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The specific nature of the randomness arising when quantum subsystems interact (collide) is
analyzed. It is shown that the Birkhoff-Khinchin ergodic theorem—the key theorem
for classical statistics—or its analog is absent, in principle, in the quantum theory. Thus
quantum probabilities cannot be defined within the ergodic concept. A metric
definition of probability, based on von Neumann's theory of measurement, is proposed as a
measure of comparison of a posteriori physical situation with the a priori situation.
The workability of the adopted approach is demonstrated for random walk problems and the
theory of thermal equilibrium.

...The scientist is possessed by the sense of universal
causation. The future, to him, is every whit as necessary

and determined as the past. A. Einsteinlu)

...The man who regards his own life and that of his
fellow creatures as meaningless is not merely unhappy but

hardly fit for life. A. Einsteinlb)

The two phrases presented in the epigraph probably
express the quintessence of the great physicist's emotional
anguish. The contradiction between dynamical causality
and the significance of human will, the problem of the
origin of randomness, and the basis of thermodynamics
have disturbed people for hundreds of years. Meanwhile,
the famous Einstein-Podolsky-Rosen paradox1 is already
a kind of seed, capable of producing a fruit-bearing tree of
answers to many agonizing physical-philosophical ques-
tions. The fact that A. Einstein himself recoiled, in confu-
sion, from this mysterious abyss does not diminish his
greatness, and it should not stop us. Besides, the quantum
theory has matured.

The logical basis of the paradox is the analysis of the
detailed quantum description of a collision of two particles
which are initially in pure states (with definite momenta).
The first fundamental conclusion is that it is impossible to
associate a wave function to the state of each particle after
the collision. The very peculiar statistical nature of quan-
tum laws, which has no classical analog, is revealed here.
The second important point arises when the observer
makes an exact measurement of the momentum of one of
the collision partners. The possibility, ensuing from a con-
servation law, of instantaneous indirect reduction of the
state of the second particle comprises the crux of the par-
adox (apparent paradox, as is now clear).

The potential richness of the above-described physical
construction is contained in the diverse naturalness of its
generalizations. Analysis of two arbitrary physical sub-
systems, instead of a pair of particles, in arbitrary initial
states is the starting point of the theory of indirect mea-
surements, the foundation for which was later laid by J.

von Neumann.2 Extending the model by increasing the
number of interacting subsystems sheds light on many for-
merly controversial questions concerning the foundation of
statistical thermodynamics. Finally, analysis of these prob-
lems provides hope for extrication from the impasse of the
fundamental mathematical problem of defining the concept
of physical probability.

The cornerstone of probability in classical physics is
the ergodic hypothesis and the closely associated microca-
nonical ensemble. It can be shown that the fundamental
ergodic theorem of Birkhoff and Khinchin or its analog
does not exist, in principle, in a systematically quantum
theory. As a consequence, within the ergodic concept
quantum probabilities are a purely intuitive notion. On the
other hand, however, von Neumann's axiomatic theory of
measurement makes it possible to introduce probability in-
dependently as a metric characteristic in the space of quan-
tum states of a physical system, as a measure of compari-
son of the a posteriori physical situation to the a priori
situation. The consequences of adopting such a definition
of probability are worked out in detail in the second half of
this paper.

Physicists have long been unsatisfied with the state of
affairs concerning the concept of probability. Among the
extensive literature concerning this question we call atten-
tion to only one of the recent publications, Ref. 3, where
many sore points are analyzed and where further refer-
ences can be found. The paper by Demutskii and Polovin
on the methodological problems of quantum mechanics are
in the same vein. Historical retrospection shows that in
science different logical constructions coexist under the
general pseudonym "probability." It is difficult to think of
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greater trouble for a scientific concept. It now seems obvi-
ous to me that the solution to the question of
randomness—such a necessary element of the human
awareness of the universe—is contained in the quantum
theory.

1. MIXED STATES

Proceeding now to analysis of the logical scheme of the
paradox in its modern interpretation, we introduce the nec-
essary concepts and make some clarifications. Let
L=L{ ® L2 be the direct (Kronecker; see Ref. 5) product
of the Hilbert spaces of the states of two noninteracting
physical subsystems. Let X and Y be Hermitian operators
which operate in Ll and L2, respectively. We introduce, in
the standard fashion, the eigenvectors and eigenvalues

\\y)=y\y). (1)

If the subsystems are not one dimensional, we take X and
Y to be complete (for them) sets of operators of the phys-
ical quantities and we interpret x and у as the correspond-
ing sets of quantum numbers. On the basis of the argu-
ments presented in Ref. 6, we assume that the sets {x} and
{y} are discrete.

Consider a state | Ф) € L. If the subsystems interacted
in the past, then | Ф) does not, generally speaking, factor-
ize into a product of states \ipl}&Ll and \-ф2)еЬ2. The
brackets (x,y\4>) in the old "pre-Dirac" notation is simply
the function 4>(x,y).

Since they do not have definite wave functions, the
states of the subsystems are characterized by (mixed) den-
sity matrices:

(2)

(3)

Here we observe a fundamentally nonclassical randomiza-
tion of the states of the subsystems in that the system as a
whole has a wave function. One would think that a timely
and full acknowledgment of this fact would dissuade from
searches for primary fundamental randomness in continu-
ous classical nonlinear dynamical models. The other point
is that these models are certainly applicable to macrosys-
tems.

