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The emission from a gas containing macroscopic particles, as well as the transmission of light
through such a system with account taken of multiple scattering of light by the particles,
is studied. The emission from objects of different shapes is studied in the continuum and in
spectral lines. The influence of the scattering particles on this emission is studied
theoretically and experimentally. The emission from a closed isothermal cavity filled with gas
containing a condensed dispersed phase is analyzed. Relationships are obtained that are
necessary to determine the temperature of the gas and the particles, and the concentration of
atoms (or molecules) from the measured intensities of the intrinsic and transmitted
radiation.

1. INTRODUCTION

In physics and technology one often encounters gas-
eous emitters that contain impurities of macroscopic solid
particles and liquid drops. We can give two examples.
First, the brightly glowing layer near the electrode of a
high-current gas discharge contains macroscopic particles
of the material of the electrode being eroded. Second, the
radiating flow of combustion products in thermal electric
power stations, in magnetohydrodynamic generators,
rocket jets, etc., contains particles of varied origin and
composition. Despite the vast differences in the objects, the
fundamentals of the methods of spectral diagnostics are
practically identical.

In the traditional methods of spectral diagnostics of a
gaseous medium, one measures the intensities of the intrin-
sic radiation and of that transmitted through the medium
under study. The measurements are performed both in the
region of the spectral lines of atoms and molecules and at
frequencies of the continuous spectrum. A correct inter-
pretation of the results of the measurements requires strict
localization of the volumes from which the radiation
reaches the measuring spectral instruments. Many meth-
ods of diagnostics are based on the idea that the radiation
freely escapes from the medium, i.e., the medium is opti-
cally thin.

When macroscopic particles arise the emission from
the gaseous medium can change radically. When the tem-
perature of the particles is high enough, intrinsic continu-
ous emission arises from them. The emission from the gas-
eous component can be substantially weakened by
absorption by the particles. The overall optical density of
the medium increases. Finally, the scattering in the me-
dium increases sharply. Light scattering by macroscopic
particles is usually greater by an order of magnitude than
the scattering by the components of the gas phase. The
substantial scattering leads to difficulties involving the lo-
calization of the volume of observation. Light arising at
any part of the emitter, after scattering by the particles
lying in the field of view of the instrument, can be detected.

Even if there are few particles and they scatter light rela-
tively weakly, but strong emitters exist outside the field of
view of the instrument, the effect can be large. In a layer
near an electrode such emitters can be bright spots on the
electrode itself, or in a flow of combustion products they
can be the glowing walls surrounding the flow. Taking
account of light scattering in diagnostics of a gas contain-
ing a condensed dispersed phase is a serious problem. On
the other hand, the same effect is used for studying mac-
roscopic particles in specially organized experiments-by
illuminating the particles with high-power laser radiation.
When there are many particles and they strongly scatter
light, the influence of scattering on the measured intensity
of emission can be very substantial, even in the absence of
external emitters.

To find the characteristics of an object from the ob-
servable intensities of intrinsic and transmitted radiation,
one must have preliminary information of two types. First,
one must know precisely how the primary radiation as well
as the optical characteristics of the absorption and light
scattering are related to the quantities being sought. The
corresponding relationships are determined by the mecha-
nisms of population of the energy states of the emitters and
the mechanisms of interaction of the radiation with matter.
Second, one must know the relations of the measured in-
tensities of the intrinsic and transmitted radiation with the
primary radiation and the optical characteristics. These
relations are governed by processes of radiation transport.
In discussing radiation transport below, we assume that
the population of the atomic (or molecular) levels, as well
as the thermal and optical characteristics of the macro-
scopic particles do not depend on the escape or transmis-
sion of the radiation being studied. This assumption makes
it possible to separate the problem of radiation transport
from that of the energy state of the medium. Radiation
transport is treated in this way in most of the fundamental
studies (see Refs. 1 and 2); both problems are solved
jointly in Ref. 3.

Of fundamental interest in the present study are the
features of spectral diagnostics that arise from the macro-
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scopic particles. In this regard we shall first discuss the
optical characteristics of the macroscopic particles (Sec.
2). The presented data make it possible to estimate the
effective absorption and scattering cross sections and the
fundamental features of the scattering indicatrix in various
cases. The same section describes the optical characteris-
tics of atoms and the primary thermal emission from a gas
containing particles.

Then we shall discuss in considerable detail radiation
transport complicated by the possibility of multiple scat-
tering, i.e., zigzag motion of photons in the medium (Sec.
3). To solve the equations of radiation transport we have
chosen, developed, and applied the probabilistic method of
V. V. Sobolev. This method has established the most direct
and simple connection between the primary emitters and
the optical characteristics, on the one hand, and with the
observed emission, on the other hand. We discuss the equi-
librium radiation of a closed isothermal cavity filled with a
gas containing condensed dispersed particles. This radia-
tion is separated into terms of different origins: emission
from atoms, emission from particles, and finally, emission
from the walls of the cavity that is scattered and directly
arrives at the observer. This makes it possible in concrete
problems to estimate the limiting possible influences of var-
ious circumstances on the observable radiation.

Section 4 treats the escape of radiation from a gas
containing a condensed dispersed phase in the continuum
and in lines. Illustrative calculations are performed of the
intensities, the physical pattern of the obtained results is
analyzed, and experimental studies of the influence of scat-
tering particles on the radiation are described.

One can find from the attenuation of the radiation of
an external source (a lamp or a laser) the optical density of
the medium or any characteristic associated with the opti-
cal density. When the light scattering by particles is sub-
stantial in a gas containing a condensed dispersed phase,
the result of the measurements can depend on the optical
scheme of the experiments. Section 5 discusses the trans-
mission of a thin beam through a gas containing a con-
densed dispersed phase. The results of the treatment make
it possible to formulate experiments correctly and to inter-
pret reliably the results of the measurements of attenua-
tion.

The concrete features of measurements of tempera-
tures and concentrations in a gas containing a condensed
dispersed phase are discussed in Sec. 6. The most reliable
methods of measuring the averaged characteristics are an-
alyzed, as well as the possibilities of finding the spatial
distributions upon observing along a single ray of vision.

2. OPTICAL CHARACTERISTICS

2.1. Optical characteristics of particles of a condensed
dispersed phase

First we shall examine the optical characteristics of
individual macroscopic particles. The interaction of radia-
tion with single particles has been studied repeatedly.5"7 In
finding the optical characteristics most often one solves the
wave problem of diffraction by the particle. The frequency

of the radiation does not vary in this interaction, i.e., the
scattering is monochromatic. The result of the interaction
for a given polarization of the light incident on the particle
depends on the structure and the shape of the particle, on
the complex refractive index of the material of the particle

n = nl—in2

and on the diffraction parameter of the particle

(2.1)

(2.2)

Here ap is the characteristic dimension of the particle, and
Л is the wavelength of the radiation.

Especially many studies have been devoted to spherical
particles. In this case op=rp is the radius of the particle. In
calculations one usually employs the theory of Mie,8 which
was developed at the beginning of the century.

The interaction of radiation with individual particles is
described by using the cross sections for absorption (<rp),
scattering (crs), and the scattering indicatrix (;^(ys)); here
Ys is the scattering angle of the light. (Translator's note:
misprint?) The scattering indicatrix satisfies the normal-
ization condition

Г *(rs)du)/47r=0.5 r*(r,)sinygdys=l. (2.3)
J4w Jo

Here du) is the element of solid angle.
The absorption and scattering cross sections make it

possible to find the total cross section of attenuation (ex-
tinction)

2p-l-crp+CTs (2-4)

and the probability of survival of the radiation per single
interaction with a particle

^p=0s/(0p+0s) = 0s/'Zp. (2.5)

The extension forward of the scattering indicatrix with re-
spect to the initial direction of the radiation incident on the
particle is well described by the mean of the scattering
cosine

<cos c°s">-/„
=0-5 *(rs)cosyssinysdys. (2.6)

Jo

As the indicatrix becomes extended forward, the mean co-
sine approaches closer and closer to unity. The mean scat-
tering cosine is associated with the transport approxima-
tion, which is applicable in the case in which the radiation
intensities depend weakly on the direction.9 In the trans-
port approximation it is assumed that the scattering is iso-
tropic, i.e.,

*tr(ri) = b (2-7)

while the scattering cross section is determined by the ex-
pression

<rtr=<7s(l — <cosys». (2.8)
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Here the scattering at different angles is taken into account
with equal weight by using (cos ys). The smaller the scat-
tering angle, the smaller the contribution of scattering to
crit is, while scattering exactly forward is not at all taken
into account. In the transport approximation the expres-
sion for the probability of survival of the radiation has the
form

Ар( 1 - <cos ys))

1—Ap<cosys>
(2.9)

In pure scattering (without absorption) we have

At r=Ap=l. (2.10)

The extinction cross section in the transport approxima-
tion is expressed in terms of the true extinction cross sec-
tion as follows:

ys». (2.11)

The literature contains extensive tables of calculated cross
sections, CTP, CTS, and the indicatrix #(ys), which are re-
quired mainly in meteorology; see, e.g., Ref. 10. At present
computer programs are being published, even in mono-
graphs, for calculating the optical characteristics of both
spherical, homogeneous particles, and of more complicated
structures.7

The results, especially on the scattering indicatrices,
are marked by a great variety. For correct design of spec-
tral experiments and choice of a suitable method of diag-
nostics, it is useful to have a picture of the possible limits of
variations and of typical values of cross sections and indi-
catrices. In this regard we shall make a certain classifica-
tion of the results pertaining to spherical particles. Let us
study particles having different diffraction parameters of
(2.2). We shall classify all the particles into three groups:
/><1, Z>>1, and Dsl. We note that in the visible region of
the spectrum, where AzzQ.6 цт, we have Dzz 1 for parti-
cles with rp~0.l fj,m.

1. Small diffraction parameter (Z><1). In the visible
region of the spectrum these are submicrometer particles
(rp<0.1 /лп). If in addition to the condition Z)<1 also the
condition D\n\ <1 is fulfilled, the cross sections and indi-
catrices are described by the expressions:7

И2-1

n2+2
(2.12)

*(ys)=0.75(l+cos2ys).

In this case we have

<cosys>=0, c7tr=<Ts, At r=Ap. (2.13)

This is the well known case of Rayleigh scattering. We find
the following expression for the ratio of cross sections from
(2.12):

ae 2
= 3

Я2-1
Im (2.14)

Equations (2.14) and (2.5) imply that for small diffraction
parameters D and not too large refractive indices | n \ we
have

as^c7p, Ap^l. (2.15)

The relationship (2.15) is important in practice, for it im-
plies that sometimes we can neglect scattering in compar-
ison with absorption. In cases in which scattering is the
object of study or the means of diagnostics, of course, one
must not do this.

2. Large diffraction parameter (Z>> 1). In the visible
region of the spectrum these are particles with rp£ 0.5-1
/Ш1. Scattering by large particles is described by the exact
theory of Mie. More simple and useful in practice is a
combined treatment of extremely large particles, in which
the interaction of light with a particle is separated into two
parts.5'7

First, independently of the optical properties of the
particle, a diffraction pattern arises as from a black circular
screen of radius rf. Here the scattering cross section is
determined simply by the area of the corresponding screen

(2.16)

while for the indicatrix we have

Xd(ys)=0.25D2(l+cosrs)
2

X (2/!(D sin ys)AD sin ys)
2. (2.17)

Here T! is the Bessel function. The greater part of the light
energy (84%) scattered via diffraction is found in the re-
gion of angles determined by the direction to the first min-
imum of the diffraction pattern

sinysl = 3.83/D. (2.18)

Consequently the forward directionality of the indicatrix
becomes sharper as the diffraction parameter increases. We
can represent the indicatrix of (2.17) approximately in the
form

Xd(ys) =0.25D2( 1+cos ys)
2exp( -0.3.D2 sin2 ys)

when sin у8<3.83/Д

=0 when sinys>3.83/Z). (2.19)

Further, this rather crude representation will be used in
estimates and illustrative calculations.

Second, owing to reflection and transmission of light
through the particle, scattering and absorption that sub-
stantially depend on the complex refractive index of the
material of the particle arise. The reflection and transmis-
sion of light are described by the method of geometric
optics. Let us denote the corresponding components of the
scattering cross section and the indicatrix as crg and Jg(ys).
For water having и = 1.33, ̂ g(ys) was calculated in Ref. 5.
Mainly the scattered light here is also directed forward,
i.e., ys<90°, but is not as extended as in diffraction by the
indicatrix. For not too large values of n t , the indicatrices
do not change very strongly as n varies, and here the fol-
lowing approximate description is not too bad:
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*g(rs) ~ 16.5 exp[-9(1 -cos y,)]. (2.20)

The total cross sections of absorption and geometric scat-
tering are determined by the cross sectional area of the
sphere. Therefore we have

ag + ap = 7r .̂ (2.21)

The total cross section of interaction with a large particle
2p is obtained by adding the diffraction and geometric
cross sections:

= 2ТГГ2 (2.22)

The total scattering cross section with account taken of
(2.16) has the form

(2.23)

The probability of survival can be written as

(2-24>

The overall scattering indicatrix of a large particle is ob-
tained by combining the expressions for the probabilities of
interaction of the radiation with the particle with subse-
quent scattering. As a result we obtain

Afd+g(ys)=0r

s"" (CTgYg(7s)+adYd(7s))- (2.25)

The normalization in (2.3) preserves the meaning for each
of the introduced indicatrices. Comparison of the indica-
trices of (2.25) with the exact expressions calculated by
the authors of Ref. 11 shows that, even when D=5, the
indicatrices of (2.25) qualitatively describe the fundamen-
tal features of the pattern, while at larger D the agreement
is quite satisfactory.

Let us study the limits within which the cross sections
and indicatrices vary upon changing the substance of the
particles. An especially large influence on the optical char-
acteristics is exerted by the absorptive properties of the
material, involving the imaginary component of the refrac-
tive index «2. Therefore we shall assume, first, that all the
light incident on the particle is absorbed. This can happen
in particles of soot (n{ = 1.8, n2=0.612), where not only is
the absorption large, but also the reflection small. In this
case we have crg=0 for the geometric scattering cross sec-
tion and, in agreement with (2.21), we find o-p=irrp. We
emphasize that diffractive scattering remains also in this
case and is described by Eqs. (2.16) and (2.17). Second,
we assume that the particle is transparent, i.e., it does not
absorb light at all, which can happen if the imaginary com-
ponent of the coefficient of refraction is small. In the visible
region of the spectrum this pertains, e.g., to water drops or
particles of aluminum oxide. Thus in aluminum oxide the
real and imaginary components of the refractive index vary
within the range и, = 1.7—1.8, л2=10~8-10~5.13 In this
case we have crp=0, and according to (2.21) we have

After one has determined crp and ag, one can find from
(2.23) the scattering cross section CTS, from (2.24) the
probability of survival A p , and from (2.25) the scattering
indicatrix ;^(ys). The results are presented in the Table.
We see there that, for a maximal change in the effect of

absorption, the scattering cross section crs and the proba-
bility of survival Яр vary twofold. Yet the extinction cross
section, as was noted above, does not change at all. The
scattering indicatrix in the case of completely scattering
particles, with account taken of the fact that о-й=ав=ттг^
and (Ts = 2ir/^, is determined in agreement with (2.25) in
the form

(2.26)

The forward extension of the indicatrices is illustrated by
estimates of the mean scattering cosines by (2.6) (see the
Table). The estimates have employed the representations
of (2.19) and (2.20). A transition from scattering to ab-
sorbing particles leads to forward extension of the indica-
trices: (cos ys) approaches unity. With increase in the pa-
rameter D the indicatrix of absorbing particles is very
sharply extended. In the case of scattering particles for
sufficiently large D (I» 20), further increase in D prac-
tically does not affect (cos ys>, since here xs> which does
not depend on D, determines the scattering pattern in
(2.25) and (2.26). The characteristics of the transport ap-
proximation also are given for D—1000. We see that the
scattering properties of large absorbing particles are infin-
itesimal. For transparent particles the transport cross sec-
tion is smaller than the true value by approximately a fac-
tor of 18, while the probability of scattering is unaltered
(Ap=At r=l).

3. Diffraction parameter of the order of unity (D=\).
In this case the absorption cross section ap depends on л2

in exactly the same way as in the previous case (see the
Table). The scattering cross section is an oscillating func-
tion of the diffraction parameter D or the radius /у5"7 The
amplitude of the oscillations decreases with increasing rp

(or D) and with increase in the imaginary component of
the refractive coefficient л2. For small и2 the oscillations of
<TS occur about the mean value 2irrp, while for large n2 the
cross section as approaches тттрч These mean values vary
within the same range as when Z>>1, just as an increase in
D leads to forward extension of the indicatrices, however
complicated their forms are. However, in contrast to the
previous case, the characteristic of extension (cos ys) var-
ies over a very broad range. This range can be indicated
approximately as: from (cos ys) =0 for a Rayleigh indica-
trix on the side of small D to (cos ys) =0.91-0.93 for
D=5, in agreement with Table I.

The ideas and estimates presented here make no claim
to accuracy or total scope of the variety of characteristics
of individual particles, but make it possible to orient one's
self in this variety.

Let us turn to the characteristics of an ensemble of
particles. Usually the absorption, scattering, and extinction
coefficients of a medium are determined by simple summa-
tion per unit volume of the cross sections of the individual
particles. When the particles are identical we have

J, _, _. _, __ ^ / ̂  T7 \ki=np(Ti, a.j = npij. (2.27)

These expressions pertain to the cross sections presented
above; i.e., /=p, s, or tr and j = p or tr; лр is the concen-
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TABLE I. Optical characteristics of particles with different absorptive properties of the material.
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tration of particles. If the particles differ only in dimen-
sions and their distribution is / (rp) with the normaliza-
tion

J°Jo
/(/•p)drp=np> (2.28)

then we have

*,=
Г"

,=
Jo

(2.29)

One can perform the summation of the scattering and ex-
tinction cross sections by (2.27) and (2.29) only in the
case when the scattering events by the individual particles
are independent. A necessary condition is a sufficient sep-
aration of the particles from one another.14'15 The simplest
considerations lead to the following. First, the distance
between the particles n~l/3 must be much larger than the
wavelength of the radiation; second, the medium must be
actually not continuous, but disperse; i.e., the distance be-
tween the particles must be substantially larger than the
characteristic dimension of the particles. Hence we have

„—1/3^. ж „— l/3s. „ /T 1f\\
Ир ^Л, П ^Л>- \f-J\i)

A well grounded treatment of the problem is contained in
Ref. 14. The probability of survival of the radiation in a
single interaction with the particles can be written in the
form

Ap^/ap- (2.31)

When all the particles are identical, then (2.31) differs in
no way from (2.5); yet when the particles differ in dimen-

sions and in ks, and ap is determined by (2.29), then Ap

characterizes a certain averaged probability of survival.
In closing we note that the optical coefficients k and a

in the treatment that we have conducted do not depend on
the direction of the radiation. This condition is fulfilled in
a gas containing a condensed dispersed phase when the
particles have a more complicated form, but their orienta-
tion is random.

2.2. Optical characteristics of the gas phase. Comparison
with the characteristics of the macroscopic particles

The fundamental optical characteristic of a gas is the
absorption coefficient ka, which depends strongly on the
frequency of the light v in a region of spectral lines. Scat-
tering of radiation by atoms and molecules that occurs as a
result of photoexcitation with subsequent emission plays
no role in the problem being discussed, owing to the as-
sumption made in the Introduction that the transport of
radiation exerts no appreciable influence on the popula-
tions of the energy levels (see also Sec. 2.3). In an ionized
gas one must estimate the optical characteristics of the
continuous spectrum caused by free-free and free-bound
transitions of electrons, as well as scattering of radiation by
electrons.

