schrodinger equation,
being non-relativistic, requires taking account of relativis-
tic effects in the form of corrections. For spectroscopic
calculations of multiply charged ions the Dirac equation is
more suitable. In both cases one must also take account of
the radiation effects of quantum electrodynamics.

A rich literature exists on the quantum-mechanical
methods of calculating atomic characteristics, both reflect-
ing the general theoretical approach,4"8 and that devoted to
concrete methods of calculating multielectron, multiply
charged ions.9"14 There are also simplified methods.15'16

With the development of machine methods of numerical
calculation, quantum-mechanical calculations have be-
come accessible for rather complex multielectron systems
(see, e.g., Refs. 17-19). As before, the empirical methods
of calculation are of great practical importance.20"22

At the same time the advances in exact quantum-
mechanical calculations and the first failures of applying
the Bohr model to multielectron atoms and ions favored
the development of the opinion that the Bohr model was
inapplicable to such systems. Moreover, the exact descrip-
tion by the Bohr theory of the spectra of the hydrogen
atom is often considered to be fortuitous. However, re-
cently one can note a certain interest in the semiclassical
methods in atomic calculations. Thus, in Refs. 23-25 a
calculation of the energy of the ground state of helium-like
ions is performed by methods that are a modification of the
Bohr model. Reference 26 gave a quasiclassical method of
calculating the energy of states of helium-like and lithium-
like ions. There is also a classical model of the molecular
ion of hydrogen.27

The classical views of the motion of atomic electrons
are successfully used to calculate the cross sections of in-
teraction of fast electrons with atoms. An example might
be the Thomson formula,28 which was derived as early as
the prequantum epoch, and its more contemporary
modifications.29"31 In numerical calculations of the ioniza-
tion of the hydrogen atom by electrons,32 in which the
classical three-body problem was solved, good agreement
with the experimental data was obtained. The classical and
quasiclassical approaches to problems involving the Stark
and Zeeman effects have been discussed in detail in the
review, Ref. 33, which concluded that the potentialities of
the classical methods in atomic calculations are far from
exhausted.

Below we review the methods of calculating the energy
of the states of multielectron, multiply charged ions based
on a refined model of the Bohr atom. Perhaps the use of the
Bohr model to solve these problems is reflected in the lit-
erature to the least extent. It turns out that, by these meth-
ods within the framework of a unitary approach, one can
study the energy of free atoms and ions (for which an
infinite volume is accessible),34"36 the energy of states un-
der conditions of restricted volume (e.g., for atoms con-
tained in a solid),37"39 and also the electronic energy levels

of molecules.40 Thus one can obtain a number of new re-
sults.

The approach being applied is based on development
of the ideas of N. Bohr involving the description of an
atom on the basis of planetary orbits in combination with
the corresponding quantization rules. The basis of the
quantization is the quantization (integer values in units of
h) of the angular momentum of the electrons. In this case
the energy proves to be a multiparameter function of the
coordinates corresponding to the different atomic shells.
The quantization (discreteness) of the energy is obtained
as a consequence of the quantization of the angular mo-
mentum. Perhaps this viewpoint on the quantization of the
energy was most clearly formulated in Ref. 41.

A sufficiently exact calculation of the energy of multi-
electron atoms and ions proves possible only with a semi-
empirical approach. As compared with the study of N.
Bohr,1'2 in calculating multielectron atoms, in addition to
the electrostatic Coulomb interaction, one takes account of
the additional interaction of the electrons in the form of the
interaction of electric currents.34"36 The constants of this
additional interaction are chosen empirically. While leav-
ing unaltered the integer values of the quantization of the
angular momentum, this approach shifts the difficulties
into the region of describing the interaction of the atomic
particles. One can say that, while the Bohr theory of the
hydrogen atom postulated the inapplicability of classical
electrodynamics to processes of emission of energy from
the atom (while leaving the Coulomb interaction un-
changed), then for multielectron atoms, in addition, one
must use the interaction of the electric currents in the atom
with a constant differing from that obtained in classical
electrodynamics.

In the model one uses only circular orbits of electrons.
However, this does not mean that one ignores in the cal-
culations the dependence of the energy on the orbital quan-
tum number. The magnitudes of the empirical parameters
depend on it, just as on the spin. The quality of the semi-
empirical method is determined by the number of empiri-
cal constants that are employed. In the model being dis-
cussed, for each type of states with given L and S, one uses
two empirical constants that do not depend on Z, n, and j,
and which allow one to obtain a large bulk of calculated
values for ions having different nuclear charges Z in dif-
ferent excited states. In contrast to a number of simplified
classical and quasiclassical calculations that operate with
only one type of state,23"25 or those that do not distinguish
states with a different value of the spin,26 the semiempirical
method presented below enables one to calculate the en-
ergy of states of rather complex multiply charged ions with
an accuracy sufficient for comparison with spectroscopic
data. The comparison of the calculated quantities in the
review is conducted both with the experimental data and,
as much as possible, with the results of the most contem-
porary exact quantum-mechanical calculations. The calcu-
lations of the energy are relativistic, which enables obtain-
ing results and making a comparison for ions with large
nuclear charges Z.

The question might arise: what is the sense of such
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semiempirical calculations when there is a developed, more
exact theory? The merit of the model being discussed, just
as of the Bohr model in its time, is the simplicity and
graphic character of the physical concepts used and the
minimal bulk of necessary calculations. In a number of
cases one can obtain analytic expressions for the energy of
states, in particular for the energy of the ground state of
helium-like ions, taking account of relativistic effects and
applicable to ions of large Z,36 and analytic expressions for
the energy of highly excited Rydberg states of helium-like
and lithium-like ions.34

The method of energy calculation developed for atoms
and atomic ions has proved applicable to calculating the
energy of excited electronic states of molecules.40 Upon
using the same electronic configuration for the hydrogen
molecule as for the helium atom, one can obtain by calcu-
lation the energy levels of the H2 molecule in one-electron
excited states and establish their correspondence to the
experimental values. The contrast with the helium atom is
manifested in the fact that the electrons lie in the field of
two nuclei with Z=l separated by a certain distance,
rather than a single point charge with Z=2. This appre-
ciably increases the radius of the orbit of the inner electron
and causes a certain change in the energy of interaction of
the outer with the inner electron, while the values of the
empirical constants of the additional interaction with re-
spect to the helium atom remain the same.

Another rather successful application of the method
being used is the study of strongly compressed matter. By
this method one can rather simply study the energy states
of an atom under conditions of restricted finite volume per
atom, and view the compression of a solid as the compres-
sion of an electrically neutral cell containing one or several
atoms. Here the pressure in the solid that arises upon com-
pression is determined by the radius of the outer electron
shell. From the condition of quantization of the angular
momentum, the energy of a multielectron atom is repre-
sented by a multiparameter function of the coordinates.
The stationary states of the free atoms are determined by
minimizing this function. In the compressed atom the
value of the energy corresponds to a concrete value of the
radius of the outer electron shell and does not equal the
minimum value. Thus, one is studying nonequilibrium
states in the compressed atom. Here the energy of the atom
varies smoothly and continuously in the process of com-
pression with a fixed quantum state. This is another differ-
ence of the method of calculation being applied as com-
pared with the original formulation of the model of N.
Bohr, which treated only equilibrium states corresponding
to minimum energy.

Atoms occupying a restricted volume attract the atten-
tion of researchers as a model for estimating the influence
of the environment on the properties of atoms in real
objects.42'43 Particles are studied inside an impenetrable
spherical cavity. Under such conditions the energies have
been calculated of atomic hydrogen,42 atoms of He, Li, Be,
В, С, and Ne,43 and of two-electron ions (H~, He, Li+).42

One of the methods of studying such systems adopted in
Ref. 42 is the quantum Monte Carlo method,44'45 while

also the Hartree-Fock method is used.43 Upon decreasing
the dimensions of the cavity the energy of the atomic state
sharply increases. In the model of the Bohr atom this is
explained by the increase in the kinetic energy upon de-
creasing the radius of the orbit of the electron with invari-
ant angular momentum. Interesting comments on the in-
fluence of a finite volume on the states of atoms are found
in the book, Ref. 46.

In the Bohr model approximate analytic expressions
could be obtained for the elastic energy and the pressure,
which can be used as a semiempirical equation of state of
solids with the parameters En (energy of the outer elec-
trons of the atomic cell) and р„ (density) under equilib-
rium conditions.37'38 It proved possible to write the elastic
pressure, both in terms of the macroscopic quantity B0

(bulk compression modulus) and in terms of the micro-
scopic quantity Е„ (effective energy of the cell). This en-
abled determining the effective energy of state of the
atomic cell contained in a solid for a known value of the
bulk compression modulus for many elements and com-
pounds and to establish that the different phases of solids
differ not only in crystal structure, but as a rule also in
differing electronic state of the atoms (differing effective
energy of the atomic cell of the solid).39

The equation of state obtained in this way supplements
the existing methods of calculation. A knowledge of the
equation of state of substances is required in different fields
of study. The range of variation of the parameters is very
large, and each field has its own experimental and theoret-
ical methods. Compression of solids at high pressure is
studied both in static and in dynamic experiments. There is
no opportunity in this review to reflect in any detail the
experimental and theoretical studies on equations of state
in different ranges of the parameters. It is devoted to dif-
ferent applications of the atomic model of Bohr, in partic-
ular to calculating the compressibility of substances.
Therefore in the text the data on the equation of state
(both experimental and calculated) are used mainly for
comparison with the results obtained by the Bohr model.
Since a large number of special reviews and monographs
exists on the equation of state,47"70 we shall briefly take up
some of them and refer the reader to the literature con-
tained in them.

The static studies, which were broadly conducted by P.
Bridgman in the pressure region up to 10 GPa,47 subse-
quently with the discovery of the technique of diamond
anvils [see the review48] were extended in pressure. Studies
are already being conducted at pressures of 250 GPa,49 400
GPa,50 and there is a prospect of obtaining a pressure of
1000 GPa.50 Even higher pressure values are reached in
shock-wave experiments.51"62

The results of measuring the static compressibility of a
large number of substances (to a considerable extent from
the data of P. Bridgman) are given in the handbook, Ref.
63. The x-ray structural studies of compressed substances
are very important.64 The various features of the behavior
of condensed substances and plasmas under dynamic
shock-wave exposure are reflected in Refs. 51-62. A book
has been recently published61 in which the studies of com-
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pression of substances by shock waves are collected,
mainly conducted by L. V. AFtshuler and his students. A
comparative analysis of the different thermodynamic mod-
els of the equations of state and a discussion of their limits
of applicability over a broad range of parameters is given in
the review, Ref. 57. References are presented in the same
place to the published studies on this topic. Theoretical
models of the equation of state are reflected in Refs. 65-75.
Considerable attention has been paid to the study of the
influence of the electron shells of atoms on the compress-
ibility of substances at ultrahigh pressures.62'70"75

Many studies have been devoted to investigating phase
transitions in substances in shock waves and the features of
the shock Hugoniots D(u) associated with these
transitions.51"53'76"83 The model of the Bohr atom allows
one quantitatively to determine the parameters of the elec-
tronic phases of solids and to conduct an analysis of the
course of the D(u) curves for many elements and com-
pounds, starting with the hypothesis that the different re-
gions of the D(u) curve can correspond to different phases
of the solid having a different equilibrium density and bulk
compression modulus.84

This review does not discuss the problems of the his-
tory of development of the theory of the Bohr atom (on
this topic see Refs. 85-90). Its aim is to try to show the
Bohr model, not as a historical phenomenon, but as an
acting physical theory.

1. ENERGY LEVELS OF FREE ATOMS AND IONS

1.1. Hydrogen-like ions

As we know, the energy values of hydrogen-like ions
are described by the Dirac-Sommerfeld formula3'6

E(n,k)

= mc2\\\
aZ

n-k+(k2-a2Z2)U2

-1/2

-1 (1)

where и is the principal quantum number, k=j+ (1/2), j
is the quantum number of the total angular momentum
(the sum of the orbital angular momentum and the spin),
a is the fine-structure constant, т is the mass of an elec-
tron, с is the speed of light, and Z is the nuclear charge of
the ion. When k=n we have

E=mc2{ [ 1 - (a2Z2/n2)}ш-1}. (2)

Let us present the derivation of Eq. (2) as the result of
solving the relativistic problem in the Bohr-Sommerfeld
model for circular orbits. Upon taking account of the mo-
tion of the nucleus, the value of the energy equals

E=mc2{[ 1 - (v2/c2) ] ~1/2-1} + (Mv2/2) - (Ze2/r).

(3)
Here M and V are the mass and the velocity of the nucleus,
e is the charge of the electron, and r is the radius of its
orbit. From the condition of quantization of the angular
momentum of the electron mvr[l — (у2/с2)]~1/2 = лй we
obtain

[ 1 - (v2/c2) ] -1/2=

where x=r/a0; a0 is the Bohr radius. Here the energy
equals (in atomic units)

a
(4)

while дЕ/дх = 0. From this we obtain the radius of the
steady-state orbit

x=- 1-
a2Z2 1/2

and the energy value

l + (m/M)
E = т 1—:

l + (m/Af)]

1/2

(5)

(6)

When m/Af<l, Eq. (6) coincides with Eq. (2), and the
atomic unit of energy is a2mc2. The velocity of the electron
in motion in the orbit is the same as in the nonrelativistic
case: v=Zac/n. We obtain from Eq. (5)

Z=
+ (a2n2/x2)]l/2'

Substituting (7) into (4), we obtain

E=
\ + (m/M)

a2

1

[l+aV/*2)]1/2 -1

(7)

(8)

Equation (6) contains no dependence on the magnitude of
the total angular momentum j that exists in the Dirac
theory. Upon substituting into the Dirac formula (1) the
value of Z from (7), we obtain the energy for different
values of j expressed in terms of the radius of the orbit of
the electron. The difference between this value and Eq. (8)
determines the multiplet shift of the energy levels

D(x,n,j)

1
1 +

аФ(х,п)
n-k+[k2-(a2<t>2(x,n))]l/2

-1/2

хФ(х,п)
(9)

Here we have k=j+(l/2), while the function Ф(х,п)
equals л2/(л:2 + а2л2)1/2.

The transition that has been made to a dependence of
the energy on the radius of the orbit of the electron, rather
than on the nuclear charge Z, naturally offers nothing new
for hydrogen-like ions. However, it proves convenient in
calculating atomic systems with a number of electrons
greater than unity. The multiplet splitting known under
the name of the fine structure of levels was first explained
theoretically by A. Sommerfeld in 1916, starting with the
concept of elliptical orbits, whereas we shall conduct the
entire treatment for circular orbits, while introducing the
correction (9) for the multiplet splitting.

Beginning at Z=10, the deviation of the experimental
values from the values obtained by Eq. (1) becomes ap-
preciable, in connection with the influence of radiation ef-
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fects. The refinement of the calculated values of the energy
of hydrogen-like ions in recent years has involved the per-
fection of the methods of calculating them.91"94 On the
basis of the data of Ref. 91, Erickson calculated detailed
tables of the energy levels of one-electron ions with nuclear
charges Z= 1-105.93 The measurements of the Lamb shift
of the levels of hydrogen-like ions of phosphorus,95

chlorine,96 argon,97 and nickel98 show a closer coincidence
with the results of the calculations of Mohr92'94 and are
confirmed by the results of Johnson and Soff.99 The mag-
nitude of the Lamb shift is elevated in the calculations of
Ref. 93.

Let us present the interpolation dependence for the
radiation correction for s states &ЕпЛ=Ь(х,п):

3.375a3n(n/x)4

(10)

where x is given by Eq. (5). The values of the radiation
energy shift calculated by Eq. (10) of Is states differ for
Z< 70 from the data of Refs. 94, 99 by no more than 0.06
eV. The experimental values of the Lamb shift of the states
2s2S1/2 and 2p2P1/2 for the elements with Z= 15, 17, and 18
are described by Eq. (10) to an accuracy of 2%.

1.2. Ground state of helium-like Ions

According to Bohr the ground state of helium-like ions
is described by a system of two electrons revolving in a
single circular orbit (and with identical velocities) about
the nucleus. Upon taking account of the quantization con-
dition mvr[l — (v2/c1)]~l/2='K, the energy of the ground
state equals

E(x) =- 2- 1}- (2Z/x)

(11)

In this model the center of gravity of the three particles
(the nucleus and the two electrons) coincides with the
nucleus, and the energy does not depend on the mass of the
isotope. From the condition дЕ/дх=0, the radius of the
steady-state orbit is

x=-
[l-a2(Z-0.25)2]1/2

Z-0.25

The energy of the ground state of helium-like ions equals
(in atomic units):

E(Z) =
a

l-a2(Z-0.25)2]1/2-l}. (12)

The ionization potential of such ions equals the difference
between the energy of (12) and the energy of the
hydrogen-like ions. The ionization potential of the helium
atom obtained in this calculational scheme by N. Bohr1

amounts to 28.9 eV in place of the experimental value
24.59 eV.100 With increasing Z the relative error of the
calculated ionization potential declines. The difference be-
tween the calculated and experimental values of the ion-
ization potentials depends linearly on Z:

/calc-/exp= (Z-0.75)/8.

This dependence can be obtained by introducing into the
calculation an additional interaction between the electrons
in the form A/2x, besides the electrostatic Coulomb inter-
action. By comparison with the experimental data we have
A=0.25. One can understand the l/x functional depen-
dence on the basis of the analogy with a ring electric cur-
rent.