The mixed states (1) and (3) of the post-collision sub-
systems are associated with interesting reciprocity proper-
ties, which will be discussed below. For the time being we
focus our attention on methods for representing the density
matrix {x\p\x'). Its diagonal elements (x|p|x) are the
probabilities p ( x ) of observing the values (or complete
sets) of л; in a physical measurement of the variable X. It is
convenient to write these probabilities in an invariant man-
ner with the help of projection operators Px=\x)(x\:

P(x)=Sp pPx=(Px), (4)

where p is the operator corresponding to the matrix (2) in
the ^-representation. Being Hermetian, this matrix can be
diagonalized by a unitary transformation

£ (n\V+\x)(x\p\x')(x'\V\rn) =Pn8nm, (5)
x,x'

where V+V=1 in Ll. The values of pn are, once again, the
probabilities p(n) of obtaining the results of a physical
measurement of N, whose eigenvectors are |и) from Eq.
(5) with the obvious properties of orthogonality
(n\m)=Snm and completeness 2 |л)(л |=1 in L{. In
other words, [p,N]=0.

The diagonalization (5) makes it possible to represent
the state p in the form of a probabalistic ensemble (mix-
ture)

(6)

and to interpret it now as a random collection of ortho-
gonal states | n), which can be constructed, for example, by
throwing dice. It is easy to show, however, that there exists
an uncountable set of different representations of the same
operator as the mixture

p=Zp(a)\a)(a\

of some states |a) which are not mutually orthogonal. The
completeness of the statistical description contained in the
density operator precludes formulation of the inverse prob-
lem of reconstructing the original physical-probabalistic
mixture from the results of measurements.

The nonuniqueness indicated above has an exceedingly
important fundamental significance, making it impossible
to transfer classical concepts and theorems about ergodic
ensembles into the quantum theory. In order to prove this
we recall some required information about the theory of
stationary random processes in mathematical and physical
interpretations.

Let a probability measure W ( F ( t ) ) be given on a set
of time-dependent functions {F(t)}.

Definition 1. An ensemble is stationary if the measure
W is invariant under an arbitrary time shift:

Definition 2. A stationary ensemble is ergodic if it can-
not be represented as a sum of two stationary subensembles
with measures different from 0 or 1.

In other words, for an ergodic ensemble there does not
exist a representation of the form

with/>, 2^0,1 under conditions such that W\ and W2 are
stationary distributions.

According to the BirkhofF-Khinchin theorem (see
Refs. 7 and 8) for any physical quantity (interpreted as a
single- or many-time combination of instantaneous values
of the function F) the time average of any realization F(t)
does not differ from the average over an ergodic ensemble.
Thus, each member of the set {/"(?)} is typical and con-
tains absolutely all information about the statistical prop-
erties of the ensemble. In the case of a multidimensional
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random process F ( t ) must be interpreted as a vector in a
suitable space, and everything said above remains in force.

In the quantum theory, to the classical functions F(t)
there are associated vectors of some nonstationary states
| a) of a physical model of a random process or, in the
operator representation, the projectors |a)(a|. The den-
sity operator constructed for the mixture from these states
with the probabilities p(a) makes it possible to calculate
physical averages in a manner similar to the way classical
averaging over an ensemble W is performed. A fundamen-
tal difference is that the vectors |a) are themselves not
observable, while in the classical theory all (without ex-
ception) significant characteristics of a state are observable
simultaneously.

The main object of the application of the ergodic the-
ory in classical physics is a system of jV identical particles.
The instantaneous state of such a system is represented by
a point in 6 ^^-dimensional phase space, and correspond-
ingly F(t) is a vector of the same dimension. The require-
ment that the system of particles be ergodic is extremely
important in order to justify the validity of the microca-
nonical ensemble, which is the logical foundation of Gibbs'
classical statistics (see Ref. 9): In other words, it is impor-
tant that the phase trajectory of the system return repeat-
edly arbitrarily close to a neighborhood of each point with
the same energy. It is very difficult to give a rigorous proof
of ergodicity of the behavior of a system of particles inter-
acting according to a prescribed law. For this reason, in
most textbooks on statistical physics the required property
of an ensemble is formulated as the ergodic hypothesis.

The above-noted nonuniqueness of the representation
of the density operator as a probabilistic mixture of pure
states changes the situation radically. It turns out that the
fundamental relationship of classical statistics between the
structure of a stationary ensemble and the properties of
typical phase trajectories does not exist in principle in the
quantum theory. We shall now prove this.

Consider a finite-dimensional physical system with the
Hamiltonian H. Let the density operator p describe a
mixed stationary state of this system. Stationarity means
that [p,H]=0. The average value of any physical quantity
(besides artificial constructions that are explicitly time-
dependent) in such a state is time independent (see Ref.
10). We define in the standard manner the energies Е„ and
vectors | и) of the stationary pure states

H\n)=En\n). (9)

Some En can have the same values. By assigning to them,
nonetheless, different numbers n we eliminate the need for
studying energy degeneracy separately and we thereby sim-
plify the notation.

We write (n\p\m) and (n\H\m) in a representation
in which are both diagonal. Then (п\р\т)=р„8„т, and
pn is the probability of observing the energy En (reducing
the state to |и)) with a suitable measurement. Such an
ensemble can be represented as a mixture of the form (6)
consisting of pure stationary states |л) with the probabil-
ities p(n) — pn. In the mixed state рпф\ for any n (the
entropy of the state is nonzero). For this reason, such a

probabilistic mixture can be divided in at least one way
into two subensembles, each of which is stationary. There-
fore the classical definition of an ergodic stationary ensem-
ble and the Birkhoff-Khinchin theorem cannot be trans-
ferred into the quantum theory. As I have already
mentioned, together with this, there does exist an infinite
set of representations of the same operator as a mixture of
nonstationary pure states (comparable to classical trajec-
tories).

We shall see below that for the reason mentioned
above the quantum probabilities p(x) themselves are an
intuitive notion, remaining outside the ergodic concept. At
least, this is how the situation appears from the standpoint
of the traditional classical scheme.

