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Coherent population trapping (CPT) is a technique in ultrahigh-resolution spectroscopy,
developed in recent years. It relies on the nonlinear coherent interaction between an atomic
system and incident electromagnetic radiation and is followed by an analysis of the fine
structure of the response to this interaction, which contains information about the spectral
characteristics of the quantum system. The basic physics of CPT are reviewed, and the
effects of level relaxation and structure, and of external factors, on CPT dynamics and
characteristics are examined. Experimental results confirming the validity of theoretical
ideas on CPT are presented. Possible applications of CPT to frequency stabilization, laser
cooling of atoms, and so on are discussed.

1. INTRODUCTION

It is clear from the history of the subject that three-
level systems occupy a special place in the development of
laser spectroscopy and quantum electronics. Suffice it to
recall that early studies of such systems led to the discov-
ery of Raman scattering in liquids and gases, and to the
implementation of the idea of optical pumping of atoms,
which was of fundamental importance to the development
of the first radiofrequency generators (masers). Finally, we
must not forget the now well-established phenomena such
as level crossing, the Hanle effect, and quantum beats.

Nonlinear spectroscopy employing three-level systems
is usually concerned with the absorption of a weak (probe)
field when another (adjacent) transition is produced by an
intense electromagnetic field that saturates it. The absorp-
tion of the probe field then displays features that are due to
the nonlinear interaction between the atomic system and
the saturating electromagnetic field, and this can be ex-
ploited in determinations of the spectroscopic parameters
of the particular transition in the three-level system. Such
studies have provided the foundations for modern
ultrahigh-resolution laser spectroscopy, and the most im-
portant of them are discussed in well-known
monographs.1'5

Interest in three-level systems grew in the late 70s be-
cause of the previously unknown properties of such sys-
tems in the field of two electromagnetic waves. The efforts
of many researches finally revealed a new phenomenon
that occurs during the excitation of three-level systems
(and, generally, multilevel systems), namely, coherent
population trapping (CPT).

It was found that multilevel systems cannot always be
excited to higher levels because special superposition states
that do not interact with optical fields are present in the
system. These states play a decisive part only when certain

conditions apply to the frequency detunings and the light-
wave intensities. When these conditions are met, the sys-
tem is in the CPT state and has practically no interaction
with the field. We emphasize that this behavior is encoun-
tered in systems in which interference between several ex-
citation channels can occur.

A simple system of this kind is the three-level
Л-system of energy levels (we shall refer to it simply as the
Л-system or Л-atom) interacting with two light waves of
frequency com (m=\,2) (Fig. la).

Under the same resonance conditions for adjacent
transitions |1}— 3),|2)— |3), i.e., for equal light-wave
frequency detunings flm=com— ш3т (m = l,2) from the
frequencies of the corresponding transitions

= f!1-fl2= - (fl)31-fi)32) (1.1)

the probability of finding an atom in the upper state 1 3) is
close to zero. In other words, when condition (1.1) is met,
the Л-atom (Fig. la) is not excited to the upper state 1 3),
so that it cannot absorb or emit resonant photons. It is
precisely for this reason that a valley or a 'black line' is
observed in the fluorescence spectrum of a Л-system.

This property of the three-level system is called coher-
ent population trapping (CPT) in which the population of
the Л-system is distributed among the lower levels, and it
is in this sense that the word 'trapping' is to be interpreted.

We thus encounter a situation that is relatively unfa-
miliar for problems of this kind because the resonance ra-
diation acts on each of the transitions in the three-level
system, but the system as a whole does not go over to the
upper state. On the contrary, when the well-studied two-
level system is excited by saturating resonance radiation,
the probability of finding the system in the upper state is a
maximum and close to 1/2.
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FIG. I. Types of three-level system interacting with light.

After the early theoretical papers7 that actually pre-
dicted the effect itself, and the pioneering experiments8"10

that confirmed its existence,1* the efforts of researchers
were directed mostly toward the elucidation11"14 of the dy-
namics of processes occurring in three-level systems obey-
ing condition (1.1) and to the explanation of the fact that
the upper level was not populated. It became clear that the
absence of particles in the upper state was evidence for a
transition of the system to a new state that is reached after
a certain time т has elapsed since the interaction was
turned on. The order of magnitude of r is determined by
the radiative lifetime y~l of the atom in the excited state
13). At the end of this time, the system is found entirely in
the new state and radiative processes cease in the system.

The CPT phenomenon occurs only for a certain light
intensity, e.g., in the Л-system, the necessary intensity is

г
'г' (1.2)

where In is the saturating intensity for the particular opti-
cal transition and Г is the rate of transverse relaxation
between the lower levels. If we suppose that F<y we have
/c< /„ (for alkali-metal atoms In^Q.\ W cm~2)-.

In real experiments, transverse relaxation between the
11) and 12) states can be produced by a number of factors,
e.g., finite width of the laser spectrum, transit broadening,
collisions between atoms, and so on.

When (1.2) is not met, CPT is practically absent even
when (1.1) is satisfied by the frequency detunings. The
excitation of a Л-atom does not then display the above
properties.

Figure 2 shows a typical graph of the population of the
upper level 13) in a Л-system for a fixed frequency of one
of the light fields as a function of the frequency of the field
acting on the other transition. The characteristic valley of
width Д0 is the CPT region in which condition (1.1) is
reasonably well satisfied. This width is given by

where g=dEo/fi is the Rabi frequency, E0 is the amplitude
of the light field that is the same in both transitions of the
Л-atom, and d is the matrix element of the dipole interac-
tion (the same for both transitions).

FIG. 2. Schematic dependence of the population of the upper level in a
Л-system when one of the light waves of frequency <u2 is in precise reso-
nance (П2=0) and the other frequency <u, is scanned: 1—no CPT valley;
(1.2) not satisfied; low intensity, 2-4—no CPT; (1.2) satisfied. The rel-
ative valley depth increases with increasing light-wave intensity (3,4).

It is interesting to note that, according to (1.3), the
width Ад can be made much smaller than the natural line
width у of the optical transitions: ДО^У, provided2' g,F<<y.
However, it must then be remembered that the light inten-
sity must satisfy (1.2) if the effect is to appear. The relative
valley depth decreases with decreasing intensity (curves 4,
3, 2); it vanishes almost entirely for g^Fy (curve 1; see
Fig. 2), showing that CPT has also vanished,

Even if (1.2) is satisfied and CPT is possible in the
system, its experimental detection may be impeded by in-
adequate frequency stabilization of the fields. It is shown in
Refs. 11 and 13 that, when the spectrum width is of the
order of the optical excitation rate W

the CPT valley disappears. It follows that we must have
#•< W for CPT to be observable.

The excitation of a three-level system by mutually cor-
related fields constitutes a special case (the so-called cross
correlation).13 It is interesting that CPT is then indepen-
dent of the width of the spectrum and the valley is always
present. This means that, for cross-correlated fields, CPT
can be observed even for /3,> W.

In practice, the important spectroscopic property of
CPT is the presence in the fluorescence spectrum of a val-
ley with small width Д0 (1.3). It is therefore natural that
the ultrahigh-resolution spectroscopic techniques that have
been suggested should frequently rely on this particular
CPT property.15"19 This also applies to the competing two-
photon ionization spectroscopy20"22 and to the develop-
ment of frequency standards.23"27

Applications of strong nonlinearity during CPT offer
interesting possibilities. This applies in particular to work
on optical bistability28"30 and to laser cooling of atoms.31"37

We note that, in the latter case, it is possible to achieve
temperatures of the order of 10~6, which is well below the
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Doppler limit found for the two-level atom.38 Moreover,
special cooling techniques can be used with CPT to pro-
duce temperatures several orders of magnitude lower than
the recoil temperature Гк~10~6 К (Refs. 36 and 37). A
separate group consists of studies of the propagation of
radiation (both pulsed and continuous wave) in a resonant
three-level optically dense medium.40^4 It is shown in
Refs. 41-42 that, for two-frequency continuous-wave radi-
ation satisfying (1.1), the medium transmits this radiation
because the atoms do not scatter resonant photons. Trans-
mission also occurs in the case of pulsed excitation of a
three-level medium, but only for a particular pulse repeti-
tion frequency that is a multiple of the frequency difference
(O2l between the lower levels of the Л-system.40

There is considerable interest in the studies (Refs. 76-
83) in the development of noninversion lasers based on
CPT, and in the destruction, followed by reinstatement, of
the state of coherent trapping in the Л-system closed by a
third resonant field.72'74

We now emphasize two further points. First, the CPT
phenomenon is a fundamental property of a quantum
system48"57 in which there can be interference between dif-
ferent excitation channels. The specific nature of these sys-
tems is therefore quite irrelevant. They can be quantum
transitions in atoms or molecules, color or impurity centers
in semiconductors, and y-transitions in excited nuclei.

The second point involves the study of multilevel ex-
citation systems. Since the three-level system is the sim-
plest multilevel system in which CPT is possible, and a
multilevel system can often been divided into three-level
subsystems, it follows that if we know the nature of the
excitation of the simpler system, we can qualitatively ana-
lyze the excitation of very complicated systems. Moreover,
we can then also determine the excitation properties of
multilevel systems with CPT.54'55 We note that recent years
have seen the publication of researches into CPT in cases
where the levels forming the Л-system belong to the con-

ЛО—ftfttmuous spectrum. °
The plan of our presentation is as follows. We begin

with the excitation of three-level systems (Fig. 1) in the
absence of spontaneous relaxation, and show that the sys-
tem dynamics changes radically depending on the sign ra-
tio of the initial phases of the lower-lying states.14 Next, we
examine the dynamics of excitation of a three-level system
during spontaneous decay to thermostat levels. This is
based on the formalism of state vectors. By directly solving
the Schrodinger equation, we obtain the level population
probability. The remainder of the analysis is based on the
solution of the exact equations for the density matrix of the
three-level Л-system. We derive the conditions for CPT
and examine the properties of CPT during the motion of
atoms. We then go on to examine CPT in a cascade system
(subsequently referred to as the E-system) and the condi-
tions that must be met for it to arise. Next, we consider the
manifestations of CPT in complex quantum systems, i.e.,
multilevel and continuous-spectrum systems. We conclude
with an analysis of experimental situations in which CPT is
found to occur, and with possible applications of the effect
in atomic physics and spectroscopy.

2. THREE-LEVEL SYSTEMS IN THE ABSENCE OF
SPONTANEOUS RELAXATION

We begin our study of CPT with three-level systems
that interact with two light fields of frequency CDI and a>2.
If the field amplitudes are equal, we can write

Е=Е0(е'Ы1'+е'Ш2')+с.с. (2.1)

We shall also assume the absence of spontaneous relax-
ation and describe the system by a wave function of the
form

(2.2)

where energy is measured from the energy of the state 11).
The functions *Vm(r) and am(t) (m = 1,2,3) are the eigen-
functions of the stationary states of the system and the
time-dependent probability amplitudes, respectively.

We emphasise that the absence of spontaneous relax-
ation leads to the indistinguishability of the three-level sys-
tems shown in Fig. 1. Hence the equations for the proba-
bility amplitudes and their solution are equally valid for all
three-level systems. However, to be specific, we shall con-
fine our attention to the Л-system of atomic levels. Three-
level systems with relaxation that interact with the field
(2.1) are discussed in Sec. 3.

Let us now consider the excitation of a Л-system to the
upper state 13); in other words, let us evaluate the proba-
bility | a31

2 of finding the system in the state 13} subject to
(1.1). The probability | а312 can then depend on the type of
initial conditions, and the initial conditions can be chosen
so that the probability of populating the state |3) is zero
for at all times. This means it is possible to select special
states of this type of system from which the atom cannot be
excited even by resonant fields. Such states will henceforth
be referred to as coherent states of the system.

We note that the existence of coherent states when
(1.1) is satisfied is not a trivial fact because it might have
been expected that resonant fields should ensure the pop-
ulation of the upper state, just as in the case of the two-
level atom. However, analysis shows that the probability of
populating the state |3) is very dependent on the phase
relations between the wave functions of the lower levels in
the initial state.

We now turn to the evaluation of the probability of
finding the Л-system in the state 13). To do this, we write
the time-dependent probability amplitudes obtained after
substituting (2.2) in the time-dependent Schrodinger equa-
tion:

d3 = igal exp( -/П,0 +iga2 exp( -ifl2t),

(2.3)

where g=dE(/fi is the Rabi frequency and £lm=com—o)3m

(m=l,2) are the frequency detunings of the light fields.
We now substitute r=al—a2, s=a}+a2 and consider the
case of equal detunings flm = fl (m=l,2), i.e., the case in
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which CPT is observed [see condition (1.1.)]. The set of
equations given by (2.3) then assumes the form

d3=/gsexp(— /

s=2ig*a3exp(i£lt), r=0. (2.4)

It is clear from (2.4) that new superposition states r, s
appear when the detunings are equal; one of them, r, is
optically unrelated to the state |3), and is exclusively de-
termined by the initial conditions for the probability am-
plitudes a1>2(0) (Ref. 9).

The fact that there are new superposition states when
(1.1) is satisfied does not by itself ensure that the system
cannot be excited. Indeed, everything depends on the type
of the initial conditions, i.e., the distribution of the total
population at the initial time. For example, we shall en-
counter situations in which a Л-system will not be excited
unless certain initial conditions are satisfied. For other ini-
tial conditions, everything proceeds as usual despite the
existence of new superposition states.