Let us turn attention to the fact that one can find the
linear dependence that we have presented only for a rela-
tivistic formulation of the kinetic energy of the electrons. A
nonrelativistic calculation yields a curve with a maximum
at Z= 14 for the difference between the experimental and
calculated energies of the ground state of helium-like ions.

Often one uses the concept of screening of the charge
of the nucleus by interaction of the electrons with one
another. Owing to the Coulomb interaction of the electrons
in helium-like ions, the screening coefficient (according to
Bohr) equals ств=0.25, the additional interaction gives Да
=0.0625, and the total screening coefficient is 0=0.3125.
With account taken of this correction, the energy of the
ground state of helium-like ions equals

£(Z)=2mc2{[l-a2(Z-0.3125)2]1/2-l}-AT. (13)

Here К =1.52 eV is a constant term. When aZ<l, Eq.
(13) is converted into the well known expression (see, e.g.,
Ref. 5)

E(Z) = -a2mc2(Z-0.3125)2-AT. (14)

Thus Eq. (13) is a natural generalization of Eq. (14) to
the relativistic case. The correction for the relativistic de-
pendence of the mass of the electron on the velocity equals

£rei=mc2[2{[l-a2(Z-0.3125)2]1/2-l}

+a2(Z-0.3125)2]. (15)

For large Z, as in the case of hydrogen-like ions, one
must take account of radiation effects. The calculation of
the radiation effects is a difficult independent problem.
They were taken into account effectively in Ref. 36 by
using a functional dependence, as for the hydrogen-like
ions [i.e., in the form of (10)], and by choosing the coef-
ficient so as to obtain the best calculated description of the
existing experimental values. Starting with this, the follow-
ing expression was taken for the radiation correction to the
energy of the ground state of helium-like ions:

Etad=2,mL(x,n), (16)

where we have
L(x,n) from (10), and

x=[l-a2(Z-0.3125)2]1/2/(Z-0.3125).

The energy of the ground state of helium-like ions is
the sum of the values obtained by Eqs. (13) and (16). The
energy values of the ionization potentials calculated in this
way for ions with Z= 1-90 are given in Ref. 36. The dif-
ference between the calculated energy values and the ex-
perimental data100 (for Z<20) does not exceed 0.03 eV
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(relative accuracy 10~4-10~6). We note that when Z=20
the relativistic correction of (15) amounts to 55 eV, and
the radiation correction of (16) to 4.5 eV. The high accu-
racy of coincidence of the calculated and experimental val-
ues allows one to use with a high degree of reliance the
calculated values for large Z, when there are no reliable
experimental data. The calculated values19 of the ioniza-
tion potentials of the ground state of helium-like ions de-
scribe the experimental results somewhat more poorly, but
their difference from the data36 for Z < 45 does not exceed
1.5 eV (relative error less than 10~4).

1.3. Lithium-like ions

The formation of the ground state of lithium-like ions
and their states with an excited outer electron can be rep-
resented as the combination of a helium-like ion in the
ground state with an electron having the angular momen-
tum nfi (n is the principal quantum number of the outer
electron). The energy of such systems includes the energy
of the helium-like ion

(17)

(18)

and the energy of the electrostatic interaction of the outer
electron with the inner ion

-(Z-2)/y. (19)

Here x = rl/a0, y=r2/a0, where rl and r2 are the radii of
the inner and outer orbits, and a0 is the Bohr radius, with
the energy in atomic units. The expressions for the energy
are written with account taken of the quantization of the
angular momentum of the electrons:

the kinetic energy of the outer electron

mvr2[l-(v2

2/c2)]-l/2 = nfi.

To find the correction to the interaction energy of the
outer with the inner electrons, as in the ground state of the
helium atom, we shall use the analogy with the interaction
of electric currents. The energy of this interaction will be
positive or negative, depending on the direction of motion
of the electrons in the interacting rings (in the same or in
opposite directions). The interaction energy of the currents
equals101

(20)

For coaxial rings with a current radius of x and у we have

/^2тг

1 2 Jo

The electric current is

'1,2-
1/2

Upon expressing v\>2 in terms of x and у from the quanti-
zation conditions, we obtain: il~eac/x, i2~eacn/y. As a
result we can write the interaction energy in the form

Emt=-2AnF(x,y),

where we have

2ir cos <pdq>

— 2xycos q>) 1/2 •

(22)

(23)

Here A is a constant determined by comparison with the
experimental data. For a more complete agreement of the
calculated values with experiment (especially for small Z),
we shall take account in the energy of another correction
term

-2Bx/ny, (24)

where В is an empirical constant. This correction amounts
in order of magnitude to 0.5-1.0 eV, and is constant for
large Z (being equal to В/п3). The stationary states are
determined from the conditions of energy minimum:

c = 0, дЕ/ду=0.

From these conditions we obtain the following equations

1 Z-0.3125 В

= 0,

Z-2 2Bx

/[l + (aV.

=0,

where we have

\ = -dF(x,y)/dx

(x—y cos <p)cos <р<1ф

(25)

(26)

2ir Jo
172 >

= -dF(x,y)/dy

(y — X COS ф)COS ф&ф1 Г*
= Ъг J0

(x2+y2 — 2xy cos ГТ72 '

(27)

(28)

After simple transformations we find that the energy of the
stationary states equals

2

or

1

-(a2/*2)1/2

1

-1

77-1
2Bx

ny
(29)

Thus the problem of determining the energy levels is re-
duced to finding x and у by solving the system of equations
(25) and (26). This system can be solved by a simple
iteration method. We note that, when x <y, we have

1 Г2т СО
F(x'y}=^ rAiV2ir J0 (x +Г —

cos q>d<p

2xycos<p) l/2
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TABLE I. Parameters of the Is2n/ states of lithium-like ions.

State

1 szns

Is up
Is2/id
lsz;if
1 s2Hg
Is2»h

A

0,8045

0,2455
0,0105
0,001 2
0,0001 69
0,00005

В

0,150
-0,084

-0,003
- 0,00027

0
0

cos ф • Pn(cos <p)dq>, (30)

where Pn (cos q>) is the Legendre function. Using the ex-
pansion considerably accelerates the numerical calculation.

The calculated description of the energy of the Is2n/
states of lithium-like ions is attained with the values of the
parameters A and В given in Table I. These two parame-
ters are chosen for each type of states of atoms having the
given value of /, while not depending on Z, n, nor j. The
relative accuracy of description of the energy is
10~3-10~4.35 For large Z one must take account of the
shift of the energy levels as a function of the total angular
momentum j. It proved possible to calculate this shift
analogously to the calculation for hydrogen-like ions by
starting with the expression

bEM=D(y,n,j), (31)

where D(y,n,j) is the function of Eq. (9). The values of.y
are determined by solving the system of equations (25)
and (26). In the case in which the interaction of (22) and
(24) is absent, Eq. (31) yields a value of the shift of levels
coinciding with that in the Dirac theory for hydrogen-like
ions with Z*=Z—2. Thus, upon using the values of the
radii of the orbits of the electrons from solving the system
(25) and (26), the energy of each electron is described by
the Dirac formula written as a function of the radius of the
orbit of the electron.

In calculating the energy of Is2ns states the following
correction term was taken into account:

A£=-L(jMi), (32)

where L(y,n) is taken in the form of (10), which interpo-
lates the Lamb shift of the ns states of the hydrogen-like
ions. Moreover, another correction was used for the Is2ns
states:

0.48a
(33)

(34)

and for the Is ир states:

0.68a In \

**—-HH-
When у = и—(1/2) the multiplet shift equals zero, and
hence, for the states 2p2P3/2, 3d 2D5/2, 4f2F7/2, and
5g 2G9/2 the relativistic effects are fully taken into account
in the relativistic form of writing the kinetic energy. In
agreement with Eq. (31) the doublet splitting equals

TABLE II. Comparison of the calculated values of Refs. 35, 19, 102,
and 103 of the ionization potentials of the ground state of lithium-like
ions with the experimental data from Ref. 100.

z

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
22
24
26
28
30
33
36
41
54

/[100]

5,3918
18,2113
37,9309
64,4944
97,8909
138,1205
185,1879
239,1007
299,8830
367,5417
442,0816
523,5151
611,8670
707,1620
809,4126

—

—
—
—
—
—
—
—

—
—
—
—

/(351

5,4401
18,2041
37,9038
64,4636
97,8637
138,1010
138,1787
239,1040
299,8865
367,5377
442,0710
523,5014
611,8453
707,1209
809,3478
918,5472
1034,742
1157,955
1425,545
1721,541
2046,196
2399,785
2782,617
3412,430
4110,054
5427,389
9812,675

/119]

—
—

64,4951
97,8940
138,1241
185,1912
239,1037
299,8716
367,5069
442,0229
523,4345
611,7585
707,0127
809,2164
918,3907
1034,558
1157,743
1425,267
1721,186
2045,749
2399,233
2781,939
3411,527
4108,870
5425,581
—

/1102]

5,3900
18,2098
37,9300
64,4947
97,8928
138,1242
185,1947
239,1113
299,8858
—

442,0553
—

611,8187
—

809,3162
—

—
1157,931
1425,539
1721,563
2046,259
2399,906
2782,813
3412,781
4110,616
5428,471
9816,698

/ЦОЗ]

5,3917
18,2112
37,9304
64,4939
97,8902
138,1194
185,1866
239,0990
299,8679
367,5034
442,0202
523,4321
611,7567
707,0102
809,2133
918,3865
1034,549
1157,727

—
—
—

—
—
—
—
—
—

£/+(1/2)— £/-(1/2))

= D(y,n,l+ ( 1/2) ) - D(y,n,l- ( 1/2) ). (35)

Table II compares the calculated ionization potentials
of the ground state of lithium-like ions obtained by this
method with the experimental data100 and with the results
of other calculations.19'102'103 The calculated values35 de-
scribe the data of Ref. 100 for ions with Z=3-17 to an
accuracy better than 0.03-0.06 eV. For Z= 18-20 the ta-
bles of Ref. 100 give approximate estimated values. Isoelec-
tronic extrapolation of the ionization potentials by the
method of Ref. 104 yields values for the ion ArXVI of
918.61 ±0.01 eV, for the ion KXVII of 1034.81 ±0.04 eV,
and for the ion CaXVIII of 1157.97±0.02 eV, which differ
little from the values in Ref. 35. This same table presents
the calculated values of Ref. 102, which are close to the
calculated quantities of Ref. 35 for the ions with Z up to
25.

The calculation of Ref. 19 yields the ionization poten-
tials very well for Z=6-l 1, while for larger Z we can note
a systematic lowering of the calculated values of Ref. 19 as
compared with the data of Ref. 100, calculated data in Ref.
35 and all the more with the results of the calculations of
Ref. 102. The calculated values of Ref. 103 for ions with
Z=3-20 are close to the data of Ref. 19.

The results of the calculations allow one to detect ev-
idently erroneous values of the ionization potentials of the
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TABLE III. Calculated and experimental values of the energy of
lithium-like ions (in eV).

TABLE IV. Comparison of the calculated and observed1'7'118 wave-
lengths of lines (in nm) in the spectrum of CIV.

Z
Experimenl

Calculation

1351 (19,141 H06I |102|

i°Vp,/z-isVp|/z

12
14
18
20
26
29
32
36
42
54
74
92

0,494
1,014
3,171
5,066
15,962
25,609
39,142
64,932
125,84
372,38

—
—

0,496
1,017
3,176
5,070
15,970
25,609
39,131
64,899
125,76
371,78
1498,1
4159,0

0,502
1,026
3,190
5,087
15,997
25,640
39,164
64,929
125,77
371,61
1496,9
4155,7

0,494
1,014
3,171
5,064
15,965
25,608
39,140
64,932
125,87
372,36
1502,6
4178,4

—
—

5,052
15,930

—
—

64,798
—

371,72
—

4176,3

Is22p V „ - ls22s2S. .,K 1/2 I / Z

12
14
18
20
26
29
32
36
42
54
74
92

19,339
23,813
31,867
35,963
48,604
55,155
61,901
71,241
86,102
119,97

—
280,72

19,866
23,858
31,935
36,032
'48,638
55,157
61,847
71,074
85,680
118,39
187,86
275,26

19,839
23,812
31,861
35,952
48,565
55,099
61,811
71,075
85,747
118,62
189,23
285,35

19,839
23,812
31,866
35,961
48,597
55,155
61,902
71,238
86,102
119,82
193,43
280,68

—
—

36,154
49,092

—
—

72,787
—

126,13
212,43
323,15 -

ions CuXXVII and ZnXXVIII given in the handbook, Ref.
105: 2560 and 2730 eV. The correct values are 2587.5 and
2782.6 eV, respectively, for Cu and Zn.

Table III compares the calculated values19'35'102'106 of
the energy difference of the states Is22p 2P3/2 —

2P1/2 and
ls22p2P1/2—ls22s2S1/2 with the experimental data.107"110

The experimental data for large Z are limited.111"115 As we
see from the table, the calculated values35 of the fine split-
ting of the energy of the 2p states coincide very closely with
the experimental quantities. The difference from the recent
measurements of this interval115 for ions with Z=26, 29,
and 32 does not exceed 0.01 eV. For ions with Z=36, 42,
and 54 the difference between the calculated values and the
experimental data lies within the limits of experimental
error. For Z=92 the difference between Ref. 35 and the
calculated value106 amounts to 0.4%.

The spacing Is22p 2P1/2—Is22s 2Si/2 is given very ac-
curately by the calculation of Ref. 106. The calculated val-
ues of Refs. 35 and 19 differ by several hundredths of an eV
for Z< 32 and are lower for large Z than the data of Ref.
106. We note that the new calculated values106 are substan-
tially lower as compared with the old calculations18 by the
same authors. The last column of Table III demonstrates
how crudely the energy of the excited Is22p states is de-
scribed by the calculation of Ref. 102 despite a rather good
description of the energy of the ground state and the fine-
splitting spacing. As was noted in Ref. 116 by the authors

Transition

4d-6p
4p— 6s
4d— 6f
4s— 6p
4f-7g
4d— 7f
4p— 7d
4d— 8f
4s— 7p
4p— 8d
3p— 4d
3d— 4f
4f— 5g

•̂ obs

165,44
165,39
163,77
144,01
135,30
135,14
131,56
121,38
121,06
118,44
110,8
116,9
253.«

Л-calc

165,47
165,46
163,80
144,00
135,30
135,15
131,61
121,38
121,04
118,50
110,88
116,88
253,08

of Ref. 102, the correct values are obtained by calculating
the screened Lamb shift. For the transitions 2s-3p, 2s-4p,
2p-3s, and 2p-4s, the calculated values obtained in Ref. 35
are close (within limits of 0.1 eV) to the experimental data
of Edlen.20

As an example of using the calculated values of the
energy of the states of lithium-like ions, we compare in
Table IV the wavelengths of the transitions in the spectrum
of CIV with the experimental data of Refs. 117 and 118.
The calculated values from Table IV describe the experi-
mental values to a relative accuracy better than 5X 10~4.

Whenever one must calculate as accurately as possible
a long chain (in n) of excited states for a given Z, one can
do this by selecting the parameters A and В for the given
nucleus, rather than from the condition of describing the
entire set of Z values.

The analysis of the results of calculations shows that,
when Z<10, the relativistic effects are small, and the fun-
damental correction is that to the interaction energy of the
electrons of different shells described by Eq. (22). Owing
to this interaction the energy of the ground state of the
lithium atom is increased by a factor of 1.6, while its di-
mension is decreased by the same factor. The magnitude of
this correction for the Is22s state for Z= 10 equals 21 eV,
for Z=50 it amounts to 138 eV, and at large Z it depends
linearly on Z. The decrease in the radius of the orbit of the
outer electron owing to the interaction of (22) increases
the splitting in the total angular momentum j. The inter-
action of (22) has an even greater effect on the multiple!
shift of the Is22s level. For lithium the value of this shift
exceeds fivefold the hydrogen-like value, while for Z=30
the magnitude of the additional shift amounts to 3.5 eV.
The magnitudes of the corrections are large; therefore the
high accuracy of coincidence of the calculated data with
the experimental results indicates that the interaction of
the particles is fundamentally reflected correctly in the
method being discussed. As compared with the semiempir-
ical approach that employs the quantum defect,119 the
method being discussed leaves undoubted the integer-
valued quantization of the angular momentum of the elec-
trons, while transferring the difficulties into the region of
describing the interaction of the particles.
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TABLE V. Parameters of the Isnl states of helium-like ions дЕ/дх=0, дЕ/ду=0. (37)

State

ls;is'so

Is/ip'p,
ls/ip'D2

Is/is 3S, '
Is/ip JP
Is/id 3D

A

0,306
-O.H3

0,0017
0,974
0,3775
0,016

В

0,140
0,05
0
0,104

-0,06
0

The use of the Dirac function of (9) written not as a
function of Z but of the radius of the orbit of the electron
enables obtaining an accurate value of the fine-splitting
interval without resorting to the screened charge of the
nucleus, which is usually chosen empirically by using sev-
eral constants.19'20

1.4. 1sn/ states of helium-like ions

A helium-like ion in a Isnl state includes a hydrogen-
like ion in the ground state to which an extra electron is
combined having the angular momentum of motion nti.
The system of excited Isnl states of helium-like ions is
more complex than the Is2nl states of lithium-like ions
owing to the uncompensated spin moment of the Is elec-
tron. Consequently helium-like ions are characterized by
the presence of singlet and triplet terms. The energy of the
Isnl states of helium-like ions equals

a a

-AnF(x,y)-(Bx/ny), (36)

where F(x,y) is the function of (22), and A and В are
empirical parameters. The stationary states are determined
by the condition of minimum energy

One obtains from these conditions a system of equations
analogous to (23) and (26), whose solution determines the
radii of the stationary orbits x and у and the energy of the
system in (36). The values of the parameters A and В for
different states of helium-like ions are given in Table V.