2. QUANTUM PROBABILITIES

The question of the logical dilemma of the theory of
probability and of causality and randomness is much older
than the idea of a wave function. In a brilliant
philosophical-mathematical essay J. Littlewood11 showed
that physical probability cannot, in principle, be defined
within the theory of limits. Repeated attempts to break the
vicious circle by reexamining the very concept of a math-
ematical limit or on the basis of the theory of relative
frequencies of appearance were unsuccessful. An alterna-
tive axiomatic approach to constructing a theory of
probability—measure theory—appeared to be more suc-
cessful, but this has no direct bearing on natural science.
Professing the dogmas of the faith of pure mathematics,
the most consistent members of this school dismiss, in
principle, physical applicability of their logical construc-
tions. They have to do so.

In the applied theory of probability the situation is
saved by the agreement to study only ergodic random pro-
cesses. Correspondingly, ergodic sources of messages ap-
pear in the theory of signal transmission. Adopting er-
godicity as an additional postulate, one can write the
probability density of an instantaneous value f of a ran-
dom function F(t) as the average of a projector
Pf=8(F-f). Then the Birkhoff-Khinchin theorem
guarantees that over an infinitely long time the relative
frequencies of events will converge to probabilities.

The problem of convergence is solved similarly for
time series of discrete symbols, if an event of a discrete
alphabet { /} in discrete time is considered instead of con-
tinuous random functions F(t). All required definitions
and theorems remain in force. We note that misuse of the
actual infinity due to operation with continuous quantities
and continuous sets is, in general, characteristic for mod-
ern mathematics. Of course, there are very serious logical-
historical reasons for this, but it is this circumstance that
too often forces (it also helps out) mathematicians and,
especially physicists "to sweep the dust under the rug" (in
the colorful words of R. Feynman).

Returning to the discussion of quantum probabilities,
we see that, on the strength of everything said above, they
remain a purely intuitive notion, unsupported by mathe-
matical definitions. On the other hand, the axiomatics of J.
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von Neumann already incorporates the possibility of an
independent definition of physical probability, not based on
the ergodic theorem.

According to Ref. 2, any complete direct measurement
is an orthogonal decomposition of unity l = 2|x){x| in
the Hilbert space of the states of the physical system. The
probability of obtaining a result x in a measurement on the
state | V>> is | (x \ t/>) |2.

The states \x) and |^) are logically equivalent. In-
deed, the vector 11/1) is necessarily normalized by the con-
dition {ф\ ф) = 1, and it is always possible to construct for
it a set of orthogonal complements, having together with
the initial state | -ф) the property of mutual completeness
with respect to the basis { \ x ) } . Based on this we formulate
the following definition:

Definition 3. The squared modulus of the scalar prod-
uct of the state vector in a unitary unimodular Hilbert
space is the probability of a reductive transition from one
state into another accompanying a suitable measurement.

The term "reductive" means that the transformation
|i/>> — |дс) occurs in the process of measurement (reduc-
tion of the wave vector; see Ref. 2).

We now discuss the formal and gnosiological conse-
quences of this definition of probability. First, we note that
the concept "probability" itself now appears as an unnec-
essary tautology of metric relations in unitary space. On
the other hand, the physical description of the situation is,
in the axiomatic sense, exhaustive. From the procedural
standpoint, the adopted definition means that all opera-
tions of physical prediction must be constructed using the
same formulas as in the case of probability in the previous
heuristic sense.

We are essentially talking about the postulation of
spectral measure,12 organically consistent with the formal-
ized procedures of physical measurements. On any pre-
scribed orthogonal basis this quantity exhibits all required
properties of probabilistic measure: additivity, positive-
definiteness, and normalization. We shall show below that
in a number of fundamental problems of physical kinetics
and statistical thermodynamics the assumption of such a
measure leads to standard results and gives them a natural
formal justification.

There arise here a number of specific problems dictated
by the application of the above-formulated scheme to mod-
els of successive measurements on interacting physical sub-
systems. In particular, in the derivation of the reciprocity
relations we shall also consider the problem of indirect
measurements, which arises in the problem, mentioned at
the very beginning of the paper, of the interaction of two
subsystems. There arises here also the possibility of formu-
lating the problem of parametrizing the proper time of the
observer as a metric property for a chain of successive
quantum measurements.

The previously sacred question of convergence of the
relative frequencies to probabilities is no longer fundamen-
tal. The question is not completely eliminated, but it is
relegated to a very specific class of homogeneous infinite
models of successive measurements. It is entirely logical to
expect that for such models the properties of convergence

can and must be proved on the basis of group-theoretical
classification of quantum states or combinatorial asymp-
totic relations in the spirit of limit theorems. However, this
question is of secondary importance for the foundations of
the theory itself.

In other cases it is impossible to require anything sim-
ilar to such convergence and it is not necessary to do so, if
the problem concerns inhomogeneous models or, espe-
cially, single events, which usually comprise the historical
process in the macro- and microworld. But it should not be
assumed that some formal structure will give an automatic
solution at a pivotal moment. The problem is that it is the
probabilistic approach that is usually employed for con-
structing computer algorithms of searching for an optimal
action. But, as a purely logical construct the concept of an
optimal solution is hardly informative for unique situa-
tions. Moreover, human free will can still precede nonop-
timally. But then again, to proceed automatically is also a
willful decision.

Acknowledgment of the fact that metric relations in
Hilbert space are the only reality of predictive knowledge
does not lead to any logically absurd consequences and
agrees well with existing laws of quantum and statistical
physics. The disagreement between the proposed scheme
and the presently adopted paradigm concerns only specu-
lative questions that cannot be checked experimentally.