The subsequent solution of (2.4) presents no real dif-
ficulty and we finally obtain

(2.5)

r=C,

where the constants A,B,C are determined from the initial
conditions and

а,,2=-П/2±Д/2

are the roots of the corresponding characteristic equation
Д2=П2+8^ and the amplitudes are given by

e, = (s+r)/2, a2=(s-r)/2.

The solution of (2.5) enables us to examine the population
of the upper state 13) as a function of the type of the initial
conditions.

One of the lower levels initially populated. Let us sup-
pose that at the initial time t—0, the probability amplitudes
are

Oi=±l, а2=д3=0 for /=0, (2.6)

which corresponds to the initial population

|а,|2=1, |а2 | 2=|а3 | 2=0 for t=Q.

According to (2.5) the constants of integration then be-
come

A = ±g/Д, В= т£/Д, С— ± 1,

and, correspondingly, the probability of population of |3)
is given by

|a3|
2 = 2#2(l-cos Д-0/Д2- (2-7)

It is clear from (2.7) that, although (1.1) is satisfied, the
population of the upper level exhibits Rabi oscillations in
the same way that this happens in the two-level atom (Fig.
3, curve 7).

FIG. 3. Population of the upper level in a Л- system without relaxation:
7—(2.7), 2—(2.9), 3— (2.10), 4— (2.11).

Upper level initially populated. The initial probability
amplitudes are

ai=a2=0, a3=±l for t=0, (2.8)

and the initial populations are

| в 1 | 2=|в2 |* = 0, |Я3 | 2=1 for t=0.

The constants of integration then follow from (2.5):

А = В=±(\-<цЬ.-1), С=0,

and the probability of finding the system in the state 13) is

|а3|
2=[2П2+8^2(1+со8Д-0]/2Д2. (2.9)

It is clear that | а31
2 is a periodic function of time for

(2.8) (Fig. 3, curve 2).
Both lower levels initially populated. Let us now con-

sider the population in which the lower levels are initially
equally populated:

| f l l |
2=|a2 | 2=l/2, |a3|

2=0 for t=0.

The probability amplitudes can now have four types of
initial conditions (for t=0) (see Table I). Substituting the
conditions from the table in (2.5), we can readily show
that the probability | а31

2 depends significantly on the mu-
tual signs of the initial probability amplitudes. Thus, if for
the conditions in the first and fourth rows of the table we
have

A = -B=±V2g/b, C=0

and

\а3\
2 = 4^(1-со*Ь-1)/Ь2, (2.10)

whereas for the conditions from the second and third rows

TABLE I.

°,
i/VT

i/VT

-i/vT

-i/VT

°2

i/vT

-I/V~2

I/vT

-i/vT

«J
0

0

0

0
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= B=0, C=V2,

and

(2.11)

for any time t, i.e., the atom remains in the initial state and
does not 'feel' the presence of the resonant field (2.1) (Fig.
3, curve 4).

It follows that, when the frequency detunings (1.1) are
equal, excitation is absent from a three-level system only if
the initial probability amplitudes (at f=0) in the lower
levels have opposite signs (see the Table). This suggests
that the system (Л-system) has a series of states in which
it ceases to interact with an external field. We shall called
them coherent states.

We note that nothing new is introduced by the nonzero
population of the state |3) for the corresponding initial
probability amplitudes in the lower levels (which have op-
posite signs). The smaller fraction of atomic population
that was initially in level |3) is then found to oscillate
whereas the greater part of that population is trapped in
the coherent state. This is a decisive factor in attempts to
produce noninversion lasers based on CPT.76"83

The signs of the initial probability amplitudes in the
lower states are determined by the symmetry of the system
under the interchange of the phase factors of the wave
functions. The significant point is that this symmetry man-
ifests itself (i.e., the Л-system is not excited to the upper
state) only if (1.1) is satisfied. If (1.1) is not met, the
system can always be excited, even from these coherent
states.

The fact that three-level systems have special coherent
states was also noted in Ref. 14 which reported the collapse
and restoration of the dynamics of three-level systems. The
calculations were performed for the nonrelaxing F-system
(Fig. Ib) interacting with the quantized electromagnetic
field with the Lorentz distribution over the photon number
n:

Fn=((n-n)ЙЛ2
-1

where и is the average number of photons and Г0 is the
half-width of the distribution. The analysis is based on the
solution of the time-dependent Schrodinger equation for
the probability amplitudes. It is found that there are initial
probablity amplitudes in the upper state of a F-system in
which the probability of finding the system in a lower state
is not only close to zero, but the evolution of the system in
time is qualitatively similar to the evolution of the
Л-system. The fundamental difference between the results
reported in Ref. 14 and the corresponding results for the
Л-system is that, in the case of the quantized field, these
special initial conditions depend additionally on the aver-
age number of photons n.

3. PHENOMENOLOGICAL ALLOWANCE FOR
SPONTANEOUS RELAXATION IN THREE-LEVEL SYSTEMS

3.1. The levels of Л- and E-systems

We shall now examine the temporal evolution of the
populations of Л- and H-systems with allowance for spon-
taneous relaxation. We shall use the formalism of proba-
bility amplitudes in which the decay of the state 13) to
thermostat states is phenomenologically taken into account
at the rate y0> whereas the states 11) and |2) are assumed
to be nondecaying.11'12 Of course, this approach suffers
from certain disadvantages, including the fact that input
terms cannot be taken into account. We reproduce the
solutions and their analysis because this approach is rela-
tively simple and clear, and reveals the characteristic fea-
tures of CPT. A comprehensive approach that includes
spontaneous relaxation and other factors can be based on
the more laborious density matrix method which enables
us to obtain the solution of many problems that are impor-
tant in practice.

Our approach will give us the populations of the states
\m) (m = l,2,3) as functions of the time of observation.

The set of equations for the probability amplitude,
given by (2.3) and augmented by spontaneous decay, can
be written in the form1'3'4 (П^П^О)

(3.1)

We shall now write down the solutions of (3.1) for the
following initial conditions:

3 = 0 for r=0. (3.2)

The population probabilities in states \m) are given by
(for

(3.3)

|au|
2 = 4 l ±

whereas for g>y0

o'(l-cos2x),

(3.4)

where x=Vlgt.
The solutions given by (3.3) and (3.4) provide a com-

plete description of the temporal behavior of populations in
Л- and H-systems for initial conditions such as (3.2). It is
clear from (3.3) and (3.4) that, with initial conditions for
al2 of the form Cl = — C2, the intermediate level 13) is not
populated whatever the dependence on the Rabi frequency
and decay rate y0. The initial populations remain unal-
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tered: | a, |2 = | o21
2, | a31

2=0, which confirms the existence
of a state of the system in which it does not interact with
resonant fields.

For initial values such that C^—C2, the temporal
evolution of populations depends on the Rabi frequency:
for high Rabi frequencies g>y0, there are periodic damped
oscillations with time constant Yol'> f°r8<Yo> the damping
is aperiodic with time constant tzzyo/g2.

We note two further points. First, the character of the
dynamics is virtually unaltered in the case of detuning
from exact resonance. All that is required is that the two-
photon resonance condition is satisfied; for the Л-system
this takes the form

П,-П2=0,

and for the H-system

n,-(-fl2=0.

(3.5)

(3.6)

Second—and this is important for the understanding of
CPT—some of the atomic population is always trapped in
extreme levels when (3.5) and (3.6) are satisfied in the
case of the three-level system. The population thus remains
in the system in spite of decays occurring outside the sys-
tem, which is significantly different from the analogous
analysis of the two-level atom1'3 for which the total popu-
lation decreases with time (JV-»Oasf-»oo), which is due
to the loss of population by the system by excited-state
decay.

The excitation of this kind of F-system is completely
analogous to the excitation of the two-level system whose
upper state decays.1'3 It is therefore not surprising that, as
in the two-level system, the normalization condition is not
met and the total population in the system tends to zero,
i.e., \ai\2+\a2\

2+\a3\
2=N->Qas f->oo.

4. COHERENT POPULATION TRAPPING IN THE /.-SYSTEM

4.1. Establishment of coherent trapping In the Л-
system

We now continue our study of coherent trapping in
Л-systems, using the density matrix formalism in which
relaxation processes can be most fully taken into account.

It will be helpful for the ensuing discussion to start by
specifying the field with which the Л-system interacts in
the form of two plane light waves with frequencies fi>li2,
wave vectors klp2, and polarization unit vectors ejj2

3)

t-ikir) +E2e2 exp(io)2t—ik2r) +c.c.
(4.1)

The equations for the elements of
matrix1"5 — the Л-atom — are as follows:

d/Эц

the density

i — =-£1p31exp(/(V-&1r)+c.c.+2/y1/)33,

e\p(iu2t-ik2r) +с.с.+2/у2рзз.

3.2. У-scheme of levels

Let us now consider the V-scheme of levels shown in
Fig. Ib. The equations for the probability amplitudes now
take the form (using the same notation as before)

s+2ys=2ig*ai, (3.7)

r+2yr=0,

where 2y is the rate of decays from levels 11) and 12) to
thermostat states and the light-wave frequency detunings
are zero, i.e., Om=0 (m=l,2). The solution of (3.7) can
be written as

s=exp( -yt) [A exp(AiO + B exp( -Д,г)], (3.8)

r=Cexp(-2yO,

where

аи=-Г±Д,, Д^у2-/.

It is clear from (3.8) that, in this case, the entire behavior
of the system is determined by decay from levels 11) and
12). Correspondingly, the system is excited to these states
for any initial conditions. The necessary condition for the
absence of coherent trapping is the decay of the superpo-
sition state r at the rate 2y, which does not occur in the
case of the Л- and S-systems.

dt

dt

-c.c.-2i(yl + y2)p33,

exp(/ft2r-/k2r)

(4.2)

.dP23

'-dT=-

+g2pn exp(ia2f-ik2r) -iyp,3,

(РЗЗ — p22)exP(tfV— *2Г)

exp(flV) -/k,r)p21-/yp23,

exp(/fijf—/ktr)

exp( — iCl2t+ik2r) —/Tp12;

where gm are the Rabi frequencies, Slm = com — co3m (m
= 1,2) are the frequency detunings, 2yj, 2y2 are the partial
decay rates from level |3) to levels |1) and |2),
Y=Y\+Y2> and Г is the rate of relaxation of low-frequency
coherence pi2.

Next, we introduce the following substitutions for the
off-diagonal elements in (4.2):

(4.3)
(m = l,2),

— fl2)t— /(k,— k2)r),

and, assuming that the Л-atom is at rest, we put v=0 on
the left-hand side of (4.2). This gives a set of equations

768 Physics - Uspekhi 36 (9), September 1993 Agap'ev ef a/. 768



1,0-

0,5

0,1

-А/

0,3

v х>-
/

0,50

0,1

i
FIG. 4. Evolution of pop-
ulations pmm(t) (m
= 1,2,3) in a Л-system for
(1.1) and g=2y,
7=2-ID's-1, Г=103$Л
r = y f and initial condi-
tions p,i(0) = l, p22(°)
= Рзз(0) = Р*(0)=0(|=М
= 1,2,3).

containing only time derivatives, which can be solved for
zero detunings ftm=0 and, correspondingly, we can find
the time dependence of the population of level 13), i.e., the
result obtained above by the formalism of state vectors.

For equal partial rates y=y,- (/=1,2) and equal Rabi
frequencies, we find45 from (4.2) that, when the initial
conditions are рц(0)=р22(0) = 1/2, р33(0)=0,
рл(0)=0 (i¥=*= 1,2,3),

g2

l-fexp(-r)—2exp( —-т

, whereas for gz>Ty

2g

(4.4)

vM?-

where

8 I r\/1 £ M
X v2~-+expl —-H-sin*—v2-cos*| , (4.5)

where r=v2yr and x=V2gt.
It is clear from (4.4)-(4.5) that the population of the

third level in the Л-system depends significantly on both
the light-wave intensity and the relaxation rates Г, y.4) Th^
character of the populations of the upper level depends on
the ratio of g2 and Гу. Let us compare (4.4), (4.5) with
the solutions (3.3), (3.4) obtained in the formalism of
state vectors. This will enable us to estimate the degree of
rigor of this approach. For example, for high Rabi frequen-
cies, the population of the third level in (3.4) tends, in its
stationary state, to zero and not to the constant value
Г/2у. This is a consequence of the fact that it is impossible
to take transverse relaxation into account in the formalism
of amplitudes of states.

We emphasize that allowance for the relaxation of low-
frequency coherence p12 in (4.2) is fundamental because,
on the one hand, Г determines the magnitude of the CPT
effect (the population of level 13)) and, on the other hand,
it indicates the light-wave intensities for which the effect is
possible.

Figure 4 shows the populations in the Л-system as
functions of time of observation. It is interesting to note

that, in the case of the exact solution of (4.2), obtained
from the equations for the density matrix, the evolution
depends significantly on the initial conditions. If the initial
populations of levels 11) and |2) are equal to 1/2 and the
initial coherence is рц= —1/2, the system is already in the
coherent trapping state and, in general, is not excited by a
field (cf. the data in Table I). In other words, particular
initial population densities facilitate the transition to CPT.
This shows once again that definite coherent states, from
which the system undergoes weak excitation, exist in the
Л-system. These coherent states have fully determined am-
plitudes and phases (see Sec. 2). At the same time, when
spontaneous relaxation occurs in the system, a transition
from the upper state to the lower levels takes the system to
a statistical mixture of pure states in the lower levels. There
is then a finitie probability that the system will reach a
coherent state, after which (as shown in Sees. 2 and 3), no
excitation takes place in the system. If, as a result of spon-
taneous decay, the Л-system does not reach a coherent
state, then (3.3) and (3.4) show that it will, as before, be
excited to the upper state so long as spontaneous decay
does not take it to the state (2.11). It is precisely because
of these processes which 'pull out' the atoms from the
interaction with the field in each new decay that oscillatory
behavior such (3.4) and (3.5) takes place.

