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1. INTRODUCTION

The problems formulated many years ago by Einstein,
Podolsky, and Rosen (EPR),1 Bohm,2 and Bell3 (see also
the review literature4"10 have continued to disturb new gen-
erations of physicists. This has largely been due to the fact
that the contradiction found by Bell between the predic-
tions of quantum theory (QT) and the hidden variable
theory (HVT) can be more or less satisfactorily removed
(in favor of QT, of course) by a critical experiment, which
distinguishes it from other quantum paradoxes. HVT is
closely related to the statistical ensemble interpretation of
QT, so that such experiments—actual or thought—
constitute a serious contribution to the on-going dispute
between the supporters of statistical (Einstein) and ortho-
dox (Bohr or Copenhagen) interpretations and their nu-
merous modifications (see the review paper in Ref. 8 and
Sudburys textbook.10

It is possible that this dispute will be resolved in the
future (possibly in favor of some new interpretation) and
that the historians of physics will look upon it as another
striking example of a delusion that had trapped even the
ablest minds in the past.

Several new lines of theoretical and experimental re-
search have emerged in this field in recent years. Our aim
in this review is to describe those that, in our view, are of
particular interest. They include the following:

—the use of efficient nonlinear-optics parametric light
sources that produce directed beams of 'biphotons' (corre-
lated pairs of practically simultaneously created photons)
and constitute an essential element of new modifications of
optical EPR-type experiments.11"13

—the development of three- and generally, A'-channel
model experiments with EPR-Bohm type correlation,14'15

and formulation of the corresponding generalized Bell in-
equalities (BI) in the form given by Mermin et al. 16~21

—the Greenberger-Horne-Zeilinger theorem (GHZ)
or the Bell theorem without inequalities14'15'22'23

—simple new examples24'25 demonstrating and proving
the Kochen-Specker theorem (KS)26"29

The implementation of optical methods of varifying
BI, first achieved by Clauser et a/.30"32 (see also the reviews
in Refs. 4, 5, and 9) has a number of practical advantages
and can be simply described, so that clear classical and
semiclassical models can be developed. Indeed, the
possibility of parallel quantum-mechanical and classical
treatments of optical experiments forms the basis of our
presentation. We hope that this approach will facilitate at
least partial reconciliaton of the quantum-mechanical and
classical interpretations of the essence of EPR-Bohm type
experiments and, generally, multiphoton interference ef-
fects. The same purpose is served by our preference for the
Heisenberg representation which we use in the quantum-
mechanical description of interference. We use it in order
to demonstrate the infelicity of the word nonlocality which
is almost always looked upon as a decisive symptom of
these quantum effects.

The Heisenberg representation enables us to transfer
quantum paradoxes (at any rate, optical paradoxes) from
the output of the interferometer to its input. Together with
its detectors, the interferometer can be regarded as a clas-
sical device for the investigation of the true quantum me-
chanical object, i.e., the original field. In this way, only the
statistical properties of the still-localized field at the input
are nonclassical, and the problem reduces to the basic QT
paradox, namely, the principle of complementarity. The
ideas that we will present will apply to the currently pop-
ular two- and many-photon interference effects; they are
not directly related to BI, but are widely regarded as dem-
onstrating nonlocality.33"35

Although the EPR and Bell paradoxes are described in
the popular literature (see, for example, Refs. 36-38) and
even in textbooks on quantum mechanics (e.g., in Sud-
burys book,10 which is remarkable in many respects), they
nevertheless carry an aura of mystery and are regarded as
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esoteric, with a reputation for inaccessibility to the unini-
tiated. This is partly due to the traditional use of Bohms
spin model2 and partly to the description of optical models
in terms of the Schrodinger representation, i.e., in terms of
the evolution of the state vector of the two-photon field as
it passes through the interferometer. All this inhibits com-
parisons with the familiar picture of interference of classi-
cal waves.

Appendices I and III show that there is a one-to-one
correspondence between N correlated half spins and opti-
cal W-photon fields. Each photon thus belongs to two
modes that differ by the type of polarization and/or the
direction of the wave vector. The Stern-Gerlach magnetic
spin analyzer has as its analog the polarization analyzer
(prism) and the beamsplitter with a phase compensator
that mix the modes in pairs. The analogy can also be ex-
tended to particles with arbitrary spin j, in which case
each photon belongs to 2j + l modes.39

We shall devote considerable attention to experimental
procedures that are used to introduce the necessary con-
cepts and mathematical symbols into the theory. In gen-
eral, it seems that most quantum-mechanical paradoxes,
and concepts such as the KS theorem and the reduction of
the wave-function, are best treated operationally, i.e., in
terms of particular experiments (at any rate, thought ex-
periments) and measuring procedures, including the oper-
ation of averaging in the course of repeated sampling of
identically prepared quantum-mechanical systems. This is
why Sees. 3-5 begin with the description of experiments.
This approach, has lead, for example, to the conclusion
that, contrary to expectations, single samplings do not re-
veal contradictions between QT and HVT even in the case
of ideal (complete) corelations between observer readings.