The absorption coefficient calculated per atom (we
omit henceforth the word "molecule" for brevity) <7a(v)
has the dimensions of area and can be treated as the ab-
sorption cross section of a single atom. By analogy to
(2.27) we find

&a(v)=Ha<7a(v). (2.32)

The absolute value of cra depends on the oscillator strength
of the corresponding transition in the atom. The depen-

698 Physics - Uspekhi 36 (8), August 1993 I. A. Vasil'eva 698



dence on the frequency of cra(v) in a gas containing a
condensed dispersed phase is most often determined by the
Doppler broadening and the interaction of the absorbing
atom with the surrounding components of the gas. Here we
shall not take up the concrete <ra(v) dependences, for an
extensive literature is devoted to this (see, e.g., the
monographs16"20 and the special experimental studies in
combustion products21'22). We shall discuss only the con-
dition that the interaction of an absorbing atom with the
particles does not influence the contour of the absorption
lines cra(v). We can make a very simple, crude estimate by
comparing the frequency of collision of the atoms with the
surrounding components of the gas (va_m) and with the
macroscopic particles (va_p). We shall assume that the
relative velocities of the interacting particles in the two
cases are the same; then we have

Va_p/Va_m =/IpO-a_p/«mCTa_m .

Here nm is the concentration of surrounding gas molecules,
and cra.m and aa.p are the cross sections for the interaction
of an atom with the surrounding molecules and with the
macroscopic particles. One need not take the influence of
the particles into account if

«p<«mcra_m/<7a_p. (2.33)

Let us study the flow of combustion products at atmo-
spheric pressure and at the temperature 2000 К mentioned
in the Introduction. The characteristic dimension of the
particles under these conditions is rp^l fim (cra_p=;10~8

cm2) (Ref. 56) and лт=1018 cm"3. The cross section
of the atom interaction with the surrounding molecules is
determined by the value of cra_m^;10~15 cm2.21'22 Upon
substituting these values into (2.33) we find

~3cm

This condition practically coincides with the condition of
disperseness in (2.30). We shall assume that the inequality
(2.33) is fulfilled.

We can write the absorption coefficient in the elec-
tronic continuum in the form

where ae is the absorption cross section for light in the
continuum, which depends on the temperature of the elec-
trons and the structure of the atoms being ionized, and na

is their concentration.23 Analogously we have the following
expression for the coefficient of light scattering by elec-
trons:

ara is the cross section for scattering by electrons, and ne is
their concentration.

We can approximately estimate the relative role of the
particles and of the components of the gas phase by using
the following expressions:

(2.34)

The first ratio characterizes the role of the particles in the
region of spectral lines, the second in the continuum, and
finally, the third characterizes the relative role of the par-
ticles and the electrons in the scattering process.

For estimates of the role of macroscopic particles in a
region of spectral lines and in the continuum, we should
concretize the conditions. Again let us study a radiating
flow of combustion products at atmospheric pressure and
at the temperature 2000 K. We can find from the experi-
mental data of Ref. 56: np=105 cm~3 for rp=l /urn. The
combustion products include atomic sodium, which emits
one of the brightest lines of the visible spectrum of Nal,
589.0 nm. This line is often used in spectral diagnostics.
The natural content of sodium atoms in combustion prod-
ucts usually does not exceed na^10 cm . The cross
section cra(v) for not too great deviations of the wave-
length Л from the wavelength Л0 of the center of the line
is described by the Voigt integral. By using information
from the books, Refs. 19 and 20, we can find in the center
of the line that ста(Л0)=2хЮ~12 cm2, while
aa(A) = 10~' cm2 for |A —A0|=0.2 nm. If we assume
that 2p=;r^=10~8 cm2, we obtain that the first ratio in
(2.34) varies over the following range:

Consequently, at the center of the strong sodium line the
influence of the particles is small, while with distance from
the center it becomes substantial. Evidently the influence of
the particles on less strong lines will be important even in
the central parts of lines. Let us estimate under the condi-
tions of Ref. 56 the role of the particles in the continuum at
Л=0.6 /лп. We shall assume that sodium atoms are being
ionized in the combustion products. Then by the Unsold-
Kramers formula23 we find cre=10~24 cm2 and obtain

ap/fce(v) = 10-8-105/10-24-1012=109>l. We see that
the electrons play no role here. Even smaller is the role of
scattering of radiation by electrons according to (2.34),
since the cross section of this process also is very small
(о^^б.бх 10~25 cm2 19), while the concentration of elec-
trons is usually smaller than ла.

As a second example let us study the above-mentioned
brightly glowing layer near the electrode of a high-current
gas discharge. According to the data of the book, Ref. 24,
we can obtain an estimate of the content and the dimen-
sions of the particles near the surface of the electrode:
nzz, 108 cm '3 ; 1 fan. This case differs from the previ-
ous one mainly in the fact that the number of particles here
is 10~3 times as much. Correspondingly the influence of
the particles increases, both in the spectral lines and in the
continuum. As we go away from the surface, the particles
disappear, but in the immediate vicinity of the surface they
completely determine the optical characteristics of the
medium.
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Thus in the discussed examples the extinction coeffi-
cient of the particles ap is much larger than the coefficients
ke and /ces in the continuum. Therefore we can neglect the
electronic continuum. In the region of spectral lines, where
ka(v)^=0, we must jointly take into account the atoms and
the macroscopic particles. In these regions the total extinc-
tion coefficient is obtained by summation:

a(v)=ap+A:a(v). (2.35)

Here a(v) strongly depends on the frequency owing to the
/ca(v) relationship. On the other hand, one can usually
assume that inside the region of a spectral line the charac-
teristics of the particles (kp, ks, and ap) do not depend on
the frequency. We obtain for the probability of survival

A(v)=&s/a(v)=Apap/a(v). (2.36)

As we approach the centers of the lines, the scattering
probability A(v) decreases owing to the increase in /ca(v).

2.3. Primary thermal emission of a gas containing
a condensed dispersed phase

In a gas containing a condensed dispersed phase the
intrinsic primary emission usually depends on the temper-
ature of the gas and of the macroscopic particles. The tem-
peratures of the gaseous and dispersed phases can differ.
The temperature of the surface of the particles ( T p ) and
their intrinsic primary emission depend on the processes of
heat exchange, wherein radiative heat exchange plays an
important role. When in diagnostics one uses simply part
of the radiation naturally escaping from the volume, this in
no way affects the temperature of the particles. Yet if one
passes light through the volume of study for diagnostic
purposes from an external emitter or from the walls sur-
rounding this volume, or special apertures are made for
extracting part of the radiation incident on the wall, this
must be done with certain precautions. The light from an
external source (often a laser) must not heat the particles,
while the escape of intrinsic radiation must not cool them
substantially. Both of these conditions are usually not too
hard to fulfill, by making the power of the source and the
apertures in the walls sufficiently small.

The primary intrinsic emission in the spectral lines of
the gas involves the temperature of excitation Га, which
determines the relative population of the energy levels
among which the radiative transitions occur. In a gas con-
taining a condensed dispersed phase the populations most
often are established in collisions of an atom with sur-
rounding atoms and molecules of the gas phase. When
both the excitation and depletion of the levels arises from
collisions, the character of the collisions determines the
physical meaning of the temperature Га. Thus, for exam-
ple, in combustion products at atmospheric pressure the
temperature of excitation Га of alkali atoms is determined
by the temperature of vibrational excitation of the
molecules.4 Consequently Га can generally differ from the
temperature of thermal motion of the atoms and molecules
of the gas.

Escape of radiation, external irradiation, and spatial
inhomogeneities can lead to deviations from the collisional

populations. Let the rate of quenching by atoms and mol-
ecules of the upper level of the transition being discussed
(vq) be substantially larger than the rate of spontaneous
emission (vr):

vq>vr. (2.37)

When this condition is fulfilled, escape of radiation does
not appreciably affect the populations of the levels. Here
we assume that condition (2.37) is fulfilled, while the
power of the external source is so small that photoexcita-
tion by its radiation also does not affect the populations.

Let us examine the possible influencces of spatial inh-
omogeneity on the populations of levels by atoms. A very
simple equation of balance of atoms on a level with account
taken of the fulfillment of condition (2.37) has the form

d

Here nm is the concentration of atoms in level m, um is the
directional velocity arising either from the flow of the gas
mixture or from diffusion, vex is the rate of collisional ex-
citation of level m. The magnitude of nm is determined only
by collisions if the first term is small in comparison with
the rest. One obtains from (2.38) the characteristic length
of the inhomogeneities, in which the first term plays the
same role as one of the collisional terms:

In the case of a diffusional flux we find

nmum=-Dmdnm/dr.

Here Dm is the diffusion coefficient of excited atoms. Whei;
the concentration nm varies substantially at distances equal
to or less than lm, we can expect deviations from the "col-
lisional" populations. This defines the smallest dimension
of a region (/a) that can be characterized by a single atomic
temperature. Namely, the condition must be satisfied that

If all the described conditions are fulfilled, then we can
apply the Kirchhoff law locally in space to each of the
phases of the discussed two-temperature medium. From an
elementary volume of thickness | dr' | primary radiation
escapes in all directions here with the intensity

(2.39)

Here we have

i
exp(Av//cD-l '

(2.40)

while fa and /p1 are the intensities of the emission from an
absolutely black body at the temperature of the gas (Га)
and the particles (Гр), respectively, ka and kp are the ab-
sorption coefficients of the atoms and the particles, v is the
frequency of the radiation, h and К are the Planck and
Boltzmann constants, and с is the velocity of light in a
vacuum. The expressions (2.39) and (2.40) determine the
relation between the primary radiation and the tempera-
tures Ta and Tp by suitable measurements. Moreover, the
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absolute values of the coefficients £a and kp are propor-
tional to the concentrations of the absorbing components
of the gas and of the macroscopic particles. The depen-
dence of ka on the frequency is determined by processes of
broadening of the spectral lines. In turn, the broadening
depends both on the temperature of the gas and on the
concentrations of the components of the gaseous medium.
Therefore the primary intensity in (2.40) at different fre-
quencies contains in itself varied information on the gas
and the particles. The extraction of this information from
the observed intensities of the radiation is the problem of
spectral diagnostics.

In closing we briefly summarize the general informa-
tion.

1. When the diffraction parameter is small (D<1), the
absorption and scattering cross sections are much smaller
than the geometric cross section of the particle, The prob-
ability of scattering here is also small: Ap^Z^l. Yet if
D~ 1 or D>1, the optical cross sections are determined in
order of magnitude by the geometric cross section, the
probability of scattering varies over the small range
Арг 0.5-1, and the scattering indicatrix is extended for-
ward as the diffraction parameter increases.

2. In the continuous spectrum of a gas containing a
condensed dispersed phase, the extinction coefficients in
characteristic cases are determined in practice only by the
particles of the dispersed phase. In the region of spectral
lines the extinction coefficients of the macroscopic particles
and the gas can be comparable in order of magnitude.

3. A gas containing a condensed dispersed phase can
be treated as a two-temperature medium. Here the primary
radiation is described by the Kirchhoff law as applied sep-
arately to the gas and to the macroscopic particles.

3. RADIATION TRANSPORT

The fundamental characteristic of the radiation in
many problems of spectral diagnostics is the intensity, i.e.,
the energy flux per unit intervals of area, time, solid angle,
and frequency. The intensity inside the emitter and at its
output is determined by solving the transport equations of
the radiation, which have their meaning in the geometric-
optics approximation. The possibility of using this approx-
imation in a gas containing scattering particles is discussed
in detail in Ref. 14. Here we note only that one must in any
case take account of the main condition: the mean free
path of a photon

/рь = а""' (3.1)

must be substantially greater than the wavelength Л. In the
centers of spectral lines, where cra(v0) can attain large val-
ues, geometric optics is applicable if the concentrations яа

of atoms are not too great. An analysis of the data pre-
sented in Ref. 15 implies that in diagnostics of a gas con-
taining a condensed dispersed phase, as a rule, one need
not take account of refraction in the propagation of the
radiation. And finally, here we shall not discuss effects of
polarization of the radiation, since they exert little influ-
ence on the overall intensity,15 while diagnostics based on
polarization effects is not the topic of this study.

FIG. 1. Diagram of an emitter of arbitrary shape.

3.1. Transport equations of radiation and the primary
surface sources

We shall initially discuss the radiation transport equa-
tions in a rather general case. Let the gas volume contain-
ing the condensed dispersed phase be bounded by an arbi-
trary convex surface (Fig. 1). The medium can be
optically inhomogeneous, i.e., the optical characteristics
can vary in space. Let I(r, Й) be the intensity of the radi-
ation at thejjoint of radius vector г in the direction of the
unit vector ft. For brevity we shall omit the designation of
the frequency v. The steady-state transport equation has
the form:25

ftV/(r,ft)+a(r)/(r,ft)'=a(r)£(r,ft). (3.2)

Equation (3.2) is the equation of balance of the radiant
energy per unit volume, al is the loss and ae the gain of
energy; here £ is a function of the sources:

+ Г
J4ir

/(r,ft')A(r);t(r,ft'-ft)du//4i7-.

(3.3)

The meaning of E is the accession of energy per length of
ray tube equal to the mean free path of a photon in (3.1)
owing the primary emission of the medium (ga) and owing
to scattering of the radiation that has arrived from all di-
rections (the second term on the right-hand side of (3.3).
We obtain from Eq. (3.2) and the boundary conditions
that fix the radiation intensity of the surface 7(rs,ft) the
following:

f r

=
Jrsu

£(r",ft)exp(-T(r"-.r))a(r")dr"

(3.4)
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Here rsu is the radius vector of the point of intersection of
the surface S with the straight line passing through the
point г in the direction (— ft) (see Fig. 1); the integration
is performed along this straight line;

Г2

т(г,-»г2) = a(r)dr
Jr,

(3.5)

is the optical density between the points Г[ and r2, and the
integration is performed along the straight line Г]—r2. In
solving Eqs. (3.3) and (3.4), either / is determined from
(3.4), from which £ is eliminated by using (3.3), or con-
versely, / is eliminated from (3.3) by using (3.4), and one
starts by solving the equation for e. Most of the fundamen-
tal studies have been devoted to solving the equation for e.
The equation for e can be also written directly on the basis
of physical considerations analogously to the way that this
was done in Ref. 26 in describing neutron transport, or in
Ref. 27 in describing radiation transport in a case more
general than the present one. The result has the form

= F£(r',ft')+g(r,ft). (3.6)

Here Ve is the scattering integral (operator) that deter-
mines the scattering at the pointer of radiation arriving
from all parts of the volume; g(r, ft) is the intensity of the
primary sources; and here we have

f dV{e(r',ft')a(r')
*/ V

Xexp[-T(r'-r)]*(r,ft'-ft)(r'-r)-2},

(3.7)

(3.8),ft) =£u(r,ft0 +gs(r,£l),

Г
JS

Xexpf — » Д) (r's-r) -2

(3.9)

Here dV and d2r's are respectively the elements of volume
and surface area. We note that here, in addition to gv, in
the primary sources that enter into (3.3) appeared the
intensity of the primarily scattered radiation of the surface
gs of (3.9). Let us explain the meaning of gs: from
an element of surface area d2^, the flux
7(r£,ft£)d2r£cos(n£ ft£)/(rs-r)2 proceeds toward a
unit area in the vicinity of r, the fraction exp[ — т(г£-»г)]
arrives at r without interacting with the medium, and the
first scattering event at r in the direction ft at the length
a"1 occurs with probability A(r)j(r,ft5->ft). Taking ac-
count of what we have described and integrating over S
yields Eq. (3.9). Analogously one can also explain the
meaning of the scattering integral in (3.7). The difference
is only that the initial flux in the scattering integral is a
volume flux (dVa(r')£(r',ft ')), and the integration is
performed over the volume. The expression for the inten-
sity of the intrinsic primary sources gv in the two-

temperature medium being studied (a gas containing a
condensed dispersed phase) is written by using (2.31),
(2.35), and (2.39):

r), (3.10)

gp(r)=op(r)(l-Ap(r

In a gas containing a condensed dispersed phase the pri-
mary volume sources are composed of sources arising from
the emission from atoms (ga) and the emission from par-
ticles (gp). We only must emphasize that the existence of
any of the components influences the magnitude of the
primary sources of the other component via the overall
extinction coefficient, since a(r)=ap(r) + A:a(r). The ther-
mal emission is isotropic; therefore gv does not depend on
ft. Outside the spectral lines, where &a=0, we have

When the temperatures of the gas and of the particles are
the same at each point, i.e., /^(r)=/^(r)=/°(r), we find
the following expression with account taken of (2.36):

To concretize the scattering operator Fe and the in-
tensity of the primary scattering gs, we must fix the form
of the surface S, the scattering indicatrix ^, and the distri-
bution I(r's,£l's). Let us study isotropic scattering (x=l)
in three very simple geometries: an infinite plane layer, an
infinite cylinder, and a sphere. We shall assume that the
surface emits in the same way everywhere isotropically:
I(T'S)=ISO- To find the distances г'—г, r's—r, the volume
elements dV, and the area elements of the surface d2r^ in
the plane layer and the cylinder, we can use Figs. 2 and 3.
Then we should substitute the values that are found into
(3.7) and (3.9) and perform the necessary integrations. In
the plane layer as a result of these operations we have

=0.5 f'
Jo

t-f

fe(') =

(3.13)

(3.14)

Here / and t0 are the optical coordinate and the optical
density of the layer (see Fig. 2):

rx ri
t= I a(X)dX, to= I a(X)dX, (3.15)

Jo Jo

Ek(y) is an integral exponential function:28

Ek(y)= f exp(-j>/z)z*-2dz.
Jo

(3.16)

Also, gso, gst , and gs are the surface sources due to the
primary scattering of the radiation by the surfaces f=0,
t=t0, and the two surfaces together.
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FIG. 2. Diagram of a plane layer.

For an infinite, optically homogeneous cylinder (a
=const, Я=const) we assume that

x=p/R, t0=2aR.

Then we obtain

f
Jo

(3.17)

x'e(x')J(x,x')dx',

(3.18)

FIG. 3. Diagram of a cylindrical emitter.

703 Physics - Uspekhi 36 (8), August 1993

/(*,*')= Гйср'[Кп(0.510(х2+х'2
Jo

-2x;c'cos<p')1/2)U2+;c'2

— 2xx' cos <p')~1/2],

/*)A f* ,

(3.19)

(_/50* Г

IT Jo
( 1 —X COS 5̂

x-
ЛГа(0.5*0(1 +*2-2x cos

l+x — 2x
(3.20)

Here Kik is the k-fold integral of the zero-order cylinder
function. As the arguments vary from 0 to oo , the integrals
KH and Ka monotonically decline to zero from ir/2 in the
case of KH, and from / in the case of АГЙ.28 Finally, in an
optically homogeneous sphere we can analogously find

f
Jo

e(x')x'dx'(El(0.5t0\x-x'\)

(3.21)

gs= (/5t)A/4ir) [ ( 1 +x)E2(0.5t0( 1

-(1-дс)£г

2(0.5«ь(1+дс))

Х{ехр[-0.5Го(1-дс)]-ехр[-0.51Ь(1+х)]}].