Figure 5 shows the behavior of the Л-system popula-
tion when the conditions for coherent trapping are not met.

We note that, for low light-wave intensities, coherent
trapping is absent altogether. It is also clear from (4.4)
that the time-independent population of level (3) is pro-
portional in this case to gVy2 The conditions for the onset
of CPT will be discussed in greater detail below.

4.2. Conditions for the onset of coherent population
trapping

We noted above that the CPT phenomenon is a fun-
damentally nonlinear effect that occurs only for particular
light-wave intensities. This is already clear from (4.4) and
(4.5) as we pass to the limit ?-»oo, i.e., when time-
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independent population is determined. However, at this
point, we shall proceed in a different way and will find the
intensity for the onset of CPT directly from the expression
for the time-independent population of level |3).

Substituting (4.3) in (4.2), and assuming that

n^flj^ and that tne atom k at rest (v— °) for

е>у-1,Г~1, we obtain a set of algebraic equations, the so-
lution of which yields

g2

(4.6)

where we have put Г<у which is valid for all cases that are
of importance in practice.

It is clear from (4.6) that the population in the upper
state depends significantly on the relationship between the
quantities

(4.7)
Г / П2\

-- W>rr(l+:pr).

In the second case, i.e., when />уГ( 1 + П2у 2), the pop-
ulation does not depend on the light-wave intensity and is
determined entirely by the relaxation constants of the sys-
tem. This is a fundamental point because it shows that
nonlinear phenomena (similar to saturation in the two-
level atom) occur in the system. Next, since it is assumed
that у>Г and that p33<l, it follows that, in atoms with
strong optical lines, y= 10 MHz and Г is practically never
less than 1000 GHz, we find that p33=: 10~4. On the con-
trary, in the first case in (4.7), we find that the population
of the upper level is a linear function of the field intensity,
which may be looked upon as the linear approximation in
the light-wave intensity.

As in the case of equal detunings, we now obtain the
time-independent population of level 13> when one wave is
in resonance with a transition in the Л-atom and the other
is scanned:

• (4.8)

(4.9)

where а=уП, + Г(2^2+Гу) and the Rabi frequencies of
the two light waves are both equal to g. The dependence of
the population p33 on the detuning f^ is shown if Fig. 2 for
different light-wave intensities. Curve 7 corresponds to the
first condition in (4.7) and curves 2-4 to the second. It is
clear that a sharp reduction in p33 in the case of exact
resonance (ftm=0) occurs only for ^>Гу. Let us now
estimate the intensity for which coherent trapping can be
observed. From the second row in (4.7) we have ftm=0

eVrW/^xr/yslO-4, (4.10)

and, considering that the saturation intensity is /n;=0.1
W/cm2, we find that the required intensity is /^10~5

W/cm2.
We emphasize once again that the correct physical pic-

ture is obtained only for a nonzero transverse relaxation
rate Г. On the other hand, when Г=0, then (1.1) shows
that, formally CPT should occur for any light wave inten-
sity which, strictly speaking, is not true.

4.3. Coherent population trapping in partially coherent light

waves

When we considered coherent trapping phenomena,
we implicitly assumed that the spectral width of the excit-
ing fields was much smaller than the natural level width in
the upper state. However, tunable dye lasers are usually
employed in CPT observations, and their spectral widths
are comparable with, or even greater than, the natural
width of the upper level of the Л-system. It is therefore
important to examine the onset of coherent trapping in this
situation, i.e., to investigate trapping for partially coherent
light fields.11"13

We note that, the properties of CPT in fields of finite
spectral width are of major practical importance because
they enable us to identify the conditions that these widths
have to satisfy to ensure that the CPT effect is observed.
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To solve this problem, let us suppose that the Л-system
interacts with a light-wave field whose phases are random
functions:

E=E0cas(colt— -k2r+<p2(0),
(4.11)

where E0 is a determined amplitude and ept(t) (i= 1,2) are
random phases whose initial values <p°=<p,-(0) (/'= 1,2) are
uniformly distributed on the interval (0,2я-). We shall also
consider that the time derivatives ф/U) are delta-correlated
random processes4 with zero average values

<?,(/)> =0, /=1,2,

correlation functions

(4.12)

(4.13)

and

(q>l(t)<p2(t'))=2v8(t-t')>

1/2

where (4.13) describes the possible case of mutual corre-
lation (cross-correlation) of light waves (4.11). Under
these conditions the intensity spectrum /(o,-) of the ran-
dom fields (4.11) is a Lorentzian with the half-width Д

-/ з

с

-г -t

\ (4.14)

Under these conditions, we can write down the micro-
scopic equations for the elements of the density matrix of
the form (4.2), remembering that the expression for the
light waves (4.1) must be replaced with (4.11). The next
step is to replace the off-diagonal elements of the density
matrix by analogy with (4.3).

We note that the equations obtained in this way are
stochastic because they contain the derivatives фД/) of the
random phases. It follows that, henceforth, we shall have
to confine our attention to the average characteristics eval-
uated over the ensemble of phases (including the average
population of level |3), evaluated over the ensemble). To
transform from the equations for the random phases to
equations for their averages, we must average the resulting
set over the ensemble of phases.4 If we suppose that the
correlation functions are specified by (4.12) and (4.13),
we thus obtain the following replacements for the relax-
ation constants in the equations for the average off-
diagonal elements (cf. Ref. 11):

and

(4.15)

(4.16)

The last expression determines the low-frequency co-
herence relaxation rate Г due to frequency fluctuations.
Three important facts follow from it. First, if the relaxation
rate in the absence of frequency fluctuations is zero (Г
=0), a 'noisy' field such as (4.11) will always broaden the

FIG. 6. Population of the upper level of a Л-system as a function of П2

for П,=0; g,=g2=0.4, a-0,=/32 = v=0. b-/3,=/32=0.1, v=0.
с—/?,=/92=v=0.1. (arb. units; taken from Ref. 11).

1-2 transition. It is precisely this that we had in mind when
we considered the light wave intensities that are necessary
for CPT to occur (cf. Sec. 4.2)

Second, the depth of the CPT valley as a function of
the size of the fluctuations and the cross-correlation of the
light wave is also an important consideration. For com-
plete correlation

/31=02=v (4.17)

between the waves in (4.11) we then again obtain coherent
trapping11 for the corresponding intensity conditions
(4.7). If, on the other hand, we take &\ф&1 (and, corre-
spondingly, v< (/?i+/?2)/2), then for substantial fluctua-
tions

(/=1,2) (4.18)

there is no coherent trapping," which is also consistent
with (4.7).

Figure 6 shows the population of level |3) in the
Л-system for different light-wave correlations.11 It is clear
that, even for small widths /3, and completely uncorrelated
fields (Fig. 6b), the valley depth is considerably reduced.
In other words, for completely uncorrelated fields, CPT is
very dependent on the spectral width /3/ of the exciting
waves,

At the same time, the presence of correlation between
the light waves makes it much easier to observe the
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coherent-trapping resonance. CPT is then observed even
when the spectral width j8, is considerable. This is why
cross-correlated light waves are used in experiments. In
practice, this is achieved with the help of an opto-acoustic
modulator.

The case of two correlated fields with significantly dif-
ferent spectral widths $\ф&2 requires particular attention.
Coherent trapping can be destroyed or restored (as was
shown above), depending on the type of coupling between
the fields (positive or negative correlation, partial or total).
The results are then different for different types of the
three-level systems.13

The case of fluctuating exciting-wave amplitudes can
be considered in a similar way. However, amplitude fluc-
tuations have a much smaller influence on the existence of
CPT when the intensity conditions (4.10) are satisfied.

4.4. Effect of the motion of atoms on the onset of coherent
population trapping

When the CPT effect was examined above, it was as-
sumed that the atoms interacting with the light field (4.1)
were at rest. We shall now take into account the transla-
tional motion of the atoms. In the frame in which the
atoms are at rest, the condition for CPT such as (4.1) is
replaced by the condition for equal Doppler-shifted fre-
quency detunings

It then follows from (4.19) that the condition for the onset
of CPT depends significantly on the mutual directions of
the wave vectors kt and k2 of the light waves and the
velocity v of the atoms. Let us now consider (4.19) for
some special configurations that are important in practice.

Parallel light beams. Suppose that the wave vectors are
parallel. We then find from (4.19) that

fli-fl2— (&! — k2)v=fli-fl2—qv=Q, (4.20)

where km (m = 1,2) are the moduli of the wave vectors and
v is the component of the velocity of an atom in the direc-
tion of propagation (q=k\ — k2).

If we consider a Л-system in which the two wave vec-
tors are approximately equal, then (4.20) becomes identi-
cal with (1.1). If, on the other hand, the wave vector
difference q is large, then CPT will occur only for particles
with a particular projection of their velocity (for fixed de-
tuning flm), namely,

v=(£ll-tl2)/q. (4.21)

We note that direct observation of CPT in a Л-system was
reported for (4.21) in Ref. 70. The results of these exper-
iments will be discussed in Sec. 10.2 which is devoted to
applications of CPT in ultrahigh-resolution spectrocopy.

Counterpropagating light waves. We shall now consider
(4.19) in the case of Counterpropagating waves assuming
that k, = —k2, so that (4.19) gives

fli-fl2-(kl+k2)v=0. (4.22)

This means that both here and in (4.21), the upper level is
depleted only for a particular particle velocity.

If we now consider the case of two waves oriented
arbitrarily in space, we can write (4.19) in a Cartesian
frame in the form

(4.23)
m=l

where &™2, vm are the projections of the wave vectors and
the velocity vector of the atom along the coordinate axes.
We can also use (4.23) to determine the velocity vector of
the Л-atom for which the atom will not be excited to the
upper state for a given light-field configuration.

We note that all the above conditions can be obtained
naturally from (4.2) by direct evaluation of the time-
independent population of the upper state.

5. COHERENT POPULATION TRAPPING IN OPTICALLY
DENSE MEDIA

It is well-known3 that light is attenuated by absorption
in an optically dense medium. This is described by the
linear absorption coefficient a in the Bouguer-Lambert
law. The reciprocal 1 =a~' is a measure of the thickness of
the medium in which the light intensity is reduced by a
factor of e. Moreover, we also have to take into account the
effect of interatomic collisions on CPT. We have already
seen that the typical time constant for the establishment
of CPT is the lifetime of the atom in the upper state
TZZ 10~7 s. Let us therefore estimate the time interval be-
tween successive collisions, using the expression

Ts^(nU(rs)-1, (5.1)

where v is the average velocity, as is the gas-kinetic cross
section, and и is the concentration of the atoms. It is clear
from (5.1) that for typical values (vzz 104 cm/s, as^ 10~16

cm2 and n^;1015 cm~3), we have т^10"38>т and CPT
can always be established in the interval between two col-
lisions. On the other hand, frequent interatomic collisions
produce an increase in the transverse relaxation rate be-
tween the lower states." This must be taken into account
when the light-wave intensity (4.10) that is necessary for
CPT to occur is chosen.

It is qualitatively clear that when two-frequency radi-
ation passes through a medium with CPT, the absorption
of light should be lower. Since, as was shown above, an
atom cannot scatter resonant photons when the detuning
condition (1.1) is satisfied, the medium transmits radiation
within a narrow coherent-trapping resonance. It is inter-
esting to note that if the coherent trapping condition (1.1)
is not met, ordinary absorption of light by the resonant
medium is observed. The free transmission by the medium
is then lost even when (1.1) is satisfied, and the radiation
intensity is reduced to the extent that the CPT condition
(4.10) which limits the light-wave intensity is not satisfied.
CPT can thus lead to important consequences for the prop-
agation of laser radiation in optically dense media.40"44

Several cases have now been investigated, including
continuous two-frequency laser radiation interacting with
an optically dense medium, the case where the radiation is
a periodic sequence of ultrashort pulses of width that cov-
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ers both of the lower levels of the Л-system, and the prop-
agation of continuous non-monochromatic laser radiation
with spectrum covering both of the lower levels.

The change in the intensity of radiation propagating in
a medium must be taken into account when the transmis-
sion of light by an optically dense medium is analyzed. The
equations for the elements of the atomic density matrix,
from which the microscopic characteristics of the medium
are obtained, and which are given by (4.2), must therefore
be augmented by the equations for the fields in the me-
dium. We shall follow Refs. 40-42 and write down the
truncated wave equations for the field amplitude in the
interior of the medium in the form (we assume that all the
rays at entry to the medium are parallel)

dE dE

dz с dt
(5.2)

where dm3 are the transition dipole elements for the | m)~
|3) transitions, л is the concentration of the atoms,
En=¥iy/d is the field amplitude that saturates optical tran-
sitions in the Л-system, and

(m=l,2). (5.3)

Next, substituting (4.3) in (4.2), and solving the equations
for the time-independent case, we obtain the off-diagonal
elements of the density matrix.

It will be convenient to introduce the dimensionless
optical length /and field intensity Jm(l) (o)=(ol~o}2):
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FIG. 7. a—Propagation of laser radiation under CPT condition (1.1) for
Г=1.9-107 Г=102 2-g=\<?

cfry

;-g=io4 s-
3-g=2 • КГ5 s-1, 4-g=3 • 105 s-1, J-g=4 • 10s s"', 6~g=S • 10s s'1

(taken from Ref. 42). b—Resonant population л3 of the upper level of a
Л-system as a function of sin (сог\Т) which characterizes the detuning
С1 — 2ТГ/Т of the pulse repetition frequency from the resonant value
n0=<u2im (m=0,±l,...) (from Ref. 40).