Representations of a quantum ensemble as probabilis-
tic mixtures are also found to be meaningless. There re-
mains only the completeness of the physical description,
consisting of the density operator and realized in terms of
its projection (x\ p\x) on definite orthogonal bases. There
are no observable consequences to denying ontological
meaning to the indicated representations.

3. RECIPROCITY RELATIONS

We now return to the discussion of our initial model of
two subsystems. We shall consider the correspondence be-
tween quantum randomness arising in the presence of in-
teraction and the definition 3. Consider some pure initial
states \k)&Ll and |^}eL2. The interaction (collision) of
the subsystems subjects the state | k,x) of the complete
system consisting of these substates to a unitary transfor-
mation: U | k,x) = 14х) • We shall clarify, in the spirit of the
adopted definition, the probabilistic meaning of the de-
scription of the resulting states with the help of the density
matrices (2) and (3).

We write the joint probability p(x,y) of the result of a
simultaneous measurement of X and Y in the complete
system (obviously, [X,Y] = 0):

P(x,y)= = | <x,y\ U\k,X)\2. (10)

Since here X and Y are arbitrary physical variables of the
subsystems (or complete sets of variables), the equation
(10) now incorporates everything necessary for further
discussion.

We introduce in the standard manner13 the absolute
and conditional probabilities:
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р(х) =

Р(У) =

р(х,у) р(х,у)

as well as the entropy

S(x,y) = -
Х,У

Shannon's inequality14 is satisfied:

(11)

(12)

(13)

(14)

(15)

(16)

(17)S(x)+S(y)> S(x,y).

The absolute probabilities p(x) and p(y) are given by
the diagonal elements of the matrices (2) and (3) for any
choice of variables in L\ and Z,2, respectively. We choose
the bases {\n)}eLl and { | v) } e L2 > in which these matri-
ces are diagonal (п\р\т)=р„8„т, </^|ст| у)=ст^г. The
functionals

i = - E Pn In pn= -Sp p In p,

S2=— Z °v m crv= — Sp CT In с?

(18)

(19)

are called the quantum entropies of the subsystems in the
states (2) and (3). According to the lemma of O. Klein
(see Refs. 15 and 16)

S(x)> S,, S(y)> S2. (20)

The complete system initially resided in a pure quan-
tum state, characterized by the density operator
R= \k,x)(k,x\ and zero quantum entropy 5=0. The lat-
ter fact did not change, naturally, even after the interaction
(the quantum entropy of the complete system is an invari-
ant of any unitary transformation in L), while S^ and S2

increased.
We note especially that the situation arising here is

unique not only for modern physics with its short thirty-
year history. The fact that the subsystems must be de-
scribed probabilistically while the complete system is in a
definite physical state contradicts the more than thousand-
year tradition of natural philosophy. The apparent para-
doxical nature of the situation is dictated by the possibility
of representing the state vector as a linear superposition of
two or more physically completely distinguishable states.
In this sense all prequantum descriptions of systems would
correspond to a scheme which contain only orthogonal
quantum states. The principle of mutual projection of
physical states is a substantially new concept not only for
physics but for logic also. This circumstance was first
pointed out by Yu. F. Orlov (Yu. F. Orlov, "Wave math-

ematical analysis based on wave logic" (unpublished pa-
per)), though the idea that classical logic must be supple-
mented with new categories is itself already contained in
the works of J. von Neumann.17

The principle of linear superposition of wave vectors
presupposes the use of a metric measure in the construc-
tion of any predictive strategy. Any physical theory is only
a formalized variant of one such strategy.

In this sense the appearance of the concept of proba-
bility even within (more precisely, parallel to) the classical
picture of the world is instructive. The point is that the
deterministic geometric-dynamical models of all of the old
physics (including the theory of relativity) turned out to
be in striking contradiction to everyday human
experience—in contradiction to the existence of free will at
least for the observer-subject himself. The concept of ran-
domness and probabilistic measure with an unclear physi-
cal meaning served temporarily as a palliative measure,
mitigating somewhat the acuteness of this contradiction.

The formal situation in today's physics is completely
similar (and genetically related) to the situation in the
mathematical understanding of combinatorics. The bino-
mial coefficients and other factorial combinations first
arose in mathematics purely on the basis of games. They
were soon found to be useful also for physics, modeling
some real-world numerical relations. However, their appli-
cation to physical prediction once again required addi-
tional assumptions, such as equal probability, complete
mixing, or other constrcutions equivalent to the ergodic
hypothesis.

In parallel with this, it was found unexpectedly that all
combinatorial constructions which are well-known to
mathematicians arise naturally in the matrix elements of
the theory of linear representations of finite and unitary
groups.18 On the other hand, it gradually became apparent
that the transformation symmetries of different physical
states are of determining significance for their observable
properties. It is sufficient to recall at least the difference
between the quantum statistics of gases consisting of iden-
tical particles with different permutation symmetry. It is
now almost obvious that this is where combinatorial rela-
tions originate in models in physical science.

From this standpoint, the construction of the quantum
theory in its modern form is itself logically interpreted as a
natural step in F. Klein's famous erlang program. This
program is based on the ideal of constructions in mathe-
matics (and essentially, the natural sciences) in which dif-
ferent branches of the formal sciences would appear as
methods for studying groups of transformations and their
representations (symbol isomorphisms). It is difficult to
miss the fact that it is this type of construction that is going
on in today's fundamental quantum physics.

