УСПЕХИ ФИЗИЧЕСКИХ НАУК

МЕТОДИЧЕСКИЕ ЗАМЕТКИ

О ГРАНИЧНЫХ УСЛОВИЯХ В МАКРОСКОПИЧЕСКОЙ ТЕОРИИ СВЕРХПРОВОДИМОСТИ

Е.А. Андрюшин, Б.Л. Гинзбург, А.П. Силин

(Физический институт им. П.Н. Лебедева РАН, Москва)

(Статья поступила 30.06.93 г.)

Настоящая заметка носит методический характер и посвящена роли граничных условий общего вида в макроскопической теории сверхпроводимости. Выбор таких условий важен при решении конкретных задач — особенно в случае ВТСП (высокотемпературных сверхпроводников).

В рамках хорошо известной макротеории сверхпроводимости будем опираться на следующее выражение для объемной свободной энергии системы [1—3]:

$$F_{t} = F_{n0} + \int \left[\frac{B^{2}}{8\pi} + a|\Psi|^{2} + \frac{b}{2}|\Psi|^{4} + \frac{1}{4m^{*}} \left| \left(-i\hbar \nabla - \frac{2e}{c} \mathbf{A} \right) \Psi \right|^{2} \right] dV, \tag{1}$$

где F_{n0} — свободная энергия нормального состояния, B — магнитная индукция, B = rot A, e — заряд электрона, c — скорость света, \hbar — квантовая постоянная и m^* — некоторая масса, которую можно считать массой свободного электрона (дело в том, что значение коэффициента, обозначенного в (1) через $1/4m^*$, можно выбирать произвольно в связи с тем, что величина $|\Psi|^2$ не фиксирована [4]); очевидно, в (1) мы ограничиваемся изотропным случаем — иначе фигурирует тензор масс с главными значениями m_I^* (см., например, [3]). Далее, в (1) a и b — коэффициенты, причем b не зависит от T и

$$a = \alpha \frac{T - T_{\rm c}}{T_{\rm c}},\tag{2}$$

где $T_{\rm c}$ — критическая температура сверхпроводящего перехода. Равновесное значение макроскопической волновой функции Ψ отвечает минимуму $F_{\rm t}$ и находится из решения системы уравнений:

$$a\Psi + b|\Psi|^2\Psi +$$

$$+\frac{1}{4m^*}\left(-i\hbar\nabla - \frac{2e}{c}\mathbf{A}\right)^2\Psi = 0,$$
 (3a)

$$rot B = \frac{4\pi}{c} j, (36)$$

$$\mathbf{j} = -\frac{ie\hbar}{2m^*} (\Psi^* \nabla \Psi - \Psi \nabla \Psi^*) - \frac{2e^2}{m^*c} |\Psi|^2 \mathbf{A}, \tag{3b}$$

где \mathbf{j} — плотность сверхпроводящего тока (нормальный ток считаем отсутствующим). Граничные условия к системе уравнений (3) сводятся к условию Непрерывности всех компонент вектора магнитной индукции \mathbf{B} на границе сверхпроводника и некоторому граничному условию для функции $\mathbf{\Psi}$. Обсуждением этого последнего мы и займемся. Решению уравнений (3), естественно, с использованием граничных условий, посвящен ряд работ; эти вопросы рассмотрены и в монографиях (см. [4,5]).

В большинстве случаев, как и с самого начала [1], используется граничное условие

$$\mathbf{n}\left(-\nabla + \frac{2ei}{c\hbar}\mathbf{A}\right)\Psi\Big|_{s} = 0, \tag{4}$$

где индекс s здесь и в дальнейшем означает, что значение величин берется на поверхности сверхпроводника, а \mathbf{n} — вектор внешней нормали к поверхности.

Условие (4) было получено в [1], можно сказать, автоматически из требования минимальности вариации энергии $F_{\rm t}$ при нефиксированном значении Ψ на границе. При более общем подходе условие (4) получено ниже. Между тем, в макротеории сверхтекучести жидкого гелия было обосновано и использовалось граничное условие $\Psi_{\rm s}=0$ [6]. Возникает, таким образом, вопрос об общем виде граничного условия, который, насколько нам известно, начал обсуждаться в [4]. Такое более общее условие (именуемое иногда смешанным граничным условием) имеет вид

$$\mathbf{n}\left(-\mathbf{\nabla} + \frac{2ei}{c\hbar}\mathbf{A}\right)\Psi\Big|_{s} = \frac{1}{\Lambda}\Psi_{s},\tag{5}$$