Jm(l)= _
\Em(0)\2 1т(ОУ

where /w(0) is the radiation intensity of the nth field en-
tering the medium. For exact resonance between the waves
and the transitions flm=0, m = l,2 and
Ei(0)=E2(0)=E(0), we obtain from (5.2) the equation
describing the propagation of laser radiation during CPT:

d/

(5.4)

Solution of this nonlinear differential equation (5.4) gives

— (!-/(/))-In/(/)=/, (5.5)

from which it is clear that the law of propagation inside the
medium depends on the initial laser intensity at entry to
the medium [/(0) =/(/=0)] and the optical length /. As in
(4.10), the characteristic parameter is the coherent inten-
sity /c

When the initial intensity is /(0)>/c (g
2 !̂», it follows

from (5.5) that the law of propagation in the medium is
linear, i.e.,

Гу
(5.6)

However, when the intensity /(/) decreases with increasing
/ until /(/) </c, the radiation intensity falls exponentially
for any / (Fig. 7a).

As already noted, the physical meaning of the condi-
tion 7>/c is that it ensures coherent trapping. Optical com-
munication with level 13) then breaks off and the medium
becomes a weak absorber of light.

This weak absorption produces a transparency window
under CPT conditions, which appears when the frequency
of one of the laser fields is scanned. Actually, the solution
given by (5.6) is valid only in the region of CPT resonance
whose width in our case is given by42

(5.7)

and depends on the optical length /. Outside the frequency
interval corresponding to the CPT resonance we have or-
dinary exponential absorption of light by the resonant me-
dium. It follows that, when the frequency of one of the
lasers is scanned, the medium acquires a "transparency
window" but only in the region of the CPT resonance
(5.7). We note that this can be exploited in an optical
modulator.42'45 An interesting consequence of the nonlin-
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ear interaction between resonant radiation and the medium
is that the width of the transparency window (5.7) de-
creases with increasing optical thickness /.

We now turn to coherent transmission in a three-level
medium of a periodic sequence of ultrashort pulses40

of length Tp and repetition frequency T~l. We shall sup-
pose that т^1 and T~lb>o)2l, where co2l is the separation
between levels 11) and 12) in the Л-system, and that each
pulse interacts with two optical transitions. The equation
describing the propagation of these pulses in the medium
are analogous to (5.2), and the equation for the density
matrix is given in Ref. 40. Proceeding as before, we obtain
a set of equations describing both the propagation of the
light pulses in the medium and the variation in the param-
eters of the medium. Next, by considering the settling
down of the solution describing periodic oscillations in the
medium with frequency equal to the pulse repetition fre-
quency, we find40 that, when Г~1^Т, and the low-
frequency coherence does not succeed in relaxing between
successive pulses, the population «3 of level 13) has a res-
onant dependence on the pulse repetition frequency (Fig.
7b). Resonances thus occur when

.dP33

(5.8)

or

Naturally, complete trapping of populations by a pulse
train can occur only for Г<у because otherwise coherence
is lost and there is no population trapping by the lower
levels. When />/c pulse propagation in the medium is
analogous to (5.6)

Radiation transfer within spectral lines in an optically
dense medium with CPT was examined in Ref. 43 for a
nonmonochromatic laser field. It was shown that if the
radiation spectrum covers the со2\ frequency separation be-
tween levels 1 1> and |2>, and this separation is less than
the optical excitation rate W=g2/Y, the atoms become
trapped by these levels and the medium transmits. The
integrated intensity of the laser radiation then decreases
linearly in the medium and is independent of the shape of
the incident and absorbing profiles.

We note, finally, that transmission by a medium with
CPT was observed experimentally in Ref. 44

6. POPULATION TRAPPING IN A CASCADE SYSTEM

6.1. Approach to the steady state In a 2-system

We shall now consider CPT in a cascade system of
levels (Fig. Ic). We shall suppose that the field interacting
with the system is given, as it was in the case of the
Л-system, in the form of two plane light waves (4.1)

The equations for the elements of the atomic density
matrix take the following form in the case of the E system4

ехр(/П,Г-Л,г) +С.С.

exp(rfV-/k2r) +c.c.-2ir2p22>

-c.c.-2/y1p33+2/y2p22,

exp(iSl2t—ik2r)

(6.1)

+g2pn ехр(/П2г-Л2г) -i

+g\Pn exp(/ft,f-ik,r) -1

exp(/flif-ik,r)

ехр(/П2*-Дс2г) -/

where gm (m = l,2) are the Rabi frequencies,
flm=com—ct)3m are the frequency detunings, 2/j is the rate
of decay from level 1 3} to level 1 1 ) , 2y2 is the rate of decay
from level |2) to level |3), and Y=Y\ + Y2- Next, we in-
troduce the following replacement of the off-diagonal ele-
ments by analogy with (4.3):

Pi3=Pi3 exp(/fV—

P32=Рз2 (6.2)

If we now consider a resting E-systems (v=0), we find
from (6.1) and (6.2) a set of equations that contains only
the time derivatives. We must now try to solve this system
for zero detunings flm=0 (m=l,2), equal Rabi frequen-
cies gm=g (m = l,2), and Y2<Yi- We shall see later that
CPT is then possible in the cascade system. The population
of the intermediate level |3) in the case of initial condi-
tions pu(0) = l, p22(0)=0, p33(0)=0, p,*(0)=0
= 1,2,3) has the following form45 when

Рзз=Т7+ехр(—г)

X
1
- (1—cosx)—fr i l

l + 2-3/2-sin*
g

and

-2
n

Рзз=-2 U+exp -- -2exp --
•'

(6.3)

(6.4)

In the last two expressions, the dimensionless time r=2Y\t
is expressed in units of yf ' and x=v2gf.

It is clear that the evolution in time of the population
of the intermediate level of the cascade system is close to
the behavior of p^(t) for the Л-system [cf. (6.3) and (6.4)
with (4.5) and (4.4), respectively]. However, it is the ratio
of the Rabi frequencies and rates of spontaneous relaxation
in the system that is decisive here. For sufficiently high
Rabi frequencies, p33 oscillates and asymptotically ap-
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FIG. 8. Evolution of populations in the H-system under CPT conditions
for У2==0.1у|, g=lOyl,Yi = }

= 64Г,Л

and initial conditions
1,2,3,) for П„=0; т1

О,'

О 5 10 IS 20 г'

preaches the small quantity y2/7i [we recall that (6.3) and
(6.4) were obtained on the assumption that y2<7i] which
is independent of the light-wave intensity and is an internal
characteristic of the system. In the case of low Rabi fre-
quencies, the population of level 13} does not oscillate and,
in the stationary state, is proportional to the intensity of
the fields interacting with the atom p3 3=gi/Yi- The time
functions pmm(r) (m = l,2,3) for g\2>YiYi are shown in
Fig. 8. The detunings Slm (m=l,2) from resonance have
practically no effect on the time dependence of populations
in the systems if (Il + fl2=0. On the other hand, when

then despite the fact that the condition
is satisfied, CPT is not observed and the

intermediate-level population reaches values comparable
with рц whilst the upper level is only slightly populated
(Fig. 9). A similar evolution of populations in a cascade
system can be observed when the condition imposed on the
decay rates (y2<yi) is not satisfied.46 However, in order to
understand why this happens, it is more convenient to con-
sider the time-independent solution of (6.1).

6.2. Spectroscopy of a 2-system

To investigate the conditions for CPT in a cascade
system, consider the time-independent solution of (6.1).
Assuming that the atom is at rest (v=0), we find from

FIG. 9. Same as Fig. 8, but with П1=0,П2=ЗОу,,^=5г1.

(6.1) for t$>Yml (/л = 1,2) that, at exact resonance
(ftm=0, m = l,2), the expressions for the populations are

P4 = 1-P22-P13- (6.5)

It is clear from this that, when y2<7i and g\=g2>Y\Y2> the
populations are рзз=У2/У1> рц = р22~1/2 and population
trapping is observed for the upper and lower levels. It is
readily verified that, for field intensities g\,g-i<YiY2 and
arbitrary y,, y2> we have p^=g\/Y\ and the intermediate-
level population is proportional to the intensity of the op-
tical radiation. We thus find that, for CPT to occur in the
S-system, we must have not only gi>yiy2, but also a def-
inite relation between the decay rates, Y2<Yi • F°r example,
when yi^y2> S\—S2>Y\Y2> the level populations are given
by the simple expression pmm=\/3 (m= 1,2,3), and
/o12=0 (Ref. 46). It is physically clear that, as in the case
of the Л-system, a coherent superposition of states 1 and 2
should be formed during CPT and should not interact with
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FIG. 10. The population pi} when one frequency is fixed and the other
scanned: y1 = 107 s"1, y2=0.1y,, g, = 2y,, g2 = y,.

resonant fields. The decay of the states in the superposition
should therefore be relatively slight which in the case of the
cascade system leads to the condition y2<yi •

By analogy with (6.5), we can obtain expressions for
the time-independent populations when one detuning is
zero and the other is scanned. Figure 10 shows p33 as a
function one of the detunings. It is clear that the functions
Рзз ( f l l t П2=0) and рзз (fl2, nt=0) are different in char-
acter. If the field applied to the |3)-|2) transition is in
exact resonance (O2=0), and tne nfild applied to the 11)-
|3) transition is scanned, then level |3) remains practi-
cally unpopulated when the detuning ̂  is large. When
fl!=0 and ft2 is scanned, we find that for large ft2 we
obtain a saturated (for gi>7i72) two-level system |1)
—13) that is weakly coupled to the upper level |2). In
both cases we then have a typical well-defined coherent-
trapping resonance at fim=0 (m = 1,2). We note that CPT

in a cascade level system has been observed
experimentally.69 A fast 20Ne* atomic beam was illumi-
nated by two colinear laser beams from the same source.
One of the beams was parallel to the atomic beam and the
other antiparallel. This meant that a change in the fre-
quency of the laser was accompanied by a change in the
total detuning f l j + fl2 from the two-photon resonance. On
the other hand, the single-photon detunings {It (of the
|1)-|3) transition) and ft2 (f°r the |3>-|2> transition)
could be varied by varying the beam velocity by exploiting
the change in the Doppler shift of the resonance frequen-
cies. The following 20Ne* levels were used in the cascade
scheme: 3.y[3/2]2, 3p'[3/2]2, and 4d'[5/2]3 were taken to
be the lower 1, intermediate 3, and upper 2 levels, respec-
tively (Fig. 11 a). The fluorescence from the intermediate
level was recorded. We note that the rates of spontaneous
relaxation from levels |3> and |2) were Y\ — Yi~\~H
MHz and Y2=Y2~3~l MHz, respectively, i.e., the condi-
tion Y2<Y\ f°r CPT in a cascade scheme was satisfied.
When the Rabi frequency g, is small, the spectrum of the
signal as a function of the laser frequency consists of the
Doppler profile with a sharp peak superimposed upon it,
which is a 'reflection' of the two-photon absorption peak in
the population of the upper level |2>, and is due to the
|2)-|3) spontaneous decay. The peak becomes accompa-
nied by a valley as the Rabi frequency is increased. The
valley on the intermediate-level population as a function of
the detuning fl1 + fi2 is therefore observed for ft1 + O2=0,
Y2<Y\< 8\,2>YiY2> which indicates the presence of CPT in
this experimental situation. Figure 1 Ib shows the fluores-
ence intensity from level |3) as a function of the laser
detuning for different velocities of the atomic beam (gov-
erned by the accerlating voltage applied to the primary ion
beam).69

We note, finally, that the excitation of the H-system by
correlated fields is discussed in Ref. 13. The main proper-
ties of the excitation process are found to be the same as for
the Л-system (Sec. 4.3) with the only difference that the
transverse relaxation rate Г is replaced with y2 in the case
of the H-system and negative cross correlation of the fields

FIG. 11. a—Fragment of the energy-level diagram of
20Ne*. Levels (nj,m) correspond to the (3s[3/2]2,
3p'[3/2]2, 4d'[5/2]3) levels of neon; b—population of
the intermediate level |3> as a function of the laser
detuning gi=7 MHz, g2=2 (from Ref. 69).

600 0 tQO
MHz
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is necessary for the observation of CPT in this case.

7. COHERENT TRAPPING IN SYSTEMS WITH DEGENERACY

So far, we have confined our attention to different
types of the three-level systems (Fig. 1). However, more
complicated multilevel systems can also display properties
associated with the phenomenon of coherent population
trapping. Such systems include, for example, the two-level
systems that are degenerate in magnetic sublevels and in-
teract with polarized radiation. Here again there are states
from which a system will not be excited.

Following Ref. 47, we consider a two-level system that
is degenerate in magnetic sublevels En(Jn)-+Em(Jm),
((En<Em) where Jn, Jm are the total angular momenta of
levels with energy En<m) with a complete set of orthonor-
mal wave functions

exp — i—jT
\ *

We shall consider that this two-level system interacts with
the field given by

E=£P
0eexp(— iat)+c.c., {7.1)

where e is the elliptic polarization vector and the quanti-
zation axis (the z axis) is orthogonal to e. The field (7.1)
can be written in the form

Е=£'о(0+е_(_-г-0_е_)ехр(-/й)0 + с.с., (7.2)

and in this case the dipole interaction operator is

y=EQ(q+d_ +q_d+ )exp(—iot) -fh.c., (7.3)

where

1T
=ex

17Л
- jcosl e+-r I,

E is the ellipticity of the light beam (—ir/4<e<ir/4), and
<p is the angle between the semimajor axis of the ellipse and
the x axis.