We now continue our discussion of two statistically
coupled subsystems. The subsystem, having lost as a result
of the collision part of its "memory" about its previous
state, seemingly replaces this state with information about
the state of its partner. The quantum entropies of the re-
sulting states satisfy the reciprocity relation:16
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Sl=S2. (21)

The colliding subsystems need not be identical in order for
this equality to be valid (for example, the particles need
not be identical). Conversely, the collision partners can
have different dynamical properties and numbers of de-
grees of freedom. In order for Eq. (21) to hold in any
model it is sufficient that the state of the complete system
be pure (S=0).

Equation (21) can be proved by direct calculation,
using the property of unitarity of the operator U. However,
we shall proceed somewhat differently, and in the process
we shall study the question of indirect measurements. We
construct an a posteriori distribution over {y} according to
the result of the measurement of X. We represent the con-
ditional probabilitiesp(y \x) from Eq. (13) as the diagonal
elements of the conditional density matrix (y\ar(x) \y')\

\(x,y\U\k,X)\-
" <x\p\x)

(22)

According to the rules adopted above this matrix contains
the complete physical description of the state of the second
subsystem, arising after the measurement of the given vari-
able X in the first subsystem. Indeed, since Y is still arbi-
trary, an exhaustive prediction of subsequent measure-
ments over the second subsystem is given by the matrix
{y\a^\y') and all its representations in L2.

It is easy to show that (y\a(x}\yr) describes a pure
state:

<У\<ГМ\У') =
(x,y\U\k,x)(k,x\U+\x,y')

< x \ p \ x )
(23)

This state should be compared to the conventional wave
vector \q>(x)) (result of indirect reduction)

!?(*)> =
<x\U\k,X)

(<x\p\x)) 172 > (24)

which already has an internal meaning independently of
the choice of basis {|j>)}.

We now calculate the scalar product of conventional
vectors, reduced with different results л: (but, as before,
with fixed X):

<?(*')!?(*)>= I (<p(x')\y)<y\<p(x))

(x\p\x')

'((x\p\x)(x'\p\x'))l/2'
(25)

where {\y)J is any orthonormalized basis in L2. It is in-
teresting that according to Eq. (25) the set {| qp(x)}} is, in
general, nonorthogonal.16 We shall show below that this
significant fact opens the way to understanding nonstation-
ary indirect measurements, comparable to the classical ob-
servations of phase trajectories.

Orthogonal indirect reduction is realized only if X^N,
when (n | p | т) = р„8„т. This is achieved by measuring the
variable N, which commutes with p. We now use the prop-
erties of the states generated by such a measurement. The
set { | < p ( n ) ) } is not necessarily complete in Ьг though it is

orthogonal. Supplementing it in an orthogonal manner up
to {|v)}3{|(p(n)}}( it is easy to see that the density ma-
trix (jii | CT | v) of an absolutely mixed state of the second
subsystem is diagonalized precisely in this basis:

This is possible only if the operators p and a have identical
sets of nonzero eigenvalues. In particular, there follows
hence the equality

SppK=SpaK, (27)

where К is any positive integer, and the power is taken
according to the standard rules of operator multiplication.
Finally, for the same reason, all nonzero terms in the sums
(18) and (19) are equal pairwise; this proves Eq. (21).

The reciprocity relations (21) and (27) turn out to be
simply truisms, if on interaction any additive physical
quantity is conserved, and the initial states | A:) and \x) are
its eigenvectors in the subsystems. We now demonstrate
this for the example of energy conservation for subsystems
with nondegenerate spectra.

Let Hj and H2 be the Hamiltonians of the subsystems
and Hint the interaction between the subsystems. The total
energy is conserved in the interaction if [Hint,H1 + H2] = 0.
We note that for this possibility the spectrum of the oper-
ator Hj + H2 must be degenerate even under our assump-
tion that the spectra of H, and H2 are nondegenerate.

We assume that the initial states | k) and |^} are pure
and stationary:

Hl\k)=Ek\k), (28)

The unitary operator of the evolution of the complete sys-
tem in the interaction representation is U = exp( — /Hintf),
where t is the interaction time (we employ the scale in
which й=1). Under the assumptions made, the resulting
density matrices (n\p\m) and (/i |cr|v) describe the sta-
tionary mixed states of subsystems and are diagonal in the
energy representation.

We now study in L the subspace of states | n,v) with
identical En+Ev, equal to the initial energy Ek+Ex. Then
the probability p(n)=pn of the value En is identical to
p(v) with Ev=Ek+Ex—En simply by virtue of conserva-
tion of energy. Thus the nature of the relations (21) and
(27) is now absolutely clear. In this sense, the general
variant of the indicated relations actually means that for
any unitary rotation in L it is always possible to construct
an additive invariant (to within unitary unphysical rota-
tions in L! and L2).

We now discuss in the same model the case of a non-
stationary measurement. This means that the quantity X
measured in the first subsystem does not commute with
H,. Correspondingly, its eigenvectors x} describe nonsta-
tionary states. The results of indirect reduction \q>(x))—
the a posteriori states of the second subsystem—will also be
nonstationary. According to Eq. (25), difference states
\<p(x)) are still not orthogonal to one another. We now
explain why this is significant.
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In order to establish the correspondence between the
quantum equations and the classical laws of motion it is
necessary to study wave packets which are not mutually
orthogonal. This is why such states were widely discussed
at the dawn of the quantum theory. Nonspreading Gauss-
ian packets for a quantum oscillator (coherent states — Ref.
19) give an adequate description of a monochromatic wave
field with known amplitude and phase. They were found to
be necessary not only for semiclassical interpretation of
quantum optics, but they also made it possible to simplify
significantly some exact calculations. The coherent vectors
| a) are not mutually orthogonal, though they do form a
complete (more precisely, supercomplete) set in the
Hilbert space of the states of the oscillator. To classical
observation of an oscillator it would be reasonable to asso-
ciate reduction of its states to such vectors. It is clear from
what was said above that the logical link necessary for this
possibility incorporates nonstationary indirect measure-
ments.