Our plan will be clear from the respective section head-
ings. After a brief review of the literature, published mostly
during the last decade, we systematically examine two-,
three-, and W-channel EPR experiments, which are de-
scribed in terms of HVT, QT and several classical models
in which the elusive hidden parameters are brought into
the real world as the random phases of quasimonochro-
matic waves generated by parametric converters.

A separate section is devoted to the KS theorem, the
Stapp paradox, and the contradiction that ensues from the
Cauchy-Schwartz inequality.

Additional and auxiliary material is presented in Ap-
pendices I-IV.

We have tried to make the individual sections as inde-
pendent as possible. Readers wanting only a cursory
glimpse of the Bell inequality and the corresponding opti-
cal experiments with two-photon light may confine their
attention to Sees. 3.1-3.4 which provide a detailed descrip-
tion of the simplest experiment and its interpretation in
terms of three different approaches employing, respec-
tively, Bells phenomenological theory of hidden parame-
ters, the classical model of interfering waves with random
phases (which we proposed in Ref. 19), and, finally, the
formal quantum-mechanical description of photon correla-
tions. Subsequent sections and appendices are designed for

those interested in a detailed examination of the problem
and in modern research in this field.

2. REVIEW OF LITERATURE

In 1935, Einstein, Podolsky, and Rosen1 considered a
quantum-mechanical system consisting of two correlated
particles and concluded that formal quantum theory (QT)
does not provide a complete description of physical reality.
Hence it follows that it is possible to introduce certain
additional parameters A that offer a complete description
without any randomness. To illustrate the EPR derivaton,
Bohm2 examined a system of two half spins. In 1964, Bell3

gave a very general proof that HVT and QT lead to mu-
tually contradictory predictions in Bohms model. One of
the few assumptions introduced by Bell was the natural
assumption of locality, i.e., the absence of mutual influence
between two distant measuring devices.

The contradiction found by Bell (this is the so-called
Bell theorem or paradox) throws doubt on the EPR pro-
gram (we assume that the words contradiction, theorem,
and paradox can be regarded as synonymous in this con-
text). In the simplest case, the contradiction arises not only
in Bohms model, but also in experiments with two corre-
lated photons, each of which belongs to two modes' (11-
13, 30-32, 39-41). A certain combination of measured
variables, 5, which we shall call the Bell variable, cannot
exceed unity after averaging over the probability distribu-
tion function ря where A is the set of hidden parameters,
i.e.,

where

f0

J ~

It will be convenient to use a definition of S that is smaller
by a factor of two as compared with the generally accepted
definition.

On the other hand, QT contains factorizable states | ф)
which are called mixed or entangled states in which the
expectation value of the operator S corresponding to the
Bell variable takes the value

(as a rule, we shall not explicitly distinguish between the
observable and the corresponding operator).

The contradiction indicated by (2. la, b), which will be
derived in detail in Sec. 3, has frequently been varified
experimentally, mostly by optical methods.11'13'30"32 Of
course, this involved the use of the frequency 'definition' of
the expectation value (the only one possible in practice):

1
(2.2)

where L is the number of samplings.
These experiments were essentially based on a form of

the Brown-Twiss intensity interference42'*3 whose particu-

654 Physics - Uspekhi 36 (8), August 1993 A. V. Belinskii and D. N. Klyshko 654



lar feature is the harmonic modulation of the correlation
between the intensities of two light beams (modes):

(2.3)

where V is the visibility and <p is a particular combination
of phase delays in the optical channel, or in the polariza-
tion experiment, double the angle between the analyzer
axes.

The phenomenological Bell theory operates with dis-
crete two-valued (dichotomic) observables such as A =
±1, so that the detection process is based on a photon-
counting regime. QT predicts perfect visibility V= 1 when
one photon simultaneously enters each of the interferom-
eter inputs. In practice, this type of stationary two-photon
light is generated either in two-photon transitions
(casade30'31 or direct32) in atomic beams or, more effi-
ciently, by splitting the primary pump radiation into pairs
of secondary photons by parametric scattering or paramet-
ric down-conversion of frequency.11"13

If photon-pair creation occurs too frequently, the pairs
will occasionally overlap within the detection time con-
stant, which will lead to random coincidences between
photon counts. This will reduce the interference visibility,
so that the quantum and experimental values of the Bell
observable will be such that

(2.4)

and the BI will not be violated for F<0.71.
Classical models describing interference between ran-

dom waves (Sec. 3.3) are subject to more stringent visibil-
ity limit F<0.5.

However, in most experiments, the visibility V exceeds
the critical value 0.71. It is important to note at this junc-
ture that we shall adopt the following convention: the va-
lidity of the Bell analysis is limited in practice by additional
(and not always explicit) assumptions that are reasonable
or even obvious in character, but whose physical signifi-
cance must nevertheless be critically examined.44'45

Most EPR-Bell type experiments are based on polar-
ization interferometry with polarization-correlated pho-
tons. However, the advent of efficient parametric sources of
parallel beams of polarized photons with correlated phases,
i.e., with correlated quadrature components, has lead to
the emergence of new types of intensity interferometer. For
example, Rarity and Tapster13 have reached F=0.8 in a
system consisting of two Mach-Zender interferometers
without beam-splitters at entry. The principle of this ex-
periment was put forward a few years ago46'47 and will be
examined in detail in Sec. 3.1. Similiar modifications are
discussed in Refs. 39 and 48-53.