As before (Sec. 2) we start with the time-dependent
Schrodinger equation and seek its solution in the form

+exp -i — (7.4)

Substition of (7.4) in the time-dependent Schrodinger
equation gives a set of differential equations of the form of
(2.4).

The main interest is in solutions of this system that are
not perturbed by the light field, i.e., solutions that satisfy
the condition (see also Sec. 8)

F*=0. (7.5)

FIG. 12. a—Л-chain for the J—J—\ transition; b—V-chain for the
J—\ -./transition.

Nontrivial solutions of (7.5) maybe referred to as station-
ary coherent states or, simply, coherent states (see Sec. 2).

Subsequent analysis, performed in Ref. 47, examined
different cases of total angular momenta J^m.

For example, Fig. 12 shows two special cases: first
transition /->/—! and second transition J—1-+J. It is
clear that for the /-»/— 1 transition, the two-level degen-
erate system splits into Л-chains, and for the /-»1 -./tran-
sition it splits into V-chains of levels.

The same method is used in both cases to obtain the
coherent states. It involves finding a nontrivial solution of
(7.5). Coherent states were obtained in Ref. 47 for both Л-
and V-chains. Naturally, coherent states are constructed
from the initial amplitudes of the lower levels in the case of
Л-chains and the upper levels in the case of V-chains,
which corresponds to our simple approach to Л- and
V-systems (Sec. 2). As for a single Л-system, the two-level
degenerate system is found to have states that are wholly
determined by initial amplitudes and are not excited by the
light field (7.1).

Further generalizations to the case of a two-level sys-
tem with relaxation from the upper level, introduced in
Ref. 47, are analogous to those discussed in Sec. 3 for
three-level systems. The analogy is indeed so complete that
coherent trapping states were found in Ref. 47 for both the
Л-chain and the Л-system, but no such states were found
for the V-chain (as for the V-scheme of Sec. 3.2).

8. CONSERVATION LAWS AND COHERENT POPULATION
TRAPPING IN A/-LEVEL QUANTUM SYSTEMS

So far, we have been largely concerned with CPT in
three-level systems. However, it is found that coherent
population trapping can occur in a wider class of models of
interaction between atomic systems and coherent fields.
The effect is observed under certain conditions in systems
with an arbitrary number N>2 of levels participating in
the interaction. The conditions that must be satisfied for
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CPT to occur determine the symmetry properties of the
system under investigation and, in this sense, CPT is a
consequence of the symmetries of atom-plus-field system.
We know, however, that symmetries give rise to specific
integrals of motion (e.g., via the Noether theorem). It fol-
lows that CPT can be associated with a particular integral
of motion, and this presents us with a clear mathematical
criterion for the onset or otherwise of CPT. This "symme-
try approach" to coherent processes in complex quantum
systems is promising, but, so far, it has been developed in
sufficient detail and depth for only one (though very ex-
tensive) branch of coherent optics, namely, the interaction
of a set of discrete levels with short laser pulses for which
slow relaxation processes in the system can be neglected. It
is precisely such systems that demonstrate particularly
clearly the fundamental importance of the symmetry prop-
erties of the atom-plus-field system in coherent phenom-
ena, including CPT.

These problems are solved in Refs. 48-57. The first
publications on the dynamics of the interaction of an
JV-level atom with pulses of radiation were Refs. 48 and 49
in which this was tackled in the language of rotations [in
the SU(JV) group of transformations] of the state vector in
Hilbert space.

The evolution of a quantum system is described by the
Liouville equation

(8.1)

The two operators in (8.1) can be expressed in terms of
N2-1 generators Sj of SU(JV):

SJ(nSj, (8.2)

Я(0
/ N

=N~l[ E
\ k=i

N 'Ek\I+-fi

where / is the unity operator and Ek is the energy
of the fcth level. The operator Sj is constructed as follows.
First, we introduce the operators ujk=(Pjk+Pkj),
"jk=-i(Pjk-hj) and «)/=-[2//(/+l)]1/2 (Д, + ...
+A/—/A+U+i) where l<j<k<Nand 1<1<N-1 and
the "projection operators" are Pmn=\m)(n\, in which
\m) are the eigenfunctions of the unperturbed Hamil-
tonian. We shall use Sj to denote the elements of the or-
dered set ujk, Vjk,w/. It is then readily verified that

[Sj,Sk]=2i (8.4)

(8.5)

where Sik is the Kronecker symbol and fik, are completely
antisymmetric structures of the SU(./V) algebra. Because of
the completeness property of (8.5), the coefficients in
(8.2) and (8.3) can be written in the form

(8.6)

(8.7)

Substituting (8.2) and (8.3) in (8.1), we obtain

. Л'2-! N2-l

-= X S— 4-t £*
k=\ /=1dt

(8.8)

which describes the evolution of the "coherent vector"
S(t) = (Sl,S2,...,SN2_l) in JV2-1-dimensional space. The
complete antisymmetry fikl ensures that the length S is
conserved, so that the evolution of the coherent vector
constitutes its rotation.

Some of the advantages of this vector description are
demonstrated in Ref. 49. In particular it is shown that the
conservation of the length of the vector, | S |2, alone means
that total inversion is impossible in the quantum system
excited by a sequence of laser pulses. Complete inversion,
for example, in a three-level system, implies a situation in
which the entire population is confined to a single level
(level 13) in Fig. la). It follows that part of the population
should be trapped by the lower levels (levels 11) and |2)
in Fig. la) independently of the laser-pulse characteristics.

We now note one further fact. We know (see, for ex-
ample, Refs. 48, 49, and 58) that, for the density matrix of
the A4evel quantum system satisfying the Liouville equa-
tion (8.1), the quantities

(8.9)

are constants of motion [which is readily verified by direct
substitution of (8.9) in (8.1)]. It is not difficult to show
that |S|2 and C2=Trp2 can be expressed in terms of one

(8.3) another. Hence, for a 3-level system48

(8.10)

In this sense, we can say that population trapping in
quantum systems is a consequence of the conservation of
т л 2Tr //.

Subsequent work51"55 has demonstrated the power of
the formalism based on the description of the dynamic
evolution of quantum systems in terms of the state vector S
constructed with the help of the generators of the SU(#)
algebra. By using the properties of the coefficients Г;, de-
termined by the structure of the Hamiltonian (8.3), we can
find the integrals of motion of the systems51"55 for a variety
of physically interesting cases; we can also obtain analytic
descriptions of the evolution of the density matrix53'55'57

and deduce qualitatively predictions about the motion of
these quantum systems.51"57 From the standpoint of sym-
metry properties, the models used for the systems dis-
cussed in quantum optics are often found to be analogous
to those used in nuclear physics and in quark physics.51'54
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In our view, this offers considerable possibilities for the
study of the dynamics of complex quantum systems.

Next, let us consider the results obtained on coherent
population trapping, and return to the possibility of ex-
pressing the operators p(t) and H(t) in terms of the Sj in
(8.2) and (8.3). In principle, the NxN matrices that rep-
resent the density matrix p(t) and the Hamiltonian H(t)
of any system can be expanded over the N2 generators of
the V(N) algebra. However, the choice of the basis oper-
ators is very crucial if we try to exploit the dynamic sym-
metry of the system. Following Refs. 51 and 52, we shall
assume that the system is dynamically symmetric if the
Hamiltonian H(t) is expressed in terms of a particular
subsystem of N2 basis operators. The linear space resting
on the vector S can then be factorized into a direct product
of smaller independent subspaces. The same system can
lead to different realizations of the U(N) symmetry under
different physical conditions. Thus, for a three-level system
in two-photon resonance, the Hamiltonian H(t) is ex-
pressed in terms of only the generators of the subgroup
SU(2)XU(1) ofSU(3) (Gell-Mann symmetry), and for
equal and time independent detunings and Rabi frequen-
cies, in terms of the generators of the subgroup O(3) of
SU(3) (Elliott symmetry).

Multiphoton resonance is the necessary condition for
coherent population trapping. We shall therefore be inter-
ested in the consequences of Gell-Mann type symmetries
in the system. The concept of Gell-Mann symmetry of an
TV-level system will be defined later. For the moment, lets
us consider the well known three-level system without re-
laxation (Sec. 2) for which both the CPT conditions and
the necessary criteria are well-known. Thus, it is shown in
Ref. 9 that the three-level system in two-photon resonance
has a particular state characterized by the linear combina-
tion

(8.11)

where al(t) and аг(() are the amplitudes of the "initial"
and "final" states |1) and |2), gj and g2 are the Rabi
frequencies of fields applied to the |1)-|3) and |2}-|3)
transitions, respectively, and |3) is the intermediate state.
This state is decoupled from the remainder of the system,
i.e., it does not interact with applied fields, so that r ( t )
remains constant in time. In particular, if the state of the
atom is prepared in advance so that r(0) = 1, then it will
not interact at all with resonant fields and its population
will remain distributed over levels 11) and |2) in accor-
dance with r=l. This means that the integral of motion
r ( t ) = const can serve under these conditions as the crite-
rion for the formation of the CPT state in the three-level
system.

The generators Sj of the SU(3) algebra over which the
density matrix and the Hamiltonian H(t) in (8.2) and
(8.3) are resolved, take the form of the well known Gell-
Mann matrices51 in the case of the three-level system:

0 1 О

1 О О

1 О О

1 О О

0 - 1 0

0 0 0

0 0 0

О 0 1

О 1 О

0 0 1

0 0 0

1 О О

5,=

1

о -/ о
/ о о
0 0 0

о о -/
0 0 0

/ о о

0 0 0

о о -/
о / о

' l О О

О 1 О

0 0 - 2

(8.12)

They form three combinations:^,S2,S3 belong to group A
of isospin components, S4,S5,S6,S7 belong to group В of
operators that mix states of different strangeness, and S&

belong to group С which, for SU(3), consists of a single
strangeness operator. The commutation relations for the
operators in these groups can be written symbollically in
the form

[A,A]=A, [A,B]=B, [A,C]=0,

[B,B]=A+C, [B,C]=B, [C,C]=0, (8.13)

where, for example, [A,A]=A shows that the commutator
of two different members of group A is equal to a member
of group A (possibly multiplied by a constant).

However, it is readily verified that, when the genera-
tors (8.12) are chosen as the basis operators, the Hamil-
tonian H contains the operators from all three groups
A,B,C under all conditions, and the set of equations of
motion given by (8.8) for the coherent vector S will not
exhibit any special symmetry properties, e.g., it will not
factorize into smaller independent subsystems.

If on the other hand, we take the basis operators

Aj=U+SjU, (8.14)

obtained from Sj by a unitary transformation with the
matrix

(8.15)

where £=(8\+В\)1/2, the Hamiltonian H ( t ) will involve
only the operators from the groups A = {Alr Л2, Л3} and
C={Ag} in two-photon resonance:

u=u+=-
£

8\ 0 82
0 £ 0

fc 0 -ft

A - i — — ~ , (8.16)

where Д is the single-photon detuning.
The dynamic space of the Liouville equation (8.1) for

the observables A7-(?)=Tr{/5(f)A/} can be resolved into
three independent subspaces, so that
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d

dt

A2(f)

A8(0

=

тА
•"зхз

04X3

01X3

03X4

z/И
-"4X4

01X4

03X1

04X1

0

X
A2(0

Ag(0
(8.17)

where ОтХя are тХи zero matrices and H\X3 and Я"Х4

are antisymmetric 3x4 and 4x4 matrices respectively;
their matrix elements (j,k) are equal to
(2ifi)~{Tr{H(t)[\j,A/3}. The conservation laws follow
immediately from (8.17):

=const,

(8.18a)

(8.18b)

Ag(0=const. (8.18c)

In particular, the combination of population and coherence

Л8(0 =е~2[ (g\-1&)pn(t) +eW>

+ (ei-2g?)p33«) + 3g,g2«12(0] (8.19)

remains constant in time. If we now subtract
Рп + Р22+Рзз= 1 fr°m (8.19), we obtain the square of the
modulus of the complex constant of motion (8.11) that
characterizes the establishment of CPT in the three-level
system.