We emphasize that with respect to the initial mixed
state the a posteriori states in themselves are not potentially
nonstationary or stationary — everything depends on the
measurement method. They simply do not exist at all
a priori as some real entities hidden from the observer. This
once again elucidates the inapplicability of the ergodic con-
cept to observation of quantum systems.

Completing our analysis of the coupling of two sub-
systems, we present without proof an extension of some
entropy inequalities to the case of mixed initial states. The
genesis of such states must once again be understood as
resulting from a previous interaction of subsystems with
some external environment, but we shall not delve into this
aspect of the question here.

Thus, assume that instead of the initial state | k,x) the
initial states are described by the operators p0 and a0 and
are independent of one another. Following the same
scheme as in Eqs. (18) and (19), we compare their initial
quantum entropies 501 and S02, setting S=S0i+S02. Des-
ignating, as before, the resulting quantum entropies of the
subsystems after the interaction as Si and S2, we present
the inequality (see Ref. 16)

S. (29)

Since (S,Sl,S2)>0, this inequality generalizes the relation
(21).

In addition, it follows from Shannon's inequality (17)
and Klein's lemma in the form S(x,y)>S that15'20

5,+52> S. (30)

We shall see below that Eq. (30) is of key significance for
the foundation of statistical thermodynamics.

4. RANDOM WALK

Physical kinetics has turned out to be an extensive
sphere of application of probability theory in natural sci-
ences. The problem of successive evolutions of a physical
system under the random action of external forces is the
crux. It is now known that the kinetics is only one (though
important) branch of the general theory of open quantum

systems.21 L. Boltzmann essentially viewed a gas molecule
as an open system. The evolutionary equation for the
single-particle distribution function (Boltzmann's kinetic
equation) forms the basis of this theory. For completeness
of our analysis, it is appropriate to trace how a description
of random walk in a quantum system which agrees with
the standard description is achieved within the framework
of a formally metric concept of probability.

We introduce the basic concepts required for describ-
ing an open system.21'22 Let the surrounding medium be a
collection of identical physical subsystems (uniform flux),
with which the open system (object) of interest to us in-
teracts successively. Let p0 and CTO be the density operators
of the initial states of the object and one of the external
subsystems (representative of the flux), assumed to be sta-
tistically independent. We shall study successive interac-
tions between the representatives of the flux and the object,
and we shall show that under certain assumptions the ev-
olution of its states can be described in the formalism of
Markov chains.

Let Hs and Hr be the Hamiltonians of the object and
the representative, respectively, and let л and v be the
numbers of their eigenvalues (we assume that the spectra
are nondegenerate). We introduce again the interaction
Hint imposing the condition [Hint,Hs+Hr) =0. On the ba-
sis of the formula from the preceding section, we write the
change in the state of the object for one act of interaction
as

(n| (31)

In the particular case when a light beam interacts with the
object continuously, the time / of one interaction act must
be taken as the coherence time of the beam.

We now enumerate with the index j the successive
interactions of the object with the representatives of the
flux and designate by pj the density operator of its state
after the jth action. Assuming the initial states of all rep-
resentatives to be identical and independent of one another,
we obtain with the help of Eq. (31)

(n\pj+l\m)= £ (n,m\p,q)(p\pj\q)

where

(32)

(n,m\p,q)=
M,V,A

(33)

We call the matrix (33) the transitional characteristic of a
generalized Markov chain. We note that the elements
(n,m\p,q) are not, generally speaking, transitional proba-
bilities. They have the obvious property

(n,n\p,q)=8pg, (34)

which follows from the unitarity of the operator U and the
normalization Sp CTO= 1.
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We now require that the initial states be stationary:
[jo0,HJ = 0, [ст0,Нг]=0. Then in the energy representation
p0 and CTO are diagonal matrices. Moreover, with the as-
sumed conservation of total energy [Н(П,,Н^+НГ]=0, all
(n\pj\m) = p(

n^dnm will remain diagonal (see Ref. 23),
and instead of Eq. (32) we obtain

(Л (35)

where p(n\m) = (n,n\m,m) are the standard transitional
probabilities of a classical Markov chain,24 whose alphabet
is the energy spectrum of the object. The required normal-
ization f o r p ( n | m ) is obviously guaranteed by the formula
(34).

The coefficients in Eqs. (32) and (35) do not depend
on whether a measurement is performed on the object after
a successive interaction. Of course, the initial state for cal-
culating successive evolutions of the object after each mea-
surement (reduction) must be chosen according to the re-
sult obtained. The chain (35) is essentially the kinetic
equation with discrete time (0,l,...j,...), w h e r e p ( n \ m ) is
expressed in terms of Eq. (33) and is structurally similar
to the kernel of the collision integral. Similarly, Eq. (32) is
the quantum kinetic equation, in which the transitional
characteristic (n,m\p,q) does not necessarily have a prob-
abilistic meaning.25

The random walk of an object under the action of a
purely stationary flux CTO= | j><*|> where Hr\x)=Ex\x),
is fundamentally nonclassical. Then the observed random-
ness is entirely engendered directly under the action of the
flux on the object and not in previous interactions with
some different physical environment. In this case the walk
is once again described by the simple chain (35), where

=^ \(n,v\U\m,X)\ (36)

Thus within a quite natural physical model of an open
system there is no need for any additional postulates for
substantiating the Markov character of the walk. There is
also no need for explicit or implicit use of hidden sources of
randomness, besides the principle of linear superposition of
quantum states and the metric rule adopted with the
definition 3.