The calculated energy differences of the states
Is 2Si/2—lsnp 3P2 are compared with the experimental
data 7>109 in Table VI. Analogous results are obtained for
other Isnl states. For small Z a high accuracy of descrip-
tion of experiment is obtained by using two empirical pa-
rameters. For large Z relativistic effects are essential.
Equation (36) employs a relativistic expression for the ki-
netic energy. The main part of the multiplet shift of the
energy levels can be described by using the correction of
Eq. (9) D(y,n,j'), where .y is the radius of the orbit of the
outer electron, j' is the angular momentum of the outer
electron (the sum of its orbital angular momentum and its
intrinsic spin). For 3P3/2 and 'Pj states we have j' = 3/2,
and for 3P0,

 3P,, 3S1; and \ states / = 1/2. These states
differ from one another in the interaction with the inner
electron. One must also take account of the spin-spin in-
teraction and the spin-strange orbit interaction. We shall
take account of these interactions empirically by selecting a
dependence on the radius of the orbit of the outer electron
у that describes the experimental data for ions having Z as
large as possible. The chosen interpolative dependences for
the multiplet shift of the energy of Isnl states of helium-
like ions are given in Table VII. For Is2p 3P2 states the
correction terms from Table VII equal zero and the rela-
tivistic effects are completely determined by the relativistic
dependence of the mass of the electron on its velocity. The
energy difference of the 3P2 and 3P0 states equals

D(y,n,3/2) -D(y,n,l/2) -0.66a2(n/y)3 (38)

TABLE VI. Comparison of the calculated values34 of the energy difference of the states Is 2S1/2 and Is/ip 3P2 (in eV) with the data of Refs. 107 and
109. Upper number—calculated value,34 lower number—from Refs. 107 and 109.

и

2

3

4

5

6

7

Nuclear charge Z

2

3,6471
3,6239

1,5811
1,5810

0,8790
0,8802

0,5587
0,5599

0,3863
0,3876

0,2829
0,2838

4

33,9953
33,9724

14,0009
14,0031

7,8178
7,8194

4,9818
4,9812

3,4497

2,5293

6

87,6831
87,6714

38,5536
38,5566

21,5763
21,5779

13,7674
13,7702

9,5417
9,5419

7,0003
7,0005

11

346,1276
346,1340

152,9204
152,9159

85,7708
85,7671

54,7991
54,7971

38,0114

4

27,9039

19

1114,3160
1114,3250

493,6567
493,6590

277,1943
277,1954

177,2066
177,2086

122,9654

90,2910

28

2502,522
2502,521

1110,400
1110,413

623,7641
623,7705

398,8196
398,8610

276,7576

203,2198
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TABLE VII. Multiplet shift of the energy of the Isn/ states of helium-like ions.

State

Чч
Зр,
ч
's0

'г,

/'
3/2

1/2

1/2

1/2

1/2

3/2

Energy shift of the states

D(y, n, 3/2) + 0,001 225 |(/i/2) - 1]//
D(y, ii, 1/2) + {0,001 225 [(/1/2) - 1]//} + 0,67 a\n/yf
D(y,n, 1/2) -t- {0,001225l(n/2)- U//} + 0,67 a\n/yf + 0,67а2Цп/у)3 -(11,6//)]
D(y, n, 1/2) + {0,0025|(ii/2) - 1|//} - 0,054 a\n/yf
D(y, n, 1/2) - {0,0035 [(и/2) - 1]//} + 0,67 a\n/yf
D(y, n, 3/2) - {0,OOI6[(n/2) - 1|//} + 1,33а2[(н/у)3 - (11,6//))

The fundamental contribution for large Z comes from the
splitting of the energy level of the outer electron that arises
from the Dirac formula.

Using the calculated values of the energies of the Isn/
states of the helium-like ions34 and the energies of the
helium-like ions in the ground state,36 we can calculate the
energies and wavelengths of the transitions between any of
the 'PL ^Q, 3P0,i,2> and 3S[ states of the helium-like ions
with Z=2-50, л = 2-9. Table VIII compares the calculated
values19'34'125'127 of the wavelengths of the Is2p-ls2 transi-
tions with the precision measurements120"124 for the ions of
argon, chromium, iron, and germanium. The calculated
values34 very exactly describe the experimental wave-
lengths. The results of the calculations of Ref. 19 are rather
close to them. Apparently the appreciable difference from
experiment of the results of the calculations of Ref. 125
involves an insufficiently correct calculation of the energy
of the ground state of the helium-like ions. The calculated
difference of the energies of the states Is2p 3P2-ls2s \ is
described by a calculation126 by this same author with an
accuracy of 0.01 eV, whereas the difference between the
calculated value125 and experiment for the transitions
Is2/-ls2 amounts to about 2-3 eV for Z=24-27. In Ref.
127 the correction of the results of the calculations of Ref.
19 also concerns the ground state of the helium-like ion
(the energy for Ge is elevated by 0.98 eV).

Table IX shows our calculated wavelengths of the res-
onance transitions Isnp !P [ — Is2 'S0 of the ion FeXXV (in

Angstrom units) and the experimental data of Ref. 128.
The experimental uncertainty of Я is estimated in Ref. 128
to be 0.0006 A. As a rule, the difference between the cal-
culated and experimental quantities does not lie outside the
limits of experimental error.

Table X compares the experimental values of the wave-
lengths of the transitions Is2p 3P2—Is2s 3Sl of ions with
Z= 10-36129'133 with the calculated data,34 with the results
of the calculations of Ref. 19, and with the calculations of
Drake that were presented in Refs. 129-133. The relative
accuracy of coincidence is 10~3 and better. This is a good
accuracy if we take account of the fact that the transitions
occur between states having the same values of и. Table X
also compares the calculated value34 with the calculated
values of Refs. 134 and 14 for the ion U90"1". The
Is2p 3P2 —

3Po spacing for U904" coincides to high accuracy
(10~4) in the calculation of Ref. 34 (4256.55 eV) and in
Ref. 134 (4256.05 eV).

1.5. States of beryllium-like and boron-like ions with
equivalent electrons

Let us study the states Is22s2, Is22p2, and Is22p3. The
presence in the second shell of equivalent electrons is com-
mon to these states. In the Bohr theory electrons are called
equivalent (indistinguishable) that revolve about the nu-
cleus in one circular orbit and are arranged at equal angu-
lar intervals, i.e., at the vertices of regular polygons. The

TABLE VIII. Comparison of the calculated values of the wavelengths of the Is2/-ls2 transitions (in A) with the experimental data.

Ion

ArXVII

CrXXIII

FeXXV

GeXXXI

Transition

Is2p 'P,-ls2

ls2p3P2-ls2

Is2p 3P,-ls2

ls2p3S,-ls2

Is2p 'P,-ls2

ls2p3P2-ls2

ls2p3P!-ls2

Is2s 3P,-ls2

Is2p 'P,-ls2

ls2p3P2-ls2

ls2p3P,-ls2

Is2s 3P,-ls2

Is2p 'P,-ls2

ls2p3P2-ls2

ls2p3P,-ls2

Is2s 3P,-ls2

^•exp

3.9491"
3.9657"
3.9693"

—
2.1818"
2.1886b

2.1927b

2.2035b

1.8500°
1.8552°
1.8592е

1.8681е

1.20599d

1.20848d

1.21294d

1.21776d

3.9486е

3.9656е

3.9694е

3.9938е

2.1817f

2.1884е

2.1925е

2.2032е

1.8501е

1.8552е

.8588е

.8680е

.20605е

.20845е

.21288е

.21776е

Л-theor

3.9492f

3.966^
3.9695f

3.9943f

2.1821f

2.1886f

2.1926'

2.2035f

1.8504f

1.8555f

.8596f

.8682f

.20608f

.20859f

.21309f

.21790f

3.9490"
3.9659"

3.9693"
—

2.1826е

2.18958

2.19348

2.2044s

1.85088

1.8561*
1.86028

1.86898

1.20603h

1.20847h

1.2129011

1.21778h

"[120], , c[123], d[124], e[34], f[19], 8[125], h[127].
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TABLE IX. Wavelengths of Isnp 'P,-ls2 'S0 transitions of the ion
FeXXV.

TABLE XI. Screening coefficients according to Bohr1.

n

2
3
4
5
6

^cxp

1,8504
1,5738
1,4948
1,4605
1,4433

^calc

1,8501
1,5730
j.,4945
1,4607
1,4430

n

7
8
9

10
00

A«P

—
—
—
—

Acalc

1,4325
1,4258
1,4212
1,4180
1 ,4043

interaction of such electrons with one another decreases
the binding energy of the electrons with the nucleus, which
is equivalent to partial screening of the nuclear charge. The
general formula for the screening coefficient a in the elec-
trostatic interaction of N equivalent electrons was derived
by Bohr:1

—- У~ (39)

Table XI gives some of the values of 0(N) calculated by
Bohr.

In calculating the energy of the 1822/^ states we shall
start with the idea that the interaction of the 2/ electrons
with the nucleus and with the two inner Is electrons is the
same as in the Is22/ states of the lithium-like ions. More-
over, we must take account of the energy of interaction of
the 2/ electrons with one another. Just as in the ground
state of helium-like ions, this interaction is not restricted to
the electrostatic interaction. Table XII presents the empir-
ically obtained screening coefficients of the nuclear charge
owing to the interaction with one another of the equivalent
electrons in the Is22/Ar configurations. These screening co-
efficients rather well reflect the general dependence on the
number of electrons that is implied by the Bohr theory. At
the same time there is an appreciable difference of the
screening coefficients for a particular electronic configura-
tion, depending on the type of term.

The multiplet shift of the energy states is substantial
for large Z. The interpolated dependences for the multiplet
shift of the energy of 1822/^ states are also given in Table
XII.

The energy values of the states of beryllium-like and
boron-like ions with Z=4-90 calculated in this way were
obtained in Ref. 135. A comparison with the existing ex-

TABLE X. Comparison of the wavelengths (in Angstrom units) of
Is2p 3P2-ls2s 3S, transitions.

Z

10
20
22
29
36
92

Experiment

1248,11 ±0,03 [129]
466,8 ±0,1 [130]
389,49 ±0,07 [131]
206,65 ±0,08 [132]
111, 15 ±0,08 [133]

—

Calculation

Ref. 34

1247,71
466,64
389,47
206,85
111,20
2,7434

Ret's
19. 14

1247,72
466,82
389,55
206,83
111,22
2.7435

Drake

1248,09
466,90
389,57
206,75

—
2,7463

N

а(ЛО

2

0,25

3

0,577

4

0,957

5

1,376

6

1,827

perimental data100'110 and the calculated results136 is given
in the same place. We note the rather high accuracy of the
description in Ref. 135 of the energy of the Is22s2 \ and
Is22p2 3P0>2 states of beryllium-like ions (as a rule the de-
viation does not exceed hundredths of an electron volt).
The difference of the energies of the states Is22p2 3P2—

3P0

(the extremes in the multiplet) is described by the function
D(y,2,1/2) to an accuracy of 1% (see Table XIII below).
For the states Is22p2 ^2, 'S0 one obtains not very exact
results for ions with small Z=4-9. The values of the en-
ergies of the Is22p3 states are described by the calculation
of Ref. 135, mainly to an accuracy of 0.1 eV.

States with equivalent electrons are also found in the
ions of the sequence of helium and lithium, in which si-
multaneously two electrons occur in the excited state.
These ions are observed in a plasma of multiply charged
ions via lines that are satellites to the resonance lines of
hydrogen-like and helium-like ions, respectively.

The energy of the 2p2 states of helium-like ions can be
represented in analytic form, analogously to the energy of
the ground state of helium-like ions13

(40)

The radius of the orbit along which the electrons move
equals

x=-
4{l-[a2(Z-a)2/4]}1/2

Z-a
(41)

The screening coefficient a and the parameter К are
selected on the basis of the experimental data. The best
agreement for 2p2 3P, !D states is obtained for values of a
that coincide with the mutual screening coefficients of 2p2

electrons in the Is22p2 3P, !D states of beryllium-like ions
(see Table X). This means that the presence of the Is
electrons does not affect the law of interaction of the 2p2

electrons with one another. The parameter К for 2p2 3P

TABLE XII. Screening coefficients a owing to interaction of the elec-
trons in Is22/'v configurations and the multiplet shift of energy levels.

State

M\
Is22p2 3P2

ls22p23P)0

ls22p2 'DZ
I S 2p S n

1 S 2p" S

lsV2D3 / J

i.V2r3/2

cr

0,2757
0,329
0,329
0,3637
0,447
0,66
0,702

0,743

Ъ

0,25
0,25
0,25
0,25
0,25
0,577
0,577

0,577

Energy shift

\,15D(y, 2, 1/2)

0,25D(y, 2, 1/2)
l,25O(v, 2, 1/2)

D(y, 2, 1/2)
D(>, 2, 1/2)
DO-, 2, 1/2)
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TABLE XIII. Comparison with the experimental data of Ref. 110 of
the calculated values of Refs. 135 and 136 of the spacings Is22p2 3P2-

3P0

of beryllium-like ions and the calculated values of Refs. 19 and 137 of
the spacings 2p2 3P2-

3P0 of helium-like ions (in cm"')-

z

4
5
6
7
8
9
10
11
12
13
14
15
16
17
20
22
25
28

i.VV
J
p.

1135)

3,63
22,7
78,5
201,2
429,5
811
1403
2271
3489
5141
7321
10130
13680
18093
37863
58016
102228
168146

[136]

—
83
209
441
828
1426
2300
3527
5189
7377
10192
13739
18131
37523
56834
98108
158655

1110]

3,43
22,4
76,5
198
424,5
804
1394
2248
3467
5113
7306
10091
13631
I&060

—
—
—

—

tfV'p.
[137]

66,4
174
378
724
1267
2070
3205
4754
6807
9466
12837
17042
22208
28474
55399
81833
138105
219732

[19]

—
410
621
1336
2119
3245
4772
6511
9000
12140
16044
20823
26050
48551
71362
113322
176836

states equals 0.38 eV, and for 2p2 1D states 0.76 eV. For
large Z the same dependences for the multiplet shifts are
adopted in the calculations as for the corresponding states
of the beryllium-like ions from Table X. The calculated
energy values of the doubly excited states of helium-like
ions were obtained in this way in Ref. 137. For Z=6-12
the data of Refs. 137 and 19 agree to an accuracy of 0.1 eV.
For large Z calculation19 yields a somewhat larger value of
the energy; for Z=26 the difference amounts to 5 eV (rel-
ative difference 10~3). The values of the wavelengths of the
transitions 2p2 3P0-ls2p 1P1 and 2p2 'D2-ls2p 'Pj calcu-
lated by using the energies of the 2p2 states from Ref. 137
and the energies of the Is2p 'PI states from Ref. 34 are
smaller than those from the calculation of Ref. 19 by ap-
proximately one milli-Angstrom unit. Table XIII com-
pares the calculated values for the spacings Is22p2 3P2 —

3P0

(Ref. 135) and 2p2 3P2-
3P0 (Ref. 137) with the results of

the calculations of Refs. 19 and 136 and with the experi-
mental data given in Ref. 110. For Z< 17 the results of the
calculations of Ref. 135 for the interval Is22p2 3P2-

3P0

differ from the data of Ref. 110 by 0.2-2%. The difference
of the results of the calculations of Ref. 136 from the data
of Ref. 110 is from two to three times larger. For Z=26
the value135 of the spacing Is22p2 3P2-

3P0 is 0.70 eV larger
than in Ref. 136. For large Z the difference increases and
reaches 6.88 eV for Z=45. The calculated data for
Is22p2 3P2-
follow the rule: the spacing 2pz JP2

ion with a given Z is somewhat smaller than the spacing
Is22p2 3P2 —

3P0 for the beryllium-like ions with a nuclear
charge larger by two units.

The fine splitting of the states 2p2 3P2 —
 3P0 calculated

in this way for Z< 13 agrees well with the results of the
calculations of Ref. 19. For large Z the data of Ref. 19 for

3P0 (Ref. 135) and 2p2 3P2-
3P0 (Ref 137)

3P0 for a helium-like

the fine splitting of the 2p2 3P states are lower than the
calculated values of Ref. 137, being lower by a factor of
1.24 for Z=28. In the comparison of the calculated
values34"36'135 obtained in the same way as in Ref. 137 with
the experimental results for other states of multielectron
ions, the difference in the fine splitting is usually less than
1%, while for ions with Z> 20 it is less than 0.1%. To the
same degree of accuracy also the calculated values in Ref.
19 for the intervals Is22p 2P3/2 —

 2Pi/2 of lithium-like ions
coincide with the results of Ref. 35. Such a large difference
of the values137 of the intervals 2p2 3P2—

3P0 from the cal-
culated values of Ref. 19 can involve the cruder description
of the energy of doubly excited states in Ref. 19 as com-
pared, e.g., with the states of lithium-like ions.