где Λ — феноменологический коэффициент размерности длины, иногда называемый длиной экстраполяции. Условие (5) можно получить на основе раз-

© Е.А. Андрюшин, В.Л. Гинзбург, А.П. Силин 1993

личных соображений, в том числе учитывая, что это наиболее общее условие, обеспечивающее равенство нулю нормальной к границе компоненты плотности тока, т.е. равенство (\mathbf{nj}) = 0. Для нас, однако, предпочтителен вывод условия (5) на основе тех же феноменологических соображений, из которых получены сами уравнения (3). В этом духе к функционалу (1) следует добавить вклад поверхности

$$F_{\rm s} = F_{\rm s,n} + \int (\gamma |\Psi_{\rm s}|^2 + ...) dS,$$
 (6)

где $F_{s,n}$ — поверхностный вклад в свободную энергию для нормального состояния, а плотность сверхпроводящей свободной энергии представлена в виде разложения по степенным значениям Ψ_s параметра порядка на границе образца. Условия применимости разложения (6), по-видимому, совпадают с условиями применимости разложения (1), а сам такой способ учета поверхностного вклада был предложен в [7], см. также [3, 8, 9].

Коэффициент γ в (6) можно выразить через разность значений коэффициента a (см. (2)) на поверхности и в толще сверхпроводника, или, что то же самое, через разность $T_{\rm c}-T_{\rm c,s}$ значений температуры сверхпроводящего перехода в объеме сверхпроводника $T_{\rm c}$ и в некотором приповерхностном слое $T_{\rm c,s}$ толщиной порядка постоянной решетки $T_{\rm c}$:

$$\gamma = \frac{\alpha l(T_{\rm c} - T_{\rm c,s})}{T_{\rm c}} \,. \tag{7}$$

Условие (5) получается, сел и варьировать по Ψ^* полную свободную энергию $F_{\rm t}+F_{\rm s}$ (см. (1) и (6)), как требование равенства нулю множителя у $\delta\Psi^*$. При

$$\Lambda = \frac{\hbar^2}{4m^*\gamma} \,. \tag{8}$$

В свое время рассматривался также вывод граничного условия (5) из микроскопической теории сверхпроводимости [10—13] в том же предельном случае

$$\frac{T_{\rm c} - T}{T_{\rm c}} << 1, \ \delta(T) >> \xi(0)$$

 $(\delta(T)-$ лондоновская глубинапроникновения, $\xi(0)-$ длина когерентности при T=0, определенная ниже (см. (10)), в котором справедливы сами уравнения (3) [14]. Было показано, что Λ определяется свойствами материала, с которым граничит сверхпроводник. Для границы с диэлектриком, при зеркальном отражении электронов от границы [10], Λ стремится к бесконечности и справедливо граничное условие (4). Для границы сверхпроводник — нормальный металл было показано [11], что $\Lambda \sim \xi(0)$. В этом случае Λ может меняться в широких пределах в зависимости от параметров нормального металла.

В обычных (невысокотемпературных) сверхпроводниках длинакогерентности $\xi(0)$ довольно значительна и это обуславливает возможность использовать граничное условие (4), как это обычно и делается. В самом деле, согласно (7) и (8)

$$\Lambda = \frac{\hbar^2}{4m^* \gamma} = \frac{\hbar^2 T_c}{4m^* \alpha l (T_c - T_{c,s})} = \frac{\xi^2(0) T_c}{l (T_c - T_{c,s})},$$
(9)

поскольку в теории [1] (см. |3])

$$\xi^{2}(T) = \left| \frac{\hbar^{2}}{4m^{*}a} \right| = \frac{\xi^{2}(0)T_{c}}{T_{c} - T},$$

$$\xi^{2}(0) = \frac{\hbar^{2}}{4m^{*}\alpha}.$$
(10)

Если длина $\xi(0)$ велика (грубо говоря, значительно больше l), то $\Delta > \xi(0)$, и может выполняться также условие

$$\Lambda >> \xi(T). \tag{11a}$$

Вообщеговоря, $\partial \Psi/\partial z \sim \Psi/\xi$ и поэтому при условии (11a) выражение (5) переходит в (4).

Напротив, если

$$\Lambda \leqslant \xi(T),\tag{116}$$

то условие (5) принимает вид

$$\Psi_{s} = 0. \tag{12}$$

В высокотемпературных сверхпроводниках, как известно (см., например, [15]), длина когерентности $\xi(0)$ мала. Поэтому возможна необходимость применения условия (12) или, во всяком случае, нужно пользоваться общим граничным условием (5), а не условием (4).