5. THERMAL EQUILIBRIUM

The traditional approach to the statistical foundations
of phenomenological thermodynamics consists of studying
a closed system of particles. The classical works of Zer-
melo, Poincare, and Gibbs (see, for example, Ref. 26) con-
tain a series of very profound and demonstrative assertions,
but they do not solve the problem completely. Analytical
papers on the ergodic hypothesis still attract the attention
of applied mathematicians and theoretical physicists.

The model of an isolated system of particles occupies a
somewhat untypical position in physics. It cannot be clas-
sified among exactly solvable models, on the basis of which
the development of the theory usually precedes more con-

fidently. Historically such an approach dates back to spe-
cialists on celestial mechanics, and it is unproductive for
the logical development of science.

Meanwhile, within the theory of open systems the ca-
nonical ensemble as some limiting type of mixed state is
obtained on the basis of strict inequalities. The logical
equivalent of the second law of thermodynamics is already
contained in the inequality (30). Some metaphysical ques-
tions from previous discussions in such an approach indeed
cannot be answered, but there is hardly any need for this.

In order to fulfill the indicated program we introduce
the concept of a stable state of an open system exposed to
a uniform flux.22 (We used the term "stable" state instead
of the cliche "stationary state," which in this context has
two meanings and is often used in the Russian scientific
literature in application to open systems.) Once again we
confine our attention to stationary uniform fluxes and
energy-conserving interactions. Turning to Eqs. (32) and
(35), we require that the object's state p, whose trace is to
be taken, after interaction with the flux did not change:

(37)

In terms of the chain (35) this means that stable р„ can be
found as the solution of a system of linear equations, ob-
tained from the requirement p(

n

j+l) = p(

n

j). The problem of
possible singularity of the matrix of coefficients p(n\m)
merits attention. However, this problem does not arise for
maximum-entropy states with which we shall be concerned
here.

In its most general formulation an equation of the type
(37) potentially incorporates the entire theory of a stable
state of an open quantum system. In particular, this refers
to the theory of homeostasis — maintenance of stability of a
substantially nonequilibrium state of an object due to en-
tropy increase in a nonequilibrium flux. We, however, shall
confine our attention to maximum-entropy distributions.

Let the aggregate state of the object and representative
of the flux have maximum quantum entropy S with pre-
scribed average total energy (Hs + Hr). The density oper-
ator R of a system in such a state is obtained from Elsas-
ser's variational equation27

= lnp + lna0=-(l+T?)l-a(Hs (38)

It is easy to see that this gives simply a Gibbs energy
distribution. The undetermined Lagrange multipliers a
and 77 have a simple physical meaning: a~l = T is the en-
ergy temperature and exp( 1 +ту) =Z is the usual partition
function. For most physical systems studied in different
applications the maximum entropy Smax is a monotonic
function of <Hs + Hr>.

We shall show that under such initial conditions the
state p has the property of absolute stability, i.e., it is a
solution of Eq. ( 37 ) , independently of the specific form of
the interaction operator Hint or the evolution operator U.
Indeed, by virtue of Eq. (30) and the conservation of en-
ergy the sum of the quantum entropies of the subsystems
cannot change, and by virtue of the uniqueness of the so-
lution (38) the states themselves also do not change. Thus
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a stable state of the object, which is described by a Gibbs
distribution at the same temperature, is established asymp-
totically under the action of a uniform equilibrium flux
(thermostat). If, however, the flux is not in equilibrium,
then according to Eq. (30) the total entropy can only in-
crease. It is this separateness of the mixed states with max-
imum entropy that has made possible equilibrium thermo-
dynamics (more precisely, thermostatics). In cases when,
together with energy, other additive invariants of interac-
tion exist, the notion of statistical equilibrium can be gen-
eralized and the class of absolutely stable states enlarged.22

The description, using the same language, of energy
exchange in quasiequilibrium systems makes it possible to
associate it to a change in entropy, thereby substantiating
the traditional phenomenological description of heat trans-
fer. For this, it is once again necessary to examine the
Gibbsian initial states of the subsystems, but with different
temperatures Ts and Tr. Assuming the interaction to be
quite weak (the first order of perturbation theory for
(n,v\ U\m,fi}), under quite general other assumptions the
following equality can be proved (see Ref. 22):

bS=S,+St-S=Д<Я8) | —-— |,
•* s •* r

(39)

where A(HS) is the change in the average energy of the
object in the course of the interaction, and 5S and ST are the
resulting quantum entropies of the subsystems. The for-
mula (39) justifies the formal interpretation of quasiequi-
librium energy transfer as heat exchange 8Q= TdS, which
forms the foundation of axiomatic thermodynamics.

The ideology of Eq. (37) also suggests a natural ap-
proach to problems of nonequilibrium thermodynamics. In
particular, it is easy to construct examples that make it
possible to check, using the exact methods of quantum
theory, the validity of Prigogine's principle29 of minimum
energy production in a stable state.

6. CONCLUSIONS

Thus the proposed metric scheme gives a substantiated
formalism for solving many important problems in physi-
cal stochastics. In each case it is important only to con-
struct an adequate model of the initial state and the phys-
ical interaction, after which the measurement procedure
can be formalized unequivocally (in the theory of noise
and fluctuations the latter is often not done, and this can
lead to misunderstandings). In all other respects, the
pseudographic interpretations of randomness, often ap-
pealing to outdated fallacious forms of "classical common
sense," must be treated with care.