The values of the energy of doubly excited states
Is2p2 4P of the lithium-like ions were determined by start-
ing with the idea that the law of interaction of the 2p
electrons with the Is electron is the same as for the states
Is2p 3P of the helium-like ions (with the same parame-
ters). The interaction of the 2p electrons with one another
is described by using the same parameters (screening co-
efficient cr) as for the 2p2 3P states of the helium-like ions
and Is22p2 3P of the beryllium-like ions.

The values of the energy difference of the states
Is 2S1/2- Is2p2 4P5/2 were obtained for ions with Z=2-100
by this type of calculations in Ref. 137. Comparison of
these data with the results of calculation of Ref. 19 showed
that very good agreement of the results of the
calculations137 and the data of Ref. 19 exists for Z< 12,
while for larger Z the energy values137 are somewhat
smaller. The difference for Z=26 amounts to 5 eV. The
fine splitting of the states Is2p2 4P5/2,

 4P)/2 was calculated
in the same way as the fine splitting of the states
Is2p 3P2-

3P0 of the helium-like ions.

1.6. The energy of Rydberg states of ions

States of complex ions with a high excitation value n
are called Rydberg states. For large n the energy of tran-
sition between states of different и approaches the energy
in the hydrogen-like ions. Transitions between states hav-
ing the same values of n cannot be described by the
hydrogen-like approximation, and even for very large n the
states of the ions maintain their individuality.

In line with the expansion in (30) we have

1 riv cos <pdqp x 3x3

ъг J0 U2+/-;2xy cos q>) 1

(42)

When x/y<,\, we may keep only the first term in Eq. (42).
Then in the nonrelativistic approximation the energy of the
states lscn/ (where С is the number of electrons in the Is
state) equals

i
2?

Z-a

ny

Z-C

(43)
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This expression describes the energy of the highly excited
states of helium-like (C=l, tr=0) and lithium-like (C=2,
£7=0.3125) ions.

The conditions of minimum energy yield:

1 Z-a An В
I _Q

P x2 2J? ny '

n2 Z-C CAnx CBx
=o.

(44)

(45)

Neglecting the influences of the outer electron on the ra-
dius of the inner orbit (x= 1/(Z—a)), we obtain from Eq.
(45)

y=-
nl-[CAn/(Z-a)}

(46)
~Z-C+[CB/n(Z-o)} '

The energy difference of the states lsc and lscn/ equals

E=-
{Z-C+[CB/n(Z-a)}}2

2{n2-[CAn/(Z-a)]}
(47)

It makes no sense to solve Eqs. (44) and (45) more exactly
and use a larger number of terms in the expansion (42) in
obtaining an approximate solution, since one can easily
obtain an exact numerical solution (as is done). The value
of Eqs. (46) and (47) lies in their graphic quality, while
the region of applicability is determined by comparison
with the exact solution.

The high accuracy of description by Eq. (47) of the
energy of highly excited states of helium-like ions has been
shown in Ref. 34.

Comparison with the numerical solution indicates that
Eq. (47) is a good approximation also for small n in the
case in which relativistic effects are inessential.

In describing the energy of excited states one often
employs the concept of the quantum defect. The energy of
the excited states is represented in the form:

Е„=-
(Z-C)2

2(n-8(Z))2'
(48)

Equation (47) allows one to obtain an analytic dependence
of the quantum defect on Z:

S(Z) =
CA CB

-ay (Z-a)(Z-O '
(49)

Another form of representation of the energy of com-
plex ions is the use of the screening coefficients a:

Е„= —
2n2 (50)

We can obtain from Eq. (47) the dependence of the screen-
ing coefficient a on the nuclear charge Z and the principal
quantum number и for each type of states of helium-like
and lithium-like ions:

2(Z,n)=C-
CBCA(Z-C)

2n(Z-a) ~n(Z-a) '
(51)

1.7. General expression for the energy of Ions having three
electron shells

Ions with three electron shells form a large class of
states of the type Is2mlnl', ls22I2nl', Is22/n/'2, etc., as well
as analogous states for ions with one electron in the Is
state. In calculating the energy of such systems, we shall
start with the idea that the interaction law of the electrons
in any two electron shells does not depend on the presence
or number of electrons in the third shell. This hypothesis is
analogous to the principle of linearity (or superposition) in
electrical and wave phenomena.

Let x, y, and и be the radii (in units of a0) of the first,
second, and third electron shells, C1( C2, and C3 the num-
ber of electrons in these shells, and CTJ, ст2, and ст3 the
screening coefficients arising from interaction of the equiv-
alent electrons in a given shell, while Aik and Bik are the
interaction constants in Eqs. (22) and (24) of the elec-
trons of different shells (with numbers / and k).

The energy of the system with three electron shells
equals

а
« 2

C2(Z-C1-t72)-2AnClC2F(x,y)

C, [/ aV\1 / 2_ i

C3(Z-C1-C2-CT3)

<c,u)-A23C2C3nF(y,u)

(52)
nu nu

Here the function F(x,y) is determined by Eq. (23). The
stationary states are found from the condition of minimum
energy

дЕ/дх=0, дЕ/ду=0, дЕ/ди=0. (53)

One obtains from these conditions a system of three equa-
tions whose solution determines л;, у, and и, and then the
energy of the state

a24 -1/2

-1

С\С2В\2х

a

-1/2

-1

пи пи
(54)

Equation (52) is written with account taken of the
quantization of the angular momentum of the electrons in
each orbit, while it also takes account of the relativistic
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TABLE XIV. Parameters A2} and B2} of the states of beryllium-like
ions.

State

ls22sHs3S,
Is22s/;s 'so

ls22sHp3P0,2

ls22P/is3P0 | 2

ls22p;ip3P0 | 2

Is22p;ip 'P, '
Is 2p;jp D, 23
ls22piip3S, '
ls 2 2p/id'D 2

ls 2 2s/id 3 D | 2 3

A*>

0,460
0,310
0,321
0,346
0,190
0,376
0,326
0,223
0,043
0,190

B23

0,085
0,095
0,070
0,039
0,039
0,040
0,040
0,066
0,136
0

TABLE XV. Comparison of the calculated values of the energy (in eV)
of the Is22/n/' states138 of beryllium-like ions with the data of Refs. 107
and 109.

dependence of the mass of an electron on its velocity.
Moreover, one must take account of the multiplet shift of
the energy and radiation effects.

1.8.1s22/n/' states of beryllium-like ions

The ls22W states of beryllium-like ions can be of the
type Is22s«/' with excitation of one outer electron, or of the
type Is22p/z/', when both outer electrons are excited. The
interaction of the electrons of the core (Is22s or Is22p) is
the same as in the corresponding states of the lithium-like
ions. The energy of interaction of the outer electron with
the inner Is electrons is written in the same way (and with
the same constants) as in the lithium-like ions. One selects
the interaction constants of the outer electron with the
electrons of the second shell by comparison with the ex-
perimental data. The parameters Л23

 anc^ -^23 °f a number
of such states of beryllium-like ions are given in Table
XIV. The values of the energy difference of the states Is22/
and Is22/n/' of ions with Z=4-50, л = 3-6 calculated in
this way are given in Ref. 138. Experimental data for the
energy of excited states of beryllium-like ions exist for ions
of relatively small Z. Table XV compares the energy dif-
ferences of the states Is22/and ls22/3/' (Ref. 138) calcu-
lated with the parameters from Table XIV with the data of
Refs. 107 and 109. In most cases the coincidence is better
than 0.1 eV.

The energy of excited states with large values of n is
IflR

known for a series of beryllium-like ions of nitrogen.
Comparison of these data with the values calculated by the
method presented above shows that the calculation138

rather well matches the values of Ref. 108.
The multiplet energy shift is mainly determined by the

function D(u,n,j') [see Eq. (9)], where j' is the sum of

Z

4
5
6
7
8
9

10
11
12

4
5
6
7
8
9

10
11
12

£[138] £[107, 109]

2 2 2 Я
Is 2s S| / 2- Is 2s3s S,

2,8630
9,0260
18,2979
30,6337
46,0184
64,4463
85,9159
110,4280
137,9849

2,8653
9,0661
18,3497
30,6964
46,0670

-"64,5075
—

110,4566
137,9579

ls22p3s3P2- ls22s2'SQ

10,6828
22,5293
38,2055
57,6934
80,9935
108,1137
139,0658
174,0552
212,5277

.

22,5253
38,2143
57,7196
81,0144
108,1248
139,0841
173,8566
212,4917

£[138] £[107, 109]

•) 7 7 4
Is 2s S| /2- Is 2s3p P2

1,9965
7,2627
15,6411
27,0866
41,5810
59,1156
79,6863
103,2907
129,9280

2,0191
7,3025
15,6885
27,1397
41,6101
59,1593
79,7271
103,2969
129,7877

ls22s2S|/2- ls22s3d3D3

1,6812
6,5243
14,4399
25,4034
39,4046
56,4383
76,5020
99,5941
125,7139

1 ,6290
6,4767
14,4103
25,3932
39,4126
56,4646
76,5462
99,6496
125,6969

the orbital angular momentum and the spin of the outer
electron, and и is the radius of the orbit of the outer elec-
tron. The fine splitting of the states Is22snp 3P2,

 3P0 is
described analogously to the splitting of the states Isnp
3P2,

 3P0 of the helium-like ions:

Д£(3Р2-
3Р0)=/)(и,л,3/2)-1>(и,и,1/2)

+0.185а2(п/м)3.

The energy difference between the extreme components of
the fine structure of the states Is22snd 3D3,

 3D[ equals

+0.033а2(л/м)3.

Table XVI compares the calculated values of the fine split-
ting of the states Is22s3p 3P2-

3P0 and Is22s3d 3D3 —
 3D, of

beryllium-like ions with the data of Refs. 107 and 109. The
agreement is good, while at large Z one can note a certain
nonmonotonicity of the experimental values.

The spacing between the extreme components of the
triplet of the state Is22pns 3P2—

 3P0 is very close to the
splitting of the states Is22p 2P3/2,

 2P1/2 of the lithium-like

TABLE XVI. Comparison of the calculated values138 with the data107'109 for the fine splitting of the energy of the states Is22s3p 3P2,
3P0 and

Is22s3d 3D3,
3D! of beryllium-like ions (in cm"1). The upper number is from Ref. 138, and the lower from Refs. 107 and 109.

Z

3
D
3
-
3
D,

3
D
3
-
3
D,

5

4.72
4.74

0.93

—

6

18.79
18.75

4.22
3.91

7

51.54
51.20

12.4
12.2

8

114.2
113.6

29.0
30.3

10

387.8
388.2

104.8

—

11

635
600

175
158

12

983
1000

276
265

13

1453
1400

416
424
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TABLE XVII. Experimental107 and calculated138 values of the spacings Is22p3s 3P2-
3P0 and Is22p 2P3/2-

2Pi/2 (in cm"1).

Interval

Experiment: 3PZ -
 3P0

2p 2p
*1/2 ' \/г

Calculation 3P2 -
 3P0

2p - 2p
'3/2 * 1/2

Atomic number Z

4

5,97

6,6

5,98

7,5

5

30,7
34,1

30,1

36,0

6

101,9

107,1

97,2

110,6

7

244,8

258,7

237,8

263,8

8

505,3

532,5

493,0

537,2

9

918

977

912

982

ions. Table XVII compares the values of these spacings for
3s states on the basis of the experimental data presented in
Ref. 107. Apparently this splitting is mainly due to the
interaction of the 2p electron, i.e., this is the difference in
energy of the states ls22p(2P3/2)3s and ls22p(2P1/2)3s:

bE(3P2-
3P0) = D(y,2,3/2)-D(y, 2,1/2),

where у is the radius of the orbit of the 2p electron. The
values of the spacing 3P2—

3P0 calculated in this way are
also given in Table XVII.

The Is22pns 3P2—
3P0 splitting depends in an unusual

way on the quantum number л of the outer electron; it is
another evidence of the influence on the fine splitting of the
interaction of (22). In the case of Is2«p states the attrac-
tion by the inner shell decreases the radius of the orbit of
the 2p electron and increases the fine splitting 2Рз/2—

2Pi/2.
In the state Is22pns the attraction by the outer ns shell
increases the radius of the orbit of the 2p electron as com-
pared with Is22p states. In agreement with Eq. (9), this
decreases its fine splitting. The influence of the outer ns
electron declines with increasing n. Therefore with increas-
ing л the fine splitting of the states Is22pns 3P2,

 3P0 in-
creases, approaching the value for the Is22p states. We can
see this behavior of the fine splitting from Table XVIII,
which presents the experimental results for nitrogen108 and
the calculated values.138

There is a large class of excited states with this type of
behavior of the fine splitting. The spacing between the ex-
treme components of the multiple! of the ls22p2(3P)ns 4P
states is close to the energy difference of the states
Is22p2 3P2,

 3P0, and of the states ls22s2p(3P)ws 4P° to
Is22s2p 3P2—

3P0. The situation is analogous for the states
1822822рл8 3Р, Is22s22p2ns 4P, and ls22s2p2(4P)ns 5P, and
a number of states of magnesium-like, aluminum-like, and
other ions. The unusual behavior of the fine splitting with
varying и can serve as a good distinctive indicator of such

TABLE XVIII. Spacings Is22pns 3P2-
3P0 of the beryllium-like ion of

nitrogen (cm"1).

n

3
4
5
6

^(Ref. 107)

244,8
252,8
256,9
269,8

£caic ( Ref. 138)

237,8
256,1
260,4
262,1

states, and the calculated quantities that are obtained are
useful in deciphering experimental spectra, especially of
ions with large Z.

1.9. The ^sг2ftnl' states of boron-like Ions

The experimental data on the energy levels of boron-
like ions are highly limited, both in multiplicity of ioniza-
tion and in degree of excitation. For the excited states
Is22/2n/' in Refs. 107 and 109 data exist for the ions with
Z< 10-15 for /z=3, while for large л results exist only for
ions with Z=6, 1. To a considerable extent this is ex-
plained by the lack of reliable values that would make it
possible to identify the corresponding lines in the measured
spectra. The method of calculation given above [Eqs.
(52)-(54)] allows one to obtain calculated values of the
energy of the Is22l2nl' states of boron-like ions. The inter-
action of the electrons of the Is22s2 or Is22p2 core is the
same as for the corresponding states of the beryllium-like
ions. The energy of interaction of the outer electron with
the inner Is electrons is written in the same way (and with
the same constants) as in the lithium-like ions. One selects
the interaction constants of the outer electron with the
electrons of the second shell by comparison with the ex-
perimental data. The parameters /423 and 523 for such
states of boron-like ions are given in Table XIX.

The multiple! shift of the energy levels of the Is22s2n/
states with a given value of the total angular momentum j
is described by the function D(u,n,j) [see Eq. (9)]. The
fine splitting of the energy of the states Is22s2np 2P3/2,

 2Pi/2

equals

For Is22s2nd states we have

TABLE XIX. Parameters Л,, and Я23 of 1*22РпГ states of boron-like

State

Is22s2;is25
ls22s2;is2P
ls22s2/ip2D
ls22p2(3P)«s4P
ls22p2(3P)«pV
ls22p2(3P)np *D
lsZ2p2(3P);ip4S
ls22p2(3P)»d*P

A23

0,405
0,317
0,148
0,363
0,254
0,282
0,1855
0,05

Bu

0,10
0,06

-0,8
0
0,076
0,081
0,059
0,024

808 Physics - Uspekhi 36 (9), September 1993 B. A. Nadykto 808



TABLE XX. Comparison of the calculated values'39 of the energy (in eV) of Is22s23/ states of boron-like ions with Refs. 107 and 109.

• z

S
6
7
8
9

10
11
12
13
14
15

lsVso- |S
22s23s2S|/2

E |139|

3,3346
10,1238
20,0818
33,1300
49,2415
68,4056
90,6180
115,878
144,187
175,547
209,962

E |I07, 109)

3,3340
9,9338
20,0017
33,0770
49,1949
68,3643
90,5505
115,925
1 44, 1 1 1
175,538
210,036

ls22s2 lS0- ls*2s23p2PJ / 2

Е Ц 3 9 1

2,2875
8,0349
16,9712
29,0136
44,1275
62,2959
83,5097
107,764
135,056
165,383
198,747

£| I07, 109)

2,2707
8,0509
16,9810
29,0417
44,1491
62,2707
83,4745

—
134,945

—
—

lsZ2s2lS0- ls22s23d2D5/<i

£11391

1 ,5053
6,3410
14,3312
25,4133
39,5596
56,7559
76,9941
100,269
126,578
155,919
188,291

E |I07, 1091

1,5077
6,3373
14,3056
25,3963
39,5406
56,7102
76,9923
100,263
126,591
155,982
188,454

The energy values of a number of Is22s2/z/ states calculated
in this way for boron-like ions with Z= 5-50, n = 3-6 are
given in Ref. 139. Table XX compares the calculated val-
ues of the energy difference of the states Is22s2 and Is22s23/
that have been obtained with the data of Refs. 107 and 109.
The difference of the calculated from the experimental val-
ues lies within the limits of hundredths of an electron volt.

The spacings between the extreme components of the
multiplets of the states ls22p2(3P)ns 4P5/2,

 4Pi/2 and
ls22p2(3P)np 4D7/2,

 4D1/2 were calculated starting with the
idea that this is the spacing Is22p2 3P2— 3P0 distorted by
the influence of the outer ns or np electron, i.e.,

bE=D(y,2,3/2)-D(y,2,l/2).