В принципе, возможны отрицательные значения коэффициентов у и Λ — тогда граница способствует появлению сверхпроводимости. Этот случай, по-видимому, реализуется на границах двойников в олове [16].

Рассматриваемые граничные условия видоизменяются для границы анизотропного сверхпроводника (см., например, [3], где учитывается анизотропия эффективных масс, а также приводится запись уравнений (3) в дифференциально-разностной форме для слоистых сверхпроводников). Специально граничные условия для анизотропных сверхпроводников были рассмотрены в работе [17], где было показано, что для границы сверхпроводник—диэлектрик γ отлично от нуля, как для диффузного отражения от границы, так и для зеркального отражения при произвольной ориентации границы (для изотропного сверхпроводника при зеркальном отражении, как уже указывалось, $\gamma = 0$).

Рассмотрим теперь ряд задач, в которых учет бо-

лес общего граничного условия (5) может быть существенным для получаемых результатов. При этом перейдем стандартным образом к новым единицам, позволяющим избавиться от большинства констант в уравнениях (3). Новые величины обозначаются штрихами, которые впоследствии опускаются. Так,

$$\Psi' = \Psi/\Psi_0, \ \Psi_0^2 = -a/b, \tag{13}$$

где Ψ_0 — равновесное значение Ψ в однородном сверхпроводнике без магнитного поля. Далее,

$$A' = \frac{A}{\sqrt{2}H_{c}\delta(T)}, \ \delta^{2}(T) = -\frac{m^{*}c^{2}b}{8\pi e^{2}a},$$

$$H_{c} = -\frac{2\sqrt{\pi} \ a}{b^{1/2}},$$
(14)

где $H_{\rm c}$ — термодинамическое критическое поле. Наконец,

$$r' = r/\xi(T),\tag{15}$$

$$\Lambda' = \Lambda/\xi(T). \tag{16}$$

Тогда уравнения (3) преобразуются к виду:

$$-\Psi + |\Psi|^2 \Psi + (-i\nabla - A)^2 \Psi = 0,$$
 (17a)
$$\alpha^2 \text{ rot rot } A = -\frac{i}{2} (\Psi^* \nabla \Psi - \Psi \nabla \Psi^*) - (17a)$$

$$-|\Psi|^2 A, \qquad (176)$$

где $\alpha = \delta(T)/\xi(T)$, а граничное условие (5) есть

$$\mathbf{n}(-\nabla + i\mathbf{A})\Psi \bigg|_{s} = \frac{1}{\Lambda}\Psi_{s}.$$
 (18)

Критическая температура (при отсутствии поля) тонкой пленки толщиной d в случае общего граничного условия рассматривалась в работе [12], см. также [18, 19]. Отметим также работы [20—22], в которых для анализа экспериментальных данных по ВТСП использовалось решение с предельным вариантом (12) для граничного условия.

Направление, перпендикулярное плоскости пленки, обозначим через z, причем пленка занимает область $0 \le z \le d$. Тогда уравнение (17a) имеет вид

$$d^2\Psi/dz^2 + \Psi - \Psi^3 = 0 ag{19}$$

Его решение с граничным условием (18) выражается через эллиптический синус [23]

$$\Psi(z) = \left(\frac{2k^2}{1+k^2}\right)^{1/2} \times \left(\frac{z - (d/2)}{(1+k^2)^{1/2}} + K, k\right),$$
 (20)

где k — модуль, определяемый из трансцендентного уравнения, следующего из (18):

$$1 - (1 + k^{2}) \left(1 + \frac{1}{\Lambda^{2}} \right) y^{2} + k^{2} y^{4} = 0;$$

$$y = \operatorname{sn} \left(-\frac{d}{2(1 + k^{2})^{1/2}} + K, k \right),$$
(21)

K — полный эллиптический интеграл 1-го рода

$$K = K(k) = \int_{0}^{\pi/2} \frac{d\varphi}{(1 - k^2 \sin^2 \varphi)^{1/2}}.$$

Уравнение (21) определяет k как неявную функцию d и Λ , а также температуры T (так как d и Λ выражены в единицах (15)); его можно преобразовать к виду [23]

$$\lg x = \frac{2d}{x\Lambda} - 4\sum_{n=1}^{\infty} (-1)^n \frac{\sin(nx)}{e^{nW} - 1},\tag{22}$$

глс

$$x = \frac{\pi d}{(1 + k^2)^{1/2} K},$$

$$\pi K'$$

$$W=\frac{\pi K'}{K},$$

K'- эллиптический интеграл от дополнительной модуля $k'=(1-k^2)^{1/2}$.