(3.22)

Thus the equations for describing radiation transport in a
plasma containing a condensed dispersed phase have been
presented in general form. In the special cases of isotropic
scattering and simple geometric shapes, the scattering in-
tegrals and the primary sources gs due to scattering of the
emission from the surfaces have been obtained. The scat-
tering integrals VE in the particular cases of (3.13), (3.18),
and (3.21) do not differ from the known values.29

3.2. Components of the equilibrium emission of a closed
isothermal cavity filled with a gas containing
a condensed dispersed phase

Equation (3.6) implies that a function of the sources
arising from the summation of certain primary sources
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equals the sum of the functions of the sources correspond-
ing to each of the primary sources being added. We can
write this in the form

e(2f t )=2(*(f t ) ) -
V i / i

(3.23)

Here we have omitted all the arguments of the function e,
while only the dependence of e on g is emphasized. The
well known additivity of (3.23) arises from the linearity of
the transport equation (3.2), and hence, of Eq. (3.6).
Equation (3.23) also implies that the integral term in the
expression for the intensity (3.4) is also summed in the
summation of the primary sources. We emphasize that the
emitter can be arbitrary in shape, optically inhomoge-
neous, and can scatter anisotropically. We shall employ the
general property of additivity to find the relationships be-
tween certain functions of the sources e and to determine
the terms in the equilibrium radiation in the case in which
the emitter is a thermal one surrounded by the closed sur-
face 5", while the temperature of the gas, of the particles,
and of the surface are the same and invariant within the
cavity. In this case the emitter amounts to a model of a
black body. In such an emitter, as is implied by general
physical considerations, the intensity of the radiation ev-
erywhere inside the cavity is the same, is isotropic, and
equals the intensity of the radiation of an absolutely black
body:

/=7°. (3.24)

Moreover, we obtain from (3.2) for a^=0 and constant /:

e=I=J°. (3.25)

When a=0 the value of E can be an arbitrary finite quan-
tity, but since the total effect of input of energy is a zero
effect, we can assume that also in this case (3.25) holds.

The primary sources are determined by the intrinsic
thermal emission gv of (3.12) and by the intensity of the
primary scattered radiation gs according to (3.9) with

/(r',fU)=/co=/°. (3.26)

Let £„ and es be functions of the sources, which are the
solution of Eq. (3.6) forg=gvanug=gs, respectively. The
total source function is determined according to (3.23)
and satisfies the expression (3.25). That is, we have

or

£=I°=EV+£S,

£„ £s
1=75+7—•

i 'so

(3.27)

(3.28)

The equations (3.27) and (3.28) amount to the conditions
for radiative equilibrium inside the isothermal cavity.
These equations establish the connection between the
source functions ev and ES under very general assumptions
on the optical characteristics а, A, and x("Ys)- At the same
time they make it possible to represent the equilibrium
source function in the form of the sum of two terms of

different origins: one arises from the primary volume emit-
ters (gu), and the other from the primary surface sources

(&)•
We emphasize that here the scattering is taken into

account only in the volume. Incidence of light on the wall
removes it from the treatment; its subsequent fate is not
important, since it is replaced by the assigned radiation
intensity 7°. This approach is analogous to that adopted in
studying the absorption of light by atoms; the emission
from the atoms was described independently of this ab-
sorption.

Let us use (3.27) to determine the terms of the inten-
sity 1° of the radiation leaving the cavity (or incident from
inside on the surface). To do this, we must substitute
£=£„+% in (3.4). Let /„ be the intensity arising only from
the primary volume sources gv, and correspondingly from
the source function ev; Is arises only from the primary
surface sources, and correspondingly from the source func-
tion £5. For the sake of definiteness we shall study the yield
of radiation at the point rs of the surface 5 (see Fig. 1).
That is, we assume in (3.4) that r=r5. Then, instead of
(3.4) we find

+I° exp[ _ (3.29)

Here т(г5-»г5п) is the optical thickness of the cavity in
the direction of observation. The intensity of emission of a
gas containing a condensed dispersed phase, in view of the
classification of the primary sources into atomic sources
and radiation sources of particles of the dispersed phase in
(3.1) can also be represented in the form of the sum

•• v -* va i •• vp •

Then, instead of (3.29) we obtain the following with
account taken of

*—-* —

(3.30)

'a 'р 'SO

Each term on the left-hand side of the last equation is
determined only by the optical characteristics in agreement
with (3.12), (3.9), and (3.10). The last terms on the right-
hand sides in (3.29) and (3.30) are the intensities of the
radiation of the opposite wall that has reached the observer
without interacting with the medium. Each of the terms in
the intensity, just like the terms in the source functions E,
can be calculated separately, as will be used below.

Of course, the obtained resolutions into components of
(3.28) and (3.29) are valid in the special cases discussed
above of isotropic scattering, where the scattering opera-
tors and the primary surface sources were determined in a
plane layer by the expressions (3.13) and (3.14), in a cyl-
inder by (3.18) and (3-20), and in a sphere by (3.21) and
(3.22). An equation similar to (3.28) was derived mathe-
matically in the special case of a plane layer and of a ho-
mogeneous, isotropically scattering medium.30 In Ref. 31
the physical meaning of the equation was elucidated.
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Let us take up the question of what the anisotropy of
scattering and inhomogeneity of the medium in a isother-
mal cavity is manifested in. Equation (3.27) implies that,
although individually the primary scattering at r' of a sur-
face emitter and the scattering of the light that has arrived
at r' from the volume can be anisotropic, the overall scat-
tering of light at r' is isotropic. This becomes clear if we
recall that the light coming from a bounded surface S is
equivalent to the light coming from an unbounded isother-
mal medium that might lie outside the cavity. The total
light reaching r is isotropic, while anisotropy of scattering
cannot alter this property. The fraction of the light lost
(absorbed) at г is (1— A(r) ) , and at equilibrium it exactly
is compensated by the corresponding thermal emission in
(3.12).

The relationship between the absorbed and scattered
light in an inhomogeneous medium can vary, since A(r)
varies, but the sum of the emitted and scattered light is
determined only by the temperature and yields a source
function equal to 1°. When A=0, the problem is markedly
simplified, since there is simply no scattering, while e=gv.
When a(r) varies in space, then the absolute value of the
absorbed and scattered light varies, but the compensation
of all the losses by the corresponding volume sources is still
conserved. When a=0, there is no absorption, scattering,
or emission inside the medium, and the light simply passes
from the walls through the medium without interacting
with it, and we have /=7°.

The separation of the equilibrium radiation into com-
ponents obtained here can be used in rather varied ways.
Let us present two examples from spectral diagnostics: 1)
One obtains from (3.29) and (3.30) the limiting values of
the intensities Is, Im, and 1^, which it is important to
know in solving problems of diagnostics. Thus, for exam-
ple, one can estimate the maximum possible influence of
the scattering of the emission from the walls from the mea-
sured intensity. 2) In numerical calculations of the inten-
sities /s, Im, and /„p, Eqs. (3.29) and (3.30) make it
possible to estimate the error of the calculations.

3.3. The probabilistic method of solving the transport
equations

The purpose of the spectral diagnostics of a gas con-
taining a condensed dispersed phase is primarily to deter-
mine the characteristics that enter into the primary volume
sources of(3.10)-(3.12). Yet in experiments one measures
the intensities of the output radiation. In radiation trans-
port theory the relationships between the primary sources
and the measurable intensity is established by two different
methods. In the overwhelming number of studies the dis-
tribution of the source functions e or of the intensities /
inside the entire studied volume is determined. After solv-
ing this problem, one can also find the output intensity.
This approach yields the concrete results required in diag-
nostics only in the simplest cases, although various studies
have used different calculational procedures. Usually one
studies a plane layer containing an optically homogeneous,
isotropically scattering medium, while here actually one
can take account only of single scattering.

In the other method of solving the problem, which was
proposed in 1951 by V. V. Sobolev,32 first one determines
the probability of escape of radiation from the object with
account taken of multiple scattering, after which one es-
tablishes the direct connection between the primary emit-
ters and the observed intensity. The method is based on the
fact that the propagation of radiation in the medium is a
statistical process, and the elementary interaction of the
radiation with matter has a probabilistic meaning. There-
fore one can write: a dr is the probability of interaction
with the medium on the element of path dr;
exp(—r(r-»r')) is the probability that the radiation will
proceed from the point г to the point r' without interacting
with the medium; A is the probability of scattering in a
single interaction with the medium. £(ft-»ft')dft'/4ir is

the probability that radiation in the direction ft after single
scattering will proceed in the direction ft' inside the ele-
ment of solid angle dft'.

To explain the physical meaning of the method, first
we shall write the expression for the intensity of radiation
leaving at an arbitrary point rs in the direction ft in the
absence of scattering (A=0). Instead of (3.4), with ac-
count taken of (3.3), we obtain (see Fig. 1)

7(r5,ft) = Г с1г"{&,(г",П)ехр[-т(г"-»г5)]
J '?< i

Xa(r")}+/(r5 t J,ft)exp[-T(rS n-

(3.31)

The first term in (3.31) is the radiation of the volume, and
the second is that of the opposite surface. Both terms in-
clude exp(—т), the probability that the radiation will
reach the point of observation rs without interacting with
the medium. The radiation that interacted with the me-
dium was absorbed by it. At the point rs only the radiation
can lie in the direction ft that appeared on the straight line
(rsn —r5) and from the outset had the direction ft.

The probabilistic method makes it possible to write the
intensity of the output radiation in a form similar to (3.31)
also in the presence of scattering, i.e., to express the inten-
sity of the output radiation in terms of the primary sources
and the probability of exit in quadratures. But to do this we
must find the probability of escape. In the presence of scat-
tering the exponentials exp(—т) continue to describe the
probability of escape or transmission of the radiation with-
out interacting with the medium. But the total probability
of escape can substantially exceed exp(—т), since even
after interaction of the radiation with the medium, the
scattered (surviving) radiation can reach the boundary of
the medium. Here it can undergo many scattering events,
or in other words, the photons can move in zigzag, rather
chaotic trajectories. The light emitted at the point г in the
direction ft can leave the medium at an arbitrary point of
the surface S and in an arbitrary direction. And con-
versely, light can arrive at the point of observation rs in the
direction ft that was emitted in an arbitrary direction at
any point of the object. Already this implies that, if one can
find the probsability of escape from various points of the
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object, in calculating the escaping intensity the integration
must be performed, not along the straight line (r5n—Г5),
but over the entire volume.

In concrete cases one can introduce and use the prob-
abilities of events that somewhat differ from one another.
The differences are determined by what radiation is being
considered at the beginning of its passage to the surface or
at the end of this path. For example, let

p[ (r,ft'") -»(r5.,ii)]d3rdft'"d2rjdft

be the probability that a photon having a direction inside
the element of solid angle from (ft'" to ft'"+dft'") is the
probability that a photon with a ^lirectiqn inside the ele-
ment of solid angle from ft'" to ft'"+rfft'" that interacts
with the medium in the volume element d3r will reach the
surface S and will fall inside the element of area d2r5 in the
neighborhood of the point rs inside the element of solid
angle from ft to ft+dft. Incidence of a photon on the
surface can occur with intermediate scattering of any mul-
tiplicity. Analogously one can determine the probability of
escape of a photon that does not interact with the medium,
but was emitted by it as the result of intrinsic emission or
scattering in the volume element d3r in a direction from
ft'" to ft'" + dft'". Let us denote this probability as:

q( (r.ft'") - (rs,ft) ]d3rdft'"d2

rsdft.

The probabilities of escape within finite intervals of areas
and solid angles are obtained by integrating over rs and ft.
One can study also the probability of escape, not at a cer-
tain part of the surface, but only in a given direction, in-
dependently of the site of escape (see Sec. 4.1).

At first glance it seems very difficult to write the equa-
tions describing any of these probabilities, owing to the
complex behavior of the radiation with possible multiple
scattering. However, in fact, the process of writing these
equations differs little from the process of writing the equa-
tions of radiation transport. The difference lies only in the
fact that in writing the equations for the source functions it
was necessary to take account of the possible arrival of
light at the point r under study from all directions. In
treating the probability of escape, we must take account of
the possible escape of light from the point г in all direc-
tions, i.e., in opposite directions. Let us show this.

Let us write the integral equation for the probability
density of escape of a photon that interacts at^r with the
medium. The initial direction of the photon ft'" can be
arbitrary; let us take as this direction (—ft). The proba-
bility p(r, —ft) that the radiation will reach the surface is
composed of the probabilities of two mutually exclusive
events: passage of the light after single scattering at the
point r directly to the surface S, and with intermediate
scattering events. The probability of passage with interme-
diate scattering events is defined as the product of the prob-
abilities of a number of successive events:

1) Scattering at г in the direction of the volume ele-
ment dV in the neighborhood of the arbitrary point r' (see
Fig. 1). The solid angle that this volume subtends at г is
dV/(r—r')2. Therefore the corresponding probability
equals А(г)*( -ft, -ft')dV/47r(r-r')2.

2) Passage to r' without interacting with the medium:
ехр[-т(г-г')].

3) Interaction with the medium within d3r': a(r') dr'.
4) Escape from r':p(r', -ft').
To take account of all the possibilities of this approach

one must perform the integration over the entire volume,
i.e., over all r'. Upon taking account of the presented ideas,
we obtain the equation for the probability of escape:

Я(г')
= 477-

dV{p(r',-ft')

Хехр[-т(г-.г')]а(г')*(г,-П--С')

r,-ft). (3.32)

Here we have omitted the symbols for the site and direc-
tion of escape of the radiation; it is only important that
they are the same in all the terms of the equation. Here p\
is the probability of passage of the light to the surface
without intermediate scattering events. The index 1 means
that one takes account only of a single scattering at the
beginning of the path r. The probability p\ substantially
depends on precisely where and in which direction the
photon escapes from the medium. Let us write the expres-
sion for the probability of escape p, in the neighborhood of
an arbitrary point r's, on the surface (see Fig. 1), while
taking account of two consecutive events:

1) Scattering at г in the direction of the surface ele-
ment d2r's, (see Fig. 1):

2) Passage to r's, without interacting with the medium:
exp[— r(r-»r£)].

In the case of escape in any part of the surface S, we
obtain after multiplying the probabilities of the two stated
events and integrating over the surface:

/>,(г,-П)=А(г) Г d2riexp[—
Js

Xcos(ft£ л'$)х(г,

r^)2. (3.33)

Let us compare Eq. (3.32) with the equation for the
source function (3.6). The scattering integrals in the two
cases are the same if the condition is satisfied that

Moreover, if in Eq. (3.6) the free term g is determined only
by the primarily scattered radiation of the surface (3.9),
while in Eq. (3.32) the free term is determined by Eq.
(3.33), then the fulfillment of the condition (3.34) ensures
coincidence also of the free terms of the equations. The first
studies of V. V. Sobolev32'33 and I. N. Minin34 called at-
tention to the fact that the obtained equations for the prob-
abilities of escape p and q from a plane layer in a given
direction coincide with the equations for the source func-
tions and intensities in the case in which sufficient condi-
tions are found for the source functions and intensities
created by an external emitter in a medium illuminated
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from outside to equal the probabilities of escape p and q in
the region of location of the external emitter. The funda-
mental condition is: the reciprocity relationships must be
fulfilled in a single interaction of the radiation with matter.
This condition was fulfilled in Refs. 32-34. In the case in
which a does not depend on the direction of the radiation,
the reciprocity relationship acquires the form of (3.34).
The condition (3.34) implies that the scattering indicatrix
must not change if the directions of the incident and scat-
tered light change place. It was shown35 that in the wave
zone, i.e., sufficiently remote from scattering particles, the
reciprocity principle is fulfilled. The indicatrices presented
in Sec. 2.1 pertain to the wave zone, and depend only on
the absolute value of the scattering angle ys (or on cos ys).
That is, they satisfy the condition (3.34). Relationships
exist between the probability densities p and q when they
characterize the escape at the very same site and in the
very same direction. The relationships between p and q in
a plane layer were derived by I. N. Minin,15'34 and in the
general case in Ref. 27. Here we shall discuss a very simple
relationship, which will be used below. The probability
that radiation that interacts with the medium will escape
from it is determined by the product of the probabilities of
two consecutive events: the probability of scattering at_the
point r in the arbitrary direction A(r);^(r,ft'"-»ft')dft'/
4-ir and the probability of subsequent escape of the already
scattered radiation <?(r,ft'). Here we must take account by
integration of the possibility of initial scattering at г in any
direction:

Г *(г'Дг"'
J4ir

(3.35)

Here we have omitted in the notation for p and q the site
and direction of the escape of the photon. For (3.35) to be
correct it is only required that they be the same for p
and q.

The probability densities p and q can be used to write
expressions for the output intensity. To elucidate the fea-
tures of the method, let us write the expression for the
intensity by using the probability of escape of a photon
emitted by the medium ( q ) .

The intensity of the primary emission from a unit vol-
ume in the neighborhood of the point г in the direction ft'"
can be written in the form g(r,ft'")a(r). Let
g[(r,a'")-*(rs,ft)]d3rda'"d2r5dn be the probability that
the radiation emitted or scattered in cfr within the interval
of solid angles from ft'" to ft'"+dft'" will reach the sur-
face and fall inside the area element d2rs in the neighbor-
hood of rs inside the element of angle from ft to ft + dft.
Then we directly find the following expression for the in-
tensity of the output radiation:

7(r5,ft)= Г dft"' f d3r{g(r,ft''')a(r)<7[(r,ft'")
J4ir Jo

(3.36)Xexp[-r(rs-.rsu)].
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The factor cos (ft rs) appeared within the integrand be-
cause, in the definition of q, the area of the surface was
indicated toward which the radiation escapes, while the
intensity must be calculated per unit of area perpendicular
to the flux. The second term takes account of the arrival of
light directly from the opposite wall.

Thus, in the probabilistic method first one must find
the probabilities of escape by solving equations of a type
like (3.32). Then the intensity can be determined by
(3.36). In the other methods first one must find the source
functions from equations of the type of (3.6), and then
determine the intensity by (3.4), having set г=Г5- The
advantages of the probabilistic method in diagnostics in-
volve the fact that the equation (3.6) for e contains the
optical characteristics of the medium and arbitrary pri-
mary sources g ( r ) , while in an equation of the type of
(3.32) there are no primary sources of radiation, while all
the terms are determined only by the optical characteristics
of the medium (a, A, ̂ ). This facilitates extremely finding
the probabilities as compared with finding the source func-
tions. The expression (3.36) is more complicated than
(3.4), since it requires integration over the volume, but
real objects are usually rather simple in shape, which
markedly simplifies the problem. On the other hand, the
direct relationship in the quadratures of the observed in-
tensity / with the sought function g plays an important role
in obtaining reliable results. When the integral terms in the
equations for e and the probabilities coincide, as was the
case above, the probability can be treated as a special so-
lution of the transport equation (3.6) with a given free
term.31 This solution is a function of the response function
of the escaping radiation to the appearance of a single
source inside the medium.

The equations for the probability of escape of a photon
from a plane layer for isotropic scattering were derived in
Ref. 33, and used in Ref. 36 for calculating the contours of
spectral lines as required in spectral diagnostics. Temper-
ature inhomogeneity in the layer and multiple scattering
have been taken into account without complications. A
similar problem was solved in Ref. 37 by the ordinary
method, but it was possible with difficulty to take account
of only single scattering.

Thus the probabilistic method was chosen for describ-
ing the transport of radiation in a gas containing a con-
densed dispersed phase. The method makes it possible
most directly to relate the measured intensity of the radi-
ation to the sought characteristics of the object, even in the
case when light scattering by particles is substantial. The
relationships needed in the calculations were derived in
rather general form.

4. EMISSION FROM A GAS CONTAINING A CONDENSED
DISPERSED PHASE

The present Sec. 4 is devoted to describing the output
of the intrinsic emission of a gas containing a condensed
dispersed phase. The primary sources g,,in[(3.10)-(3.12)]
and the intensity of the thermal emission of the walls are
isotropic. This often leads to a weak dependence of the
emission intensity on the direction, despite the anisotropy

I. A. Vasil'eva 707



of scattering by the particles. Under these conditions one
can use the transport approximation and assume the scat-
tering to be isotropic. In Sees. 4.1—4.3 this is done in study-
ing the output of radiation from objects of very simple
shapes. Sections 4.4 and 4.5 theoretically and experimen-
tally discuss the case, of practical importance in diagnos-
tics, in which one must take account of the anisotropy of
scattering.