The influence of the outer ns (or np) electron enters via
the value of the radius у of the orbit of the 2p electrons,
which decreases somewhat with increasing degree of exci-
tation of the outer electron n, approaching the value of the
radius for the beryllium-like ion Is22p2 3P. The calculated
value for the spacing ls22p2(3P)3s 4P5/2—

 4Pi/2 for nitro-
gen is 182 cm"1, which is close to the value 166 cm"1

given in Ref. 109. For the spacings ls22p2(3P)3p
4D7/2-

4D1/2 and ls22p2(3P)4p 4D7/2-
4D1/2 calculated

values of 189.6 and 197.5 cm"1 were obtained in place of
171.4 and 192.7 cm"1 from Ref. 109. We see that the
calculation qualitatively correctly reflects the influence of
the outer electron. For the stronger binding in the case of
a 3s electron the magnitude of the spacing is somewhat
smaller than in the case of a 3p electron: with increasing n
the binding of the outer electron declines, while the split-
ting increases.

Apparently the ls22p2(3P)«s 4P3/2—
 4P1/2 spacing, just

like the Is22pns 3P! — 3P0 spacing, involves the interaction
of the outer electron. That is, its value is

4Ps/2—
4Pi/2 and 3P2—

3P0 increase weakly with increasing
n, the spacings 4P3/2—

4Pi/2 and 3P1 —
3P0 decline with in-

creasing n (for large n as 1/n3). Therefore, for large n,
with a practically invariant spacing between the extreme
components of the multiplet, the spacings 4P3/2—

4P]/2 and
3P] —3P0 approach zero.

1.10. Quartet 1s2s(3S)n/- and 1s2p(3P)n/ states of lithium-
like ions

Lithium-like ions having a vacancy in the К shell have
been insufficiently studied, both experimentally and theo-
retically, especially in the case of high excitations (n > 3).
More complete data exist for the light ions: lithium,140

beryllium,141 boron,142 and carbon.143 Apparently the quar-
tet states of the ion CIV have been studied in greatest
detail.143 For Z>6 experimental data exist only for indi-
vidual ions of the isoelectronic sequence, e.g., for the ion
TiXX in Ref. 144. Calculated values for the energies of the
transitions ls2/3/' —Is22/ and ls2/3/' —Is23/' for ions with
Z=6-33 were obtained in Ref. 145. We note also the cal-
culated data of Ref. 146 for the ion ArXVI with л=2-4.

The lithium-like ions with the electronic configuration
Is2/n/' (и>3), together with the excited states of
beryllium-like and boron-like ions, are ions with three elec-
tron shells. It is assumed in the calculations that the inter-

TABLE XXI. Comparison of the calculated values (in cirr') of the
spacings Is22p3s 3Pi-3P0 and Is22p23s 4P3/2-4Pi/2 with the data of Refs.
107 and 109.

Here и is the radius of the orbit of the outer electron, and
и is its principal quantum number. Table XXI compares
the values of the spacings ls22p2(3P)3s 4P3/2-

4Pi/2 and
Is22p3s 3P, — 3P0 calculated in this way with the data of
Refs. 107 and 109. While the values of the spacings

z

4
5
6
7
8
9

10
1 1
12

Is^pSs'p,-3?,,

£calc

1,67
10,2
32,8
79,5
163,1
298,4
504,2
800,3
1210,2

ЯЦ07, 109)

2,0
9,8
33,3
79,2
162,1
281
495
805
1094

lS

22P

23s4P3/2-
4P1/2

-^calc

2,5
17,3
54,9
129,5
259,1
465,3
772,9
1210,7

E [107, 109)

66,7
144
261

—
1228
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TABLE XXII. Parameters Л2з
lithium-like ions.

вгг °f states of beryllium-like and

State

Beryllium-like ion

lsz2sns*S

l»z2snpJP
Is22pnp SS

Is22prtp 3P

le22pnp3D

lsz2pns3P

Isz2s/id 3D

Lithium-l ike ion

ls2s(JS)/is4S

ls2s(3S)/ip4P
ls2p(3P)Hp4S

ls2p(3P)«p4P

ls2p(3P)/ip4D

ls2p(3P)/is4P
ls2p(3P)mi4D

Parameter

АЗЗ

0,460

0,321
0,223

0,190
0,326

0,346
0,190

#23

0,085

0,070

0,066

0,039

0,040

0,039
0

action of the core electrons (Is2s or Is2p) is the same as in
the corresponding states of the helium-like ions. The en-
ergy of interaction of the outer electron with the inner Is
electron is written in the same way (and with the same
constants) as in the helium-like ions. The interaction con-
stants of the electrons of the second and third shells were
chosen in the calculations of the energy of the Is22/n/'
states of the beryllium-like ions. Thus, in calculating the
energy of the quartet \s21nl' states of the lithium-like ions,
none of the constants employed in the calculations was
chosen from experimental data on these ions. The param-
eters Л 23 and B23 of the ls22/«/' states of the beryllium-like
ions and the Is2/n/' quartet states of the lithium-like ions
corresponding to them are given in Table XXII. The en-
ergy difference between the extreme components of the fine
structure of the states Is2s«p 4P5/2,

 4Pj/2 and Is2s«d 4D7/2,
4D]/2 is described in the same way as for the analogous
states of the beryllium-like ions.

Values of the energy difference of the states
Is2/- ls2/«/' with Z=3-50, и = 3-6 were obtained in Ref.
147. Table XXIII compares the calculated values of the

TABLE XXIII. Comparison of the calculated values of the energy (in
eV) of quartet states of lithium and the lithium-like ion of carbon147

with the data of Refs. 140 and 143.

Transition

ls2s3S, - ls2s(3S,)3s4S
ls2s3S, - ls2s(3S,)4s4S
ls2s3S, - Is2s(3S,)3p4P

ls2s3S,- ls2s(3S,)4p4P
ls2s3S, - ls2s(3S,)5p4P
ls2p3P2- ls2p(3P2)3p4P
ls2p3P2- Is2p(3P2)4p4P
ls2p3P2- ls2p(3P2)5p4P
ls2p3P2- ls2p(3P2)3p4S
ls2p3P2- ls2p(3P2)3p4D
ls2p3P2- ls2p(3P,)4p4D
ls2p3P2- ls2p(Y2)3s4P
Js2s3S, - ls2s(3S,)3d4I)
ls2s3S, - ls2s(3S,)4d4U

ls2s3Sl - ls2s(3S,)5d4[>

Z = 3

£|147]

2,738
1,277
2,077
1,068
0,651
1,876
0,994
0,616
1,993
2,109
1,075
2,462
1,695
0,924
0,581

E Ц40]

2,776
—

2,083

1,061
0,646
1,880
0,990
0,612

—

—

—

2,498
1,696
0,923
0,584

Z = 6

Я [147]

29,769
15,741
27,200

14,796
9,302
26,194
14,410
9 , 1 1 2
26,545
27,322
14,832
27,737
25,450
1 4 , 1 1 3
8,963

£[143]

30,006
15,758
27,319

j_

—
26,187
14,458
9,162
26,513
27,256
14,864
27,834
25,722
14,181
8,988

energy of the quartet states of lithium and lithium-like ions
of carbon with the data of Refs. 140 and 143. In most cases
the difference does not exceed hundredths of an electron
volt. Reference 147 also studied the influence of the outer
electron on the fine splitting of the Is2p states. The good
accuracy of the calculated description of the energy of the
quartet states of the lithium-like ions indicates the great
predictive potential of the method of calculation being
used.

1.11. Calculation of the energy of the excited states of the
hydrogen molecule

The spectra of emission and absorption of electromag-
netic waves by molecules are a rich source of information
on the properties of complex substances. Molecular spectra
differ from atomic spectra in the far greater number of
lines. This involves the fact that, in addition to the transi-
tions between different electronic states (analogous to tran-
sitions in atoms), molecules can absorb and emit energy in
connection with the vibrations of the nuclei with respect to
the equilibrium position (vibrational energy levels) and in
connection with the rotation of the molecule as a whole
(rotational energy levels).

Some very simple molecular systems are the molecular
ion H^ and the molecule H2 of hydrogen. They have been
widely studied, both experimentally and theoretically. One
can find the quantum-mechanical methods of calculating
their ground state in many monographs (see, e.g., Ref.
148). The parameters of the energy characteristics of the
molecules (energies of the electronic states, vibrational and
rotational constants) are collected in Ref. 149. The excited
electronic states of molecules have been considerably less
studied, especially by calculation and theory.

A very simple and pictorial model of the electronic
configurations of the hydrogen molecule H2 was proposed
by N. Bohr.1'2 In this model the hydrogen molecule in the
ground state amounts to a system of two hydrogen nuclei,
at an equal distance from which two electrons revolve in a
single circular orbit in a plane perpendicular to the line
joining the nuclei. The angular momentum of each electron
is mvr=fi. The electronic configuration is the same as in
the helium atom in the ground state. The model of the
ground state of the ion of H^ is analogous, but with only
one electron in the orbit.

A calculation of the energy of the excited electronic
states based on the Bohr method is given in Ref. 40. In the
Bohr model one can represent the hydrogen molecule in
excited electronic states as a system consisting of an inner
H^ ion in the ground state and an outer electron in various
excited states revolving in a circular orbit in the same plane
as the inner electron. From the standpoint of the interac-
tion of the electrons, the system is analogous to the helium
atom in one-electron excited states. The orbital angular
momentum of the outer electron takes on the quantized
values ий (n = 2, 3,...). In the absence of rotation of the
molecule as a whole, the orbital angular momentum of the
electron (which coincides with the projection on the axis of
the molecule) is conserved.
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Let us present the calculation of the energy of the
ground state of the H^ ion. Let x be the radius of the
electron ring, and r the distance between the nuclei (in
units of a0). Then, under the condition that the orbital
angular momentum of the electron is quantized, the energy
of the system equals (in atomic units):

E(x,r) = -2/[x ) + ( 1/2*2).
(55)

The conditions of minimum energy дЕ/дх = 0, дЕ/дг=0
yield a system of equations for finding x and r:

2x 1
Z-p=0,

1

The solution of this system yields:

x/r=2(42/3-l)1/2,

х=2/(42/3-1)2/3, r=4/(42/3-l)2.

The value that is obtained of the energy of the ground state
of the H/ ion equals E= —0.43884 atomic units in place of
the experimental value £^=—0.59739 atomic units.151

Evidently in the calculation of the energy of the H^ ion by
the Bohr method there is not the degree of coincidence
with experiment as in the case of the hydrogen atom. Nev-
ertheless we shall hesitate to discard it. The Bohr method
in its initial form is inapplicable to ions with a number of
electrons greater than unity. However, as is shown above,
on its basis it has been possible to construct a graphic
semiempirical model that enables one to describe to high
accuracy the energy of multielectron ions.

Let us introduce into the expression for the energy of
the system (55) an additional term—D/r, with the same
empirical constant D, so as to obtain the experimental
value of the energy of the ground state of the ion H^. In
this case we have

E(x,r) = -- (56)

The experimental value of the energy is obtained for
.0=0.2364. Here we have jc=0.91487. Close-lying values
of x are obtained for the same energy of the state also in the
case in which the plane of the orbit of the electron lies at an
arbitrary distance from the nuclei. The correction intro-
duced in this way corresponds as though to a decrease in
the interaction of the nuclei in a narrow region in the
direction of the axis joining them, while leaving unchanged
the Coulomb interaction of the nuclei with the electron
(i.e., in the remaining region of solid angle). We note that
models with an effective charge of the nuclei are used in the
theory of molecular spectra.150

We can write the energy of the excited states of the H2

molecule in the same form as for the helium atom:

E(x,y,r) = -
\-D 1

An Г*"

~br J0

cos cpdq>

(x2+y2-2xycos<p)l/2

Bx

ny '
(57)

Here x and у are the radii of the orbits of the inner and
outer electrons, r is the internuclear distance (in units of
a0), and A and В are empirical constants. For one-electron
excited states of the hydrogen molecule we shall use the
same numerical values of A and В as for the analogous
states of helium-like ions.34 These parameters depend on L
and S and do not depend on и and j. That is, they describe
the entire series of excited states having different n values.

The stationary states are determined from the condi-
tion of minimum energy

дЕ/дх=0, дЕ/ду=0, dE/dr=0. (58)

The solution of the system of equations (58) yields values
of x, y, and r at the point of minimum energy for a given
value of n. For a fixed internuclear distance r the condi-
tions дЕ/дх=0 and дЕ/ду=0 determine the curve of the
dependence on r of the energy of the system En(r).

For large и the values of x and r approach the values
for the free ion H}. In this case we have x/y-^l (r/y^l),
and we can expand the integrand in Eq. (3) in a series. As
a result the expression for the energy of the outer electron
E(y) acquires the form

E(y) = -
1

1/2"
п Апх Вх

•:rz-̂ rj—• (59)

172"

The equation for finding у is obtained from the condition
дЕ/ду=0. When r/jXl, we can derive an analytic expres-
sion for y. However, since the numerical solution of system
(58) causes no difficulties, we present below the results of
the numerical calculations.

The calculated energy of the outer electron equals the
sum of its kinetic energy and the energy of interaction with
the nuclei and the inner electron. Here the energy of a
bound state is negative, while a zero energy corresponds to
an outer electron and an ion separated to infinity. In spec-
troscopy one usually takes the energy of the ground state to
be zero. The energy of an electron-ion system separated to
infinity equals the ionization potential of the ground state.
The energy of the excited states introduced in Ref. 151
amounts to the energy of excitation of a given state from
the ground state, where the values of Te pertain to the
energy minimum. One takes as the ionization potential in
Ref. 149 the energy difference between the lowest vibra-
tional state of the ground electronic state of the ion and the
lowest vibrational state of the ground electronic state of the
molecule. Therefore the energy corresponding to calcula-
tion obtained on the basis on Ref. 149 of the state of the
outer electron equals the energy difference Te of the excited
state and the ionization potential of the ground state of the
molecule (with account taken of the correction to the en-
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ergy of the lowest vibrational states). This quantity with
sign reversed amounts to the ionization potential of the
excited state.

A comparison of the experimental values of the ioniza-
tion potentials of the one-electron excited states of the He
atom107 and the excited states of the H2 molecule corre-
sponding to them,149 as well as the calculated values of the
ionization potentials of the excited states of the H2 mole-
cule obtained from the same classification of states as in the
helium atom shows that one can establish a correspon-
dence of the energy levels in the molecular classification
and the energy levels of the one-electron excited states of
the hydrogen molecule in the classification of the analo-
gous states of the helium atom. It turns out that the mo-
lecular states npa ^^ rather closely coincide with the
states Isns 'S0 of this same molecule calculated in the
helium-like approximation. Analogously one can establish
the correspondence of the states npir 'Пи and Isnp 'Pj,
ирст 32+ and Isns 3S1; пртг 3Пи and Isnp 3P, and ndcr 32+
and Isnd 3D. For most states the binding energy of the
outer electron calculated in the helium-like approximation
agrees with the experimental data149 within limits of 0.05
eV. We note that the calculated energies of the excited
states of the H2 molecule obtained by other methods differ
from experiment appreciably more (0.15-0.25 eV).151 We
see from Ref. 40 the closeness of the energy of the excited
states of the hydrogen molecule and the helium atom. The
calculated difference in energy of the states of H2 and He is
manifested in the fact that the correction to the energy of
the hydrogen atom expressed by the two last terms in Eq.
(5) is proportional to the radius of the orbit of the inner
electron x. While for the He+ ion this radius equals 0.5, for
the molecular ion H^ it amounts to 0.915. In agreement
with the increase in the ratio of these radii, the correction
to the energy of the excited states for H2 is increased as
compared with He.

Without presenting the results of the calculations, we
note also the closeness (to an accuracy of 0.1 eV) of the
energies of the excited states of the beryllium atom and the
He2 molecule isoelectronic with it: nscr 32^ of the He2

molecule and Is22snp 3P of the Be atom; лрст 32+ and
Is22sns 3S; and npir 3IIg and Is22snd 3D. We emphasize
again that the ionization potentials of excited states are
being compared. The excitation energies of these states dif-
fer considerably owing to the energy difference of the
ground state of the isoelectronic atom and molecule.

2. STATES OF ATOMS FOR A FIXED ATOMIC VOLUME.
SEMIEMPIRICAL EQUATION OF STATE OF SOLIDS

2.1. Energy of atomic states at fixed atomic volume

The states of free multielectron, multiply charged ions
were studied above by the Bohr method. This same method
allows one to study the states of atoms with restricted
volume.38 The energy values of the states of free atoms
(occupying an unbounded volume in space) are the result
of the interaction of the electrons with the nucleus and
with one another for quantized (integer-valued in units of
fi) values of the angular momentum of each electron.

These states are realized in a rarefied gas, in which one can
neglect the interaction of the atoms. The presence of neigh-
boring atoms substantially alters the character of the inter-
action of the particles in an atom. In a solid each atom is
surrounded by a large number of neighbors, and each atom
possesses a bounded volume of space. For a free atom a
transition to an excited state or ionization can occur,
whereby the electron lies at a great distance from the nu-
cleus or is completely removed to infinity (in ionization).
In a solid an atom can undergo transition to an excited
state within one electroneutral cell or can undergo transi-
tion to a state of a positive ion in a given cell and a negative
ion in any adjacent cell. In any case the electron lies here at
a distance from the nucleus that does not exceed the radius
of the elementary atomic cell of the solid.