An experiment demonstrating the EPR paradox for
continuous observables in a homodyne interferometer has
recently been carried out for the first time.54 Experiments
of this kind were previously discussed in Refs. 55-59 (cf.
Sec. 3.7).

Other interesting applications have also recently
appeared.60"72 For example, Zukovskii and Zeilinger70 have

analyzed a combined system in which one of the channels
contains a polarization interferometer and the other a
Mach-Zender interferometer.

Joshi and Lawande72 have discussed a system of
strongly excited two-level atoms and the resonance fluo-
rescence emitted by them, which was used as a source of
light for an intensity interferometer generating pairs of cor-
related photons.

Oliver and Stroud71 suggested that, instead of spins
and photons, it is possible to use two or three Rydberg
atoms excited to a nonfactorizable state by one common
photon. The BI introduced by them for three observers was
found to be a special case of the jV-channel BI found by
Mermin16 and Hardy.20

It was shown in Ref. 64 that parametric scattering
could be used to demonstrate the EPR paradox for observ-
ables qL and PL , i.e., the transverse position coordinate
and momentum of two photons with correlated directions
of propagation. Similar possibilities were examined in Refs.
65-67 for pairs of photon observables such as energy and
time since creation.

We now turn to theoretical publications on the gener-
alization and interpretation of BI. Bells pioneering paper3

was followed by alternative derivations and modifications
of his inequalities, which were based on the existence of a
joint distribution of all the observables without explicitly
mentioning the hidden parameters (see, for example, Ref.
73). For the sake of brevity, we shall not distinguish be-
tween these variants and will follow the logic and the orig-
inal notation employed by Bell.

Considerable effort has been directed toward a logical
analysis of the role of hidden parameters, joint distribu-
tions, locality, determinism, and so on (see Refs. 74-86).
Estimates of the maximum possible violations of the BI
within the framework of QT, and searches for the corre-
sponding states, have been carried out by Cirelson87 and by
a number of other workers.88"92

Apart from Bell3 (see also Ref. 15) there was also a
paper by Barut and Meystre93 who put forward clear clas-
sical models for two particles with opposite rotational an-
gular momenta (see Appendix II).

Generalizations of BI to the case of two particles with
arbitrary spin j and N>2 have become popular.102 Gisin
and a number of other workers have shown that any non-
factorizable state with 7V>2 gives rise to a violation of the
BI and that the contradiction extends to arbitrarily large j
(Refs. 103-106).

The Bell inequalities and quantum correlations are dis-
cussed in Refs. 107-110 from the standpoint of informa-
tion theory.

A re-examination of the Kochen-Specker (KS)
theorem24'25 and this has lead to a +1 = — 1 contradiction
within the QT formalism when operators (in a set of iden-
tities consisting of commuting operators) are replaced with
their eigenvalues (see Sec. 6.1). The connection between
this type of paradox and Lorentz invariance is discussed in
Refs. 111-114. Dewdney115 has given a logical analysis of
the basic assumption underlying the KS theorem in the
Peres24 and Mermin25 formulations in the context of the
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well known HVT approach proposed by de Broglie and
Bohm. The KS contradiction is examined in Ref. 116 in the
limit as TV-» oo, and the connection between this paradox
and nonlocality is analyzed by Heywood and Redhead in
Ref. 117.

Greenberger, Home and Zeilinger (GHZ)14'15 have
considered a modification of the EPR-Bohm experiment
for N=3 and 4 and have identified a new type of contra-
diction between QT and HVT (see Sec. 4.3), which also
reduces to the form +1 = — 1. The GHZ paradox differs
from (2.la, b) in two principal ways: it involves neither
satistical averaging nor inequalities; it is therefore also ref-
ered to as the Bell theorem without inequalities. The work
of Greenberger et al.14'15 immediately evoked a substantial
response in the literature.16"33'118"127 Mermin25'118 clearly
demonstrated the essence of the paradox, virtually without
any formulas,118 and has analyzed its relation to the KS
theorem.25

The nonfactorizable states considered by GHZ were
the starting point for the formulation of new and interest-
ing thought experiments125'126 that have given rise to con-
siderable discussion and have stimulated further
generalizations16"20 of BI to the case of an arbitrary num-
ber N of spin 1/2 particles. The most interesting variant
seems to be that found by Mermin16 and developed further
by Roy and Singh17 and also by the present authors19 who
proposed an optical experiment (see also Ref. 21). The
contradiction (2. la, b) then takes the form of the inequal-
ity

(2.5)

In particular, TV=2 gives (2. la, b) whereas TV=3 (but not
TV>3) gives Hardy's result.20 According t Ref. 16, when
/V>1, we can speak of a new macroscopic 4uantum effect.
A new derivation of (2.5) in a sufficiently general form is
given in Sec. 5 (without using the spin model).19

The questions that we have been discussing have re-
cently undergone an unexpected development in cryptog-
raphy, i.e., the science of coding of messages, designed to
prevent eavesdropping by others.128"131 A theoretical and
experimental investigation has been made of applications
of correlated photon pairs to noise-free communication,
measurements of distance,132"135 and photometry.136"138

We shall briefly consider the interpretation of the Bell
and KS theorems that show the incompatibility between
classical ideas and the quantum formalism. These theorems
and the corresponding experiments that confirm QT pre-
dictions are widely thought to consititute evidence for the
nonlocality of not only specific physical processes, but also
of quantum mechanics itself. The term nonseperability is
also occasionally used (see below for more details).