Исчезновение сверхпроводимости в пленке (появление решения (20) с нулевой амплитудой) отвечает температуре $T_{\rm c}^*(d,\Lambda)$, при которой k обращается в нуль. Для определения $T_{\rm c}^*$ в нулевом приближении можно опустить второе слагаемое в правой части (22) и в предельных случаях получить

$$T_{\rm c}^*(d, \Lambda) = T_{\rm c} \left(1 - \frac{\pi^2 \xi^2(0)}{4d^2} \right), \ \Lambda << d,$$
 (23a)

$$= T_{\rm c} \left(1 - \frac{\xi^2(0)}{d\Lambda} \right), \ \Lambda >> d, \tag{236}$$

где d и Λ указаны уже в неприведенных единицах.

Уравнение $T_{\rm c}^*(d,\Lambda)=T$ определяет критическую толщину $d_{\rm c}(T)$ пленки [12, 6]; при уменьшении толщины d при данной температуре T температура перехода падает и при $d=d_{\rm c}(T)$ сверхпроводимость в пленке исчезает; при этом $\Psi(z)=0$, чему соответствует k=0 и эллиптический синус $\sin x=\sin x$. Следовательно, из граничного условия (18) и (22)

$$d_{c}(T) = 2\xi(T) \arctan \frac{\xi(T)}{\Lambda}$$
 (24)

В предельном случае (11а), что соответствует обычно используемому граничному условию (4), очевидно, $d_{\rm c}(T)=0$, т.е. сверхпроводимость пленки в рамках макротеории имеется всегда. В обратном предельном случае (11б), что отвечает граничном) условию (12),

$$d_c(T) = \pi \xi(T)$$

(эта формула и была получена в [6] для жидкого гелия).

В работе [18] был вычислен также скачок теплоемкости пленки в момент перехода при $T = T_c^*(d, \Lambda)$ при произвольной величине d/Λ :

$$\Delta C = \frac{2}{3} \Delta C_0 \times$$

$$\times \frac{\left(1 + \frac{\sin u}{u}\right)^2}{1 + \frac{\sin u}{u}\left(1 + \frac{2}{3}\cos^2\frac{u}{2}\right)},\tag{25}$$

где $\Delta C_{_0}$ — скачок теплоемкости в массивном сверхпроводнике и параметр $u=2d/\xi(T_{_{\rm C}}^*),~\xi^2(T_{_{\rm C}})=\hbar^2T_{_{\rm C}}$ / $4m^*\alpha(T_{_{\rm C}}-T_{_{\rm C}}^*(d,\Lambda)).$ При $u=2(d/\Lambda)^{1/2}<<1$ подавление сверхпроводимости на границе пленки относительно невелико, $\Delta C=\Delta C_{_0}.$ В противоположном предельном случае $\Lambda << d$ параметр $u=\pi$ и скачок удельной теплоемкости составляет $(2/3)\,\Delta C_{_0}.$

В работе [18] обсуждалась также магнитная восприимчивость тонких пленок вблизи $T_{\rm c}^*$ в слабом поле, параллельном поверхности пленки. В частности, в предположении, что $\varkappa >> 1$ и магнитное поле настолько слабо, что не влияет в нулевом приближении на амплитуду Ψ , получена следующая формула для восприимчивости:

$$\chi(T) = -\frac{1}{48\pi} \frac{d^2}{\delta^2(T_c^*)} \varphi(u) \frac{T_c^* - T}{T_c - T_c^*},$$
 (26)

 $r\pi\epsilon$

$$\varphi(u) = \frac{\left(1 + \frac{3\sin u}{u^3} - \frac{3\cos u}{u^2}\right)(u + \sin u)}{1.5u + \sin u \left(1.5 + \cos^2 \frac{u}{2}\right)}.$$

Таким образом, в случае $d \sim \xi(T_c^*) >> \xi(0)$, Λ можно ожидать некоторых отличий термодинамических величин в пленке вблизи сверхпроводящего перехода от обычных.

Вид граничного условия оказывает также существенное влияние на решение задачи о возникновении сверхпроводящего зародыша вблизи поверхности сверхпроводника при уменьшении магнитного поля. Как было показано в [24] (см. также [4]), для граничного условия (4) в поле, параллельном поверхности образца, возникает поверхностная сверхпроводимость при напряженности поля $H \le H_{c3} \approx 1.7 H_{c2}$. Учет более общего граничного условия или, что то же самое, дополнительной поверхностной энергии (6), изменяет условия образования сверхпроводящих зародышей. Как показано в [13], при γ → ∞ (т.е. $\Lambda \to 0$) поле $H_{\rm c3} \to H_{\rm c2}$, т.е. поверхностная сверхпроводимость подавляется. Обратную ситуацию, вообще говоря, можно ожидать при отрицательных у, однако, не очень ясно, как создать характеризующуюся таким феноменологическим параметром свободную поверхностью.