Let us study some features of the excitation of atoms
and ions involving a bounded volume per atom. First we
turn to the very simple case of atomic hydrogen. The val-
ues of the energy of states of the hydrogen atom allowed by
the conditions of quantization of the angular momentum
mvr=nH are determined by the expression

(60)

where x=r/a0, a0 is the Bohr radius, and En is in atomic
units.

For the free hydrogen atom we have rn=n2a0,
Е„= — 1/2п2, and £Ып=1/2л2. For fixed volume (x con-
stant), Е„ is determined by Eq. (60), while Ekin=n2/2x2

increases with increasing n. This is the reason for the sharp
variation of the positions of the energy levels as compared
with the free atom.

The positions of the energy levels of atomic hydrogen
for different values of the volume of the atom (different x)
are shown in Fig. 1. If the dimension of the excited atom
xn<x, then in rarefied atomic hydrogen the energy levels
of the free atom are excited, while for large и the energy
levels at fixed atomic volume become excited. The expres-
sion for the energy of the transitions &Emn= (m2—n2)/2x2

is analogous to the quantum-mechanical solution of the
problem of a particle in a rectangular potential well.

The quantum-mechanical methods of calculation42

yield a qualitatively similar pattern (the calculation per-
tains to the ground state of the hydrogen atom): with de-
creasing dimension of the spherical cavity within which the
atom lies, the energy value increases. The difference con-
sists in the fact that this increase begins at values of the
radius of the cavity considerably exceeding the mean ra-
dius of the electron distribution. Figure 2 shows the depen-
dence on the radius of the atom of the energy of the ground
state of the hydrogen atom obtained in the model of the
Bohr atom38 and by the quantum Monte Carlo method in
Ref. 42. The Bohr model as applied to atoms contained in
a solid yields closer values of the pressure upon compres-
sion of the atom (see below) than, e.g., upon using the
Hartree-Fock method.43
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FIG. 1. Energy levels of atomic hydrogen for different values of the
radius x of the atomic cell.

2.2. Energy of an atom in a solid. Metallic lithium37-38

We shall assume that atoms in a solid (including met-
als) retain their individuality. We shall first take up the
case in which interaction with the adjacent atoms is absent,
and study the effects involving the boundedness of the vol-
ume per atom. Using the model of the atom presented
above, we shall study metallic lithium as a set of elemen-
tary atomic cells containing a lithium atom in the ground
state.

The energy of a free lithium atom in a state with prin-
cipal quantum number n of the outer electron is deter-
mined by the expression

An Г2"-

ir Jo

cos q> d<p

(x2+y2 — 2xy cos

2Bx

ny

(61)

under the condition dE/dx=0, дЕ/ду=0. In the case in
which the volume of the atom is bounded (i.e., a concrete
value of the radius of the outer electron у is fixed), the
energy value is calculated from Eq. (61) with the fulfill-
ment of only one condition дЕ/дх=0.

The pressure upon compressing the elementary atomic
cell equals

дЕ дЕ ду
P=~~dV=~~dy"dV'

The volume of the elementary cell is V=4irky*al/3, where
k is the packing coefficient. Let the equilibrium value of the
radius of the atom contained in the atomic cell of the solid
be y0 . Then we have

P=- =- - -=-

(62)

Here К0=4тг£у^/3 =A/poN^, A is the atomic mass, p0 is
the density of the substance under equilibrium conditions,
and NA is Avogadro's number. We shall assume that the
compression of the electron ring occurs similarly to the
compression of a solid, i.e., Уо/у=(тиз, where a= V^/V. In
this case we have

P=
A da'

We obtain from Eq. (61)

dE_ n2

An C2v (y—x cos (p)cos <p d<p
л 3/2 •

(63)

1 2Bx

(64)

The numerical solution reduces for a given у to finding the
value of x from the equation dE(x,y)/dx = 0, and then
proceeding to determine the energy and pressure from Eqs.
(61) and (62) for the found value of x.

We can obtain an approximate solution by using the
expansion of (42) in a series in Legendre polynomials of
the integrand that enters into the expression (61) for the
energy. In this case in the nonrelativistic approximation
the energy of the free lithium atom is expressed as follows:

1 5.375 n2 1 Anx 2Bx

y ny

FIG. 2. Dependence on the radius of the atomic cell of the energy of the
ground state of the hydrogen atom. 1—calculation based on the model of
the Bohr atom,38 2—calculation by the quantum Monte Carlo method.42
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The energy of the outer electron including its kinetic en-
ergy and the energy of interaction with the atomic core
containing the nucleus and the two electrons in the К shell
equals

E(y) = [(n 2 -2Anx)/2y 2 ] -{[ 1 + (2Bx/n)]/y}.
(65)

The results of the numerical calculations imply that, for
not too great compressions, the interaction with the outer
electron has little influence on the radius of the orbit of the
inner electrons and their energy. Therefore we shall assume
in an approximate solution that the radius of the orbit of
the inner electrons equals the radius of the orbit of these
electrons in the helium-like ion of lithium x= 1/2.6875
=0.3721. In this case the radius of the orbit of the free
lithium atom (under the condition дЕ/ду~0) equals

yn=(n2-2Anx)/[ (66)

We can rewrite the expression for the energy (65) in the
form

<«>
Here yn is the equilibrium radius of the free atom in (66),
En=(l+2Bx/n)/2yn is the binding energy of the outer
electron in the free atom, and a= (yn/y)3-

The value of the energy per unit mass of substance
differs from (67) in the factor ЛГА/А:

E=
I 2

— О"
.1/3 (68)

Substituting the expression (67) for E(a) into Eq. (63),
we obtain the value of the pressure

(69)

Comparison of the values of the energy and the pres-
sure calculated by the approximate formulas (68) and
(69) and those obtained by numerical solution from Eqs.
(61) and (62) shows that, when a <2, the difference is
less than 1%, for a <3 less than 2%, and for a < 10 less
than 7%. This implies the possibility of using a simple
form of the equation of state (68) and (69) in practical
calculations over a broad range of compressions. A natural
limitation involves electronic phase transitions in which
the parameters Е„, у„, and p0 vary.

A calculation using the energy of the free lithium atom
in the ground state yields a value of the pressure for the
same degree of compression a smaller by a factor of 1.42
than the experimental value for metallic lithium. The con-
stancy of this ratio as a function of a enables one to use the
magnitude of the energy of the state of the atom in the
solid as an empirical parameter. We can assume that the
new energy value effectively takes account of the interac-
tion with the neighboring atoms.

We have studied the case in which the system is dis-
placed from a situation of equilibrium by compression of
the orbit of the outer electron with conservation of the
given quantum state. The excitation of states of electrons

TABLE XXIV. Values of the pressures (in GPa) in the cell of metallic
lithium at normal density upon excitation of Is2n/ states.

n

lszns

1$гпр

2

0

11

3

46

61

4

112

130

5

198

220

with other values of и and / in the atoms of a solid at fixed
volume per atom implies the creation of states far from a
position of equilibrium. If excited states are created in a
substance at normal density, then this excited cell can be
treated as an excited cell of the free atom compressed by
the external pressure to a dimension smaller than the equi-
librium value for the given excitation.

The pressure values (in gigapascals) that arise in the
cell of metallic lithium at normal density in the excitation
of Is2/z/ states are given in Table XXIV (without taking
account of the influence of the neighbors).

2.3. Semiemplrical equation of state

The expression for the internal energy (68) and for the
pressure (69) on the zero isotherm can be used for solids
as a semiempirical equation of state with the parameters En

and р„ , which are determined by comparison with exper-
iment.

We obtain the following expression for the square of
the velocity of sound:

dp Pndcr

where

"° 9А

is the square of the velocity of sound for a= 1.
The bulk elastic modulus is determined by the expres-

sion

B=-V—=a—= рс2=Я0(5<75/3-4а4/3). (70)

Here B0=pnCQ is the value of the elastic modulus for <r= 1.
Taking as the reference origin for the energy its value

for (7=1, we can rewrite the expression for the pressure
(69) and the energy (68) in the form

(71)

2Pn

We obtain the following expression for the derivative of the
bulk modulus В with respect to the pressure:

dB 25<r1/3-16

When a= 1 the value of B' is 3, when a> 1 B' decreases
(<7=2.0, B' = 2.25), and when a < 1 it increases (ст=0.9,
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В' = 3.27). In contrast to the equation of state of Murna-
han and Birch66 in this case B' is not a parameter of the
equation of state.

Different regions of the P(p) curve obtained experi-
mentally can correspond to different phases of the sub-
stance. One can determine the parameters of each phase
from two experimental points P\(p\) and />

2(p2) on the
corresponding region

Pn —

(72)

In the Mie-Griineisen form the thermal component of the
pressure is Pt=TpEt. The Gruneisen coefficient Г is de-
termined by calculation on the basis of the dependence
(71). In the Dugdale-Macdonald approximation66 we
have

2a1/3-l
= Зст1/3-2

(73)

The parameters p0 к — pn ana> BQ f°r a number of sub-
stances are given in Refs. 37-39. Here p0 K is the density of
the compact substance at zero temperature. For substances
for which these parameters do not vary in the process of
compression one can use the handbook values (e.g., Ref.
152). Usually the equilibrium density of the substance at
zero temperature is considered to be known and is not
included among the empirical parameters of the equation
of state. However, as will be shown below, for many sub-
stances in compression a change of phase state (or elec-
tronic structure) occurs in which the parameters of the
equation of state are changed. Therefore it seems justified
to consider the density pn and the bulk modulus B0 to be
empirical parameters of the equation of state (71).

Let us compare the obtained calculated values of the
pressure on the normal isotherms of a number of sub-
stances with the data of Ref. 153. In this comparison it is
essential to take account of the difference of the density
under normal conditions (Г=300 K) from the density at
Г = 0 К and the existence here of a thermal component of
the pressure. To a very large degree this pertains to small
degrees of compression.

For metallic lithium in the pressure range 1-50 GPa
the difference is 1%. For sodium up to ст=1.5 the differ-
ence is 2%, while at large a our calculated values are lower
than in Ref. 153 (by 20% at P=50 GPa). Here they co-
incide rather closely with the data for static
compression.154 For beryllium the difference is 1.5% for
P= 1-50 GPa. For vanadium, niobium, molybdenum, and
tungsten up to a pressure of 100 GPa, the difference is
several percent, and 20% at/? = 400 GPa. In Ref. 155 pres-
sures were calculated in lithium at a temperature T=0 К
up to a compression a =100. When P<50 GPa they ex-
ceed the values of Ref. 153 and ours37'38 by a factor of
1.1-1.25, and when ст= 10 they exceed our values 1.1-fold,
and 1.5-fold at a=100. Up to a density of lithium of 104

g/cm3 calculated values exist156 that were obtained by the

Thomas-Fermi method. Our calculated values differ from
the data of Ref. 156 at P> 1000 GPa by no more than
30%.

2.4. Shock compression of substances

Let us study the compression of substances by shock
waves using the equation that was obtained. Let the den-
sity, pressure, and internal energy of the substance ahead
of the shock front be рж, P0, and E0, and p, PH, and E
following the front. The equation of the shock Hugoniot
has the form

(74)E E - - -Я — &П— „ I —
Poo P

Let us write the value of the energy E as the sum of
cold Ec and thermal Et components:

E=Ec+Et, Et=- (75)

Here Pc is the value of the pressure at zero temperature,
and Г is the Gruneisen coefficient. In this case the rela-
tionship between the density and the pressure following the
front of the shock wave is determined by the expression

р-1)]-1. (76)

For the case in which Pc and Ec are given by the relation-
ships of (71), Eq. (76) is converted into the form

^н=[ЗЯ0{(а5/3-<74/3)-1.5Г(7[(<т1/3-1)

where a=p/p0 K, and ст1 = р00/р0 к. The expression that
we have presented determines the pressure in the first
shock wave (in this case we have Pc=0, Ec = 0), or the
pressure in succeeding shock loads when the values of the
density, pressure, and energy obtained in a preceding shock
wave are taken as the initial values.

In calculations with a < 2.4 in the compression follow-
ing the shock wave, a value of the Gruneisen coefficient73

was used that was obtained in the Dugdale-Macdonald
approximation.66 With the Gruneisen coefficient of Ref. 73
the limiting compression of the substance in the shock
wave C7lim is 3.5. Actually the compression of substances in
a shock wave extends up to a=5.63'157-159 Apparently the
difference is explained by the electronic excitations of at-
oms in the solid upon strong heating in the shock wave. To
describe the higher densities in a shock wave, for cr>2.4
the following interpolation dependence was chosen for the
Gruneisen coefficient:

Г=-
<7

1/3

<71/J-(2/3)
-1.16. (77)
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FIG. 3. Values of the pressure on the shock Hugoniot of compact alu-
minum. 1—calculation based on the model of the Bohr atom,38

2—calculation based on a modified Hartree-Fock-Slater model.

Using the obtained value of PH, we determine from
Eq. (75) for a given p (or a) the thermal energy following
the front of the wave. From the formulation of the thermal
energy in the Debye approximation

3RT I Т 3

Et=
/ Т Y гто/т

'3Ы /о ex-\
(78)

we can determine from the value of Et the temperature Т
following the front of the shock wave; here TD is the De-
bye temperature, and R is the gas constant.

At high pressures very rich experimental information
on compression by shock waves exists for aluminum. A
detailed selection of these data is given in Ref. 74. Figure 3
compares the pressure on the shock Hugoniot of solid alu-
minum calculated by the method presented above (curve
1) with the experimental data59'61'157'158'164'178 and the cal-
culated values of Ref. 74 (curve 2) obtained by a refined
Hartree-Fock-Slater method. The lower curve in Fig. 3
corresponds to the calculated Pc(a) dependence by Eq.
(71). The agreement with experiment is better on the av-
erage than in Ref. 74. The calculation describes well the
measurements at moderate degrees of compression, for
which elevated values were obtained in Ref. 74. At high
compressions the calculation based on the Bohr model
yields values of the pressure close to the experimental data
of Refs. 157 and 178 and higher values than the measure-
ments of Ref. 158 and the calculations of Ref. 74. At these
compressions it passes closer to the results of the calcula-
tions by the quasiband model.73 The calculation also de-
scribes the data of the measurements of Refs. 58 and 160
for porous aluminum.

Comparison of the calculated values of the pressures
on the second shock Hugoniot in aluminum, performed
from the state P= 150 GPa, a= 1.5, with the experimental

data of Ref. 161 shows that they agree well (to the accu-
racy that one can judge from the diagram in Ref. 161). We
note also the good agreement of the temperature obtained
in this calculation on the first shock Hugoniot in aluminum
with the calculated data of Ref. 161. Analogous results are
given by a comparison of the temperature Тя for sodium
with the data of Ref. 162 and for molybdenum with the
data of Ref. 163.

The study within the framework of a single numerical
calculation of all stages of the action of a shock wave,
beginning with compression and up to dispersal of the ma-
terial strongly heated in the shock wave, requires applica-
tion of a broad-range equation of state that is valid over a
broad interval of variation of the parameters and which
allows one to describe various physical effects. Such equa-
tions of state have been developed and rather widely ap-
plied in the practice of calculations.57 These equations of
state are unavoidably rather complex, containing a large
number of adjustable parameters necessary to describe the
various physical phenomena. Thus, in Ref. 56 to describe
the processes of unloading after the action of a shock wave,
the equation of state of copper and lead contains more than
40 parameters, of which 26 are adjustable parameters. In-
dividual stages of the process (e.g., compression and not
very deep unloading) can be studied by applying simpler
equations of state, the advantage of which is their graphic
character and clarity of the physical assumptions. We must
discuss the equation of state (71) precisely from this stand-
point.

2.5. On the energy of states of the atomic cell and phases
of solids

The data on the compressibility of substances obtained
both in static and in dynamic experiments yield rich infor-
mation on the properties of substances. Jumps in the pa-
rameters and change of slope of the curve of the relation-
ship of the pressure to the density (or to the specific
volume) enable one to determine the phase transitions of
substances to a new crystalline state. The most direct in-
formation on this question comes from x-ray structural
studies of compressed substances (see, e.g., Ref. 65).

In dynamic experiments phase transitions are revealed
by breaks in the shock Hugoniots. These phenomena are
widely discussed in the scientific literature (we note the
studies of L. V. APtshuler, in particular the reviews, Refs.
52, 53, and 78). There is a handbook on the phase dia-
grams of elements166 and of compounds167 at high pressure
in which the results of both the static and dynamic exper-
iments are generalized. A detailed analysis of the studies on
structural and electronic phase transitions is contained in
the review, Ref. 57.

References 168 and 169 call attention to the fact that
the compressibility of substances is determined not only by
their crystal structure, but also by their electronic struc-
ture. The idea of the possibility of phase transitions upon
varying the distribution of the electrons over the shells is
due to E. Fermi (see Ref. 170).

In Ref. 39, starting with concepts of the model of the
Bohr atom, an attempt was made to determine the energy
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of the atomic states of the unit cell of solids on the basis of
data on their compressibility, and also to correlate these
data on the electronic structure for different phases of sol-
ids.