4.1. Escape of radiation for isotropic scattering

Let us study the radiation from an infinite plane layer,
an infinite cylinder, and a sphere. We shall assume that the
distribution of primary volume sources in the layer de-
pends only on the coordinate X in the layer (see Fig. 2),
and in the cylinder and the sphere only on the radius p
(see Fig. 3). If in addition the walls emit homogeneously,
we can expect that the radiation will escape the object in all
regions of its surface in the same way. The intensity of the
escaping radiation here can depend only on the direction.
Let us introduce a concept of the probability of escape
suitable for describing the radiation in these cases: let
9(r-»ft)d3rdft/47T be the probability that a a photon that
has appeared in the neighborhood of г inside d3r will leave
the volume being studied in the direction ft. In contrast to
the probabilities discussed in Sec. 3.3, here we do not in-
dicate an initial direction of the photon appearing at r and
have not stipulated the site of escape of the photon from
the medium. We have fixed only the direction ft of this
escape, which involves the features of the objects being
studied. Yet the absence in the definition of q of an initial
direction implies that the probability that has been intro-
duced is averaged over the initial directions. The probabil-
ity averaged over the initial directions involves the evident
relationship introduced earlier:

= 9(r,ft"'-ft)dft'"/47r. (4.1)

Analogously we can introduce the probability p(г-»ft) av-
eraged over the initial directions. However, in isotropic
scattering the probability of escape of a photon interacting
with the medium does not depend on the initial direction.
That is, the probability p averaged over the initial direc-
tions equals this probability itself. With account taken of
(4.1) and #=1, we find instead of (3.35):

-» -»
/?(r-»ft)=A(r)<7(r-»ft)/47r. (4.2)

Now we shall derive the equation for the probability q by
using the general formula (3.32). In Eq. (3.32) we shall
omit the symbols for the initial directions —ft and —ft',
since nothing depends on them in the case being studied.
Let us substitute (4.2) and ^=1 into (3.32) and divide
both sides of the equation by А(г)/4тг:

I f ,o(r^ft)=— d3r'{$(r'-ft)exp[—r(r-r')]a(r')
4-n- Jv

has arisen in the neighborhood of r. Let us write in general
form the expression for g0(r->ft) while paying attention to
the following. The direction of escape ft in emitters of
different geometric shapes is usually determined by some
directing angles on the surface, which can differ from the
directing angles inside the emitter. The corresponding ele-
ments of solid angle also can differ.

The probability of immediate escape is determined by
the probabilities of two consecutive events: 1 ) The proba-
bility of traveling after appearance at r inside the element
of solid angle dft0, which corresponds on the surface to the
element rfft. This probability is dfto/47r. 2) The probability
of reaching the surface without interacting with the me-
dium: exp[— r(r-»ft)]. Here the direction to the surface is
indicated in the argument of the optical density, rather
than the point on the surface. As a result we obtain

(4.4)

90(r-»ft)=exp[-<r(r->ft)]dfto/dft.

ХА(г')(г-г'Г2}+$о<г-П). (4.3)

Here <70(r->ft) is the probability of immediate escape
(without interacting with the medium) of a photon that

->

The probability ^(r-*ft) can be found in concrete geomet-
ric shapes by solving Eq. ^4.3). To obtain the intensity
emerging in the direction ft, one needs the power of the
primary sources emitted on all sides of the volume element
47ra(r)g(r)d3r, multiply it by the probability density of
escape, and integrate over the volume. Upon adding the
intensity of the light that has come directly from the op-
posite region of the wall, we obtain

7(ft) = f 47ra(r)£(r)?(r,ft)d3r[477-.S'cos(ns ft)]-1

J v

+I(rsn, ft)exp[-T(rsn-rs)]. (4.5)

Here S, the area of the bounding surface, appeared because
the probability q describes the emergence over the entire
surface. The second term does not differ from that in
(3.36).

Let us apply the obtained expression to an infinite
plane layer, an infinite cylinder, and a sphere.38 The scat-
tering operators for q [the integral term in (4.3)] equal the
scattering operators of (3.13), (3.18), and (3.21), respec-
tively, in the layer, the cylinder, and the sphere (in the
cylinder and the sphere the assumption was made that the
medium is homogeneous). This result is ensured by the
fulfillment of the reciprocity principle (3.34). We shall
write the quantities q0 and 1 in each case by using the
general expressions (4.4) and (4.5).

In the plane layer the direction inside the layer and at
its surface is determined by the angle Ф between the chosen
direction and the normal to the surface ^=0 (Fig. 2).
Therefore we have here dft0=d?ft. The optical density т in
the plane case is simply expressed in terms of the optical
coordinate t and cos Ф = Т7, namely: r=t/rj. We can refine
the definition of the probability of escape in this way:
q(t-»T])/4ir is the probability that a photon that has ap-
peared at the optical depth t in a unit volume will escape
through the boundary X=t=0 at the angle Ф in a unit of
solid angle. Then q( (tQ — t) ->?/) is the same characteristic
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of escape through the boundary X=\, t=t0 (see Fig. 2)
The probabilities of immediate escape here are:

=exp( - (4.6)

The equation for the probability of escape has the form
[with account taken of (3.13)]:

=0.5 f'°
Jo

+ exp(-f/T7). (4.7)

Equation (4.7) differs from the equation that was derived
in the pioneering study33 only in that the probability of
survival A can be a variable and therefore is placed in the
integrand.

If the probability q is found by solving Eq. (4.7), then,
by using (4.5) we can find the intensity of the escaping
radiation. In the case of the infinite plane layer we can take
as the volume v the volume of a rectangular parallelepiped
with the base S (see Fig. 2). This dissecting out of a finite
column is possible, since all the radiation escaping from it
to other parts of the surface is fully compensated by the
incidence from the other volumes.

Let us set in (4.5) d\=SdX and integrate over the
height:

Г'с
/(0,1?) =

Jo

C'°
= -Jo

(77<0).

(4.8)

(4.9)

The primary sources g(t) in (4.8) and (4.9) are deter-
mined by the specifics of the problem. The surface primary
sources with homogeneous isotropic emission from both
surfaces are determined by Eq. (3.14).

The direction of the radiation escaping from an infinite
cylinder is determined by two angles on the surface (see
Fig. 3): в, the angle between the generator of the cylinder
and the direction £1, and Ф, the angle between the projec-
tion of 11 on the radial plane and the normal to the surface.
The direction inside the cylinder is characterized by the
same angle в and the angle ф between the chosen direction
and the radius at the point being studied. The elements of
solid angle on the surface and inside the cylinder are re-
lated as follows:

dn0=dii cos Ф • (*2-sin2 Ф)-1/2 (4.10)

Here we have x = p/R. Let us take account of the fact that
escape is possible from each point inside the cylinder at
two points of the surface (В and С in Fig. 3) with identical
Ф and 0. We shall assume the medium to be homoge-
neous. Upon paying attention to (3.5), we can obtain from
(4.4)

д0(х,Ф,®)=со&Ф- (x2— sin3 Ф)~1/2[ехр{ — ?0[cos Ф

-(*2-sin^)1/2]/2sin6i}

+ехр{-г0[со8Ф+(*2

-8т2Ф)1/2]/28Н10}]

for x2 > sin2 Ф,

д0(х,Ф,в)=0 when x2< sin2 Ф. (4.11)

Here we have noted that the probability of escape depends
only on the relative radius x and the angles в and Ф. The
second equation of (4.11) describes the fact that, for a
given Ф, immediate escape at the surface is possible only
for a sufficiently large distance (x) from the center.

Equation (4.3) for the probability of escape with ac-
count taken of (3.18) acquires the form

д(х,Ф,в) = Uto/2ir) Г x'q(x',<$,6)J(x,x')dx'
Jo

+д0(х,Ф,&), (4.12)

where J(x,x') is determined by Eq. (3.19), while q0 is
determined by the expressions of (4.11).

Let us find the expression for the intensity of radiation
escaping from the cylinder. Here as the volume equivalent
to its neighbors we shall take a cylinder of height H. Then
we have

S=2-irRH, (4.13)

Upon integrating over <p from 0 to 2тт, and over p from 0
to R, we can find the first term of (4.5 ). The optical density
along the chosen direction to the opposite surface in the
cylinder is

(4.14)

Taking all this into account, we find

Г
Jo

в). (4.15)

In this case the surface primary sources are determined by
Eq. (3.20).

The direction on the surface of the sphere can be char-
acterized by the angle Ф between Й and the normal to the
surface, while the direction inside the sphere is character-
ized by the angle ф between the chosen direction and the
radius (see the lower part of Fig. 3). The relationship
between the elements of solid angle on the surface and
inside the sphere has the form

=dQ cos <b/x(x2-sin2

Finally in the case of the sphere we find

(4.16)
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д0(х,Ф) = [cos Ф/х(х2-&т2 Ф)1/2]

Х[ехр{-0.5г0[со8Ф-(л:2-8т2Ф)1/2]}

+exp{-0.5J0[cos Ф+(х2-зт2 Ф)1/2]}]

when х2 > sin2 Ф, = О

when *2<8Ш2Ф. (4.17)

The equation for the probability of escape with account
taken of (3.21) acquires the form

Г
Jo

-Е1(0.5(х+х')))+д0(х,Ф), (4.18)

where д0(х,Ф) is determined by Eq. (4.17).
Let us find the intensity of radiation escaping from the

sphere. To do this we shall study the entire surface of the
sphere 5>=4тгЛ2. Integrating over the volume of the
sphere, we find from (4.5)

Г1

1(Ф) = (to/2 cos Ф) g(x)x2q(x&)dx+IsoJo

Xexp( —Г (4.19)

Here gs is determined by Eq. (3.22).
Let us adopt the method of successive approximations,

which makes it possible to solve the equations for q in the
cases discussed here. The solution is represented in the
form of the series:

?(г-»П)=

q\ =

k
max' (4.20)

(4.21)

Here Amax is the largest value of A in the inhomogeneous
gas; q0 is determined by Eqs. (4.4), (4.6), (4.11), and
(4.17) in the different cases; and the V are the integral
scattering operators that enter into Eqs. (4.3), (4.7),
(4.12), and (4.18). The kih term of the series in (4.20)
amounts to the probability of escape with k scattering
events. To establish the convergence of the series in (4.20),
it suffices to estimate the difference between the infinite
sum in (4.20) and the sum of a finite number of terms of
the series. If we use т terms of the series, then the residual
is

- 2

=
k=m + \

х = I ax- (4-22)

Here \\У\\ is the norm of the operators. If
then one can use the formula for a geometric progression
and, instead of (4.22), obtain

v
- 2,

k=0 l-|№max '
(4.23)

This implies that the series of (4.23) converges when
Amax|| V\\ < 1. An estimate of the norm in a plane layer was
made in Ref. 37, and it was shown that || V\\ < 1. Hence the
series converges when A<1. The spherical case does not
differ from the plane case.

In the following Sees. 4.2 and 4.3 we shall use the
relationships obtained here to perform illustrative calcula-
tions. Below it will be useful to classify the optical densities
into those governed by particles ( t p ) and atoms (fa). Using
(2.35) instead of (3.15), we find

= Г
Jo

(4.24)

In the cases of the cylinder and the sphere, in line with
(3.17), the expressions (4.24) also hold when l=2R. Us-
ing (4.24), we can rewrite (2.36) and (3.10) in the case of
an optically homogeneous medium:

A=ViA'.+O. (4-25>

(4.26)

Here x is the relative coordinate. We emphasize that
(4.25) and (4.26) are valid both for isotropic and aniso-
tropic scattering. If we use the transport approximation in
Eqs. (4.25) and (4.26), instead of Ap we must introduce
Atr, which is related to the true Ap by Eq. (2.9), while
instead of tp we must use /tr, which is determined by the
expression

>tr =

Here atr is expressed in terms of 2tr by using (2.29), while,
when all the particles are identical, one can use (2.27). In
this case we find by using Eq. (2.11):

ttr= fap(l-
Jo

<cos (4.27)

Finally, in the case in which Ap does not vary inside the
sphere, we obtain the relationship between the transport
value and the true optical density:

rt r=fp(l — Aj/cosyj». (4.28)

Thus we have derived the integral equations and that
determine the probability of escape for isotropic scattering
and the expressions for the escaping intensity in terms of
the primary sources and the probabilities of escape. The
relationships that we have obtained can be used for calcu-
lating the intensities of radiation from a layer, a cylinder,
and a sphere.
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FIG. 4. Variation inside a plane layer (x=t/tp) of the probabilities of
escape in the direction of the normal (17 = 1 ) through the boundary x= 1
for «p=2 (solid curves) and primary surface sources (dashed curves).
0—ql, 1—qi, 2—дг, 3— <?з. 4~~ #t> •*— ijfor Ap=0.5, curves 6—8— gs/I—, i, , . > •
for Ap=0.5; 6— tf= 1, gs=gso [according to (3.14)], 7— tp= 1, gs=gsif>.
8— t =2, gs=gsi-

4.2. Emission from the condensed dispersed phase in the

continuum
4.2.1. This section will discuss examples of applica-

tion of the relationships derived in Sec. 4.1 for describing
the intensity of the output radiation in the regions of the
spectrum where there are no atomic and molecular lines,
i.e., ka=ta=0, t0=tf, A=A p . The goal of the discussion is
to distinguish the features of the radiation that must be
taken into account in spectral diagnostics. Further, it is
assumed in the calculations that Я does not vary inside the
medium.

In obtaining the intensities first one determines the
probability of escape by solving Eqs. (4.7), (4.12), or
(4.18) by the method of successive approximations in dif-
ferent cases. Figures 4 and 5 show the probabilities of es-
cape from various depths in a plane layer and a cylinder. In
the layer we use the relative optical coordinate x=t/t0 and
study the escape through the boundary t=t0 (or x= 1) in
the cylinder x = p/R.

The curves 0-4 in the two diagrams show the functions
qk that determine the Л-fold scattering in the expansion in
(4.20). The quantities qk decrease with increasing k; hence
the norms of the scattering operators || V\\ are smaller than
unity. There are substantial differences in the behavior of
the probabilities of escape from a plane layer and a cylin-
der. In the case of the cylinder there is a singularity on the
q0 curve as x-»0 and Ф=0, while with increasing x the
value of qQ monotonically decreases in agreement with
(4.11). This is reflected in the behavior of all the rest of the
curves. The singularity arises from the fact that a photon
that arises near the axis of the cylinder can escape through
the surface without being scattered only when Ф-»0. With
increasing x the photon can directly escape in an ever
larger range of angles Ф, which leads to a decrease in qQ.
We note that singularities exist only in the probability den-

FIG. 5. Variation inside a cylinder of the probabilities of escape in the
direction of the normal to the surface (Ф=0, 0=тг/2) for tp=2. 0—?0>

,,, 2—q-i, 3—qi, 4—q^ 5—q for Ap=0.5, 6—q for Ap=0.75.

sities, while the intensities are always finite as a result of
the integration over (4.15).

In a plane layer, as we approach the surface x=\, on
the whole the probabilities increase, although there are
some nonmonotonicities (curves 1-4 in Fig. 4).

The probabilities of escape from a sphere behave qual-
itatively in the same way as for a cylinder.

To calculate the intensities of the escaping radiation,
we must define the primary sources. Let us study thermal
sources gp for /a=0 (4.26) and surface sources of
(3.14)— in a layer, (3.20) — in a cylinder, and (3.22)— in a
sphere. The variation of the thermal sources gp according
to (3.11) or (4.26) inside the medium is caused by the
variation of the temperature, and correspondingly, of
/£(*). In the calculations we shall adopt three very simple
variants: 1) the temperature is constant, 2) the tempera-
ture increases in the direction toward the surface of obser-
vation, 3) the temperature decreases in the direction to-
ward the surface of observation. In cases 2) and 3) the
temperature variations are such that J°(x) varies linearly.
In the stated variants we have

(4.29)

We shall denote the corresponding primary volume
sources as gvl, gv2, and gv3.

In the cases of the sphere and the cylinder gv2 and gv3

correspond to linear increase and decrease of I°(x) as we
go away from the center or the axis, respectively. In the
layer the reference point, and hence the increase or de-
crease in /°(je), begins from the surface opposite to the
observer. That is, the character of the inhomogeneity dif-
fers from that in the cylinder and the sphere.

The primary surface sources are shown in the case of
the layer in Fig. 4 by dashed curves: curve б describes the
scattering of radiation by one surface [t=x=0, gs=gso
according to (3.14)], while curves 7 and 8 describe scat-
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FIG. 6. Dependence of the intensity of the radiation escaping a plane
layer in the direction of the normal (i> = l) toward the surface t—t0=tt

for various primary sources. I^/J^ are the relative intensities for vol-
ume sources determined by the formulas of (4.26) for fa=0 and by the
formulas of (4.29) for Q(x). The /S//SD are the relative intensities for
surface sources g^, gsa, and g^ determined by (3.14). The number after
the symbol for the source on the curves is the value of Ap.

FIG. 7. Dependence of the intensity of the radiation escaping in the
direction normal to the surface. The symbols for the primary sources are
the same as in Fig. 6, except that S is the intensity for the sources deter-
mined by (3.22) for a sphere; sp—sphere, slab—plane layer, cyl—
cylinder.

tering of radiation by both surfaces \g^ according to
(3.14)]. Increase in the optical density leads to a sharper
decline in gs with distance from the surface. Qualitatively,
in the cylinder and the sphere gs(x) are analogous to #52
in the layer.

The calculations of the intensities of the radiation es-
caping the layer, the cylinder, and the sphere must be per-
formed by Eqs. (4.9), (4.15), and (4.19), respectively.
The result depends on the optical density tp, the probabil-
ity of survival Ap, the shape of the emitter, and the char-
acter of the primary sources g. Figures 6 and 7 show the
dependences on tp of the intensity of radiation escaping in
the direction of the normal to the surface from the layer,
cylinder, and sphere for Ap=0 and Ap=0.5; /„p is the in-
tensity arising from the primary volume sources, and Is

from the surface sources. We shall use these calculations to
reveal the features of the different emitters.

4.2.2. /50=0, /pV=0-the primary sources are deter-
mined by Eq. (4.26) when /a=0 for gp, where /£(*) is
described by one of the formulas of (4.29). The bounding
surfaces are either absent or transparent or completely ab-
sorb the light incident on them, but here do not themselves
emit, e.g., because their temperatures are low.

Here a very simple case is an emitter without scatter-
ing, i.e., with Ap=0. In the absence of scattering the rela-
tive intensity does not depend on the shape of the emitter,
while only the character of the inhomogeneity along the
direction of observation is defined. In the homogeneous
case (curves vl; 0 in Figs. 6 and 7) the intensity of the
radiation is described by the well known formula, which is
also implied by (3.4) when /5=0:

•O. (4.30)

In inhomogeneous emitters /i^//^ is smaller than in
(4.30) for all tp, while in the case of decreasing tempera-
ture, nonmonotonicity (self-reversal) arises as one ap-
proaches the observer in the course of /„p//^ (v3; 0 in
Fig. 6).

When scattering arises (Арт^0), the ///^ variation
is substantially altered, while this alteration depends on the
shape of the emitter. In the homogeneous case (vl;0.5) for
all fp the relative intensities decline. The decrease is caused
by the change in gv owing to the coefficient (1 — A p ), since
the probabilities q only increase with increasing Ap accord-
ing to (4.20).

The influence of the shape of the object on the decrease
in intensity in the presence of scattering by particles can be
explained as follows. When the primary intensity of the
radiation is fixed in the object at every point, this radiation
in the steady-state case is compensated by the losses by
absorption and by escape through the surface.

For a given optical density and with an increasing role
played by scattering, the role of escape through the surface
is increased. Depending on the ratio of the area of the
surface and the volume, the steady state is established at
some particular level of density of radiant energy.

In going from the plane layer to the cylinder and the
sphere, the role of escape through the surface increases and
the intensity decreases (see Fig. 7).

The ratio /,ф//тах *s °ften called the emissive capacity
("emittance" in the English-language literature). In a ho-
mogeneous thermal emitter, when one can apply the
Kirchhoff law to the emitter as a whole, the ratio
/Ф//£,ах also characterizes the emittance of the particles;
consequently both of these definitions pertain to the curves
vl (see Sec. 6.2). We emphasize only again that the emit-
tance in the absence of scattering, independently of the
shape of the homogeneous emitter, is related to the optical
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density by Eq. (4.30), while in the presence of scattering a
dependence on Ap and on the shape of the emitter arises.