It is considered that 'EPR type nonlocality' is different
from 'signal nonlocality' that implies the existence of sig-
nals that propagate with superluminal velocity by means of
quantum correlations. Refutations of the latter possibility
are discussed in Refs. 139-143. The connection between
this question and Weinberg's nonlinear quantum mechan-
ics is examined in Refs. 144-145; we also note that doubts

have been expressed about the validity of the particle-wave
duality and the Feynman's uncertainty principle.146 How-
ever, let us now return to our main theme.

Very few publications dispute21'147"151 the necessity of
nonlocality in the resolution of the Bell, KS, and GHZ
paradoxes. New arguments relating to this will be pre-
sented later.

There are two main ways of achieving formal recon-
ciliation between HVT, on the one hand, and experiments
and QT, on the other. They are: the acknowledgment of
nonlocality (due to unknown interactions between quan-
tum particle detectors) and/or the assumption of negative
probability distributions for measured variables.9'93'152"153

Either hypothesis constitutes a very heavy price to pay for
the survival of 'objective realism' as an alternative to the
principle of complementarity, and hardly anyone accepts
them literally. The true state of affairs is obscured by the
abuse of the term 'nonlocality', and we shall now try to
apply some logic to the situation, which we shall formulate
as follows in the case of BI.

There are two basic premises:
(a) classical local theories lead to a particular inequal-

ity
(b) quantum theory violates this inequality; in viola-

tion of the rules of formal logic, this is said to lead to the
conclusion that

(c) quantum theory is nonlocal
For comparison, we now present a comparable syllo-

gism:
(a') all good stories are short
(b') this novel is long conclusion:
(c') it is a bad novel.
Sometimes, the phrase 'quantum theory' in (b) and

(c) is replaced with 'observable quantum effects', but this
does not, of course, alter the essense of the situation.

A clear independent definition of the precise meaning
of (c) does not appear to exist, so that the only possibility
that remains is that (c) is simply a more concise symbolic
representation of the original premises (a) and (b).

The fact that 'nonlocality' is unfounded in QT also
follows directly from the quantum-mechanical description
of EPR-Bell type optical experiments in the Heisenberg
representation. The latter is very close to classical statisti-
cal electrodynamics which can hardly be accused of non-
locality. In this sense, the concept of 'nonseparability',
meaning quantum correlations between two or more par-
ticles (not necessarily widely separated from each other),
seems somewhat more appropriate, but in mathematics its
meaning is quite different.

Phrases such as 'algebraic proof of the nonlocality of
QT' or 'proof of the incompatibility between QT and non-
contextual HVT' are employed in connection with the KS
theorem. Contextuality is then understood to mean that the
result of a measurement of an observable A depends on
which other observables В, С,... are recorded at the same
time, i.e., it is again assumed that there is some hidden
interaction (telepathy?) between observers or instruments
recording the variables A, B, C,....

Such interpretations have no independent meaning or

656 Physics - Uspekhi 36 (8), August 1993 A. V. Belinskii and D. N. Klyshko 656



definition outside the KS theorem itself. The essense of this
theorem is that the replacement of operators with their
eigenvalues 'ruins' certain operator identities, transforming
them into algebraically inconsistent equations. The sim-
plest example of this is

a f

(axay)
2=-I- (2.6)

where aa and aa= ± 1 (a=x,y) are the Pauli operators and
their eigenvalues, respectively, and / is the unity operator.
We note at once that the operator <jx<jy=iaz is not Hermit-
ian.

Interesting recent examples24'25 include a few basic
identities, each of which involves only mutually commut-
ing combinations of operators; in order to reach a contra-
diction, all the identities must be multiplied so that the
resulting 'contradictory relation' contains, as does (2.6),
noncommuting operators (see Sec. 6.1 for more detail).
These considerations reduce the essense of the paradox to
a simple formula such as (2.6).

In the orthodox interpretation of QT, some of the
properties of a particle, characterized by the operators
A=Aa and A'=A'a, do not exist a priori (in the interfer-
ence experiment, a and a' are different phase delays, with
only one of them realized in a single sampling). This also
applies to the properties В, В' of the other particle. Con-
sequently, nonzero averages E^l^ = (AB)^, E^
= (А'В)ф,... indicate correlations between things that do
not exist! The situation is astonishing: the experiment in-
volves several observers whose readings are uncertain, but
have a predetermined correlation!