The expressions (69) and (71) for the elastic pressure
in a solid are written both in terms of a macroscopic quan-
tity (the bulk compression modulus B0) and in terms of a
microscopic quantity (the effective energy of the unit cell
of the solid Е„):

(79)

Here A is the atomic mass, р„ is the density of the sub-
stance under equilibrium conditions, NA is Avogadro's
number, and a=p/pn. We can determine from Eq. (79)
for a known value of the bulk compression modulus B0 the
effective energy of the state of the atomic cell contained
within a solid:

£„ =
9A B0

2/VA Pn •
(80)

If En is in electron volts, BQ in GPa, and р„ in g/cm3, then
we have

~"~64.3p/

Values of the bulk compression modulus for simple
substances (elements) under normal conditions are col-
lected in Ref. 152. To obtain the values of B0 at zero tem-
perature, one must take account of the influence of thermal
expansion upon heating. The decrease in the density of the
substance upon heating leads, in line with (70), to a de-
crease in the bulk compression modulus (a <1). For a
number of substances this decrease under normal condi-
tions (Г=300 К) can be considerable (15-20%).

The values of B0 and р„ for many elements and the
values of the effective energy £„ of the atomic cell calcu-
lated for them by Eq. (80) when contained within a solid
are given in Ref. 39.

The energy obtained by Eq. (80) amounts to the en-
ergy of the outer electron ring of the atom containing TV
equivalent electrons (in the Bohr model, revolving in one
orbit and with identical velocities). This energy includes
the sum of the kinetic energies of the electrons, their inter-
action energy with the atomic core and with one another,
and also the energy of interaction with other atomic cells.

For the alkali metals one can treat this energy as the
energy of the ground state of the free atom distorted by the
influence of the adjacent atoms in the solid. In solid beryl-
lium the obtained energy value almost coincides with the
energy of the ground state of the free atom, but it is quite
possible that in metallic beryllium the atomic cell is formed
by a beryllium atom, not in the ground state Is22s2, but in
the excited state Is22p2 (its energy for the free atom equals
20.5 eV). The situation is analogous for the other alkaline-
earth elements, which have two electrons in the outer elec-
tron ring, for which one obtains a value of £„ close to the
energy of the ground state of the free atom. For solid boron

the energy of the atomic cell £„ = 30.7 eV can be compared
with the energy of the two outer electrons in the states
Is22s2p2 of the free boron atom (£„=29.9-24.5 eV, de-
pending on the type of term). For solid Al, Ga, In, and Tl;
under normal conditions the energy of the atomic cell is
also closer to the value for the two-electron configurations
(e.g., 5s5p2 for indium).

The high energy of the atomic cell of carbon contained
in diamond £„=79 eV favors a three-electron outer ring.
The energy of the Is22s2p3 states of the free carbon atom
lie in the range 79.3-70.4 eV, depending on the type of
term. The energy of the carbon atom contained in graphite
£„=18 eV can correspond to a one-electron outer config-
uration.

The carbon series is characterized by the presence of
different crystal phases of any given element. The example
of graphite and diamond shows that the different phases
can differ not only in the arrangement of the atoms in the
crystal lattice, but also in the differing electronic state of
the atoms. As a rule, the atomic states of greater energy
correspond to a larger density of the substance and a small
compressibility (large value of the bulk modulus). The
carbon series demonstrates also all the other possibilities.
The high-pressure phase of germanium171 can be described
by the parameters р„=6.6 g/cm3, 350=320 GPa, corre-
sponding to an energy of the atomic state £„ = 54.9 eV,
close to the energy of the low-pressure phase £„=52.2 eV.
In the given case the polymorphic modifications apparently
differ only in the arrangement of the atoms in the crystal.
The situation is the same in the high-pressure phase of
silicon.49 The parameters р„ = 3.57 g/cm3, 350=440 GPa
that describe the pressure in this phase yield an energy of
the atomic state £„=54.0 eV, which coincides with the
energy for the low-pressure phase.

Gray tin, which has a lower density than white tin, at
the same time has a large value of the bulk modulus and a
twofold larger energy of the atomic state. While for the
atomic cell of white tin we can expect a state with three
equivalent outer electrons of the type 5s5p3 (its energy for
the free atom equals 47.5-45.4 eV107), for gray tin the
four-electron configuration 5p4 is more suitable.

So-called isomorphous phase transitions are known in
which a jumpwise change in volume occurs without change
in the crystal structure of the substance (see, e.g., Ref. 64).
These transitions are explained by the rearrangement of
the electronic structure of the substance. It seems logically
quite natural that the electronic phase transitions occur
also with a simultaneous change in the crystal structure.

The polymorphic modifications of phosphorus are of
interest. White phosphorus has perhaps the smallest energy
of the state of the atomic cell of the solid (£„=3.6 eV).
This energy is comparable with the energy of the outer
electron of the free phosphorus atom in the state 3s23p24s
or 3s23p24p (£„ = 3—4 eV). The small energy values, which
correspond to one outer electron, and characteristic also of
sulfur and selenium.

Among the rare-earth elements the two-electron con-
figuration of the outer electron ring is rather definite for
europium and ytterbium. For the rest of the lanthanides we
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can expect mainly states of the atomic cell with three
equivalent outer electrons.

In the heavy metals (W, Ir, Re, etc.) the outer electron
ring can contain up to five electrons, while the energy of
the atomic cell can reach 150-170 eV.

For many elements and compounds phase transitions
are manifested in shock-wave experiments in breaks in the
shock Hugoniots.52'53'78 Parameters of the high-pressure
phases determined by processing the shock Hugoniots are
given in Ref. 39 (the high-pressure phases are marked with
an asterisk). For antimony, bismuth, indium, and thallium
the high-pressure phases have a density 20-25% higher
than the density of the low-pressure phase, and an energy
of the atomic state (100 eV) threefold greater, i.e., corre-
sponding to a larger number of outer electrons. The high-
pressure phase observed in shock-wave experiments in ger-
manium coincides with the phase determined under static
pressure.171 The phase transitions in the rare-earth ele-
ments correspond to a strong change in the energy of the
atomic state.

For complex multielectron atoms it is difficult to com-
pare the states in the unit cell of the solid with the states of
the free atom. One can compare the energy of the states in
the solid with the energy of the ground state of the free
atom, which equals the sum of the successive ionization
potentials. In many cases the energy of the excited states
(without change in the principal quantum number) does
not strongly differ from the energy of the ground state
(e.g., the states Is22s2 and Is22p2 of beryllium). The use of
the energy of the atomic cell in the form of the sum of
successive ionization potentials allows one to obtain better
agreement with the experimental values of the bulk com-
pression modulus152 than, e.g., a calculation by the pseudo-
potential method for the f-elements.172

For compounds of the elements the unit cell of the
solid can contain several atoms. A very simple calculation
is possible in the case in which the dimension of the outer
electron shell of one of the atoms or ions considerably
exceeds the dimensions of the electron shells of the other
atoms. The outer electron ring exists here in the electric
field of the ionic residues of the other atoms of the cell, and
it undergoes a certain influence of the adjacent cells. In this
case the pressure is determined mainly by the compression
of the electron ring having the greatest dimension.

In the alkali halides the transfer of charge from the
atom of the alkali element to the halogen leads to the cre-
ation of the closed electronic configuration of an inert gas.
In the cell of LiF a state is created here which, owing to the
influence of the positive charge of the Li+ ion, is closer to
the states of the neon atom than to the states of the nega-
tive ion F~. Analogously in the oxides of the alkaline-earth
elements a transfer occurs of two electrons from the
alkaline-earth atom to the oxygen atom to form the same
states of the noble gases. Electron transfer can occur from
one atom, e.g., an alkaline-earth element, to two halogen
atoms, as well as more complex cases of formation of an
outer ring of electrons that determines the compressibility
of the substance.

Silicon dioxide has a large number of crystalline mod-

ifications (polymorphic phases), among which the best
known are quartz (a and jS), coesite, and stishovite. We
can consider that transfer of four electronic charges from
the silicon atom to oxygen (two electrons each to each
oxygen atom) results in neon-like states of the two oxygen
ions, which exist in the electric field of the Si4+ ion. The
strong difference in the energy of the atomic cell in the case
of quartz, coesite, and stishovite can be treated as the con-
sequence of formation in the unit cell of an outer electron
ring of the neon-like ion containing a different number of
electrons in each phase. The energy per neon-like atom of
20, 50, and 110 eV, respectively, in a-quartz, coesite, and
stishovite corresponds to one, two, and three equivalent
electrons in the outer electron ring.

Data on the compressibility of a large number of solid
compounds of the elements (rocks) are collected in the
handbook, Ref. 63. The values of the energy of state of the
atomic cell of the solids obtained on the basis of these data
[by using Eq. (80)] are presented in Ref. 39. For a number
of compounds parameters were used that are given in the
book, Ref. 173. The parameters of the substances were also
refined from the data of other publications, e.g., the density
of several compounds were taken from the handbook, Ref.
174.

One of the conclusions from the analysis that was
performed39 is the presence in many complex compounds
of different polymorphic modifications, which as a rule dif-
fer also in the energy of the atomic state of the unit cell of
the solid.

Attention is called to the fact that the oxides of many
elements have an energy of the atomic state per oxygen
atom of 100 eV, which is characteristic of stishovite (BeO,
MgO, CaO, SnO2, A12O3, Fe2O3, UO2, ZnO, etc.) For all
these compounds one can expect the presence of neon-like
states of the oxygen ions in the cell of the solid. The same
energy value is observed in the high-pressure phases of
CaF2 and NaF, and a close-lying value in MgF2. In these
compounds one can expect neon-like states of the fluorine
ions.

In addition to coesite, an energy of the atomic state of
50 eV (per neon-like ion) is found in the fluorides of the
alkaline-earth elements (CaF2, SrF2, and BaF2), in cuprite
CuO, the high-pressure phase of lithium fluoride LiF, and
in silicates (Fe2SiO4, ZrSiO4, Mg2SiO4). The energy of the
atomic cell of sulfates and carbonates corresponds to 30-35
eV per oxygen ion, which is close to the value for /3-quartz.

The situation is analogous for the compounds of sulfur,
which are characterized by an argon-like structure of the
sulfur ion in the unit cell of the solid. The energy per sulfur
ion contained in wurtzite (ZnS), marcasite (FeS2), pyrite
(FeS2), stibnite (Sb2S3), and galena (PbS) amounts to 80
eV. The compounds Ag2S, AgCl, and AgBr have an energy
of 50 eV per argon-like ion, and the compounds CaCl2,
PbCl2, and Bi2S3 have an energy of 30 eV.

At pressures up to 35-40 GPa the parameters of the
equation of state of NaCl correspond to an energy of the
atomic cell of 42 eV, while for P> 40 GPa they correspond
to the high-pressure phase with р„ = 3.24 g/cm3, Е„= 126
eV. This phase describes the behavior of NaCl in shock-
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wave experiments at P=40-90 GPa. The values of the
pressure at T=0 calculated for this phase by Eq. (71)
agree with an accuracy as good as 3-5% up to P=700 GPa
with the pressure in the B2 structure of NaCl calculated in
Ref. 175. An estimate is made in this study of the metal-
lization of NaCl.

In the shock compression of andalusite (Al2SiO5) the
part of the curve for compression values a> 1.3 is de-
scribed well by the parameters of kyanite having a porosity
m = 1.2.

The parameters pn and B0 describe the compressibility
of substances in the region of existence of the given phase
state. To calculate the compressibility of a new phase one
must replace the parameters in the equation of state (71).
Some substances undergo phase transitions at low pres-
sures (e.g., KC1 at 2 GPa). Therefore the course of their
compressibility is not determined by the value of the bulk
compression modulus under normal conditions. The pos-
sibility of several phase transitions in lead with increasing
pressure was noted in Ref. 161.

For many compounds, including rather complex ones,
the obtained energies of the states of the atomic cell of the
solid justify studying them starting with the electronic con-
figuration of the inert gases. The realization in this config-
uration of states containing a different number of electrons
in the outer ring, together with the crystal structure, de-
termines the compressibility of the given substance in some
phase or other.

Among the high-pressure phases determined from the
results of shock-wave experiments, one cannot rule out the
existence of metastable phases, which can be isolated after
the action of the shock waves under the condition that the
specimens are preserved after the explosion. The phases of
silicon dioxide coesite and stishovite were discovered in a
similar way in the early 60s in the sandstones of the Ari-
zona meteor crater.

2.6. On the influence of electronic phases on the shock
Hugoniots of substances

The dependence D(u) of the velocity of the shock
wave D on the mass velocity и following the front of the
wave for various substances has a varied character. It has
been established experimentally that a linear relation D=a
-\-su holds for many materials. However, a broad class of
substances is characterized by a more complex, nonlinear
dependence.52"61 Deviations from linearity are usually at-
tributed to porosity of the specimens, elastic waves, or
phase transitions.52'58

In Ref. 79 the behavior of substances upon pulsed
shock loading is classified in terms of the slope of the D(u)
curve. The first group contains substances for which the
slope s=dD/du= 1-1.3 is maintained over a considerable
interval of и (i.e., the dependence is linear in character).
For these substances the D(u) dependence characterizes
the compression of the original phase (or the very same
phase) throughout the interval of study of u. For s> 1.5
convex Hugoniots are characteristic, with a decrease in
slope at large u. Another group is formed by the alkaline-
earth and rare-earth elements, for which shock Hugoniots
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FIG. 4. Dependence of the slope s=dD/du on the mass velocity и for
different porosities m.

with breaks have been found. These breaks are explained
by electronic phase transitions that arise upon compression
in the shock wave.53

Analysis of the data of both static and dynamic exper-
iments shows that many materials can exist in different
phase states.53'78 As was noted above (see Sec. 2.5), many
phases of solids differ not only in crystal structure, but as a
rule, in electronic structure. In Ref. 39 the energy of the
outer electrons in the atomic cell of the solid, which are
responsible for the compressibility of the substance, was
determined for a number of substances in each phase state.

One can analyze the course of shock Hugoniots start-
ing with the concept that different regions of the D(u)
curve correspond to compression of different phases of the
substance. Using the equation of state (71) and the Grii-
neisen coefficient of (73) and (77), one can obtain the
dependence of the pressure PH on the density p following
the front of the shock wave. One determines the mass ve-
locity from the found value of PH on the basis of the laws
of conservation of mass and momentum as the material
passes through the front of the shock wave:

u =
\

1/2

together with the velocity of the shock wave £>=
— 1), and thus the calculated dependence D(u)
(cr=p/p00). Such an analysis has been performed in Ref.
84.

First of all we shall study by calculation the influence
of the porosity of substances on the course of the shock
Hugoniots. Figure 4 shows the dependence of the slope
s=dD/du of the D(u) curve on the mass velocity ы for
substances having the parameters pn = 2.76 g/cm3,
B0= 120 GPa for various values of the porosity m = p0/p00

(where рж is the density of the material ahead of the front
of the shock wave, and p0 is the crystalline density at
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FIG. 5. Dependence of the asymptotic slope ? (solid line) and the min-
imum slope (dashed line) on the porosity т of the specimens.

Г=0). The calculated D(u) dependence in the general
case is not linear, even for compact specimens. However,
one can single out an interval of the mass velocity и in
which we can consider the approximation of a linear de-
pendence to be reasonable, in particular, upon allowing for
the finite accuracy of the experimental quantities.

For porous specimens one notes the following rule:
small values of « are characterized by a large slope s=dD/
Аи, which decreases with increasing и to reach an almost
constant value J. A certain increase in the slope of D(u) is
obtained in the calculation at large values of и for compact
and porous specimens. Over a certain interval of и the
D(u) dependence for a porous material can be approxi-
mately linear. This constant value of I is increased with
increasing porosity т of the material. The dependence of s
on т is shown in Fig. 5. A very similar dependence is
obtained also for other parameters of the materials. A very
great change in the asymptotic slope J occurs at small val-
ues of the porosity m.

In the model being discussed the slope of the D(u)
relationship for materials of low porosity, m = 1.01-1.05
amounts to s= 1.1-1.2. At the same time for real materials
it can lie in a rather broad range. This fact is explained as
follows. First, as was already mentioned above, the com-
pressed phase of the material following the front of the
shock wave can differ from the original phase (i.e., have a
different equilibrium density and a different bulk compres-
sion modulus). Here the compression of a phase with a
crystal density larger than the original phase can be con-
sidered to be the compression of a porous material having
its own nonlinear D(u) dependence and a larger value of
the asymptotic slope J. By choosing the magnitude of the
porosity one can describe practically any observed slope of
the D(u) curve, in particular in a narrow enough interval
of the mass velocity u.

Another mechanism that alters to a certain extent the
slope of the D(u) curve is thermal expansion of the mate-
rial from Г=0 to the temperature at which the experiment
is performed. This thermal expansion has the result that
the material under the experimental conditions must be
treated as porous as compared with T—0. The equilibrium
value of the radius of the atomic cell contained in a solid is

realized at zero temperature. Thermal motion displaces the
system from a state of equilibrium. The density of the ma-
terial under the external pressure P0 is determined from the
condition:

Pc+Pt=P0.

Usually under the experimental conditions we have P0= 1
atm<|/*c| =Pt. Then, substituting the value of Pc from
(71) and Pt = PpEt , we obtain

For constant Г we have •

a =

For the case in which Г depends on a we can find a solu-
tion by iterations.

For many materials the decrease in density by thermal
expansion from T—Q К to normal experimental conditions
does not exceed 1-2%. For the alkali metals Na, K, and
Rb it amounts respectively to 4.8%, 5.5%, and 6.0%. 176

For a large coefficient of thermal expansion (e.g., for poly-
ethylene) the change in density as compared with zero
temperature can exceed 10%. Owing to this, the slope of
D(u) in the asymptotic region can reach J= 1.25-1. 30.