4.2.3. 7^ = 0, /50^0—nonradiating macroscopic par-
ticles of the dispersed phase surrounded by glowing sur-
faces. This situation can occur either when the temperature
of the particles is so small that they do not emit, or the
particles are purely scattering particles (Ap=l). The pri-
mary sources here are only surface sources (gs), and are
determined by the formulas (3.14), (3.20), and (3.22) in
a layer, a cylinder, and a sphere, and can differ from zero
only if Ap=^=0. The relative intensities Is/1 so °f the radia-
tion of the walls scattered by the particles are given in Figs.
6 and 7 (50, St0, 52, and 5). In calculating these inten-
sities the second term in Eqs. (4.9), (4.15), and (4.19)
was omitted. That is, no account was taken of the light that
arrived directly from the opposite surface lying in the field
of view of the observer. The /5//л(?р) dependences are
nonmonotonic, which involves the behavior of the primary
sources with varying tp (see Fig. 4).

4.2.4. /50^0, /p^O-thermal emitter surrounded by
radiating walls. In this case the intensities can be obtained
by adding the intensities 1^ and Is obtained in the previous
treatments. If the field of view of the observer includes the
opposite surface, then we must add also the intensity com-
ing directly from it [the second terms in (4.9), (4.15), and
(4.19)].

If the temperature everywhere in the volume is the
same and equals the temperature of the surface
(7^iax=/50=7°), then one can apply to the emitter the
equilibrium relationships derived in Sec. 3.2; in particular,
the intensity arising from the volume and surface emitters
must satisfy the condition (3.30) for 1^ = 0:

= 1 -exp( -fp). (4.31)

A consequence is directly obtained from Eq. (4.31). If
Ap=0. then we have /s=0 and I^/f = 1 - exp( - tp).If
Ap = 1, then we have /„=0 and IS/ISO = 1 — exP (— *p). This
means that in the two cases of extremes in scattering the
relative intensities the relative intensities of volume and sur-
face sources are the same. Consequently the curves vl; 0 in
Figs. 6 and 7 describe not only homogeneous emitters
without scattering at Ap=0, but also purely scattering me-
dia with isothermal walls (in our notation—5; /). For
arbitrary 0<Ap< 1 the same curve describes the total rela-
tive intensity of the intrinsic radiation of the particles and
the scattered radiation of the walls (2).

This can be used to estimate the error in calculations
that have been performed. For the test we must add the
intensities of the homogeneous thermal (Iv\/I^nait) and sur-
face (/s//so) sources, add exp( — tp), and compare the re-
sult with unity. This procedure was performed with the
curves (vl; 0.5) and (5; 0.5) in Figs. 6 and 7. It turned out
that the deviation from unity does not exceed 0.07, which
defines the greatest total error of the performed intensity
calculations.

Let us take up the dependence of the output radiation
on the angle for volume homogeneous sources. We note
here two circumstances:

First, at low Ф the dependence on the angle is very
weak, which does not contradict the original justification
for using the transport approximation.

Second, one observes a certain angular redistribution
of the radiation when scattering arises. In general, the ef-
fect depends both on the optical density and on the shape
of the emitter. When scattering arises, the output of radi-
ation at glancing angles to the surface of the layer and the
cylinder declines, since here the geometric paths of the
radiation are longer, and hence, the probability of both a
change of direction upon scattering and of absorption are
greater. Consequently the output in directions close to the
normal increases relatively. The effect is strongest in a
plane layer and is absent in a sphere.

Thus the presented data indicate a strong dependence
of the intensity of the continuum on the probability of
survival Ap, the shape of the emitter, and the presence of
glowing walls, even in the case in which they do not fall
within the field of view of the observer.

4.3. Emission in spectral lines
4.3.1. The present section 4.3 discusses the intensity of

radiation in a region containing lines, where &a(v)=^0. In
the development of the foundations of spectral diagnostics
and in the practical use of diagnostic methods, it is conve-
nient to construct the dependence of the intensities on the
optical density,19'39'40 rather than on the frequency v. This
makes it possible to study and employ the general laws of
behavior of the lines. To transform from optical density to
the frequency v, e.g., in comparing calculated with exper-
imental results, one must use Eq. (4.24) with a known
ka(v). Simultaneous measurements of the intensities and
optical densities prove useful. Further, for definiteness one
studies a single line; the generality of treatment is not lim-
ited by this when the relationships are constructed not
versus the frequency, but versus the optical density.

There is a substantial contrast in the construction of a
spectral line /(?a) from the constructions of I(tp) per-
formed in Sec. 4.2. The change in tp occurred without
change in the absorptive and scattering properties of the
individual particles. Each curve was constructed for an
invariant probability of survival Ap. The variation of tp

here can occur either because of variation of the thickness
of the object or variation of the concentration of particles
np. In constructing a spectral line 7(fa) the variation of the
atomic optical density ta(v) is caused by the variation of
the absorption coefficient of each atom &a(v) according to
(2.32) and (4.24), while the fundamental characteristic of
the scattering Ap varies along with the variation of ta(v)
[see (4.25)] with invariant characteristics of the particles
A p and tp.

The calculations of the probabilities of escape were
performed by solving Eqs. (4.7), (4.12), and (4.18), and
those of the intensities / by Eqs. (4.9), (4.15), and (4.19)
in a plane layer, a cylinder, and a sphere. The construction
of each dependence on ta was performed for given values of
Ap, tp, and /p1. Each value of ?a corresponded to its own
value ?0 according to (4.24) and its own A by (4.25). These
values of t0 and A enter into the calculations of q and /.
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FIG. 8. Variation inside the spectral region of an atomic line of the
probability of scattering and the probability of escape of the radiation
from the middle of a plane layer in the direction of the normal to the
surface. g(to/2, ij=l): 1—fp=0; 2—tf=\; 3—tp=l, Ap=l; 4—tp=\,
Ap=l.

As an example, Fig. 8 shows the variation inside a
spectral line of the probability of survival A and the prob-
abilities q of escape from the middle of a plane layer. With
increasing tu, i.e., with approach to the center of the line,
the probability of escape decreases, both in the absence of
particles (1) and in their presence (2, 3). Absorbing par-
ticles (2) decrease the probability of escape q, while scat-
tering particles (5) decrease q only at large tu, while at
small ta (tail of the line) the eifect can be the opposite.

In calculating the intensities one studies further the
primary volume sources in (4.26) and the surface sources
in (3.14), (3.20), and (3.22). It was assumed in the cal-
culations in volume sources that /p1 does not depend on x,
while I%(x) in the various cases varies as in the formulas of
(4.29).

Let us study the different conditions of emission.
4.3.2. /от=/£=0, P&=£Q. In such an emitter there is

only the primary emission of the atoms, gD(x) =g&(x) ac-
cording to (4.26). The surrounding surfaces either are ab-
sent or only absorb light, while the particles scatter and
absorb, but do not emit light. This can occur either at a low
enough temperature of the particles or if the particles are
purely scattering (Ap=l). Im is the corresponding inten-
sity. Figures 9 and 10 show the results of calculations in a
layer, a cylinder, and a sphere. The influence of tempera-
ture inhomogeneity is qualitatively everywhere the same:
Ля/^тах decreases when inhomogeneity arises, while, when
/* decreases in the direction toward the observer, self-
reversal arises. When the particles only absorb light
(Ap=0), they decrease the intensity for all f a . When the
particles only scatter light (Ap=l), they decrease the in-
tensity at large optical densities of the atoms fa. At small ta

О; О

Ч1Р

FIG. 9. Variation inside the spectral region of an atomic line of the
radiation intensity /„ through the boundary t=t0 of a plane layer in the
direction of the normal to the surface when the primary sources arise
from the thermal emission of atoms [g=ga according to (4.26)]. Solid
curves—Jl=J°i in (4.29); dashed curves—7^=/£; dot-dash curves—/?;
on the curves the first number is /„, and the second number is A..

the intensity increases in the layer and the cylinder; in the
sphere this type of increase is not observed (cf. the solid
curve and the dotted curve for fp=Ap= 1 in Fig. 10). Par-
ticles with 0<Ap< 1 exert an intermediate action on I(ta).

Thus the presence of particles in a radiating gas, even
if the particles themselves do not emit, leads to a substan-
tial change in the form of the line contour. The diminution
of intensity by absorbing particles needs no explanation.
Yet the influence of scattering particles (Ap=l) requires
explanations, since the particles per se should not alter the
number of photons in the medium. Their influence arises

FIG. 10. Variation inside the region of an atomic line of the radiation
intensity /„ in the direction of the normal to the surface when the pri-
mary sources arise from the thermal emission of atoms [g=g, according
to (4.26)]. Cylinder (0=ir/2, <I>=0)-notation the same as in Fig. 9;
sphere-curve for the homogeneous case is drawn with dots.
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FIG. 11. Variation inside the spectral region of an atomic line of the
radiation intensity of a cylinder (0=ir/2, Ф = 0) for various primary
sources. Dashed curves—g—gs according to (3.20), 'p=l;
dot-dash—g=gp according to (4.26), tf=\; solid curves: a—for g=g,,
fp=0. The volume sources ga and gp correspond to an invariant temper-
ature [У°=У? according to (4.29)].

from the increase in path length (or time) that the radia-
tion spends in the medium owing to the zigzag motion of
the photons caused by scattering. At large optical densities
of atoms, this behavior of the photons leads to an increase
in the probability that they will be absorbed by atoms to
decrease the intensity. Of course, at large enough atomic
optical densities (?a> 5) this effect should disappear, since
the radiation is absorbed by atoms faster than it is scattered
by the particles. At low optical densities of the atoms (tails
of the line), the zigzag motion of the photons leads to a
redistribution of the radiation in direction, just as in the
continuum. Precisely this led to the increase in q (curve 3
in Fig. 8) at low ?a in the plane layer.

4.3.3. Now let us turn to other sources of the emission
from a gas containing a condensed dispersed phase. First,
let /a1=/£0=0, /р'тУ)—in this case there is only the pri-
mary radiation of the macroscopic particles \gp(x) accord-
ing to (4.26)]. The atoms only absorb the radiation of the
particles. Let us denote the corresponding intensity as
/„p. In Fig. 11 the dot-dash curves show the variation of
the corresponding intensity in the region of the spectral
line in a cylinder for homogeneous initial emission from
the particles. As the optical density of atoms increases, the
intensity /^ caused by the emission from the particles de-
clines owing to absorption by the atoms. Second, let us
assume that 1^=1^ = 0; Isff^Q—here there are only the
primary surface sources. The corresponding intensities Is

also decline with increasing ?a owing to absorption by at-
oms (Fig. 11; dashed curves, without taking direct account
of arrival of light from the opposite wall).

Just as in the case of the radiation from particles (Sec.
4.2), the combination of different primary sources yields
an intensity obtained by summing the intensities /„a, 7 ,̂,
and /s arising from the different sources. Figure 11 shows

FIG. 12. Typical diagram of the arrangement of a diagnostic instrument.
L—radiation source, 1, 7—focusing optics; 2, 6—optical viewing tubes;
3—surface surrounding the volume under study; 4, 5—the part of the
surface adjoining the tube; 8—spectral instrument.

the contour of the line in a homogeneous emitter in the
absence of particles (a) described by the form
/a=7—exp(/a), and the contour 2, which is obtained for
identical temperatures of the atoms, the particles, and the
surface. The equilibrium relationship (3.30) in the case in
which both the atoms and the particles emit and Eq.
(4.24) holds can be written as:

= 1 - exp( - Г. - tp).

(4.32)

The correctness of the equation does not depend on the
magnitude of Ap. As Ap varies, only the individual terms
vary, but not the sum. As we said above, e.g., when Ap= 1
we have /^ = 0, while when Ap=0 we find that /5=0 with
an invariant sum. Thus the particles substantially affect the
radiation in the spectral lines. The strongest agents are the
intrinsic emission from the particles and the scattering of
the emission from the walls where the optical density of the
atoms is smaller, i.e., either everywhere in optically thin
layers, or in the tails of the lines for which the optical
density of the centers is large (ra(v0)>l).

4.4. Taking account of anisotropic scattering of the
radiation of the surfaces in experiments in diagnostics

In studying a gas containing a condensed dispersed
phase one often must deal with closed volumes. Special
apertures are made in the walls surrounding the volume,
fitted with optical viewing tubes. A typical diagram of the
setup of spectral equipment is shown in Fig. 12. The equip-
ment is set up so that surfaces that might emit and reflect
light do not lie in the field of view of the recording instru-
ment. The entry into the instrument of radiation from the
walls scattered by particles usually can be taken into ac-
count as was done in Sees. 4.2 and 4.3 by using the trans-
port approximation, and hence, assuming isotropic scatter-
ing. Exceptions include cases in which the directionality of
the scattering governs the pattern. Such cases include the
possible entry into the spectral instrument of singly scat-
tered radiation of the walls. Multiple scattering of the ra-
diation usually erases the traces of directionality of scat-
tering. If the particles are large (/>>!) and their
indicatrices are extended forward, then the spectral instru-
ment can receive the singly scattered radiation of those
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FIG. 13. Diagram of the scattering of radiation of a plane wall in a
cylindrical field of view.
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exp [ — a (pi2+p2—2pp's cos <p^ -1- "*!1/2

'2 + p2-2pp's<p's+zi)3/2

(4.34)

Let us study in greater detail the scattering angle
Ys~&s &e- The direction of the unit vector in the cylin-
drical system is fixed by the angle P between the vector and
a straight line parallel to the axis of the cylinder, and by
the azimuth <p. That is, one can write Й(/3,<р). The direc-
tion of the vector f\'s(Pi ,(p\) depends on the mutual ar-
rangement of the points r's and r'. We see from Fig. 13 that
cos/3] =z/1 Гу—г|, while we can find фг from the triangle
OAB formed in the plane z—Q by the projections of the
vectors r and r—r's:

sin<pl=sm(p's-p's/(p'2+p2-2pp' cosq}'s)
1/2

Thus the scattering angle depends on the coordinates r and
rs', on the direction into the entrance aperture Ле(0е,<ре),
and is determined by the known trigonometric formula

regions 5 of the wall opposite the instrument 8 that are
adjacent to the viewing tube. We shall derive below the
relationships41 needed to take account of the effect, and
also the conditions that must be fulfilled to eliminate it
experimentally.

Let the field of view of the spectral instrument be a
cylinder with radius R and length / equal to the depth of
the object, while the entrance aperture of the instrument is
defined by a cone with an opening angle /?entr and is every-
where the same inside the cylinder (Fig. 13). The condi-
tion of constant aperture is fulfilled if the entrance optics
lies far enough from the object.

The recording instrument can receive only the light
that passes through the field of view or is scattered (or
emitted) in it inside the entrance aperture. Let us study the
infinite plane surface of a wall with a window of radius pso
(pso>R). We shall asume the medium to be optically ho-
mogeneous. In the cylindrical system of coordinates shown
in Fig. 13, the coordinates of the points on the surface can
take on the values: £5=0, p0s<Ps<°°' 0< ^5<2тг. Let the
intensity of the radiation of the wall depend only on the
radius p'nS,: I(p's)- Let us find the intensity of the primary
sources gs at an arbitrary point of the field of view г (p,<pj:)
by using Eq. (3.9). We can find from Fig. 13:

\r's-T\2=p's
2+p2-2pp'scos(p's+z1,

fl's)=z/\r's— r \ , (4.33)

Substituting these expressions into (3.9) and taking ac-
count of the indicated limits of integration, we obtain

cos YS=COS &\ ' cos &+sin &\ ' sin Д. ' cos(<pe— <pi~).

When we measure an almost parallel beam of light along
the axis ()3e-»0, cos j3e-»l), we find

COS Ys= = cos 01

=cos(n£ U'S)=Z/\T'S-T\
(4.35)

The probability that the light, after scattering in the direc-
tion fie at the point г will reach the boundary z=/ even
without subsequent interactions with the medium is deter-
mined by the expression

In contrast to the infinite emitters discussed previously,
here we study the output of radiation, not through a lateral
surface of the cylinder, but along the axis of the cylinder.

To find the flux incident after single scattering into the
entrance aperture, we must multiply the intensity scattered
per unit volume (ags) by the probability of escape in
(4.36), and integrate over the field of view of the instru-
ment and the solid angle of the entrance aperture. The
volume elements of the cylinder and the entrance solid
angle are defined by the expressions

d3r=pdpd<pdz,

dfte=sin|3ed/3ed<pe.

As a result we find
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(4.37)

Here we have integrated over <p. When we take account of
(4.34), Eq. (4.37) is a sixfold integral. The multiplicity of
the integral is determined by the scattering angle YS enter-
ing into the indicatrix. YS depends on from where (p's,<p's)
the light came to the point r, where the point lies (p,z),
and to where the light goes after scattering (Pe,<pe). Con-
sequently one can integrate over these variables. We obtain
from (4.37) upon taking account of the fact that cos /3e^> 1 :

E Г dz Г pdpgs(r)exp[-a(/-z)].
Jo Jo

(4.38)

In the case of an almost parallel beam we can assume that
the intensity of the scattered radiation inside the small
solid angle (тг/3еп1г) is invariant, therefore, by dividing
(4.38) by тгЁпь and ттКг, we find

r i rR
\ dz pdpgs(r)exp[-a(/-z)].

Jo Jo
(4.39)

In the special case being discussed we shall perform some
illustrative calculations. Let us introduce the relative coor-
dinates x=p/R, x's—p's/R, and z'=z// and the notation
for the square of the distance in these coordinates

yl=x's
2+x2-2x'sx cos q>'s+ (z'l/R)2.

Then, when I(p's)=ISQ, we can represent (4.34) in the
form

gs(x,z')/Iso=Az'(l/R)(^ Г x'sdx's f
J* J°

(4'40)

Here we have tQ=al, х50=р50/Л. Instead of (4.39) we
have

/scat i//so=2/b \ dz' \ xdx
Jo Jo

X «p [-*„(!- /да. (4.41)

We see from the presented relationships that the effect of
single anisotropic scattering depends on the probability of
survival A, the optical density of the object t0, the indica-
trix x, the relative length of the cylinder 1/R, and the
relative magnitude of the window on the wall opposite the
observer хэт. The meaning of these influences lies in the
following. The probability of scattering within the field of
view of the cylinder and the probability of escape from it
are determined by the quantities A and t0, while the area of
the surface from which light can enter the field of view of
the instrument at angles to the axis so small that the single
scattering there brings the light into the instrument de-

pends on the extension of the indicatrix #(yj an^ on the
quantities 1/R and pso/R- Actually, the more extended the
indicatrix is, the smaller the scattering angle and the nar-
rower the ring on the surface adjoining the field of view (5
in Fig. 12) from which light can enter the cylinder at the
required angle. With increasing l/R the width of this ring
increases-the more remote points of the surface can give
rise to light at the required angles in the lower part of the
cylinder. Finally, with increase in the window on the illu-
minating wall S, the regions close to the cylinder whose
light enters the cylinder at small angles become more re-
mote. Hence it is possible to decrease the influence of an-
isotropic scattering by increasing pso/R=xso.

Further the results of calculation asccording to (4.41)
will be presented, which are useful to compare with calcu-
lation in the transport approximation. To do this, for each
chosen scattering indicatrix % one should determine by
(2.6) the mean cosine (cosyj). Then one must find the
probability of survival At r by using Eq. (2.9) for known A p ,
and find ttr for known Ap by (4.28). The calculation of the
intensities /tr in the transport approximation will be per-
formed by the formulas for an infinite plane layer, when
the primary sources gS2 are determined by Eq. (3.14), and
the intensity by (4.9) with g=gs?.- In these formulas the
quantities Atr and ttr should be used instead of Ap and tp.

The calculation in the transport approximation gives
the contribution of all the surfaces to the observed scatter-
ing of the radiation. If /tI>/Scat 2> there is no need to take
separate account of the anisotropic scattering /scal j. Yet if
the inequality is reversed one must take account of /scal ,.