Such syllogisms have stimulated new attempts to rec-
oncile the QT formalism with instinctive 'objective real-
ism', using 'metaphysical' terms such as 'nonseparability',
'contrafactuality', 'contextuality', the notorious 'nonlocal-
ity', and varieties of these terms, none of which are rigor-
ously defined.

One final point. It is widely thought that, in EPR-Bell
type experiments, "...quantum mechanics predicts stronger
correlations between particles than do local theories."10 Its
seems that this is in full agreement with the restriction
Fj,lass<0.5 imposed on the interference visibility by classical
theory. There are, however, other classical models that
assure—as does QT—the full correlation E= ± 1 (see Sees.
3.3, 4.4, and 5.4). Quantitative differences between QT and
HVT are revealed only when account is taken of the spe-
cific dependence of the correlator E(a,f3,...) on the phase
parameters a, f},... of the operators Aa, Bp... (the Bis are
not violated by all this). Thus, once again, 'nonlocality'
and 'nonseparability' are seen to be undefined.

3. TWO-OBSERVER EXPERIMENTS

3.1. Two-channel interferometer

Figure la shows one of the simplest experimental
arrangements39 for the verification of BI. An essentially
similar variant was proposed in Ref. 46 (see also Ref. 50)
and implemented in Ref. 13.

A pump of frequency a>0 and wave vector ko illumi-
nates a birefringent piezocrystal with quadratically nonlin-

FIG. 1. Intensity interferometers with parametric sources of radiation
and two (a) and three (c) observers. Correlated photons are produced
simultaneously in the nonlinear elements 1 and 2 under the influence of
the pump Pand are sent to the observers А, В, (С) in two modes, one of
which experiences a phase delay (circles). The modes are mixed in 50%
beamsplitters (dashed lines) and are detected. In scheme (a) with zero
resultant phase delay (<p=a+/3=0), both photons are synchronously
deflected either upward (to detectors +) or downward (to detectors —);
for <p=ir, one travels upward and the other downward. In scheme (b)
with <p=a+/3+y=0, either all photons travel upward or one goes up
and two go down. For <p=ir, one or three go down.

ear x, which ensures that an extraordinary pump photon is
split into a pair of ordinary photons with wave vectors ka

and kA. This is the so-called parametric scattering or spon-
taneous down-conversion effect.

The 'signal' photon ka is distributed over two beams k?
and kj by a mask that divides the exit face of the crystal
into two regions 1 and 2. It is, of course, possible to use two
separate crystals with a common coherent pump. This also
happens to the second 'idle' photon whose frequency
соь=(о0—соа may not be equal to a>a. The mask thus per-
forms a division ofwavefront. Division of amplitude is also
possible and can be accomplished by means of
beamsplitters11'50 (see also Appendix III). Finally, we
could exploit the axial symmetry of the radiated field:13'46 a
photon of a particular frequency a>a (or со/,) is allowed to
enter a continuum of modes on the surface of a cone with
an fixed scattering angle va(vb). Under these conditions,
(k°j2+k*2)i =0. The aim of all these operations is the
same: to divide the two beams a, b into four. In the case of
polarization interferometers, modes 1, 2 must differ by the
type of polarization. Similarly, we can produce 2j +1 beam
pairs that simulate correlated particles with spin j (Ref.
39).

Signal beams with the same frequency coa are mixed by
a 50% beamsplitter and are directed on to two detectors
EP+ and D"_. In a preliminary step, a phase delay a is
introduced into one of the beams. Similar elements are
introduced into channel B: a phase delay /?, a beamsplitter,
and the detectors Db

±.
The arrangement just described is essentially an inten-

sity interferometer in which the nonlinear crystal is re-
placed with other sources. From the classical point of view,
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the beamsplitters convert phase fluctuations into fluctua-
tions in the intensity 7 that are recorded by the detectors.
The result is that, when a or /3 vary slowly, each of the
observed correlators (Ia

±Ib

±) oscillates harmonically with
phase angle <p=a±/3 (Ref. 33 and 34). The sign depends
on the source: the initial phases are correlated or anticor-
related (for further details, see Sec. 3.3 in which it is fur-
ther shown that the oscillations can also be nonharmonic).

The interference visibility function V is determined by
the relative noise level that is independent of q>. In QT it
can reach unity, in HVT we find that F<l/v2, and in
classical stochastic electrodynamics the visibility V is lim-
ited by 1/2. All this applies to harmonic interference
curves.

Suppose that the detectors operate as photon counters.
The signal and idle photons are created almost simulta-
neously with a picosecond spread that is much smaller
than the length Т of the pulses produced by the detectors
(for a photomultiplier, T~ 10~9 s). We choose the pump
power to be low enough to ensure that, on average, we
record pairs at intervals of, say, 10~6 s. The overlap prob-
ability for pulses due to adjacent (in time) photon pairs is
then neglibly small.

If the quantum efficiency т/ of the detectors is 100%,
they fire strictly in pairs: for example, a photon recorded
by Df+ is necessarily accompanied by the simultaneous fir-
ing of Db

+ or L^_. Complete correlation no longer occurs
when 77 < 1, and spurious events can be excluded by a co-
incidence system.