The symmetry approach to the Liouville equation thus
enables us to confirm the conclusion that the three-level
system has a special 'closed' state in the case of two-photon
resonance. On the other hand, systems in which the num-
ber of levels is N> 3 have no known integrals of motion
such as (8.11) that are responsible for the formation of
superposition states that are not coupled by an interaction
to the remainder of the system. The above dynamic sym-
metry formalism has been used to establish such integrals
for a number of important cases.52'54'56 One of them is the
multilevel system with Gell-Mann symmetry.54 It is ana-
lyzed by analogy with three-level systems. Instead of the
Hamiltonian (for two-photon resonance)

H=-H

0 gl(t) 0

0 fe(r) 0

(8.20)

expressed in terms of the generators A; of the group SU(3)
with the help of (8.16), we can introduce the transformed
Hamiltonian

H' = UHU+,

which, clearly, can be written in the form

1

(8.21)

(8.22)

By analogy with the eight Gell-Mann matrices given by
(8.12), the SU(JV) generators can be taken to be tne^fol-
lowing NxN matrices. The "isospin" matrices St ,S2,S3 in
group A with the Pauli matrices

crx=
0 1

1 0
<7Z=

1 0

0 1

0 -/
?'= / 0

in the top left hand corner and zeros elsewhere:

&i 02X(#-2)

?(JV-2)X2 0(Л
(/=1,2,3);

(8.23a)

the N—2 diagonal matrics in group C, denoted by
5„2_](и = 3,4,...,7V) and given by

1
T7Z

X 011 X ( n - l )

0(n-l)Xl

— (И— 1) 1х(ЛГ-и)

/(Лг-л)Х(я-1) ^(JV-nJXl u(N-n)X(N-n)

(8.23b)

where Im is the mXm unit matrix; and the remaining
Ni—N—2 generators in group В can be readily obtained.
Thus, the important point here is that the JV2—1 genera-
tors from SU(AO, introduced in this way, satisfy the com-
mutation relations given by (8.13). In principle, this en-
ables us to find for systems with particular properties of
their Hamiltonian a unitary transformation U such that
the transformed Hamiltonian can be expressed in terms of
only the generators from A and C, i.e.,

3 N

(8.24)

Such systems are called systems with Gell-Mann symme-
try in Ref. 54. The explict form of the Hamiltonian H and
of the corresponding transformations U is given in Ref. 54
together with the conditions that must be satisfied by the
interaction parameters in these operators for Gell-Mann
symmetry. Briefly, the interaction of TV-level systems and
the field due to laser pulses should be as follows: (1) the
only I/) — |y) transitions that are excited are those with
odd \i-j\ (in accordance with the selection rule for elec-
tromagnetic transitions), (2) the Rabi frequenciesgjj(t) of
all the fields must have the same time dependence, and (3)
the multiphoton resonance must be of a special type,
namely, it must be a two-photon resonance with equal
single-photon detunings. We note that the most important
consequence of Gell-Mann symmetry in H(t) is that the
(N2—l)-dimensional dynamic space resolves into three
groups of independent subspaces, namely, (a) a three-
dimensional subspace (A group), (b) a
(TV2—N—2)-dimensional subspace (B group), (c) N—2
one-dimensional subspaces (c). This, in turn, leads to the
following set of constants of motion

[A,.(f)]2=const,
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3 N

Trp2(t)- I [Aj(t)]2- I [An2_,(/)]2=const,

(8.25c)

where

Aj(t)=Tr{p(t)Aj},

and

The constants in (8.25b) determine the time-
independent linear combinations of populations and coher-
ences in multilevel systems that characterize special super-
position states that are not coupled by interaction to the
remainder of the system.

The following are two examples of the constant
(8.25b) for a four-level system with Gell-Mann symmetry:

(«23 ~ 28\2 ) P33 + 3gn£23" 13 ]

(«23

-Г

where g/j is the Rabi frequency of the field that couples the
)/)— \j) transition.

The existence of states that do not interact with ap-
plied fields in multiphoton resonances can be clearly dem-
onstrated for atoms in a pure state, i.e., in the Schrodinger
formalism.47'56'59'72 Moreover, it is possible to find CPT-
type integrals of motion such as (8.11) and (8.25b) for a
somewhat wider class of conditions than in the case of
systems with Gell-Mann symmetry. The conditions that
must be satisfied by the Rabi frequencies g,7 are practically
the same:

(a) gjj=0, \i—j\ even,

(b) g i j ( t ) = g i j f ( t ) | i- j | odd and / odd

=«u/*(0 I ' — У I °dd and ' even,
(8.26)

and at the same time the multiphoton resonance can be
achieved in different ways.

CPT studies in the formalism of state amplitudes are
based on the obvious but not very fruitful idea47'56 that
CPT must be due to states with wave function

N

*s= I W,,
i=\

where ij>( are the eigenfunctions of the unperturbed Hamil-
tonian for which, in the resonant approximation,

/ч

where V is the operator representing the dipole interaction
between the atom and the field. If we know ^s we can
readily obtain the constant of motion responsible for CPT
by multiplying the Schrodinger equation for the wave func-
tion of the atom

N

*=

in the resonance approximation from the left by the row
vector Ч^"1". The result
4>s(t) = const, we have

a + _
Л s

or

/cfa,=const.

is that, since *S

+F=0 and

(8.28)

(8.29)

It is often possible to find the explicit form of the wave
functions Ч',. satisfying (8.27). This was done in Ref. 47 for
the two-level atom with levels that were degenerate in the
angular momentum, and in Ref. 56 for the jV-level atom in
multiphoton resonance. The following two cases were ex-
amined:

1 ) A special type of multiphoton resonance, i.e. two-
photon resonance; odd level number N. According to
(8.26) the determinant of the matrix Fis then zero, so that
the eigenvalue of V is is also zero. Hence 4*s is the eigen-
vector of V that corresponds to its zero eigenvalue. Again,
by (8.26), the wave function *s contains only the odd /
component that can be expressed in terms of, for example,

•A,:

(8.30)

where D=detA,D2j+i=deiA2j+\, A is the Rabi frequency

A =

#23

#43

825

845

SIN

SN- 1,3 SN- 1,5

and A2J+i is obtained from A by replacing the (2j+ l)th
column with the column

821
£41

The noninteracting coherent superposition state is formed
from odd levels. The constant (8.29) can then be written in
the form

(N-D/2

a\(t)— = const, (8.31)

F*s=0; (8.27)
which, as can be readily verified, is identical for N=3 with
(8.11) apart from a multiplying factor.
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FIG. 13. а—Schematic of coupled continua; b—total population of differ-
ent continua for three values of z (m represents the mth continuum).

т 6

2) An г-photon resonance occurs (r odd and 2<r
< N) between any two levels in the atom under consider-
ation. If

821 g4l
(8.32)

then there exists a vector *s satisfying (8.27) whose only
two nonzero components are related by

k — — vk. С 8 ЧЧ1Л* j J — /VfVl j ^ O, JJ /

i.e., the noninteracting coherent superposition state arises
from levels 11) and | r+1). The corresponding constant of
motion is

~82ia*(t) =const. (8.34)

It follows that multilevel quantum systems pumped by
coherent fields in multiphoton resonance have special su-
perposition states that are not coupled to the rest of the
system. The population occupying these states does not
interact with the external pump fields, i.e., we have coher-
ent population trapping. The parameters of the resulting
superposition states can be determined by determining the
kernel of the atom-field interaction operator (8.27). The
CPT produced in this way is characterized by conservation
laws of a particular type [such as (8.25b) and (8.29)] that
are allowed by the equations of motion of the pumped
quantum system. These equations of motion can serve as
criteria for the onset of CPT, and the conditions for them
are then the necessary conditions or CPT.

9. COHERENT POPULATION TRAPPING IN THE CONTINUUM

The CPT phenomenon was earlier related to the pres-
ence of discrete levels in the system. Under certain condi-
tions, a superposition of these levels can be constructed and

the population is trapped by it. The question now is: can
CPT occur in the absence of discrete states?

It is shown in Refs. 20, 60, and 61 that population
trapping is also possible in the continuum, e.g., when an
autoinizing resonance is excited by intense laser radiation.

We shall now consider a quantum system in which in
place of individual states there are bands of continuous
states. We shall essentially follow Refs. 62-66 and consider
an infinite set of separate continuous structureless bands.
We shall suppose that the entire population is initially con-
centrated in a single continuum |u>0), the continua are
coupled by the coherent filed through the operator Д and
each continuum is coupled only to its nearest neighbors
(Fig. 13a).

In the Schrodinger picture, the wave function of the
system is

*(*)=! frfa^C |o>m>.
m J

The equations of motion are

C^-iE^C^-i J ЛцАмС.,,-!

e«.= -^«A,-1' J «fcwiA

— ' J dm-lAn.m-lQ^.,»

(9.1)

(9.2)

where s
n,m±i =

the continuum energy and
m)- We shall assume that the initial

probability amplitude distribution in the continuum
is given by

-i (9.3)
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where y0 is the width of the distribution of states in the
continuum. The equations of motion (9.2) can be solved
by means of the Laplace transformation. Simple analytic
results are obtained when all the Ds are equal, i.e.,
Dmm±{ = D, and we consider the steady-state limit /-»oo.
The continuum populations are then given by

P0=\(l-2F)/(l+2F)\

2 IF \ | m | 2
(9.4)

where

It follows from (9.4) that the population does not become
uniform even for D-~> oo. We now put z=7T2Z>2 which is an
effective parameter that can be interpreted as the coupling
strength. In the limit of strong coupling, (z>l) P0=l,
Pm=0, m=± 1,±2,... . Here we find coherent population
trapping in the initial continuum \o)0). However, when
z~ 1 (z=3/4) we find that P0=0 and, as noted in Ref. 63,
we have population 'antitrapping.' Figure 13b shows the
continuum populations as functions of the coupling
strength parameter.

Coherent trapping in discrete states occurs only when
there are two transition channels to a single excited state
and compensation of these transitions takes place. The pic-
ture in continuum-continuum transitions is very similar:
there are two channels of departure from a given contin-
uum and, when there is strong coupling, they may com-
pensate one another. The result is that the continuum that
was occupied by the atoms at t=0 will be occupied. Esti-
mates reported in Ref. 62 suggest that CPT is possible in
the continuum-continuum system for laser intensities in
excess of 1014 W cm~2 (as indicated by autoionization
experiments).

However, this differs fundamentally from CPT in dis-
crete systems. The excited-state population in discrete
quantum states is close to zero independently of the cou-
pling strength, whereas in continuum-continuum systems
this coupling is very significant and coherent 'antitrapping'
in which the atoms leave the initial continuum is possible.

The results reported in Ref. 62 were generalized to
arbitrary time in Ref. 63. It was shown that

(9.5)

where E0 is the initial-state energy that oscillates like a
Bessel function. The results obtained in Ref. 62 are gener-
alized in Ref. 64 to the case where the continua are not
structureless, i.e., the transition matrix elements between
the continua are functions of energy. The results presented
in Ref. 64 become identical with those in Ref. 62 in the
time-independent limit. It is also shown in Ref. 64 that the
system of coupled continua need not be infinite and that
CPT is possible for a finite number of coupled continua.

Two and three coupled continua are discussed in Ref.
65. Three types of continuum are examined: (a) wide,
whose "width" is given by (9.3) and is much greater than

!*>• \f>

FIG. 14. Mixed scheme: |0)—ground state, \b)—quasicontinuum,
| /)—pure continuum; V and W—coupling parameters.

the Rabi frequency that characterizes the coupling between
the continua, (b) narrow, whose "width" is smaller than
the Rabi frequency, and (c) a strictly-limited continuum
that differs from the narrow continuum only by the way
the width is defined. The "width" is defined here as the size
of the region of containing energy levels. The strictly-
limited continuum is a system with sharp boundaries (sim-
ilar to the П-shaped distribution). In the limit of strong
coupling, pure CPT is possible only for a "wide" contin-
uum.

Finally, in Ref. 66, the mixed scheme consists of a
discrete ground state 0 coupled to the quasicontinuum | b)
(coupling parameter V) which, in turn, is coupled to the
pure continuum (/) (coupling parameter W; Fig. 14).
The quasicontinuum | b) is a set of closely spaced energy
levels with level separation Д. In the time-independent
limit, the population trapped in the ground state is

-2

the population of the quasicontinuum is

and, finally, the population of the continuum is

where г=
The condition for CPT in this case replaces the usual

conditions for two-photon resonance and takes the form

4kД|М =

where Д|б> is the detuning between the ground state and
| b) is the quasicontinuum level. This condition means that
the ground state is in resonance with a certain dressed state
lying between | b) and | b+1). It is interesting to note that
all these populations are independent of the coupling pa-
rameter W between the quasicontinuum and the contin-
uum. The important fact is that, when y> 1, the quasicon-
tinuum population becomes greater than the ground-state
population, and we have population inversion (we recall,
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however, that the quasicontinuum decay is not taken into
account here).

Trapping is thus seen to occur in this system as well.
The continuum population can lie between 0 and 1, de-
pending on the parameter y. It depends on V and not on
W.

We note in conclusion that the possibility of CPT in
systems with a continuous spectrum extends very substan-
tially the classes of media in which it can be exploited: they
now include condensed media and solids, and not only
gases.

10. BASIC EXPERIMENTS AND POSSIBLE APPLICATIONS
OF COHERENT POPULATION TRAPPING

We shall now review the more important experiments
that marked the beginning of systematic studies of coher-
ent population trapping, and will show how we can exploit
the remarkable properties of CPT resonance (such as the
anomalously small width) in ultrahigh-resolution spectros-
copy, frequency stabilization, laser cooling of atoms, opti-
cal bistability, and other important branches of physics.

10.1. Absorption of light by atoms In a magnetic field

Studies of the absorption of light by atoms in different
magnetic-field configurations have a long history6 and con-
tinue to attract the attention of researchers.15"18'67'68 The
main effect here is that light induces coherence between
Zeeman sublevels, which leads to a number of unusual
phenomena. The effect of Zeeman coherence on the ab-
sorption of light by an atom was originally noted6 as far
back as 1961 in the course of an investigation of the pump-
ing of alkali-metal atoms in a magnetic field. Magnetic
resonance in these atoms was detected in Ref. 6 by means
of the amplitude modulation of circularly polarized light.
There was no light absorption when the precesion fre-
quency of the atoms in the magnetic field was equal to the
light modulation frequency. On the other hand, strong ab-
sorption was observed when when these frequencies were
different. There are two explanations of this. The quasiclas-
sical explanation is given in Ref. 8 and a physical interpre-
tation of coherent trapping can be found in Ref. 10. The
authors of Ref. 6 anticipated much of subsequent work on
induced coherence between the low-lying levels of alkali-
metal atoms by short light pulses. It is irrelevant how such
pulses are produced: they can be generated by amplitude
modulation of wideband radiation (e.g., from a sodium
lamp) or they can take the form of ultrashort laser
pulses.15"18 The only significant point is that the radiation
must cover the Zeeman sublevels of the ground state of the
alkali-metal atom.