The illustrative calculations were performed in the case
of large particles (Z>> 1). Particles of opposite scattering
properties were studied (see the Table above): 1) of abso-
lutely absorbing particles, in which the indicatrix %d is
determined by (2.17) or approximately by (2.19); here
Ap = 0.5; 2) absolutely scattering particles with an indica-
trix Xd+g according to (2.25) and A p =l .

Figure 14 shows the intensities calculated by (4.41) as
functions of the relative thickness of the object l/R and of
the relative radius of the window opposite the observer
XSQ=PSO/R. The solid curves demonstrate the strong
growth of the anisotropic radiation with increasing l/R. In
curve 1 the diffraction indicatrix is very narrow; the direc-
tion to the first minimum with D=50 is determined by
(2.18) by the angle ysl=4.3°. Here single anisotropic scat-
tering with an object extended sufficiently in the direction
of observation yields substantial extra light. According to
the formulas of the transport approximation for fp = 0.5,
we obtain <cos ys>, = 0.9994, At r l = 5xlO~4, rtrl = 0.25.
Evidently such a small value of Atr yields a very small
intensity of scattering (/trl/750 = 6xlO~5). Consequently
it is necessary here to take account of anisotropic scatter-
ing.

When the particles only scatter light, the intensity of
the extra illumination by anisotropic scattering becomes
larger for two reasons: Ap becomes larger and the indicatrix
is less extended than in the diffraction case for the same D
(curve 2). The intensity is increased even to a greater ex-
tent in the transport approximation. Here we have:
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FIG. 14. Dependence of the intensity of radiation singly scattered by
particles on the relative length l/R of the object (solid curves) and on the
relative radius of the window opposite the observer xso=pso/R (dashed
curves) for rp=0.5, fa=0. /—х=Хл, -0=50, xsu=\; 2—xd+g, .0=50,

0=5, l/R =

FIG. 15. Variation inside a spectral line of the intensity of emission from
the walls. D=50, tp=0.5, l/R = 25, xso=l; 1—Х=Хл, ^Р=0.5;

=\. гег=0.0244, Ae r=l.

<cos y,>2=0.95, At ri = l, ftr2=0.0244. Неге /1г2//от

=2xlO~2—as is shown in Fig. 14 by tr2. Nevertheless,
even for not very large l/R, it is necessary to take account
of anisotropic scattering in this case as well. We emphasize
that both curves / and 2 are calculated under the condition
that the windows on both sides of the object of study are
the same (хя)=1).

The dashed curves 3 and 4 in Fig. 14 demonstrate the
dependence on the relative dimension of the window for
different indicatrices and different values of l/R. Increase
in the dimension of the opposite window diminishes the
extra illumination ly^i- The diffraction indicatrix of curve
3 is not very strongly extended forward (Z>=5, ysl^50°).
In the transport approximation for curve 3 we
have <cosy1>3=0.93, А(гз=0.064, rtr3=0.267, I^/I^
=9.3XlO~3 (tr3 in the diagram). The diagram implies
that the transport approximation yields an intensity of ex-
tra illumination substantially larger than those obtained
upon taking account of single scattering for all xso> 1. Con-
sequently in this case one can use the transport approxi-
mation for taking account of the scattered radiation of the
walls. We note only that curve 3 has a broad window:
l/R = \.

In the case of curve 4 (scattering particles) where l/R
= 10, the effect of anisotropic scattering is substantially
larger. The transport approximation yields <cos 7^)4
=0.91, Atr4= 1, rtr4=0.044, /tr4//so=3.4x 10~2. As we see
from Fig. 14 (curve 4, tr 4), in order to use only transport
calculations, one must have a large ratio between the di-
mensions of the windows on the opposite walls (xso>7).
For a smaller ratio one must take account of anisotropic
scattering. To estimate the error in the calculations in the
transport approximation, one can compare 1и/1$о with the

corresponding equilibrium values, when according to
(4.31) the equation must be fulfilled that /tr/^so
= 1— exp(— rtr) when Ap=At r=l. A calculation by this
formula yielded a value of ItI/Iso 20% larger than that
calculated, which characterizes the error of the numerical
calculation. Comparison of the calculated intensity of an-
isotropic scattering /^н with the quantity 1— exp(— tp)
=0.39 shows that the calculated values are much smaller
than the equilibrium values. This should have been ex-
pected, since in the anisotropic calculations it is very im-
portant to remove the region of the wall lying at the site of
the opposite aperture — it plays a large role and renders the
problem especially non-equilibrium. In isotropic scattering
this separating out is not so essential, since all parts of the
infinite walls are equivalent in scattering.

Now let us turn to the influence of single anisotropic
scattering on the emission in a spectral line. Equations
(4.40) and (4.41) imply that the intensity of the scattered
radiation is proportional to the product Af0, which is con-
stant within the line in agreement with (4.25):

Consequently Ap/p determines the absolute magnitude of
/scat j, together with the geometric dimensions of the field
of view and the windows, Yet the dependence on ta (or on
the frequency) is determined in (4.40) and (4.41) by the
exponentials, into whose index t0=tp+ta(v) enters. Evi-
dently, as fa(v) increases, the intensity of the scattered
radiation must decline, owing to absorption of the incident
and scattered radiation of the walls by atoms.

Figure 15 shows the variation inside a spectral line of
the intensity of anisotropic and singly scattered radiation
(curves 1 and 2). Curve 3 was obtained in the transport
approximation in the case of the indicatrix of curve 2. The
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FIG. 16. Contours of spectral lines of cesium at 455.5 nm (a)
and sodium at 589.0 nm (b). /—in the absence of particles,
2—in the presence of extra illumination, J-calculation.
ДЛ=|Л-Л 0 | .

dependences that have been obtained imply that the opti-
cally thin parts of the lines U a <l) are altered most
strongly by the anisotropic extra illumination. If the opti-
cal density in the center of the line ?a(v0) is small, then the
entire line as a whole can be strongly changed by the light
of the scattering radiation of the walls. Thus relationships
were derived that are necessary for taking account of single
anisotropic scattering in a situation often encountered in
experiments in diagnostics. The scattering by particles of
light into the instrument depends on the relative thickness
of the field of view, the scattering indicatrix, and the rela-
tive dimensions of the optical windows.

4.5. Experimental study of the influence of scattering
particles on the emission from a gas flow

In Refs. 42, 43, and 45 the influence of scattering par-
ticles on the emission from a gas in the continuum and in
spectral lines was studied experimentally. The object of
study was a homogeneous cylindrical flow of a dust-gas
mixture at atmospheric pressure. The diameter of the cyl-
inder was 40 mm. The mixture was prepared in the supply
system of a burner often used for carrying out methods of
diagnostics.42'43 In studying the influence of external illu-
mination on the emission in the continuum, the fuel (pro-
pane) was not fed into the supply system of the burner,
and the dust-air mixture was at room temperature. In
studying the spectral lines, propane was supplied and a
flame was formed at a temperature zz 2000 К. Sodium and
cesium were specially introduced into the flow and their
lines were studied. The dust was prepared from scattering
particles of aluminum oxide A12O3 (see the Table above).
The dimensions of the particles in different experiments
varied from 1 to 100/um. The intensities of the radiation in
the lines and in the continuum, the optical density, and the
flame temperature were measured. These measurements
employed two mutually perpendicular optical branches,
each of which was analogous to that shown in Fig. 12.
Tungsten ribbon lamps SI-10-300 were used as the source
L, while a DSF-452 spectrograph and a MDR-6 mono-
chromator were used as the spectral instruments.

In the experiments a part of the wall 3, including the
window and the adjacent glowing region 5 were simulated
by optical means (see Fig. 12). To do this, a small opaque
screen was placed between the lamp L and the lens 7,
which created a shadow on the boundary of the object—a
simulation of the window. The peripheral regions of the
lamp filament gave bright illumination together with a
shadow—a simulation of region 5. The dimensions of the
different regions could be altered by varying the diameter
of the lens 7. Here the direct incidence of the light of the
lamp L into the instrument was eliminated. First we shall
study the results on the spectral lines. Figure 16 shows the
contours of the resonance lines of cesium at 455.5 nm and
of sodium at 589.0 nm. The lines sharply differ in their
atomic optical densities. At the centers of the lines we
have: ?a(455.5) ̂ 0.3, fa(589.0) = 3X Ю2. The curves 7 per-
tain to the case in which particles are absent. The appear-
ance of completely scattering particles of А12Оз with
rp= 1.8 mm and fp=0.1-0.15 did not lead to any apprecia-
ble change in the contours of the two lines. This result
agrees with the calculated curves. Actually, in the case of
scattering particles (Ap= 1), even when tp= 1, one obtains
a rather small change in the contour of the line (Fig. 10,
solid curves). When rp=;0.1 the calculated effect, undoubt-
edly, is smaller than the error of the measurements indi-
cated in Fig. 16 [we recall that the curves in Fig. 16 can be
redrawn as dependences on 7(ra)].

When, in addition to introducing the particles, the
lamp L was turned on and the screen mentioned above was
installed, i.e., a simulation of a window and adjacent glow-
ing wall was created, the contours of the two lines under-
went changes. Here the light of the lamp L was able to
enter the spectral instrument only as a result of scattering
by particles lying in the field of view of the instrument. The
cesium line was changed as a whole, but the sodium line
only in the tails (see Fig. 16). Qualitatively this effect
agrees with that shown in Fig. 15: the greater the optical
density ta, the smaller the influence of scattering by parti-
cles was. Moreover, Fig. 16 shows the dashed curves 3
calculated by (4.34) and (4.38) with account taken of the

719 Physics - Uspekhi 36 (8), August 1993 I. A. Vasil'eva 719



-''scat 1. relative units

10

0,05

\

W JO 20 10 rfr,m
2 2,5 3 3,5 x30

FIG. 17. Intensities of scattered radiation in the continuum as functions
of the diameter of the focusing lens dt; x^-calculated relative radius of
the simulated optical window. Solid curves-experiment; dashed-
calculation. 1—2rp= 1 /un, 2—4 /im, 5—100 /лп.

measured optical densities /a and tp and of the experimental
conditions. We see that they describe the experiment well.
The small difference in the cesium line is most likely de-
termined by the not very precise measurement of the small
optical density га in this case. Since only the relative de-
pendences on ta have been drawn here, they depend neither
on the scattering indicatrix of the particles, nor on the
features of the optical simulation of the window and the

wall.
Now let us turn to the results of the measurements in

the continuum. The appearance of A12O3 particles in the
flame without extra illumination from outside does not
lead to the appearance of an appreciable change in the
continuous spectrum. This confirms that the particles com-
pletely scatter light, A p =l, and hence gp=0 according to
(3.10). Yet when there is external illumination, continuous
scattered radiation arises. The corresponding background
can be seen in the tails of the lines in Fig. 16.

Figure 17 shows the experimental intensities for
Л=0.6 цт scattered by particles in a dust-air mixture in
the case of an optical simulation of a window and a wall.
The intensities are plotted as functions of the diameter d\
of lens 1 in Fig. 12 for various dimensions of the particles,
but with the same optical density fp;=:0.1. For the given
dimensions of all the optical elements, one can find the
dimensions of the field of view of the spectrograph and the
simulated window and wall. Since the filament of the lamp
and the slit of the spectrograph are of rectangular shape,
the field of view and the window are not axially symmetric.
Nevertheless the assumption was made that this symmetry
exists, and certain effective dimensions /JSQ. R, and the
maximum radius of the simulated wall p's were found (see
Fig. 13). The calculated values xso=pso/R are plotted in
Fig. 17 for different values of d}. As the diameter d\ de-
creases, simultaneously the dimension of the window
PSQ(XSO) increases, and the greatest radius of the simulated
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wall p's decreases. Both factors lead to a decrease in the
measured scattered radiation. The intensity becomes less as
the particles become coarser. The influence on the observed
intensity of the dimensions of the region of the wall yield-
ing extra illumination and of the dimensions of the parti-
cles agree with the pattern described in Sec. 4.4. To calcu-
late the intensity one can use Eqs. (4.34) and (4.39). In
the expression for gs one must take account of the fact that
I ( p ' s ) depends on the direction, while the upper limit of
integration over p's is finite. Such calculations were per-

formed for x=Xd+ g [Eqs- (2-19)' (2-2°)' and (2-25)!' and

the results are presented in Fig. 17 by the dashed curves.
Despite the crudity of certain simplifying assumptions of
the calculation, the overall character of the behavior of the
experimental and calculated curves is analogous. The mag-
nitude of the effect is described well.

Thus the results of the experimental and theoretical
studies of the spectral lines and the continuum in the pres-
ence of anisotropically scattering particles qualitatively
and quantitatively agree with one another. We note here
that the experimental information qualitatively confirms
the correctness of the preliminary estimates made in Sec.
2.2.

5. ATTENUATION OF A LIGHT BEAM IN A GAS CONTAINING
A CONDENSED DISPERSED PHASE

In the different methods of spectral diagnostics one
must measure the optical density or characteristics of the
medium governed by it.

The optical density is determined experimentally by
studying the attenuation of a light beam created by a lamp
or laser. The basis of the measurements is the fact that a
fraction of the light reaches the observer without interact-
ing with the medium, which is equal to exp( —10), where t0

is the optical density of the medium in the direction of
observation. When scattering of the radiation exists in the
medium, the measurement of f0 becomes complicated be-
cause the light of the probe beam after scattering can enter
the spectral instrument being used to study the attenua-
tion. The optical density Г0 characterizes all the interaction
of the light with matter, while measurement of the scat-
tered light leads to a decrease in the observable optical
density as compared with the true value.

The influence of light scattering by particles on the
attenuation of a beam has been treated in individual cases
in a series of papers.47'50 In Refs. 47 and 48 the attenuation
of the beam was calculated with account taken of single
and multiple scattering in the case of a scattering indicatrix
described by a Gaussian function. Reference 49 studied
forward single scattering and investigated the influence of a
small entrance aperture on the results of measurements in
a homogeneous medium. In Ref. 50 results were obtained
by using diffusion theory, and it was shown that this ap-
proach is suitable in the case of indicatrices not extended
forward. Here we shall use the probabilistic method, which
makes it possible to obtain results over a broader range of
conditions.

Let the probe ray be a parallel light beam, which illu-
minates a cylindrical column of radius R (Fig. 18). Just as
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FIG. 18. Diagram of the probe beam and scattering events in it.

in Sec. 4.4 we shall assume that the field of view is a cyl-
inder of radius R, and the entrance aperture of the mea-
suring apparatus is characterized by the angle /3mir. Let us
study the possibilities for light to enter the instrument after
scattering. First (broken curve 1 in Fig. 18), a photon can
escape the probe ray owing to scattering in it, then return
to the beam after scattering outside the ray, and then, being
scattered again in the ray, direct itself toward the instru-
ment. To avoid such entrance of scattered light into the
instrument, one should make the probe ray narrow enough
that the condition is fulfilled that

CR

t0=2 adp^l.
Jo

(5.1)

Second, a photon can enter the instrument if scattering
does not remove it through the lateral surfaces of the cyl-
inder (broken curves 2 and 3 in Fig. 18). These scattering
events must be taken into account.

When the condition (5.1) is fulfilled, we can assume
that the optical characteristics а, Я, and % do not vary in
the cross section of the ray. That is, they do not depend on
p and <f, but depend only on z (or on t),

Let us find the radiation fluxes incident on the instru-
ment within the entrance aperture fi^tr when condition
(5.1) is fulfilled. The light flux arriving directly from the
illuminator in the direction П0 (along the axis of the cyl-
inder at the optical depth t is determined by the flux I0irR2

incident on the end (z=0) of the cylinder and by the
probability of reaching the depth / without interacting with
the medium exp( — t). The probability of primary interac-
tion in the layer from t to t+dt is ItfrR2 exp( — t)dt. Let
p(z,p,Sl0) be the probability that a photon with the initial
direction f!0 that interacts with the medium at the depth t
will escape into the aperture f}mtl, Then the flux of light
scattered into the aperture can be written in the form

Jo
exp(-0d//»(z,p,n0). (5.2)

The total flux entering the instrument consists of the flux
transmitted without interacting with the medium and the
scattered flux

W=lQirR2 exp( — /o) + Wscat • (5.3)

Now the problem consists in finding the probability of es-
cape p(z,p,&0). Let us use the general equation (3.32) for
the probability of escape: Taking account of the fact that a,
A, and x do not depend on p, and of the axial symmetry,
and replacing (—11) by (Й0, we find instead of (3.32):

/>(z,pA>)=-r- f oU')dz' Г"й<р' Г p'dp'
ФТ Jo Jo Jo

Хехр[-т(г-г')]|г-г'|-2}

+Pi(z,p,£l0). (5.4)

Here, as we see from Fig. 18, the angle of the first scatter-
ing event is determined, as before in similar problems, by
the relationship

-

Here pi(z,p,£l0) is the probability of escape into the aper-
ture of the instrument of radiation interacting with the
medium in the region z, p and having the initial direction
П0 without subsequent scattering (after the first event).
This probability is determined by the probabilities of suc-
cessive events: 1) scattering in the chosen region A(z); 2)
a direction after scattering inside an element of the en-
trance aperture. The element of solid angle has the form
dQe=2irsinj3edjSe=— 27rd7je, where ~T7e=cos/3e. Then
the probability of scattering in the chosen direction is de-
termined by the expression x(z,iie)Aiit/'2; 3) passage to the
boundary z=/ without interacting with the medium
exp( — (t0— /)/iye). To obtain the probability of escape
with single scattering, we must multiply the probabilities of
the successive events and integrate over the entrance solid
angle:

/>i(z,p,ft0)=0.5A(z)
•J 4oitr

(5.5)

Let us simplify (5.4). Since the beam is narrow we can
assume that the probability of escape does not depend on
the radius p. Then it is most convenient to seek the prob-
ability of escape from the axis of the cylinder for p=0. In
this case, instead of (5.4), we find in an optically homoge-
neous medium:

/.(z,0>4)=0.5aA Г dz' Г p'dp'[X(^o n')^(z'Afl')
Jo Jo

Xexp{-a[p'2+(z-z')2]1/2>

X[p'2+(z-z')2]-1]+/?i(z,0,fl0). (5.6)
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Here we have integrated over q>', since when p=0 none of
the functions entering into the integrand depends on <p'.
Moreover we have:

cos(ftS ft') = (z-z' i1/2 (5.7)

Although the sought probability p(z,p,£l0) character-
izes in Eqs. (5.4) and (5.6) the escape of a photon initially
traveling along the axis, the integrand contains the proba-
bility p(z',p,&'), which depends on the direction ft',
which is determined by the arrival of the photon at r' after
first scattering at r. The problem is greatly simplified if we
make the assumption

p(z',p,Q')=p(z',p,Q0), (5.8)

That is, the probability of escape in repeated scattering
events does not depend on ft'. This simplification agrees
with the conditions of scattering in a narrow beam, when
the radiation escaping sideways does not return to the
beam. Here primarily the radiation remains in the beam
that has been scattered at small angles to the axis. The
assumption (5.8) can be applied in certain cases also when
the condition (5.1) is not fulfilled. Thus, in isotropic scat-
tering the indicatrix #=1 does not depend on the initial
direction. Therefore we can set ft'//ft0. In the opposite
case of an indicatrix strongly extended forward, the devi-
ations from the axial direction are small. Therefore we
need not take them into account.

Let us introduce the relative coordinates

p'/R=x', z'/l=Z', z/l=Z. (5.9)

We shall omit in the arguments of p the radius p and the
direction ft0. Then, instead of (5.6), taking account of the
assumption (5.8), we obtain

XZ)=0.5Af0 Г dZ'p(Z')A(Z-Z')+p}(Z)
Jo

=Wp(Z')+p}(Z), (5.10)

where

x-
exp{-f0[x'2CR//)2+(Z-Z')2]1/2}

x'z(R/n2+(Z-Z')•>\2

(5.11)

cosrs=(Z'-Z)/[*'2(tf//)2+(Z-Z')2]1/2. (5.12)

We can solve Eq. (5.10) by the method of successive
approximations, just as in finding q in Sec. 4.1.