On the other hand, the detector counts in a given chan-
nel will be totally uncorrelated because photons are ran-
domly directed either 'upward' or 'downward' by the
beamsplitter. We shall follow Mermin118 and, for conve-
nience, connect green lamps to detectors D°+ and I^+ and
red lamps to detectors EP_ and D^_. Each detection of a
pair will then be signalled by only two lamps: one in chan-
nel A and the other in channel B.

Let us now vary the phase in one of the channels, for
example, a, and observe all the lamps. For a certain value
of a, which we shall take as our origin (<p=a=0), either
both red or both green lamps will light up. If, however, we
add IT to a the lamps will light up out of step, i.e., red with
green and vice versa.

We can now parametrize the picture by assigning to a
function A the value +1 when detector Jf+ fires and the
value — 1 when Ef_ fires. Similarly, we introduce the func-
tion B= ± 1. We thus obtain two random 'point' processes
At, Bj where i labels events that occur at random instants
of time.

Finally, we define a third dichotomic (i.e., assuming
only two discrete values) function Р91=Аа1В^= ± 1. For
<p=0, we always have F0i=l, and for <p=ir we have
Fm-= — I, i.e., we observe complete correlation or anticor-
relation of the random sequences Л, and Bt, so that F ,̂ is
then determined. Intermediate values of <p correspond to a
reandom sequence Fvi with <p as parameter. We can mea-
sure its average value

(3.1.1)

where L is the total number of pairs recorded in a partic-
ular interval of time. For 'sufficiently large' L, we obtain
the 'frequency' distribution of the average.

We note that FV is a multichannel variable: to measure
it, observers A and В must use communication links to
exchange information (or to communicate it to a third
person) and synchronize their clocks so as to establish the
origin for the numeration of events, since each of the above
random sequences forms a Poissonian random process. It
is clear from the above discussion that signal transmission
with superluminal velocity between observers A and В by
means of quantum correlation is, of course, just as impos-
sible as it is for clasical correlation.139"143 However, this
correlation can be used to to protect communication chan-
nels from eavesdropping128"131 or from noise.132"135

We also emphasize that an observer who confines his
attention to only one sequence, say, Aai, will not see any
dependence on the phase a (or /3) because in this case
PA =PA— 1/2- The other sequence has a similar distribu-
tion. At the same time, experiment and the quantum model
suggest that

P}(<p)=ax2(<p/2), Pf((f>)=&m2((p/2). (3.1.2)

The joint distribution of observables A and В is

(3.1.3)

Hence

=PAB +PAB - (3.1.4)

Significantly, in QT there is no joint distribution

4t for a pair of observables A =Aa and A' =A'a when
i' (and similarly for В and B' when /3=^/?') because

they do not commute: [A^A']<xsm(a—a') [see also (III
22)] and cannot be measured simultaneously. It is pre-
cisely this that is the formal reason for the conflict between
QT and HVT.

Total correlation is lost when 'random' coincidences
due to overlap between neighboring pairs is taken into ac-
count. The right hand side of (3.1.4) then acquires an
additional factor that can be interpreted as the visibility of
the interference pattern:

E,p=Fcos<p. (3.1.5)

As the pump power is reduced and there is a corre-
sponding reduction in the rate R at which biphotons are
emitted, we have F-» 1 (see Sec. 3.3 for further details).

We now return to experiment. Let us establish in each
channel two fixed values of the phase, a, a' and /3, /3', that
differ by ir/2, i.e.,

(3.1.6)
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Next, we perform four series of measurements in suc-
cession, with the following combinations of phases:

; aff; а'Д а'£'. (3.1.7)

This yields the following four measured values of the mul-
tichannel observables:

(3.1.8)

(3.1.9)

which we shall call the Bell observable. The data are then
averaged:

=AB, F(2)=AB',

Fm=A'B, FW=A'B'.

We now define the combination

3-А'В')екр. (3.1.10)

This result should be close to the QT prediction that
follows from (3.1.4) and (3.1.6):

1
cos <?! + 2 cos

ТТ

=V2~cos (3.1.11)

where <p{ = a+l3 and {...)^ represents averaging over the
quantum state characterized by the vector | ф) which will
be defined later [see (3.4.1)]. The Bell observable is a max-
imum when <;>!= — тг/4:

It may be shown that the value V2~ cannot be exceeded [see
(III25)] whatever the state | ф) in which the system finds
itself.87'89

It is interesting to note that (S)^ depends only on the
sum a+13, leaving one of the component phases (say, a)
free for the chosen <pl. We also note that all four terms in
(10) give the same positive contribution (or the same neg-
ative contribution for <р[ = Зтг/4) to (S)^, which is equal
to 1/V2 when (3)ф reaches its extremal values.