When at a certain intensity of the shock wave a tran-
sition occurs to a new phase having an equilibrium crystal
density greater than in the original phase, the D-u diagram
has an initial linear region that corresponds to compression
of the original phase, and then a branch of the curve con-
vex upwards, which corresponds to compression of the po-
rous new phase to which the transition occurs when acted
on by the shock. The region of the D(u) curve correspond-
ing to the high-pressure phase is described by a nonlinear
dependence. That is, the change in slope of an individual
region of D(u) cannot unambiguously serve as evidence of
a change of the phase state. Under conditions of finite
accuracy of the experimental data, the initial nonlinear
region corresponding to the new phase and the region be-
longing to the original phase of the material can be inter-
polated by a linear dependence with a slope differing from
the asymptotic slope of D(u) for the new phase. Here the
break in D(u), which is often identified with a phase tran-
sition, can occur at parameters substantially different from
the values of D and и for the actual phase transition.

Often one uses a quadratic interpolation of the exper-
imental data D(u) =a+su+hu2 with a negative coefficient
h. This interpolation presupposes a linear dependence at
small и and a deviation from linearity at large u. By cal-
culation one obtains the opposite pattern; a clearly nonlin-
ear dependence at small и and a dependence close to linear
at large u. Therefore the quadratic interpolation, which
can be chosen for a narrow interval of u, proves to be
invalid for a broad interval of u.

Figure 6 shows the D(u) dependence for the elements
Li, Be, and Na, which describe the compression of the
original phase of the material throughout the range of mass
velocities u. They are characterized by the small slope J
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FIG. 6. Shock Hugoniots of beryllium and sodium D(u) and lithium
. Dots—experiment, lines—calculation.84

= 1.1-1.15. The calculated description84 of the experimen-
tal points is rather good, including that for Be at high
values of и (и=25 km/s).177

For most materials a better description of the experi-
mental data at high pressures is obtained under the as-
sumption that a phase different from the original one is
being compressed. Figure 7 shows the D(u) dependence
for aluminum. The dashed curve corresponds to the value
of the bulk compression modulus at Г=0 К of 50=78.6
GPa,153 obtained with correction of the experimental value
for thermal expansion.152 The dot-dash curve corresponds
to the parameters р„ = 2.16 g/cm3 (m=1.02), Л0=120
GPa, and the solid line to pn=2.85 g/cm3 (m = 1.05),
50=135 GPa. We see that the experimental value
50=78.6 GPa does not describe the course of the D(u)
dependence at any high pressures. A better description is
obtained at the porosity m = 1.05 and pn = 2.S5 g/cm3,
50=135 GPa.

For molybdenum and tungsten a description of the
D(u) dependence over a broad interval of и is attained
with the parameters pn= 11.06 g/cm3 (m= 1.08), B0=445
GPa for Mo and р„ = 20.78 g/cm3 (m=1.08), 50=510
GPa for W. The handbook values of 50,

152 which pertain
to the original phase state, match experiment rather well
up to pressures of 150 GPa. At larger compressions a cal-
culation with these parameters yields pressure values too
low. The elastic pressure in molybdenum and tungsten in
the interval P= 150-400 GPa calculated with the parame-
ters given above agrees to an accuracy of 1-2% with the
results of Ref. 153. The calculated dependence for Mo and
W is shown in Fig. 8. The dots indicate the experimental
values from Refs. 58-61, 79, 177, and 178. Figure 8 also
shows the calculated dependences and the experimental

FIG. 7. Shock Hugoniot of aluminum. Dots—experiment; dashed line—
calculation with p0=2.71 g/cm3, B0=78.6 GPa, m= 1.0; dot-dash line—
calculation with p0=2.76 g/cm3, B0=120 GPa, m = \.Q2; solid line—
calculation with p0=2.S5 g/cm3, B0=135 GPa, m=l.05.

points'" for porous Mo (w'=1.83) and W (m' = 2.16),
where m' is the porosity with respect to the density of the
original phase. The calculated description of both the com-
pact and the porous specimens of Mo and W is good. These

20 u, km/ s

FIG. 8. Shock Hugoniots of molybdenum D(u) and tungsten D(u) +10.
Dots—experiment, solid line—calculation with the parameters of the
high-pressure phase, dashed line—with the parameters of the original
phase.
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FIG. 9. Shock Hugoniots of copper D(u) and iron D(u) + I0. Dots-
experiment, lines—calculation84 with the parameters of the high-pressure
phase.

FIG. 10. Shock Hugoniots of bismuth D(u) and lanthanum D(u)+ 2.
Dots—experiment, lines 1 and 3—calculation84 with the parameters of
the original phase, 2 and 4—with the parameters of the high-pressure
phase.

elements, like the preceding ones (Li, Be, Na) belong to
the first group of materials in the classification of Ref. 79.

The second group of elements,79 which are character-
ized by a large slope of D(u) with a tendency for it to
decrease at large values of u, includes, in particular, iron
and copper. One can describe this dependence under the
assumption that it corresponds to compression of a new
phase having an equilibrium density pn respectively 1.35
and 1.3 times larger than the density of the original phase
for Fe and Cu. As is known, iron at a pressure of 13.5 GPa
transforms to a new phase state. The high-pressure phase
of iron that is described by experiments with shock waves
at high pressures, however, differs from this phase
р„=10.6 g/cm3, m = 1.35, 50=750 GPa. For the high-
pressure phase of copper we find pn=11.6 g/cm3,
m=1.30, 50=680 GPa. The calculated dependences and
the experimental points for compact specimens of Fe and
Cu are shown in Fig. 9. The calculation rather closely
describes the experimental data over a broad range of pa-
rameters. The normal isotherm of copper from a pressure
of 95 GPa to 1000 GPa obtained by processing the shock
Hugoniots is given in Ref. 161. The high-pressure phase of
copper describes it at pressures greater than 220 GPa.

The third group79 contains the elements characterized
by a D(u) dependence with evident breaks. This picture of
the D-u diagram is observed in practically all the rare-
earth elements, in the alkaline-earth elements, and in many
compounds. A calculated description of the course of the
shock Hugoniots using multiphase analysis is shown for

such materials is shown in Fig. 10 for the examples of
lanthanum and bismuth. The first, practically linear region
pertains to compression of the original phase of the mate-
rial. The change in slope of D(u) involves transition at the
front of the shock wave to a new phase having a density
greater than that of the original phase and with a greater
energy of the electronic state. The nonlinear dependence
characteristic of the porous high-pressure phase (with re-
spect to its equilibrium density) describes the second re-
gion of the D(u) curve better than a rectilinear depen-
dence with a slope differing from the slope of D(u) for the
original phase.

The fact merits attention that a multiphase description
of shock Hugoniots is obtained in many cases in the ab-
sence of any appreciable region of coexistence of phases.
That is, when certain parameters of the shock wave are
reached, a complete transition as though occurs to a new
phase state (rearrangement of the electronic structure).

In 1964 S. B. Kormer and his associates,180 in studying
the shock compressibility of alkali-halide crystals, found
for them an anomalous course of the shock Hugoniots in
the high-pressure region. The studies in Ref. 180 were per-
formed up to pressures P=400-500 GPa. One can offer an
explanation of the results of these experiments starting
with a multiphase description of the shock Hugoniots. Fig-
ure 11 shows the experimental D(u) points for NaCl, as
well as the calculated curves for two phases of NaCl having
the parameters given in Ref. 39. There is an initial linear
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FIG. 11. Shock Hugoniot of NaCl D(u). Dots—experiment, line
1—calculation84 with the parameters of the original phase, 2—with the
parameters of the high-pressure phase.

region of D(u) for the original phase (up to м = 2.8 km/s).
Then the course of the D(u) curve for compact specimens
of NaCl corresponds to a porous high-pressure phase. Here
the D(u) dependence for NaCl resembles the dependence
for lanthanum and bismuth (see Fig. 10) and other mate-
rials.

The phase transition in NaCl at a pressure P> 30 GPa
is well known.167 However, when ы>7 km/s, the experi-
mental points again fit the calculated shock Hugoniot of
the original phase. We emphasize that this is not a linear
continuation of the initial region, but a calculated depen-
dence with the parameters pn and B0 of the first phase. An
analogous pattern is observed180 for KBr, LiF, and other
compounds. Thus, at the points of the anomaly of the
D(u) dependence found in Ref. 180 for the alkali-halide
compounds, it is not a phase transition that occurs, but
conversely, the phase transition disappears that is ob-
served, e.g., in NaCl in the range of mass velocities и from
2.8 km/s to 7.0 cm/s. The material at larger pressures
again is compressed like the original phase. The
hypothesis175 of a sharp decrease at the point of anomaly of
the Griineisen coefficient (down to 0.10) seems more arti-
ficial.

The energy of elastic compression,67 being the energy
of the outer electrons, must be supplemented by the energy
of the inner electrons of the atomic core. This energy varies
weakly upon compressing the atom, and is inessential in
calculating the elastic pressure. However, it is essential in
comparing the energy of different electronic phases of sol-
ids to determine the region of stability of each phase. Un-
der conditions of equilibrium the phase must be realized
that enables the least value of the free energy. If one knows
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FIG. 12. Energy of the elementary atomic cell of NaCl (eV) as a function
of the specific volume. Line 1—calculation84 with the parameters of the
original phase, 2—with the parameters of the high-pressure phase.

the density at which the energies of both phases are the
same, then in this case, knowing the equation of state of the
phases in the form of (71), one can construct the course of
the E(p) curve and determine the region of existence of
the phases.

For NaCl the point in the D-u diagram at which the
D(u) curves of the two phases of the substance intersect
corresponds to a density p = 3.56 g/cm3. If we assume that
at this density the energies of the phases are equal,
EI=EH, then we obtain for NaCl the E(V) diagram
shown in Fig. 12. At the intersection point of the D(u)
curves the pressures in the shock wave are equal in the first
and second phases, and here the elastic pressure shows a
break. Up to the point A (p<3.56 g/cm3) the original
phase I exists. In the density interval 3.56 g/cm3 < p < 5.0
g/cm3 phase II possesses a lower energy. However, owing
to the sharper increase upon compression of the energy of
phase II as compared with phase I, at a density p = 5.0
g/cm3 (point B) EI and En again intersect, and at larger
pressures again phase I has the lower energy. This is ob-
served in the experimental D(u) curves for NaCl, in which
a transition to the new phase occurs in the interval 2.8 < и
<7.0 km/s, while when z/<2.8 km/s or u>7.0 km/s a
state of the original phase is realized.

The dependence shown in Fig. 12 corresponds to the
case of a high-pressure phase that cannot exist as a meta-
stable phase upon removing the pressure. The condition for
existence of a metastable phase is the presence on the
En( V) curve of two minima as, e.g., in carbon (the graph-
ite and diamond phases). The calculated dependence of the
elastic energy E( V) (Ref. 71) for the phases of carbon is
shown in Fig. 13. Graphite has a lower density and an
energy of the outer electrons lower in absolute magnitude
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FIG. 13. Energy of the elementary atomic cell of carbon E as a function
of the specific volume. Line 1—calculation84 for graphite, 2—for dia-
mond.

than diamond, but a deeper minimum upon taking account
of the inner electrons.

There is a great variety in the relative arrangement of
the elastic-energy curves of different phases of materials. In
the case in which the energy of the phases corresponds to
the energy of a different number of outer electrons, the
E(p) curves intersect at two points or not at all. When the
energy of the outer electrons is the same, one point of
intersection exists. This is implied by the fact that the
equality of the elastic energies of the phases yields the
equation

( 9 B o l / p n l ) ( ( p 2 / 3 / 2 p 2

n

/

l

3 ) - (p'/3/pif) ] +£0i

= (9В02/р„2) [ (P

2/3/2p%3) - (pl/3/pl

n2

3) ] +E02,

which is quadratic in pl/3 for different energies of the inner
electrons Eol^E02, and linear when they are equal, i.e.,
when only the crystal structure is changed in the case of
one particular electronic state of the atoms. Cases can also
occur in which both intersection points lie on the left-hand
branch of the E(p) curve, which corresponds to stretching
of the specimen. Apparently a phase transition is possible
both in compression and in stretch of specimens.

Let us trace by calculation the course of the D(u)
dependence in the case in which a phase is formed in the
process of phase transition at the front of the shock wave
that has an initial crystal density smaller than the initial
density of the original phase. In the calculation one obtains
the D(u) dependence in the form of a curve convex down-
ward, in contrast to the shock Hugoniots of porous mate-
rials, which have an upward convexity. Among the exper-
imental data of Refs. 59 and 61 it is easy to find D(u)
dependences having this form, e.g., B, BeO, and SiC. Such
an unusual picture of the D-u diagram with decreasing D

a,

FIG. 14. Shock Hugoniot of BeO D(u). Points—experiment, line
1—calculation84 for p00=2.99 g/cm3, 2—pm=2.&6 g/cm3, 3—poo=2.45
g/cm3.

at low values of и was demonstrated most clearly for alu-
minum nitride A1N in Ref. 181. Let us study by calculation
the change in the course of the shock Hugoniots for such a
phase transition upon varying the initial density of the
original phase. At a density of the original phase equal to
the density of the compact material of this phase, there is a
linear region of D(u) corresponding to compression of the
original phase, and a nonlinear dependency with down-
ward convexity of the curve that describes the compression
of a "loose" phase, i.e., having a smaller equilibrium den-
sity than the original phase. If we take the density of the
original phase (porous) to be equal to the crystal density of
the "loose phase", then in calculation we have a nonlinear
initial region of the D(u) dependence with upward con-
vexity of the curve, and after phase transition a linear re-
gion of D(u) corresponding to the new phase with its own
equilibrium initial density. For even greater porosity one
obtains a D(u) dependence characteristic of ordinary po-
rous specimens.

A pattern close to that described is shown in Fig. 14
with the example of BeO having densities of 2.99, 2.86, and
2.45 g/cm3. Figure 14 shows the experimental data of Ref.
182 and calculation with the parameters of the equation of
state of BeO: р„ = 2.93 g/cm3, B0=207 GPa.

CONCLUSION

The presented treatment shows that the model of the
Bohr atom, starting with circular orbits of the electrons
with corresponding quantization rules, allows one, with a
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semiempirical refinement of it, to describe quantitatively a
broad set of physical phenomena in atoms, molecules, and
solids.

Thus one can obtain the energy values of different
states of free multielectron, multiply charged ions with an
accuracy sufficient for spectroscopy. An analytic expres-
sion was obtained for the energy of the ground state of
helium-like ions that takes account of relativistic effects
and describes experiment to high accuracy, and which can
be used for ions with a large nuclear charge Z.

The energies of different states of He-, Li-, Be-, and
B-like ions have been calculated, which have been com-
pared with the experimental data and the results of exact
quantum-mechanical calculations. Fine-splitting spacings
of the energy of these states were obtained that match well
the experimental values. Attention is called to the influence
of the outer electrons on the magnitude of the fine splitting
of the energy of the states of the inner electrons. For
ls22M', Is22/2n/', and Is2/n/' states, with increasing de-
gree of excitation of the outer electron (increasing и), the
energy difference between the extreme components of the
multiplet increases and approaches the value for the ion in
which this outer electron is absent.

By using the model of the Bohr atom it has been pos-
sible to obtain analytic expressions for the energy of highly
excited (Rydberg) states of helium-like and lithium-like
ions and analytic dependences on Z of the quantum defect
and on Z and n of the screening coefficient for the same
ions for states with a given /. Here one obtains with suffi-
cient accuracy the energies of transitions between states
having the same n.

The method developed for atoms and atomic ions was
applied to calculate the energy of the excited electronic
states of the hydrogen molecule. Comparison of the exper-
imental ionization potentials of excited states with those
calculated in this way enables one to establish the corre-
spondence of energy levels in the molecular classification
and the energy levels of one-electron excited states of the
hydrogen molecule with the classification of the analogous
states of the helium atom. One can describe the energy of
the electronic excited states of other molecules on the basis
of the classification of the energy levels of atoms isoelec-
tronic or isosteric with them.

The application of the model of the Bohr atom to cal-
culate the energy levels of nonequilibrium atomic systems
at constant atomic volume has been rather successful. This
model was used to calculate the energy of the compressed
atom and to obtain on its basis a semiempirical equation of
state of solids. Analytic expressions were obtained based on
this model for the dependence of the elastic energy and the
elastic pressure on the degree of compression, which de-
scribe experiment well for many substances.

The method being used enables one to associate the
change in energy on compressing a material with the equi-
librium energy of the outer electrons in the atomic cell of
the solid and makes it possible to determine the effective
energy of the atomic state from the known value of the
bulk compression modulus. By this method the effective
energy of the elementary atomic cells of solids have been

determined for more than 100 elements and compounds.
The results of these calculations call attention to the fact
that the different phases of solids differ not only in crystal
structure, but also, as a rule, in electronic structure (effec-
tive energy of the atomic cell of the solid).

In many cases the model of matter being discussed
yields an explanation of the complex behavior of shock
Hugoniots D(u), starting with the concept that the differ-
ent regions of this curve correspond to compression of dif-
ferent phases (including electronic ones) of the material. It
proved possible to identify a clearly nonlinear region of the
D(u) dependence with the compression of a phase of the
material differing from the original (i.e., having a different
equilibrium crystal density and a different bulk compres-
sion modulus).
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