Let us represent the solution as a series

p(Z)= (5.13)
/t=i

Here /1

1(Z)=p1(Z)/A(Z), where/>i(Z) is determined by
Eq. (5.5), i.e.,

=0.5 Г j(Z,77e

^ ^entr

(5.14)

(5.15)

We find the following expression for the omitted part of the
infinite series, analogously to (4.23) with ||F||A< 1:

P(Z)- I
k=l

(5.16)

In the case in which we take account only of single
scattering we must set p=p\, where p\ is determined by
(5.5).

We can calculate the magnitude of the measurable flux
of scattered radiation WSCSLl by using Eqs. (5.2) and (5.14)
and solving Eq. (5.10) by the method of successive ap-
proximations of (5.13) and (5.15). The cited relationships
imply that Wscat depends on the optical characteristics of
the medium tQ, A, and x^Ys)' on the entrance aperture of
the measuring instrument, and on the relative width of the
beam R/l [see (5.11) and (5.12)]. Let us discuss the re-
sults of the calculations illustrating these relationships. The
calculations were performed, as in Sec. 4.4, in the case of
large particles (/>>!), when the indicatrices are deter-
mined by (2.17) and (2.19) (absorbing particles, x=Xu>
Ap=0.5) and by (2.25) (scattering particles, x=X<i+g<
A p =l) . Figures 19-21 show the results for ka=Q, t0=tp,
i.e., outside spectral lines. The calculation of the probabil-
ity of escape with multiple scattering was performed for
m = 5, which allowed an error, according to (5.16), no
greater than several percent.

Figure 19 shows the dependence of the radiation scat-
tered into the instrument on the entrance aperture. Curves
1-3 pertain to the same indicatrix ̂  ( Z)=20). On the axis
is shown the value of the angle 751 =0.1 92 radian deter-
mined from (2.18). Increase in the aperture /3entr up to YS\
leads to increase in the flux of scattered radiation. The
increase in W^ ceases with further increase in )Sentr, since
the aperture is so large that practically all the scattered
radiation for the indicatrix of (2.19) has already passed
into the instrument when /3entr~Ysi- Taking account of
multiple scattering increases the calculated flux (curves 2
and 3 lie higher than curve 7). Finally, Wscat is influenced
by the relative width of the beam R/l: with increasing R/l
more scattered light enters the instrument, since for a given
optical density in a broader beam, the probability of loss of
light after scattering through the lateral surface of the field
of view is smaller. Curves 4-6 pertain to the indicatrix
Xd+g'< taking account of multiple scattering and increase in
R/l affect the result in the same way as in the previous
case. In contrast to it, the increase in Wscat only slackens in
the region fimu=Ysi> while remaining substantial. This in-
volves the fact that the more diffuse Xg °f (2.20) and
(2.25) was added to the scattering bounded in angle of
(2.19). Finally, curve 7 (isotropic scattering) gives a
rather small contribution to the observed flux, which is
determined by the smallness of the entrance solid angle
here as compared with the total angle 4ir.
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FIG. 19. Dependence of the light flux scattered in the instrument
W^x/Ig'trR2 on the entrance aperture Д,„1Г for <p=l and .0=20. The
table gives the set of conditions for each curve:

Curve R/l x Л. т

1
2
3
4
5
6
7

.

0.01
0.1

-
0.01
0.1
0.1

Xd
Xd
Xd
Xd+e

Xd+e
Xd+g
*=1

0.5
0.5
0.5
1
1
1
1

1
5
5
1
5
5
5

Figure 20 shows the fraction of the light transmitted
through the gas containing particles as a function of the
entrance aperture /?entr in the case of large absorbing par-
ticles (X=XA> f°r different diffraction parameters. The
larger the diffraction parameter, the lower the angles /3entr

close to YSI (marked on the axis of abscissas for D=20, 30,
and 200) at which the increase in W ceases with increasing
/3entr. On the axis of ordinates is marked the value
exp( —10). Evidently, for direct measurement of this quan-
tity in the case of extended indicatrices we n"iust have a
small entrance angle (Antr<7si)- Yet in the general case,
when the aperture is selected and one measures rf/I0irR2,
to find tp we must use calculations of the dependences such

IX
я/,

exp/'-zW

200 /57, 30

, I Т"
' ^«' Д. raHianc ^

0,3

FIG. 20. Dependence of the transmission of light W/IU • vR1 on the
entrance aperture /3entr for tp=l, Л//=0.1, т = 5, х=Хл> Яр=0.5 and
different diffraction parameters: 1—D=20; 2—Z)=30; 3—£=200.

as in Fig. 21. With increasing tp the light flux passing into
the instrument decreases, but more slowly as Ap increases.
We have plotted exp( — rp) in the same diagram for com-
parison. Evidently taking account of light entering the in-
strument after scattering under the conditions of Fig. 21 is
fully necessary.

0,1

FIG. 21. Dependence of the transmission of light W/I0-irR2 on the
optical density tp for Я//=0.1, 0enlr=0.2, m = 5. 1—х=Хл> D=20,
Ap=0.5; 2-X=Xa+e, D=20, Лр=1; J-exp(-fp).
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Thus we have described the passage of a thin beam in
a gas containing a condensed dispersed phase. The results
make it possible to determine correctly the optical density
of a gas containing a condensed dispersed phase from the
attenuation of the beam.

6. METHODS OF DIAGNOSTICS

6.1. General problems

This section discusses the methods of diagnostics of a
gas containing a condensed dispersed phase based on mea-
surements of the intensity of the intrinsic radiation and the
attenuation of the radiation of an external emitter. As a
result of such measurements one can determine the tem-
peratures and concentrations of atoms and particles of the
dispersed phase. The sought temperatures are related to
the primary emission by the Kirchhoff law, while the rela-
tions of the intensities of the output radiation with the
primary emitters, as determined by the process of radiation
transport, are described in Sees. 3 and 4. The concentra-
tions of atoms and particles are related to the optical den-
sity of the medium via the extinction coefficients, while the
relation of the attenuation of a thin beam to the optical
density was discussed in Sec. 5.

The results of the calculations of radiation transport
can be used to determine the temperature if one knows the
probabilities of survival Ap and the scattering indicatrices
X(Ys) of the particles. To determine the concentrations of
the particles requires the extinction cross sections 2p. This
information on the particles can be obtained by various
methods, to which an extensive literature has been devoted
(see, e.g., Refs. 7, 51-54). Here we emphasize only that if
we know (even approximately) the dimensions and the
refractive index of the material of the particles, then we can
use the results of the calculations discussed in Sec. 2. More-
over, let us turn our attention to the dependence of the
form of a spectral line on the quantities Ap and x see Sees.
4.3 and 4.4). This dependence can be used for experimen-
tal determination of Ap and x-

Measurements of the intensity of the intrinsic emission
and the attenuation of the emission from an external source
are usually conducted according to a scheme into which
the following elements enter (see Fig. 12): 1) the external
source L; 2) the spectral instrument ( 8 ) , which isolates
the spectral regions within which one measures the radia-
tion fluxes; 3) the optical system, which determines the
field of view and the entrance aperture of the spectral in-
strument, as well as the passage through them of the light
from the external source. The optical system must be con-
structed so that no parts of the surface limiting the volume
of study, in particular, region 5, which adjoins the optical
window on the wall opposite the instrument, lie within the
field of view of the spectral instrument.

Let us take up in somewhat greater detail the individ-
ual elements of the optical system. For many years ribbon

tungsten lamps have been used as the radiation source L,
since they operate stably and can be calibrated with high
accuracy. When the temperature of the gas substantially
exceeds 3000 K, one must use more powerful sources to
decrease the error of measurement of the intensity. One
usually places between the source L and the lens 1 a ro-
tating disk with apertures, which periodically obscures the
light flux from the source L to the measuring system. In
studying difficultly accessible objects, one incorporates fi-
ber optics in the optical system, which enables increasing
the distance between the lamp, the object, and the spectral
instrument.

The spectral apparatus usually amounts to traditional
diffraction instruments with some particular spectral reso-
lution. In the past decade the output part of the instru-
ments, which converts light signals into electrical signals,
has substantially changed. For many years, mainly photo-
multipliers were used for this conversion, which are able to
receive light in individual spectral intervals cut off by the
output slit of the monochromator. At present photomulti-
pliers are also widely used. But, in addition, ever more
often matrices of photodiodes are placed at the output of
the spectral apparatus, which permit one simultaneously to
record the light signals in different regions of the spectrum.
Such systems, coupled with computers, sharply enhance
the potentialities of diagnostics in a gas containing a con-
densed dispersed phase, since here one must often perform
measurements at different frequencies. If the object is not
stable, simultaneity of measurements becomes important.

Let Ir and IL be the intensities of the emitter being
studied and of the external source L, and JT and JL be the
measured electric signals proportional to these intensities.

The absolute value of /r of the intensity being mea-
sured is calculated by the relationship

Ir=ILJr/JL. (6.1)

Here the light from the external source and the object
must pass into the instrument from identical regions of
space and within identical solid angles. JL is measured in
the absence of radiation from the object.

Let Jr+L be the signal measured in the presence of
emission from the medium while illuminated by the radi-
ation from the source L. Then the relative attenuation of
the radiation is described by the physically evident combi-
nation of signals:

Jr)/JL. (6.2)

The fraction of transmitted radiation is

(6.3)

Equations (6.2) and (6.3) contain only differences of sig-
nals that include the emission from the object of study.
Therefore, in measurements of the attenuation or the frac-
tion of transmitted radiation, the intrinsic radiation can
come not only from the regions illuminated by the
source L.

In the general case, to establish the relation of the
observed attenuation in (6.2) or transmission of the beam
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in (6.3) to the optical density t0, one must take account of
the entrance into the spectral instrument of the scattered
radiation of this beam [see Eqs. (5.2) and (5.3)]. Yet when
the scattered light of the beam does not enter the instru-
ment, we have the following expressions for the attenua-
tion or transmission of light, respectively:

= l-exp(-r0), (6.4)

The relationships (6.4) and (6.5) hold either in the case in
which scattering in the medium is simply absent (A=0),
or when scattering exists (A^O), but the entrance aperture
of the spectral instrument is small enough and does not
transmit the scattered light of the probe beam, i.e., in (5.3)
we have W^^W. In (6.4) and (6.5) it is assumed that Г0

and IL do not vary appreciably over the measured interval.
The intensity /r depends in a scattering medium on the

radiation /50 of the surfaces surrounding the volume being
studied (see Sees. 3 and 4). One can find the intensity !$$
experimentally. To do this, one must in addition measure
the signal JT+S arising from the emission from the volume
and the opposite wall. The spectral instrument must be set
up so that the opposite wall lies in its field of view instead
of the optical aperture in front of L; here the optical den-
sity in the light path from the wall being observed to the
instrument must be the same as when one observes the
probe beam from L.

In the case in which the spectral instrument does not
measure the scattered radiation of the region of the oppo-
site wall that lies in the field of view of the instrument,
analogously to (6.5) we find

(/r+s-/r)//so=exp(-lb).

Eliminating t0 from (6.5) and (6.6), we find

(6-6)

£-Л). (6-7)

Thus measurement of the signals JT, JT+L, JL, and JT+S

makes it possible to find the intensity IT , the optical density
tp , and the intensity of emission from the surface /да.

6.2. Measurement of the temperature of particles of the
condensed phase

This section discusses certain possibilities of measuring
the temperature of the particles averaged over the direction
of observation. That is, we assume that the temperature
does not vary inside the object. Let the measurements be
performed in the spectral regions where there is a contin-
uum arising only from the particles, i.e., &a = 0, while
t0=tp. The primary sources in these regions, in agreement
with (3.8) and (3.11), have the form

g=gp+8s> (6.8)

(6.9)

Each of the primary sources gp and gs corresponds to a
term in the overall intensity. Therefore we have

Ir=I№+Is. (6.10)

Calculations of radiation transport make it possible to
find the relative emissive capability of the object (the
"emittance") in the form

(6.11)

Here Ap depends in the general case on the optical charac-
teristics of the particles [tp, Ap, and x(7s)]> the shape of
the emitter, and on the emission from the walls (Iso/fy-
When the temperature of the walls equals the temperature
of the particles (1^1^=1) or the walls are absent, (6.11)
amounts to a formulation of the Kirchhoff law and Ap is
the absorptivity of the object. Let Т L be the brightness
temperature of the source L. Then IL=I°L, and we find
from (6.1):

(6.12)

This is the fundamental relationship with which one cal-
culates the temperature of the particles from the measured
signals JT and JL and the found value of Ap; here 1° is
determined by the Planck function (2.40). When hv^kT
one obtains from (6.12) the following expression for the
temperature:

Tp=TL[\-(kT/hv)\n(Jp/JLAp)} (6.13)

Let us study how to find Ap in various cases.
6.2.7. Scattering by the particles is so small that it can

be neglected (Ap-»0). In this case we have &s=0, and we
find from (6.8)-(6.10) g=I°p, Ir = /„p. As was obtained
earlier (see Figs. 6 and 7), the relative emittances are de-
scribed in the absence of scattering by the expression
Ir/fp=\ — exp(— tp). If we also take account of the fact
that in the absence of scattering all the attenuation of the
radiation is governed only by absorption, we can write

(6.14)

Equations (6.12) and (6.14) imply that measurements of
the three signals Jt, JL, and JT+L and of the temperature
values Т L suffice to determine the temperature of the par-
ticles Tp.

6.2.2. Scattering is substantial (Ap^0), and radiation
freely escapes from the boundaries of the object. This case
can occur (see Sec. 4.2.2), e.g., in the absence of bounding
surfaces, or when the surfaces are transparent. Here, as in
Sec. 6.2.1, Ap, which is determined by Eq. (6.11), is the
absorptivity, but the first equation in (6.14) does not hold,
since the optical density tp is determined not only by ab-
sorption but also by scattering. The absorptivity here, and
hence also the relative emittance, is smaller than in the
absence of scattering. These qualitative considerations are
confirmed by the calculated curves in Figs. 6 and 7; Here,
as in the previous case, we have IT = /ф. The curves for
Ap=0.5 (vl; 0.5) lie below the curves for Ap=0 (vl; 0).
Here the course of the curves depends on the shape of the
object (see Fig. 7). In this case one cannot obviate calcu-
lation of the relative emittance /„p//^ as a function of the
optical density tp. Yet one can perform the calculation if
one knows the characteristics of the scattering by the par-
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tides Ap and #(ys). The second equation of (6.14) here
can hold if the entrance aperture of the spectral instrument
is small.

6.2.3. The scattering is substantial (Ярт^0), and the
volume under study is surrounded by a closed surface hav-
ing the same temperature as the medium (1^=1^). This is
the case of an isothermal cavity treated in Sec. 3.2. We
assume that optical apertures exist in the cavity, as in Fig.
12, but we can neglect their influence on the equilibrium
radiation. The conditions for fulfillment of this assumption
have been discussed repeatedly; see, e.g., Ref. 55. The ma-
jor condition is evident: the apertures must be small
enough. In diagnostic experiments the fulfillment of this
condition is not always simple to carry out. We can con-
vince ourselves of this by analyzing the results of Sec. 4.4.
Actually, it is precisely the dimension of the aperture on
the wall opposite the observer that strongly affected the
intensity of the output radiation.

If the condition of smallness of the apertures is ful-
filled, then we obtain from Eq. (3.30) with Im = 0 and

( V7JJ) + ( = 1 -exp( -fp). (6.15)

When ^=/$0 we find, while taking account of Eqs. (6.10)
and (6.11), that (6.15) is equivalent to the first equation of
(6.14). In other words, in a closed cavity the absorptivity
of the medium is the same as in the case of a purely ab-
sorbing medium with the same tp. The result does not
depend on the scattering characteristics of the medium.
The physical meaning is that all the attenuation of the light
entering into the volume under study is determined by the
absorption in it. The part that is initially scattered is then
absorbed by the particles or the wall. This involves the
coincidence of the curves /,//£ of the relative emittance in
Figs. 6 and 7 in the case of pure absorption (vl; 0), pure
scattering (S, J ) , and the total curves (2) in all the inter-
mediate cases. We emphasize that Eq. (6.15) and the first
equation of (6.14) are valid in the case of an isothermal
cavity with arbitrary characteristics of the scattering of the
particles, including any anisotropy of the scattering. This is
implied by the general discussion conducted in Sec. 3.2.

In studying the absorptive (or emissive) capability
here, as in the previous case, we must take account of JF ,̂
by Eq. (5.2). We can use the second equation of (6.14)
only in the case of sufficiently small Wscat.

6.2.4. The scattering is substantial (Ap^=0), and the
temperature of the walls is everywhere the same, but dif-
ferent from the temperature of the medium, i.e., /до^р";
here we have It = 1^ + /5. In this case it is not necessary to
perform the calculation of the intensity of the scattered
radiation of the walls Is. We can use the results obtained
in Sec. 6.2.2 and 6.2.3, i.e., restrict the treatment to calcu-
lating /up/fp1, and measuring the optical density tp by (6.4)
and the relative intensity of radiation of the walls I so/I L by
(6.7). Actually by using (6.15) one can obtain the follow-
ing expression for Ap as determined by Eq. (6.11) (taking
account of the fact that //=/£):

so

X[l-exp(-rp)]. (6.16)

Ap contains the unknown ratio ./£//£. Substituting (6.16)
into (6.12), we can obtain a relationship where the only
unknown is /^//i,. This relationship is more complicated
than (6.12), but can be fully used to determine the tem-
perature of the particles. It often happens that the temper-
ature of the surrounding surface is lower than the temper-
ature of the particles Iso<I<

p. In this case, in agreement
with (6.16), the quantity Ap lies between I^/I^ and
1— exp(— tp). The difference between these two functions
sometimes can be treated as the fully admissible error in
determining Ap> which is found in the argument of the
logarithm in (6.13).

6.2.5. The scattering is substantial (Ap^0), and
brightly glowing small regions exist on the surfaces. These
conditions often arise near electrodes in an electric dis-
charge. Small spots of high brilliance can be formed on the
electrodes, while bright spots arise on the walls surround-
ing the discharge. In this case the scattered radiation of the
bright formations must be calculated by taking into ac-
count the concrete distribution of the formations and the
spectral apparatus, as well as the anisotropy of scattering
of the particles. In these calculations the probabilistic
method seems highly appropriate. It can be used similarly
to what was done in Sec. 4.4 and Sec. 5.

The measurement of the optical density tp performed
in the measurements of the temperature of the particles
makes it possible to find also the mean concentration of
particles if one knows the extinction cross section 2p . The
calculation is performed by the simple relationship

/Р=ар/=яр2р/. (6.17)

Here / is the depth of the emitter.
Measurements in the continuum at several frequencies

strongly differing from one another present additional pos-
sibilities, both in measuring temperatures and in measuring
concentrations. If one knows the relative dependence of the
extinction coefficient on the frequency, then one can find
not only the concentration, but also the absolute value of
the cross section 2p.

56 We note that, in choosing the fre-
quencies at which the measurements are performed in the
continuum, we must take care that emission or absorption
in the gas phase plays no role. Even broad tails of atomic
lines can lead to a substantial error in the measurements.57

Thus one can determine by measurements in the con-
tinuum the temperature of the particles; in certain cases
the effect of scattering by the particles must be calculated
in advance.
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6.3. Measurement of the temperature and concentration
of atoms

Below we discuss the simplest and most reliable meth-
ods of measuring the average temperatures and concentra-
tions of atoms. First let us take up the measurement of
temperature.

6.3.1. The measurements must be performed in the
regions of the spectrum where spectral lines exist, i.e.,
ka^=0 and ?o(v)=?a(v) +tp. The primary sources are de-
termined by Eqs. (3.8) and (4.26):

(6.18)

The intensity of the radiation escaping from the volume
can be represented in the form:

^=/«+/4,+^- (6-19)

Each term in the intensity (see, e.g., Fig. 11) and the
probability of survival A (v) according to (4.25) vary upon
varying the frequency.