The same experiment can be considered within the
framework of HVT under certain 'natural' and fully 'rea-
sonable' assumptions, namely, that the variables A, A', B,
B' have a priori values in the range between — 1 and +1
that are specified by a certain nonnegative joint distribu-
tion function, and that the measuring devices do not influ-
ence one another (the assumptions are discussed in greater
detail in, for example, Refs. 41, 44, and 45). This leads to

-1<<5)р<1. (3.1.13)

The conflict between (3.1.12) and (3.1.13) can serve
as a possible criterion for choosing between the two theo-
ries.

We emphasize that the general restriction defined by
(3.1.13) must be met by all possible special classical mod-

els describing experimental procedures analogous to those
that we have described. Some of them are examined in this
review.

We also note that inequality (3.1.13) was established
for the average Bell variable. On the other hand, in indi-
vidual combinations such as (3.1.9), we have S=Q,
± 1,±2 in both classical and quantum theories.

3.2. Bell inequalities for two observers

Let us now try to explain the picture described above,
i.e., the flashing of the red and green lamps, in terms of
very general propositions. Let us forget about Maxwell
equations, the Schrodinger equation, photons, interference,
and so on. We follow Laplace: if two green lamps have
flashed at time tit i.e., the event "A/=l, 5,= 1" has taken
place, then it must have been due to some prior causes, i.e.,
a 'confluence of circumstances'. Let A represent the set of
parameters that uniquely lead to this event. We cannot
measure all these parameters, either in principle or because
of their number (say, 1023). We shall therefore refer to
them as "hidden parameters." However, we may assign to
them a specific distribution function p(A) where

/ > ( A ) d A = l , (3.2.1)

in which the integral is evaluated over the entire set A of of
the parameter values. The flash times tt, connected with
the dynamics A(r), are also uniquely denned by A,=A(f().

Thus, we believe that there are determined (single-
valued) dichotomic functions Aai=A(a,Aj), В^=ВаЗ,Л/)
in which the 'revealed' parameters a, /3 and the 'locality' of
the measurements are separately indicated: A is indepen-
dent of /? and В of a. The phase-controlling observers can
thus be as far as desired from one another and from the
light source, i.e., from the carrier of the hidden parameters.
Consequently, there is also a third determined function

Fapi^AaiBpi. (3.2.2)

The four series of measurements described in the last
Section are determined by the functions

А(Л.\т)), A'(^m}), В(^т)), В'(Л.\т)); (3.2.3)

where A< m ) =A(^ m ) ) and t^ is the time of the /-th event
in the w-th series.

Each of the set of functions A ( f ) varies appreciably on
the atomic time scale, so that they can be looked upon as
random processes in which the values of A at times 1\т),
t\+\, t\m>) are independent. We now adopt the ergodic the-
orem and replace time averages by ensemble averages with
weight p(A) =рд. Discarding the indices on the functions
in (3.2.3), we obtain

(S)p=

where in accordance with (3.1.9)

(3.2.4)

(3.2.5)

659 Physics - Uspekhi 36 (8), August 1993 A. V. Belinskii and D. N. Klyshko 659



It is readily verified that, like A^ and B^ , the function
5Л is dichotomic. This can be done by writing

= ± 1. (3.2.6)

If Ял = B\ then 5Л=^Л5Л= ± 1, and if 5Л = — B\ , then
SA = A\Bk = ± 1. This does not necessarily ensure that the
phase restriction (3.1.6) is met. The significant point is
that all the functions in (3.2.6) must have the single
(equal) argument A, since otherwise (3.2.6) may not be
satisfied. We emphasize this particularly because this point
is not usually brought out in the literature. The indices Я
will often be discarded in the discussion given below.

In classical probability theory, and according to com-
mon sense, ^>0, so that it follows from (3.2.1), (3.2.4),
and (3.2.6) that

Thus, finally,

(3.2.7)

(3.2.8)

This is one of tHe simplest variants of BI. Its other mod-
ifications and generalizations are given, for example, in
Refs. 15, 40, 41, 45, and 89. Here we merely mention the
fact that the dichotomy of the functions A, A ', В, В' is not
a necessary condition for the validity of (3.2.8). It is suf-
ficient to demand that

\A\ B \B'\<1, (3.2.9)

i.e., the measurements can also be performed in the con-
tinuous spectrum of values, but necessarily normalized.

Let us now return to the quantum interpretation of the
above experiment.

We note that, for complete correlation, when

(AB) = (AB') = (A'B) = (A'B') = ± 1, (3.2.10)

the BI is still satisfied—though only just [see (3.1.11) with
<pi=0 or тг]—in contrast to the three-channel version of
the experiment in which it is precisely for complete corre-
lation that the violation of the BI is quantitatively at its
maximum (see Sec. 4). The logic of the EPR program does
not therefore apply to the possible violation of (3.2.8). We
recall in this connection that the original EPR program
provided for the augmentation of quantum mechanics with
hidden parameters1'15 as well as experiments ensuring the
complete correlation of measurements, since the principal
intention was to eradicate the statisticity and to verify de-
terminism ('God does not play dice'). This means that,
strictly speaking, the statistical character of the violation of
BI in two-observer experiments has no relevance for the
EPR paradox. In other words, when the experiment de-
scribed in Sec. 3.1 is analyzed, we have to distinguish two
situations, namely, complete correlation (E= ± 1) to
which EPR logic applies and incomplete correlation for
which E— ± 1/V2 and (3.2.8) is violated in QT.