Выше мы считали параметр порядка (функцию Ψ) комплексным скаляром, т.е. имели в виду так называемое *s*-спаривание. Нужно помнить, однако, что возможно и более общее спаривание, при кото-

ром параметром порядка является функция Ψ более сложного вида (см., например, [25]). Разумеется, проблема граничных условий существует и при более общем спаривании и должна решаться с учетом характера параметра порядка.

В ряде случаев оказывается необходимым вычислять флуктуации различных величин и, в частности, флуктуационные поправки к теплоемкости (см., например, [3]; как известно, роль флуктуаций особенно велика для высокотемпературных сверхпроводников). При решении соответствующих задач нужно использовать определенные граничные условия для **Ψ**. Этот круг вопросов, насколько нам известно, не исследован. По-видимому, учет более общего граничного условия необходим при интерпретации экспериментов по дифракции низкоэнергетических электронов на поверхности. То же можно, вообще, сказать о представляющемся совершенно необходимом анализе роли граничных условий с точки зрения интерпретации некоторых других экспериментов с высокотемпературными сверхпроводниками. Этим, собственно, и объяснятся наше внимание к проблеме граничных условий, отраженное в настоящей заметке.

СПИСОК ЛИТЕРАТУРЫ

- 1. Гинзбург В.Л., Ландау Л.Д. ЖЭТФ. 1950, 20, 1064.
- 2. Лифииц Е.М., Питаевский Л.П. Статистическая физика. Ч. 2. М., Наука. 1978.
- 3. Булаевский Л.П., Гинзбург В.Л., Собянин А.А. ЖЭТФ. 1988, 94: 7, 355; Sov. Phys. JETP, 68, 1499.
- De Gennes P. G. Superconductivity of Metals and Alloys, New. York, Amsterdam, W.A. Benjamin, 1966; перевод Де Жен П. Сверхпроводимость металлов и сплавов. М., Мир, 1968.
- 5. *Свидзинский А.В.* Пространственно-неоднородные задачи теории сверхпроводимости. М., Наука, 1982.
- 6. Гинзбург В.Л., Питаевский Л.П. ЖЭТФ. 1958, 34, 85,
- 7. Буздин А.И., Булаевский Л.Н. Письма ЖЭТФ. 1981, 34:3, 118.
- 8. Гинзбург Я.Л., Собянин А.А. УФН, 1976, 120, 153.
- 9. Ginzburg V.L., Sobyanin A.A, J. Low Temp. Phys. 1982, 49, 507.
- 10. Абрикосов А.А. ЖЭТФ. 1964, 47, 720.
- 11. Зайцев Р.О. ЖЭТФ. \ 965, 48, 644.
- 12. Зайцев Р.О. ЖЭТФ. 1965, 48, 1759.
- 13. Зайцев Р.О. ЖЭТФ. 1966, 50, 1055.
- 14. Горьков Л.П. ЖЭТФ. 1959, 36, 1918.
- 15. Batlogg B. Physica B. 1991, 169, 7.
- 16. Khlyustikov I.N., Buzdin A.I. Adv. Phys. 1987, 36, 271.
- 17. Шаповал Е.А. ЖЭТФ. 1985, 88, 1073.
- Буздин А.И., Мельников А.С., Шаров С.В. Влияние эффекта близости на термодинамические характеристики тонких пленок (неопубликовано).
- 19. Баранов М.В., Буздин А.И., Булаевский Л.Н. ЖЭТФ. 1986, 91, 1361.
- 20. Schneider T., Schmidt A. J. Phys, Soc. Japan, 1992, 61, 2169,
- 21. Schmidt A., Schneider T. Zs. Phys. B. 1992, 87, 265.
- 22. Schneider T. Dimensional crossover in cuprate superconductors, 1991 (unpublished).
- 23. Градштейн И.С., Рыжик И.М. Таблицы интегралов, сумм, рядов и произведений. М., Физматгиз, 1962.
- 24. Saint-James D., De Gennes P.O. Phys. Lett. 1963, 7, 306.
- 25. Annett J.F. Adv. Phys. 1990, 39, 83.