Let us assume that the temperature Tp and the optical
density tp of the particles have been measured (see Sec.
6.2). The measurements of tp were performed in a spectral
region adjoining the region of the line. Then we can assume
that ?p equals the measured value in the region of the line.

Let 8v be the minimum spectral interval that can be
isolated by the spectral instrument. We shall assume that
8v is substantially smaller than the width of the atomic line
being observed, i.e., the line is spectrally resolved. At dif-
ferent frequencies one measures the different /a(v) and
/r(v) inside the line. Let us examine some very simple
cases of measuring the temperature of a gas. We shall as-
sume that there is no scattering, i.e., Ap=0; then instead of
(6.18) we have

+tp) (6.20)

and the intensity of the radiation is written in the well
known form

(6.21)

One must measure at the chosen frequency the signals Jr,
JL, and/r+L. By using (6.1), (6.4), and f0=fa (v)+rp , we
find

a(v)I°a + tpI°p)/ta(v)=I°LJr(v)/(Jr(v)+JL

(6.22)

To find 7^ or the temperature Ta by (6.22), we must:
1) find t0(v) at the chosen frequency v inside the line from
the three measured signals (see (6.4)); 2) use the mea-
sured fp to find ?a(v) =r0(v) — rp, 3) use the known values
of /p1 and I°L for the final calculation.

Let us assume that the atomic optical density is far
larger than the optical density of the particles: ra(v)>rp.
The optical density usually increases with varying fre-

quency as the frequency approaches that of the center of
the line. When the condition ?a(v)>rp is fulfilled, in agree-
ment with (4.25) we find

This means that we can neglect scattering for sufficiently
large ta(v)/tp. Here g5-»0, and g(v)-»/^. If, moreover,

l, then we have

In this case we directly find from (6.1) with //,=/£.:

J°a=I°L, Jr/JL. (6.23)

As we see, here we need not know tp and 7^. A similar
possibility is also implied by the results of calculation given
in Sec. 4.3 for a constant gas temperature inside the object
(see Figs. 9-1 1 ). It is essential that the effect also occurs in
the presence of walls. The result is understandable: at large
fa the influence of the emission and scattering of the parti-
cles is suppressed by the highly probable absorption by
atoms. The choice of a sufficiently large fa must be per-
formed with caution owing to the features of the behavior
of the contours described in Sec. 4.3, even for considerable
values of ta~ 1-5. The features involve the influence of the
zigzag motion of the photons caused by scattering on the
absorption of light by the atoms. Nevertheless, at large
enough ta these effects become so small that they can be
neglected. Preliminary calculations of the lines give a basis
for a correct choice of the experimental conditions.

In choosing the frequencies suitable for performing
measurements of the temperature of a gas, one must take
account of the possible inhomogeneity in the object. The
lines can even be self-reversed; then one must shift from the
center of the line and introduce certain corrections.4 It is
much simpler to find the corrections for inhomogeneity
than to calculate the effects of scattering, but to find them
one must have preliminary information on the character of
the inhomogeneity of the object. Often such information
exists. One of the possibilities of experimental study of
inhomogeneities is discussed in Sec. 6.4.

Only the sufficiently strong lines can satisfy the condi-
tion fa(v0)>l. To perform temperature measurements, of-
ten one introduces specially a substance having suitable
lines. Thus, in combustion products to measure the tem-
perature one uses the emission of resonance lines of spe-
cially introduced sodium.

In other cases, when Ap=^0 and ta(v)~tp, one must
take account of scattering in the way that this is done in
measuring the temperature of the particles. The details of
this procedure are analogous to those described in Sees.
6.2.2 and 6.2.4, and will not be repeated here. In the case of
an isothermal cavity where J^=l^, the treatment is the
same as in Sec. 6.2.3, with the difference that one can write
instead of (6.15)

ta-tp)]. (6.24)

Measurement of the temperature in the absence of scatter-
ing was discussed in Refs. 57 and 58. Losses of light due to
scattering were taken into account in Refs. 59 and 60. The
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positive contribution of scattering of the radiation from the
walls to the observable intensity was calculated under con-
crete conditions in Ref. 61. The results of these and other
numerical calculations do not contradict the idea that, at
large enough atomic optical densities /a, one can find the
temperature of the gas relatively simply in the way de-
scribed above.

6.3.2. Let us turn to the concentration of atoms (or
molecules). We shall discuss the determination of the con-
centration by measuring the attenuation of radiation in a
region of spectral lines. The atomic optical density is asso-
ciated with the concentration of atoms by the following
relationship:

fa(v)=na(7a(v)/. (6.25)

This relationship is fundamental in finding the concentra-
tion of atoms by measuring the attenuation of the radiation
of an external source. To find иа one must know the ab-
sorption cross section of the line aa(v) (see Sec. 2.2).

The results of the measurements substantially depend
on the width of the measurable spectral interval Sv.

Let Sv be so small that the atomic optical density ta(v)
does not vary appreciably inside Sv. In this case one must
measure t0(v) at a chosen frequency inside the line, while
measuring the optical density of the particles tp near the
line. Then one can find the concentration na from
tz(v)=tQ(v)— tp. Such measurements at a single fre-
quency inside the line are seldom employed. More often
one uses measurements at two or several frequencies,
which diminishes the error of the measurements. This per-
tains also to measurements in the absence of particles.

Let Sv be so large that it includes the entire region of
the spectral line where ka=£0, or most of it. In this case the
concentration of atoms is determined from the integral at-
tenuation of the radiation in the spectral line. In the ab-
sence of macroscopic particles this method is applied
rather widely.18'19

Let us assume that the scattered radiation of the source
L does not enter the instrument. Then in the case of a
broad spectral interval Sv, instead of (6.5) we should write
the following expression for the transmission of light:

r+L-JrVJL= (
J S

r (v )

Xexp(-/o(v))dv/ Г ILdv.
I JSv

(6.26)

Upon taking account of Eq. (6.25), of the equation
t0(v) =ta(v) + tp, and of the fact that the optical density fp

does not vary inside the interval Sv, we find

JT+L—JI С т е \- - - expf p = IL(v)
J L J v

Xexp(— CTa(v)«a/)dv / ILdv.
I JSv

(6.27)

The right-hand side of (6.27) can be calculated for known
IL(v), Sv, and aa(v) as a function of the product nj. The
result of calculation does not depend on the presence of
particles. Yet measurement of the three signals Lr,JL, and
J,+L in the region of a line, and also outside the line (to
determine tp), makes it possible in a concrete experiment to
find the left-hand side of (6.27). Comparison of the result
with the calculated right-hand side determines the sought
concentration na. When I L(v) is constant inside Sv, in-
stead of (6.27) we have

_ J 1 ,.

^ - -(expt)=^- exp(-cj
JL ov JSv

(v)na/)dv.

(6.28)

Often in calculation, instead of the characteristics of
the light transmission, one uses the so-called equivalent
width of the atomic absorption line:

A.= { [l-exp(-<r.(v)«a/)]dv. (6.29)
* JSv

In the presence of particles one obtains in the measure-
ments the following equivalent width:

-exp tp }8v. (6.30)

In the absence of particles one often determines the
concentration of atoms from the width of the spectral lines
of the radiation. These methods can be used also in a gas
containing a condensed dispersed phase, for which the
spectral lines calculated as functions of ta are quite suitable
(see Figs. 9-11). The methods of determining «a from ab-
sorption in the gas containing a condensed dispersed phase
are simpler and more reliable, since they do not require one
to calculate the contours of the lines, which depend on the
scattering properties of the particles (Ap,^(ys)) and on the
emission from the walls.

In spectral diagnostics in finding temperatures and
concentrations, the problem of measurement errors is usu-
ally very important. The sources of error are varied, and
many studies have been devoted to these problems (see,
e.g., Refs. 4 and 19). In a gas containing a condensed
dispersed phase, in addition to the erorrs involving the
measuring systems (error in calibrating the comparison
source L, noise in the electrical circuits, error in the mea-
suring instruments, etc.), an important role is played by
errors determined by the object itself. Above all, these are
the errors caused by the time instability of the object.4

Thus, in measuring temperature the result substantially
depends on the relationship between the characteristic time
of the instabilities and the time of measurement. If the time
of measurement is substantially larger than the time of
instability, a certain averaged value is determined that dif-
fers from the mean temperature. This involves the nonlin-
ear dependence of the intensity of emission on the temper-
ature. When the times of instability are comparable with
the measurement times, the error in the measurements can
be especially large and must be taken into account. For a
reasonable interpretation of the results one must have in-
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formation on the instability of the object, which usually
can be obtained by measuring and analyzing the signals JT.

To summarize all that we have presented above, we
can conclude that one can determine the temperature of
the atoms most reliably by using the central parts of opti-
cally dense lines, and the concentration from the integral
absorption in the lines.

6.4. Study of spatial inhomogeneity from the contour
of spectral lines

In contrast to Sees. 6.2 and 6.3, here we discuss one of
the possibilities of studying the spatial distribution of the
characteristics of a gas containing a condensed dispersed
phase. The spatial distributions in an inhomogeneous emit-
ting gas are often studied from the emission intensity. To
do this, one observes the intensities along different rays of
sight. Observation in different directions has led to the
development of tomographic methods.62 Observation along
parallel rays of sight is often used to find distributions in a
cylindrically symmetrical emitter.19 However, there is a
large group of emitters to which access is highly limited,
e.g., combustion products containing a condensed dis-
persed phase as mentioned in the Introduction. These emit-
ters are surrounded by opaque walls in which apertures
exist, which allow one to observe the radiation only along
one ray of sight (see Fig. 12). The problem consists in
finding the distribution of characteristics along this ray.
The problem can be solved by studying various regions of
the emission spectrum in which the light comes to the
observer from different depths.

The probability of direct escape of light to the observer
is determined by the exponential function of the optical
depth in (4.6), i.e., when 17=0,

g0=exp(—r (6.31)

It is precisely the radiation that has arrived without
intermediate interaction with matter that bears the funda-
mental information on the primary emission of the object,
although intermediate interactions are taken into account
in solving the transport equations. At the frequencies at
which /0(v)>l, the probability of direct arrival of light
from the opposite boundary is small. But the probability of
escape qQ of light of the same frequency from small enough
depths (X-g.1) can be appreciable. Yet if the optical density
t0(v) decreases upon changing the frequency, the depth is
increased from which radiation arrives with high probabil-
ity. Let the emission spectrum be characterized by a broad
set of optical densities r0(v) at different frequencies, and let
there be frequencies at which the optical density is large
(r0(v)>l). In this case one can find the distribution of
characteristics of the object along the ray of sight. One of
the systems for obtaining the distributions consists in the
following. The dependence of the intensity on the fre-
quency is determined experimentally. A certain form of the
distribution of the sought characteristics is selected in
which a set of variable parameters enters. The dependences
of the intensity on the frequency are calculated for various
numerical values of the parameters by solving the transport
equation. The results of experiment and of calculation are

compared. The set of parameters that yields the best agree-
ment determines the sought distribution. Another system
of calculation consists in an iterative, stepwise procedure of
selecting the sought distributions in the process of transi-
tion from the frequencies where the radiation comes from
small depths to frequencies at which the depth of emission
is greater. At each of the frequencies one compares the
experimental and calculated intensities. The method de-
scribed here is one of the the incorrect reverse diagnostic
problems. One must take account of the features of the
solution of such problems.62 In the method being dis-
cussed, in particular, for reliable results one must have a
sufficiently large number of independent measurements of
the intensity at different frequencies.

In Refs. 63-65, to study an inhomogeneous high-
temperature gas along the ray of sight, infrared radiation in
individual regions of the spectral bands was used. The
choice of a sufficient number of suitable spectral regions
presents substantial difficulties here. Another possibility
consists in using a spectrally resolved atomic line, within
which one measures ?a(v). One can use a line if the optical
density in the center of the line is large: f0(v0)>l. In Refs.
66 and 67, to find the temperature distribution of a gas
along the line of sight, the self-reversed contour of an
atomic line was used.

References 44 and 68 analyzed the possibility of find-
ing the temperature distribution in a gas containing a con-
densed dispersed phase from the form of a spectral line.
The analysis was based on a description of the line shown
in Sec. 4.3. A procedure was studied that makes it possible
to find a set of parameters that determine the temperature
distribution as well as the probability of survival Ap. To
find the distribution along the line of sight one must have
certain preliminary information. In particular, in using the
spectral line one must know the atomic absorption coeffi-
cient kz(v). If one determines experimentally not only the
contour of the lines /r(v), but also the dependence tQ(v),
then the set of required information on &a(v) is
decreased.68

Macroscopic particles substantially influence the po-
tentialities of the method. Below we discuss the spatial
resolution and possible depth of study of inhomogeneities
in a gas containing a condensed dispersed phase. Although
the method is based in all cases on exact solution of the
transport equations, here we shall use simple consider-
ations for estimates.

Under concrete conditions of experiment one can usu-
ally fix the least admissible probability of direct escape
<?o min fr°m an arbitrary depth X. This quantity character-
izes the smallest required fraction of the light emitted at
the depth X that comes to the observer without interme-
diate interaction with the medium. The required fraction of
the radiation is determined by the features of the emitter.
Thus, if the local emittance of an inhomogeneous emitter
increases as one approaches the observer, then one requires
a larger fraction of the light for reliable measurement. The
required least probabilities in different experiments can
vary roughly in the following range: q0min г:0.4-0.05,
which corresponds to a variation in the greatest accessible
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optical depths according to (6.31) in the range: /,= 1-3.
When ^omin or f/ has been fixed, one can associate the
frequency of the radiation with the greatest depth from
which radiation sufficient for measurement arises. In an
inhomogeneous medium the variation of the coefficients of
absorption and extinction is usually considerably weaker
than the variation of the emissive characteristics. Upon
taking this into account, as well as the approximate char-
acter of the estimates made below, we assume that ka(v)
and ap do not vary inside the medium. Then we have

= t/(ka(v)+ap). (6.32)

Here the given quantity t,- determines the depths accessible
to study at different frequencies.

The possibility of independent measurements of the
intensity at two adjacent frequencies is determined by the
measurable spectral interval 8v. The increment SX(v) cor-
responding to a variation of the frequency by 8v is a char-
acteristic of the smallest regions of the object on which one
can get information. We find from (6.32)

8X(v)=ti8v\dkA(v)/dv\(ka(v)+ap)-2, (6.33)

fiAT(v)/Jir(v)=fiv|d*,(v)dv|/(A,(v)+op). (6.34)

The relative spatial resolution of (6.34) does not de-
pend on the arbitrarily assigned magnitude of ?,. The spa-
tial resolution of the method becomes better (5X is
smaller) as the relative change in the atomic absorption
coefficient becomes smaller and its absolute magnitude be-
comes greater. The absorption coefficient is maximal near
the center of the line v0. Here X(v0) is minimal, while
8X(v0) by (6.33) determines the least thickness of the
layer adjacent to the observer from which averaged infor-
mation can be obtained. In other words, 8X(vQ) deter-
mines the minimum depth of investigation.

Now let us study the maximum depth of an object
accessible to investigation. At a sufficiently large distance
from the center of the line (&a-»0), the depth according to
(6.32) reaches its maximum value;

Or, if we use the optical density of the particles tp=apl, we
find

If tj<tp, then Xnua< I, i.e., with a large enough optical
density of particles, the entire depth of the object cannot be
investigated.

Figure 22 illustrates what we have said; it shows sche-
matically the variation in the atomic optical density /a with
varying frequency for fa(v) = 10 (curve 7). The spectral
line in the absence of particles is shown schematically there
also (curve 2). Let the required optical density be fi = l,
which corresponds to ?omax=;0-37. In this case the acces-
sible depth of the object equals the mean free path of a
photon /ph. Actually we find from (6.32) that

1,0

FIG. 22. Schematic dependences on the frequency (Ду= | v— v0|) in the
region of a spectral line: /—atomic optical density ^(Дг); 2—intensity of
the radiation of a self-reversed line /(Av) in relative units for fp=0;
3-5—ratio of the mean free path of a photon to the length of the object
/p h(Av)//for various optical densities of the particles: 3—fp=0; 4—tf= I;
5-rp=2.

The diagram shows the variations of the mean free path
(3-5) corresponding to the course of curve I for different
values of tp. When tp=0 the value of /ph// increases from
the minimum value at the center of the line to I at /a(v),
and then goes to infinity as ra(v) decreases to zero (curve
3). When tp=l (tp=t{), the greatest length /ph equals the
depth of the object (curve 4). When tp>\ (tp>t{), the
greatest length /ph is smaller than the depth of the object
(curve J). That is, despite departure of the frequency of
observation outside the limits of the spectral line, light does
not arrive directly from the parts of the object opposite the
observer with the required probability g0=0.37.

We note that the obtained spatial resolution must be
matched to the characteristics of the object. Thus, in mea-
surements of the temperature distribution the magnitude of
8X(v) must not be smaller than /a-the least dimension of
the region that can be characterized by a single tempera-
ture (see Sec. 2.3).

Thus macroscopic particles limit the greatest depth of
an object accessible to study of the spatial inhomogeneity
from the contour of a spectral line. The spatial resolution is
determined by the spectral resolution of the apparatus and
the dependence of the atomic absorption coefficient on the
frequency.

7. CONCLUSION

Thus the emission from a gas containing a condensed
dispersed phase in the continuum and in spectral lines sub-
stantially depends on the emission, absorption, and scat-
tering of light by the macroscopic particles. To use the
measured intensities of the intrinsic and transmitted radi-
ation in spectral diagnostics, one must be able to take re-
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liable account of the influence of the particles. Taking ac-
count of scattering presents especial difficulty. Taking
account of scattering is especially important in real objects
that contain bright emitters lying outside the field of view
of the diagnostic spectral instruments. The probabilistic
method makes it possible rather simply to take account of
scattering. Integral equations are written for the probabil-
ities of escape of radiation on the basis of physical consid-
erations. The equations are solved by the method of suc-
cessive approximations. The probabilities of escape that are
found are used to obtain direct connections in the quadra-
tures between the measured intensity and the sought char-
acteristics of the gas containing a condensed dispersed
phase.

In the rather general case the equation for the proba-
bility of escape has been discussed in Sec. 3.3. Special cases
are obtained from the general equation. In this way the
radiation with isotropic scattering in objects of various
shapes has been treated (Sec. 4.1). Analogously, by using
the general equation for the probability of escape, the pas-
sage of a thin beam through a gas containing a condensed
dispersed phase was described (Sec. 5). The evident phys-
ical meaning of the method makes it possible, even without
the aid of the general equation, to write the required equa-
tions directly in concrete situations. This is precisely how
the influence of scattering by particles of the light from the
walls on the emission from a gas containing a condensed
dispersed phase is described (Sees. 4.4 and 4.5).

In setting up diagnostic experiments an important role
is played by preliminary estimates of the limiting possible
influences of various conditions on the expected results of
the measurements. For example, it can be useful to esti-
mate the influence of scattering or absorption of light by
particles on the contour of a spectral line. Such estimates in
many cases can be made by using easy calculations of the
individual components of the equilibrium radiation of a gas
containing a condensed dispersed phase (Sec. 3.2).

Analysis of the results of calculations of the intensities
of radiation obtained by the probabilistic method makes it
possible to select the most reliable methods of measure-
ments of various quantities. Thus, to measure the temper-
ature of a gas it is recommended to use the radiation in the
central parts of optically dense lines, while to determine
the concentration of atoms (or molecules) the integral ab-
sorption in the lines is recommended (Sec. 6.3). Optically
thin lines are subject to a strong influence of even a small
amount of macroscopic particles. Therefore the use of
many traditional methods of diagnostics of a gaseous me-
dium in the case of a gas containing a condensed dispersed
phase can lead to erroneous results.
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