The obvious genetic relationship between the models
discussed and the Einstein-Podolsky-Rosen paradox is in-
structive. Einstein's subtle intuition apparently sensed the
maze of age-old contradictions. But the principle of super-
position of quantum states at that time did not yet form the
foundation of physical thought, and even now it is still not
completely recognized. The prejudice of the geometric-
dynamical ideal of the universe, dating back to the axiom-
atics of Euclid, in the ancient sources of Hellenic natural

philosophy, is not so easily overcome. All our natural sci-
ences, following mathematics, are possessed with the meta-
physical conviction of the continuity of the universe,
though even purely logically it is obvious that it is not
reasonable to make a fetish of continuous sets and they are
not necessary for knowledge. It can be conjectured that in
future theories Hilbert space itself will be reduced to its
discrete analog on the basis of the theory of finite groups.

The conviction of coming changes in the very founda-
tions of the natural sciences is also supported by the state
of affairs in modern mathematics. The attempt, continuing
over many decades, to construct an autonomous (outside
of human experience) edifice of formal sciences is ending
with a complete ideological collapse.29 One of the most
impressive results of the reassessment of values currently
going on is the Lewenheim-Skolem theorem about the pos-
sibility of discrete-mathematical modeling of any axiomatic
system. At the same time, it is becoming clear that it is in
principle necessary to employ natural-science factors exter-
nal to mathematics in order to choose a mathematical
model. It is now virtually obvious that mathematics can
only be one of the languages of sense perception, and noth-
ing more, and science itself and its language are faced with
an even greater task of revising the reliability of its points
of support.

The continual mentality almost inevitably leads to
philosophical dynamism, to the elimination of creative vo-
litional beginning from the nature of life. Here there are
many questions to which there are no complete answers.
The mystery is great, but there is a gleam of hope.

On a more general level, there is also discernable feed-
back of science with the spiritual yearnings of Euroameri-
can civilization over the last three decades. This theme is
yet to be investigated, and the investigators will have to
face a problem of unusual depth—to rethink competently
and harmoniously the fundamental trinity of the oldest
branches of development of the human spirit: culture, sci-
ence, and religion.

la)A. Einstein, Ideas and Opinions, Dell Publishing Co., N.Y., 1973, p. 50;
1Ь)»Ш., p. 23.

1 A. Einstein, Collected Scientific Works [Russian translation], Nauka,
Moscow, 1966, Vol. 3, pp. 604-611.

2 J. von Neumann, Mathematical Foundations of Quantum Mechanics,
Princeton University Press, Princeton, 1955.

3Yu. I. Alimov and Yu. A. Kravtsov, Usp. Fiz. Nauk 162, 149 (1992)
[Sov. Phys. Usp. 35, 606 (1992)].

4V. P. Demutskii and R. V. Polovin, Usp. Fiz. Nauk 162, 93 (1992)
[Sov. Phys. Usp. 35, 857 (1992)].

5 M. Hamermesh, Group Theory and Its Applications to Physical Prob-
lems, Addison-Wesley Publishing Company, Redding, MA, 1962.

6A. S. Krest'yaninov and V. V. Mityugov, Radiotekh. Elektron. 31, No.
5, 891 (1986).

7A. N. Kolmogorov, Usp. Matem. Nauk, No. 5, 52 (1938).
8N. Wiener, Prediction Theory—Modern Mathematics for Engineers

[Russian translation], Inostr. lit., Moscow, 1958, pp. 185-215.
9L. D. Landau and E. M. Lifshitz, Statistical Physics, Pergamon Press,

New York, 1980.
10 L. D. Landau and E. M. Lifshitz, Quantum Mechanics, Pergamon

Press, New York, 1977.
"j. Littlewood, Mathematical Miscellany [in Russian; title not verified],

Nauk, Moscow, 1978, pp. 56-59.

752 Physics - Uspekhi 36 (8), August 1993 V. V. Mityugov 752



|2М. В. Menskii, Method of Induced Representations. Space-Time and the
Concept of Particles [in Russian], Nauka, Moscow, 1976.

1 3W. Feller, An Introduction to Probability Theory and Its Applications,
Wiley, New York, 1957.

14 C. Shannon, Works on Information Theory and Cybernetics [in Rus-
sian], Inostr. lit., Moscow, 1963, pp. 433-460.

1 5V. V. Mityugov, Problemy upravleniya i teorii informatsii 2, 243
(1973).

16 V. V. Mityugov, Physical Foundations of Information Theory [in Rus-
sian], Sov. radio, Moscow, 1976.

17 J. Von Neumann, General and Logical Theory of Automata; A. Turing,
Can a Machine Think? [in Russian], GIFML, Moscow, 1960.

18 N. Ya. Vilenkin, Special Functions and the Theory of Representations of
Groups [in Russian], Nauka, Moscow, 1965.

19 R. Glauber in Quantum Optics and Quantum Radiophysics [Russian
translation], Mir, Moscow, 1966.

20 R. L. Stratonovich, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 8, 116
(1965).

21E. B. Davies, Quantum Theory of Open Systems, AP, London, 1976.
2 2V. V. Mityugov, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 32, 436 (1989).
23 G. Mackey, Mathematical Foundations of Quantum Mechanics, [Ben-

jamin, N.Y., 1963].
24 A. N. Kolmogorov, Basic Concepts of Probability Theory [in Russian],

Nauka, Moscow, 1974.
25 E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics, Pergamon Press,

New York, 1981.
26 Yu. B. Runer and M. Sh. Ryvkin, Thermodynamics, Statistical Physics,

and Kinetics [in Russian], Nauka, Moscow, 1977.
27 W. M. Elsasser, Phys. Rev. 52, 987 (1937).
281. Prigogine, Introduction to the Thermodynamics of Irreversible Pro-

cesses, Wiley, New York, 1961.
29 M. Kline, Mathematics: The Loss of Certainty, Oxford University Press,

N.Y., 1980.

Translated by M. E. Alferieff

753 Physics - Uspekhi 36 (8), August 1993 V. V. Mityugov 753