The so-called "black lines" were found in Ref. 8 in the
fluorescence of sodium atoms pumped by continuous muli-
mode dye-laser radiation in a magnetic field. The origin
and properties of these lines were established in Ref. 10.
Their physical origin is the same as before, i.e., excitation
of coherence between different Zeeman components and
the assumption by the atom of a superposition in which it
is weakly excited by the field. We note that this interpre-

-F-2

-f-1

-f=l

FIG. 15. Energy-level diagram and transitions in the sodium atom (D,
line).

tation enabled the authors of Ref. 10 to explain not only
their own experiments, but also a number of others on the
excitation of Zeeman resonances by modulated light (see,
for example, the review of the literature given in Ref. 10).

10.2. Ultrahigh-resolution spectroscopy

We now turn to ultrahigh-resolution spectroscopy
based on resonant coherent trapping. This resonance oc-
curs when a three-level atom is illuminated by two wide-
band light waves. We showed earlier that the width of this
resonance can be made much narrower than the radiation
width у (1.3). It is therefore not surprising that there have
been suggestions9'68"70 that these ultranarrow resonances
could be exploited in atomic and molecular spectroscopy.
For example, the dependence of upper-level fluorescence
on the frequency of the field acting on one of the transitions
in a Л-system was investigated in Ref. 9 whilst a fixed-
frequency field was acting on another transition in the sys-
tem. A beam of Na23 atoms was used in the experiment
reported in Ref. 9. The light propagating at right angles to
the atomic beams was used to excite the transitions
3Sl/2(F= 1) -3P1/2(f"=2), 3S]/2(F=2) - 3P,/2(F'=2)
(Fig. 15). The frequency stabilization of the light beam
was better than ± 1 MHz. These measurements and a nu-
merical calculation are shown in Fig. 16. There is a well-
defined valley corresponding to coherent trapping.

The fluorescence from the upper level of the Л-system,
due to the 4s4p3P!—4s5s3S!(612.2 nm), 4s4p3P2

—4s5s3Sj(616.3 nm) transitions in metastable calcium
(^Ca*), is also investigated in Ref. 70. The calcium
atomic beam interacts with two parallel linearly-polarized
light waves. The 612.2-nm transition occurs in a saturating
field of 100 mW cm~2 and the Д=616.3-nm transition in a
probe field of less than 1 mW cm~2. The frequency stabil-
ity is better than ± 1 MHz. Figure 17 shows a typical
experimental spectrum. The saturating laser is run at a
fixed detuning from precise resonance, and the frequency
of the probe field is scanned. It is clear that, in the vicinity
of the detuning, the width of the observed CPT resonance
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FIG. 16. 'Black lines' in fluorescence from the upper
level. Results of calculations (a) and of experiment (b);
П,=0, nrscanned (from Ref. 9).
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is Д0^4 MHz. This can be reduced to 1.5 MHz by reduc-
ing the intensity [in complete accord with (1.3)]. At the
same time, the radiation width of the intermediate level
amounts to у~т1 (т=10.7 ns), so that Л0^7-

A further property of the Л-system is that the lower
levels are well separated, and calculations (such as those
performed in Ref. 70) must allow for the difference be-
tween the wave vectors of the pump waves.

We note that a similar dependence is also obtained for
the intermediate-level fluorescence (Fig. 11) from the
E-system.69 A metastable neon beam (20Ne*) is used in
this experiment. Typically, a dispersive dependence of the

CPT resonance is observed69'70 for detunings from precise
resonance, due to the difference between the Rabi frequen-
cies for adjacent transitions.

At the same time, a coherent trapping resonance is
observed18 in a cell filled with, for example, the molecular
gas I2. The lower states of the Л-system are in this case the
hyperfine components of vibrational sublevels of the
ground state V"=Q, /" = 15; V"= 11, /"= 15 and the up-
per state is the hyperfine component of the first excited
state with F' = 43, /'= 16. The natural width of the excited
state is 100 kHz. The system is pumped by an argon laser
producing 514.5-nm radiation; a 582.8-nm probe beam is

0)
о
с
ш
о
<л
си
о

=-2 MHz

Д2=-ЗБ MHz

Л 2 = 32 MHz
FIG. 17. Fluorescence signal
from the upper level as a func-
tion of the detuning П2 (from
Ref. 70).

-80 -60-40 -20 0 20 40 6O -BO -4O -20 0 20 <fO 6O 80
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FIG. 18. Principle of the experimental arrangement (from Ref. 27).

applied to the other transition in the Л-system. Measure-
ments are made of the transmission of the latter beam. The
width of the resulting resonance is Д0:=:58 kHz, which is
less than the natural linewidth of the excited state. The
width Д0 is largely due to transit effects.

10.3. Frequency stabilization

The narrow coherent trapping resonance whose width
is given by (1.3) provides a promising basis for beam de-
vices for frequency stabilization.23"27 An examination of
the possibility of this is reported in Ref. 27. As noted
above, the resonance width Д0 is not determined by the
lifetime j~l of the upper level in the system, and can be
made much smaller than у by adjusting the intensity. This
means that, when atomic beams are used in frequency sta-
bilization devices, the main contribution to the broadening
of the CPT resonance is due to transit broadening
Д«,=;(7/с? where d is the diameter of the laser beam and v
is the mean velocity of atoms in the beam. The traditional
method of separated fields (Ramsey's method) is used in
Ref. 27 to increase the duration of the interaction between
the atoms and the light beam and to reduce further the
width of the coherent trapping resonance.

The experiment employs a beam of sodium atoms
excited from the hyperfine states 3S1/2(.F=1)
-3P1/2(/" = 2), 3S1/2(F=2)-3P1/2(F' = 2) (Fig. 15).
Dye-laser radiation of frequency a)l acts on the 1 1 ) — 13)
transition. A light field of frequency o>2 that resonates with
the 12) — 13} transition is obtained from o>\ with the help
of an opto-acoustic modulator controlled by a microwave
generator quartz-stabilized near 1772 MHz (the hyperfine
splitting frequency of the ground state of the sodium
atom). This method of producing two-frequency radiation
gives good correlation between the light fields which, in
turn, gives rise to the CPT resonance and to a satisfactory
contrast for the observation of the effect.11'13 The radiation
leaving the modulator is intercepted by a splitter and fi-
nally interacts with the atomic beam in the two regions
marked A and В in Fig. 18. The separation L between
these regions can be varied between 15 and 30 cm, and the
size of the light beams in the interaction regions is c?s;2.5
mm. A weak magnetic field is present along the entire
length of the interaction region.

FIG. 19. Experimental results27 on fluorescence from coherent trapping
resonances (/). Trace 1 shows the coherent trapping resonances and the
Ramsey line (arrow) for L=15 cm (2) and trace 3 shows the Ramsey
line.

Two types of experiment were performed. The first was
concerned with fluorescence from the upper state 13) in
region В in the absence of interaction in region A. The
second examined both the CPT valley and the Ramsey line
structure (intercation in both A and B). The narrow Ram-
sey fluorescence structures were then used to tune the fre-
quency of the opto-acoustic modulator and thus stabilize
the frequency relative to the hyperfine splitting of the
ground state of the sodium atom.

Figure 19 shows the fluorescence from region B, ob-
tained by scanning the modulator frequency. The power
carried by each of the two beams of frequency col2 is 16
mW. The wide structure corresponds to the 13) — 12) tran-
sition (D! line) in the sodium atom, whose width is 10
MHz. The three narrow valleys are the coherent trapping
resonances. They appear because a magnetic field of 300
mG is applied to the entire length of the region of interac-
tion with the beam. The central valley in Fig. 19, / corre-
sponds to the transition with m=0, Д/и=0, which is in-
sensitive to the magnetic field. The polarizations of the
beams with frequencies oli2 are linear and mutually per-
pendicular. Each of the three valleys in Fig. 19, 2 has a
width of about 390 kHz, which is consistent with the time
of flight across the laser beam.

The narrow central feature (arrow) is the Ramsey line
obtained for a separation of L = 15 cm between regions A
and B.

An expanded scan is shown in Fig. 19, 3. The central
line width is 2.6 kHz which is consistent with the time of
flight between A and В (L= 15 cm).

We note that, to obtain a symmetric Ramsey line, we
have to ensure that A and В are optically equidistant from
the splitter (Fig. 18).

The above paper also reports the development of a
frequency standard using a sodium atomic beam. Figure 20
shows the measured relative frequency stability as a func-
tion of the averaging time interval т. For т=1000 s, the
frequency stability is about 1.5X 10~n. It is clear that the
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FIG. 20. Measured relative frequency stability as a function of averaging
interval. Upper dashed line—calculated for shot noise; lower dashed
line—proposed stability when sodium is replaced by cesium; triangles—
stability of commercial clocks.27

preliminary results for sodium are comparable with com-
mercial cesium clocks up to averaging times r= 1000 s.

Much of the above paper was concerned with the
sources of uncertainty in determinations of frequency for
standards of this type. The most important of them are
listed below:

(1) relative departure of <в1>2 from a common direction
(2) optical phase shifts due to changes in the polariza-

tion of the laser beams
(3) phase shifts due to differences between laser path

lengths
(4) deviation of the laser frequency «aj from precise

resonance with the 11)— |3) transition.

10.4. Optical bistability

The possible use of a three-level system with CPT to
generate a bistable response was reported in Ref. 28. A
strong nonlinearity was produced in this case by a sharp
change in the absorption coefficient, subject to condition
(1.1) under which CPT takes place. It is noted in Ref. 28
that there are two possible manifestations of bistability,

namely, the output intensity may be a function of intensity,
and the output intensity may be a function of laser detun-
ing (we shall refer to them as type one and type two bi-
stabilities, respectively). Consider a Л-system placed in a
resonator and illuminated by a single-mode laser beam of
frequency со and light field strength E. The laser is tuned to
the resonant mode ы— (co3l +co32)/2~(oc. The upper-level
population of is then given by

2Y2S2 2

(Ю.1)

where 8=ci)2l/2y is the detuning parameter and Y= \dE\/
V2~/zy. It is clear from (10.1) that p33 and, consequently,
absorption by the medium, are nonlinear functions of the
detuning 5 and of the intensity Y of the input signal. This
is responsible for both types of bistability in this kind of
system.

If we now put X= \dEc\/V2fty, where £c is the field
strength in the resonator that characterizes the output sig-
nal intensity, we can readily show that

Y=X\l+-ff
4C-252

(Ю.2)

where C=N\d\2/4yk0, N is the concentration of the at-
oms, and &0 is the resonator damping rate. Figure 21 shows
the functions X=X(Y) and X=X(d). Both types of in-
stability can be seen for certain parameter values. The
dashed line shows, for comparison, the result for the two-
level system.

These ideas were advanced further by the suggestion29

for a laser with a three-level absorber whose atoms have a
Л-system of levels. It is shown in Ref. 29 that this laser
displays type one bistability. Lasers with a three-level ab-
sorber have an important advantage71 as compared with
the laser incorporating a saturable absorber: it is possible to
use an absorber for which the saturation intensity is greater
than the saturation intensity for the amplifying medium.
This is so because the physical effect responsible for bista-
bility is not optical saturation but the intensity dependence
of the absorption coefficient during CPT.

6 Y
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FIG. 21. a—Output field X as a function of the
input field Y for different values of 5 (C=4);
dashed curve—two-level absorbing scheme;
b—output field X as a function of detuning S for
different values of Y (C= 10).
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Both types of bistability have been observed
experimentally30 in a medium of three-level atoms with
CPT. Sodium atoms were placed in a constant magnetic
field and exposed to laser radiation of frequency со. The
sublevels of the ground state 2S,/2 were thus split by the
Zeeman effect in the magnetic field. In addition, a variable
magnetic field was also applied to the system and was used
to vary the detuning of the laser beam from precise reso-
nance. CPT occurred at resonance, and the susceptibility
depended on the input signal intensity.28"29 This was ex-
ploited to produce the bistable response of the system.
Both types of instability were thus investigated.

10.5. Laser cooling of neutral atoms

Laser cooling of atoms has been phenomenally success-
ful in recent years.31'34'39 When atoms are cooled in this
way, so that they become "optical molasses",39 the result-
ing temperatures are significantly lower than the Doppler
limit TD=ity/2kB~10~*K (kB is Boltzmann's constant).
When atoms are accumulated in coherent superposition

0.08

34states, temperatures less than TR=R/kB~\Q~6 К
(which corresponds to the atom recoil energy
R = (ftk)l/2M) can be reached, where k is the wave num-
ber and M the mass of the atom.

CPT provides the basis for one of the mechanisms
whereby such deeep cooling of atoms can be achieved.32'33

We shall illustrate this by considering the example of a
beam of Л-atoms interacting with the field of two counter-
propagating waves.

We shall use the quasiclassical theory38 to describe the
translational motion of the atoms. This description is con-
venient because it enables us to introduce such concepts as
light presure, momentum diffusion tensor, dynamic fric-
tion, and so on, i.e., to describe the motion of an atom as a
classical Brownian particle. The limit of validity of this
quasiclassical approach is the temperature TR (Ref. 38),
since it is for atomic velocities v~v^=fik/M (VR is is the
recoil velocity) that we have to take directly into account
the relative recoil shift of photon emission and absorption
lines.

When the frequency detunings are equal, flm=fl (m
= 1,2), and if we meet the conditions for the light-wave
intensity (4.10), we find from (4.2) and (4.3) that we can
determine the upper-level population density p33 for coun-
terpropagating waves:33

\ (10.3)

a = 4(kvz)
2+(2g2r/Y),

The expression given by (10.3) defines comletely both the
light pressure Fz acting on the atom38

(10.4)

FIG. 22. The temperature Т as a function of detuning fl. 1—g=0.1yj,
Г=10-3у,, У2=0.2у,; 2-у2=0.1у,; 3-g,=0.1y1( ft=0.3y,,
у2=0.2у1,Г=10-3у,.

and the momentum diffusion tensor whose component in
the direction of propagation is

Dzz=2f2k2rp^- (Ю.5)

Next, let us determine the temperature of the atomic beam
in the region of zero velocity, using Einstein's formula38

T=-D,. v-l
2g2+(fl2r/y)

=2Г0-
" П"!

(10.6)

which is related to the width of the velocity distribution

bvz=(2kBT/M)l/2.

Figure 22 shows the temperature (10.6) of cold atoms
as a function of the detuning | ft |. It is clear that there is a
wide range of values of detuning | (I | in which the tem-
perature Т can be less than the Doppler limit. The mini-
mum temperature

Sg / Г \ 1 / 2

T™=T°-pj[lj) (10J)

is reached for

and, choosing as an example the cooling of sodium atoms
by the 3S1/2-3P1/2 transition, we have !Tmin=5XlO~6 К
for flopt~8y for g~0.ly, й~0.7, TslO~3Y (Г~Ю
MHz).

Figure 23 shows the evolution of the velocity distribu-
tion of atoms experiencing the force F2. It is clear that a
narrow peak with the effective temperature given by (10.6)
appears on the distribution.

The possibility of the cooling of atoms to temperatures
below TD is thus physically related to the sharp reduction
in the effect of momentum diffusion in the coherent trap-
ping resonance with a high dynamic friction coefficient.33

The cooling of atoms below the recoil temperature Гк,
reported in Ref. 34, can be explained35 in terms of CPT in
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FIG. 23. Deformation of transverse velocity distribution of at-
oms in a beam in the presence of a force (10.4) for one-
dimensional collimation. Time of interaction with radiation
f=2xlO~ 5 s. /—initial transverse distribution, 2—distribution
after interaction with radiation, 3—resonant light pressure on
atoms for g=03r,, /2 = 0.27/,, r = 10~Vi, ft=2y,.

1,0 2,0 3,0
i>z, m/s

velocity space. This directly takes into account the influ-
ence of the recoil effect on the atomic emission and absorp-
tion lines, so that the quasiclassical approach is invalid and
we have to use the complete quantum desciption of the
translational motion of the atom.

It is shown in Ref. 35 that, since the atoms in different
quantum states in the Л-system can have different veloci-
ties, the system can have specific coherent states with mo-
menta ±fik that do not interact with radiation. If there is
spontaneous relaxation, the atoms accumulate in these
states, and this is responsible for the two-peak structure of
the velocity distribution (Fig. 24). The width Дуг of an
individual peak is then less than the recoil velocity UR

Auz < VR, and the temperature Т of the atoms is less than
the recoil temperature ( Т < TR). An effective temperature
of 2 \iK was achieved in Ref. 34 for helium atoms (the
recoil temperature was TR=4 цК).

CPT in velocity space was proposed in Refs. 36 and 37
as a basis for several two-dimensional and three-
dimensional cooling schemes exploiting different atomic
transitions. It was shown that temperatures lower by sev-
eral orders of magnitude than the recoil temperatures
could be produced in this way.

10.6. Effect of relative phases of pump fields on CPT

When we discussed coherent trapping in Л-systems we
ignored the effect of the phases of the pump fields. It is,
however, well-known72"74 that these phases do have a sig-
nificant effect in a system closed by a third resonant field
(Fig. 25), especially when the three-frequency resonance
condition

is satisfied. The population dynamics is investigated in Ref.
72 for this type of closed system with т<у~'. It has been
shown79 that the field phases have a significant effect on
CPT itself.

The physical phase of the third resonant field influ-
ences the coherence between the lower levels that is in-

duced by the other two fields. Hence, depending on the
phase of the third field, we observe the destruction or con-
servation of this coherence. This, in turn, leads to the de-
struction or restoration of the coherent trapping state.

We shall demonstrate this in the special case of a
Л-system (Fig. 25) interacting with light fields with fre-
quencies (om (m= 1,2), closed by an r.f. field of frequency
O)T applied between the lower levels. We shall assume that
|w)-|3) (m = l,2) are electric dipole transitions whereas
11)-|2) are magnetic dipole transitions. We shall also as-
sume that the three-photon resonance condition is met.

Laser a
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FIG. 24. Observation34 of the transverse collimation of a beam of 4He*
metastable atoms: a—principle of the experiment, b—measured velocity
distributions; dashed curve shows the distribution without interaction
with the light field.
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FIG. 25. Л-scheme interacting with two light fields (frequencies <в, 2)
and closed by a radio field (frequency u)21).

The Hamiltonian of the atom-field interaction will be writ-
ten in the form H= V+ U where

FIG. 26. The population p33 (/) and the population difference
p—p22 — p\t (2) as functions of the phase Ф for #=ы=107 s~'
and y=107 s~'.

m=\,2
(10.8)

where <?т,Д (т = 1,2) are the dipole moment operators
(electric and magnetic, respectively), E0,HQ are the field
amplitudes, dp (p=l,2,3,r) are the field phases, and jp
(p=l,2,3,r) are the dipole moment phases.

Next, we can write down the equations for the ele-
ments of the density matrix p^, using (10.8) and the so-
lution for this system in the steady state (т>7~'). The
results are

(Ю.9)
P=P22-P\\ = «r sin

where

and for coherence between the lower levels

Xexp[ —/(<p2— (10.10)

where

In (10.9) and (10.10), the relative phases are given by
<PP=flp—XP(P=1.2,r), Ф=<Рт+<Рг-<Ръ and g=dE</fi,
и=цНо/И are the corresponding rabi frequencies. Move-
over, it is assumed that the detunings flm satisfy the con-
dision for exact resonance, i.e., Clm=com—a>3m

=0(m=l,2).

Equations (10.9) and (10.10) determine the effect of
the resonant r.f. field on the existence of CPT in the
Л-system. It is clear that when the r.f. field is absent (и
=0), the upper level is empty and CPT exists. We empha-
size that there is then no dependence on the optical-field

phases, since a change in the relative phases leads only to a
change in the resultant phase of the coherence p12 without
a change in its modulus (10.10), which ensures that there
is no special direction on the complex plane of p12 .

If we now consider the case и^=0, we see from (10.9)
and (10.10) that the dependence on the relative phases is
the dominant factor. Thus, when

Ф = 7ГИ (Л=0,±1,±2,...)

coherent trapping occurs as before, but when

Ф=1г(2и + (я=0,±1,±2,...)

coherent trapping ceases and the level |3) is populated
despite the fact that CPT ondition is satisfied. In the limit
of high Rabi frequencies g~ и > у, all the levels are equally
populated: pmm^l/3 (m = 1,2,3). Figure 26 shows the
level population (10.9) as a function of the phase Ф. It is
clear that the phase can be used to destroy or restore the
population trapping state.

Figure 27 shows the population of the upper level of

0,3-

Рзз

о,г

o.i

-2. * a, 6

FIG. 27. Third-level population for П2=0. П, scanned, y=g=u=107

s-'. 1—Ф=0, 2— Ф=1г/12, З— Ф=т/6, 4—Ф=тт/2.
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the Л-system as a function of one of the detunings of the
optical field when the other is held constant and (10.8) is
satisfied. There are well-defined coherent trapping valleys
that occur for some of the phases and vanish altogether for
the others.

This sensitivity of atomic systems to the phase Ф dur-
ing CPT can be exploited in quantum electronics. For ex-
ample, atomic interferometers for measuring the phase and
amplitude of radiation fields and the corresponding transi-
tion dipole moments are proposed in Ref. 72, whereas in
Ref. 45 the above sensitivity is used in optical modulators.
The most interesting is the possibility of controlling light
amplitude modulation by modulating the phase of a reso-
nant r.f. field.

The effect of the relative phase of the fields on the
upper-level population in the Л-system was first oberved
experimentally in Ref. 74.

10.7. Lasers without inversion

Finally, we must consider a further promising applica-
tion of coherent population trapping, namely, noninversion
lasers, i.e., a new branch of quantum electronics76"83 in
which light beams are generated and amplified without
producing the population inversion that is essential in clas-
sical lasers.3

The inversionless laser relies on the following princi-
ple. If the Л-system is in the coherent trapping state, most
of the population resides in the lower levels and, according
to (4.9), the 13) state is occupied by the smaller fraction
p33;=r/y. When the population of the upper level is raised
(if only slightly) in some way, e.g., by electron impact,
then because the atoms occupying the lower levels are in a
particular coherent state that does not interact with the
light field, we have a kind of 'inversion' between the weakly
populated level |3) which can nevertheless interact with
the highly populated lower levels (рц + />22~1 — (Г/у))
that do not interact with the field. Next, light that reso-
nates with optical transitions is thus amplified because of
the low population of the level 13) of the Л-system. As
noted above, the highly populated lower levels do not par-
ticipate in this interaction at all.

We note that the very phrase 'laser without inversion'
emphasizes that there is no real inversion and that the
amplification process is entirely due to the weakly popu-
lated upper level.

The amplification of light pulses in a Л-system during
the excitation of coherence between the lower levels by
resonant ir/2 microwave pulses is discussed in Ref. 76. The
amplification of optical fields in Л- and V-systems is also
investigated in Refs. 78 and 79 for times much shorter than
the relaxation times. The phase of the resonant r.f. field
applied between close levels was found to affect the condi-
tion for the amplification of the optical signal. The effect of
the phase of exciting fields on generation conditions was
also demonstrated in Refs. 80-82 for the case of the so-
called double Л-system.

We emphasize that the use of the 'noninversion' prin-
ciple of light amplification may be very useful for transi-
tions for which inversion is difficult to achieve.

11. CONCLUSIONS

We have reviewed coherent population trapping—a
new nonlinear phenomenon. We have tried to give a his-
tory of the discovery and to outline its physical significance
and possible applications. Of course, each new nonlinear
effect results not only in a more complete understanding of
nonlinear phenomena generally, but also stimulates its
practical applications. This is, in our view, the present sit-
uation with coherent population trapping. The many pub-
lications reviewed above are mostly concerned with basic
concepts and the physical significance of the phenomenon.
Practical applications of coherent population trapping, on
the other hand, have begun to appear only recently. There
are still relatively few such applications. They include fre-
quency stabilization and ultrahigh-resolution spectroscopy,
lasers without inversion, and ultradeep cooling of atoms.

There is, however, no doubt that important new appli-
cations of CPT will emerge in the future. This will involve,
in the first instance, ultranarrow resonances and the fact
that the continuing advances in laser technology will pro-
vide the necessary light sources for such applications. For
example, CPT was used in Ref. 84 as a basis for a suggested
spatial superlocalization of atoms on a scale much shorter
than the wavelength of light in the caustics of nonuni-
formly polarized wavefronts.

On the other hand, coherent population trapping re-
veals itself in an increasing number of experimental situa-
tions such as, for example, the behavior of Ba+ ions in
magnetic traps85 or in light-induced drift.86 CPT is likely to
be detected in condensed media and also (once coherent
y-sources become available) in nuclear spectroscopy, as
well.

We have not reviewed publications in which CPT is
discussed in terms of the quantum description of radiation.
We had neither the facilities nor the intention to review the
entire enormous volume of published material. Moreover,
we do not claim to provide a comprehensive coverage of
the theory of coherent population trapping and its appli-
cations in physics. Some of the topics that were not
touched upon above may be found, for example, in the
review given in Ref. 87.

The authors are indebted to S. G. Prizhibel'skii and A.
V. Fedorov for their careful reading of our manuscript and
for valuable suggestions, and also to D. V. Kosachev for
help in solving a number of technical problems.

"Here we must recall the undeservingly forgotten paper by Bell and
Bloom6 on optical pumping in a transverse magnetic field and the ab-
sorption of light by alkali-metal atoms. This paper essentially laid the
foundations for the phenomenon of coherent trapping and provided an
explanation of the first experiments on the excitation of Zeeman coher-
ence by optical pumping.8

2 1We note that, Letokhov and Chebotaev1 in their 1975 monograph (page
169) discussed the possibilities of spectroscopy within the radiative
width, and in this context considered nonlinear resonances whose
widths were not determined by the width of the common level in a
three-level Л-system.

3)It is important to note that the segregation of a three-level interaction
system from the infinite number of energy levels of a real system relies
on the definition of radiation properties such as polarization, intensity,
and monochromaticity. Examples of three-level systems will be consid-
ered in Sec. 10 in connection with experimental studies of CPT.
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4>We assume that there is no relaxation of the populations (longitudinal
relaxation) of levels |1) and |2).

''However, it was shown in Ref. 75 that for Л-atoms in a buffer gas that
interact with sufficiently intense two-frequency laser radiation threre is
a change in atomic collision dynamics (opto-collisional nonlinearity
effects). In particular, during CPT, the rate of collisional relaxation of
the coherence p,2 decreases with increasing field intensity and, in the
limit of very strong fields, the transition to the collisionless limit takes
place.

6)The phrase coherent population trapping originally appeared in studies of
three-level systems. However, it is now used for multilevel systems and
systems with a continuous spectrum.
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