3.3. Classical stochastic model

We must now try to describe the experiment illustrated
in Fig. la in the language of classical statistical theory,

using the model of interfering waves with fluctuating
phases. This type of experiment is readily performed in the
radiofrequency range.

Suppose that we use 'single-mode' detectors (cf., for
example, Ref. 154): their time constant Т and transverse
size R of the aperture should be much smaller than the
corresponding coherence scales of the radiation incident
upon them. The radiation is assumed to be quasimono-
chromatic and quasiplane: Г<тсоЬ ос 2тг/Д<у, R^pcoh. Such
detectors produce a signal i ( t ) that is proportional to the
instantaneous intensity, i.e., i(t)=T)n(t) = i j \ a ( t ) |2 where
77 is the detector efficiency, proportional to R2T, and a ( t )
is a slowly-varying (on the scale of scale Tcoh field ampli-
tude in dimensionless units (in which energy flux is
fa>\a\2bo)/2tr (Ref. 154).

We must now elucidate the effect of the phase delay a
and the 50% beamsplitter that mixes two spatial modes in
one channel (cf. Fig. la). If the modes differ only by the
type of polarization, we can use a Nicol prism as the beam-
splitter. Suppose that ak= \ak\e\p( — ixk) are the cmplex
amplitudes at the input (k=\,2).

The output amplitudes can then be written in the form

(3.3.1)

The common phase factor is ignored because it does not
appear in the output intensities:

(3.3.2)

where

2, x(t)=x2-Xl

are the total intensity in channel A and the phase difference
that is a slowly-varying function of time, respectively.

We note that |o1 + a2|
2>0 leads to

2=я„ (3.3.3)

The transformation given by (3.3.1) applies to a type
of unitary SU(2) transformations and conserves energy:
na

+ + na_ = n°+nl=na (see, for example, Refs. 33, 34, and
155).

According to (3.3.2), the beamsplitter transforms fluc-
tuations in the phase difference x(t) into fluctuations in
intensity n"± ( t ) . For Г<тсоЬ, (3.3.2) describes a stationary
amplitude interference, i.e., a harmonic dependence of n"+,
n"_ on the parameter a. If, on the other hand, the averaging
onterval is Т > Tcoh, the average intensities do not depend
on a: «> = <«e>/2.

A dependence analogous to (3.3.2) determines the
output intensities nb

± in channel В in terms of the input
amplitudes and phases b^= |6y t |exp(— iy/J.

Consider the correlation between the intensities of two
arbitrary output modes in channels A and B; for example,
according to (3.3.2)
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If the input intensities do not fluctuates, or fluctuate inde-
pendently of the phases, the second term is proportional to
the sum

(cos(x(t) +y(t) +a+/3) ) + (cos(x(t)

-y(t)+a-0». (3.3.5)

Consequently, stationary intensity interference can be ob-
served only in the following two cases:

x(0±j>(?)=const, (З.З.ба)

i.e., when the phases of the initial waves are correlated or
anticorrelated (see, for example, the review given in Ref.
33). We note that the paired mixing of modes can be
achieved directly without using beamsplitters, e.g., by em-
ploying photosensitive surface detectors. Two-mode and
even multimode interference are also possible.21'33'34'156'157

In quantum theory, conditions (З.З.ба) correspond to
nonzero values of the following two types of correlator:33'34

or (З.З.бЬ)

where a+, b+ and a, b are the photon creation and anni-
hilation operators. When spin experiments are described,
the correlators G± are replaced with (а°_а^) (see Appen-
dix I).

The case G_^=Q or x—y=const constitutes a response
to the well-known Brown-Twiss42 intensity interference
(see also Ref. 43, p. 106). The pair of light sources can
then be, for example, two stars.

Anticorrelation of phases G=^0 or x+y=const arises
when 'parametric' noise or two-photon atomic transitions
are employed. These two cases have a number of common
features.65'66

It is thus clear that there are two main types of inten-
sity interference with simple classical explanation: corre-
lated or anticorrelated phase fluctuations, transformed into
additional amplitude fluctuations. We note, that in con-
trast to the above four-mode scheme (see Fig. la), the
correlation or anticorrelation of phases in the form de-
scribed by (З.З.ба) and (З.З.бЬ) is not essential in two-
mode interference.33'34 This special case can be classified as
the third basic type of intensity interference. For paramet-
ric generators, the phase x+y=x2—x^+y2—yi is deter-
mined by the constant phase difference between the pump
waves (see Fig. la). Let us put x+y=0, so that for con-
stant input intensities na, nb, we have from (3.3.4)

(n+« + ) ={nanb( 1 + V cos <p),

where <p = a+/3 and the visibility is given by

nanb

(3.3.7)

(3.3.8)

The last inequality follows from (3.3.3). It is thus ev-
ident that in the classical model with constant input inten-
sities, the visibility will not exceed 1/2. When initial
Gaussian intensity fluctuations are taken into account, this

limit falls to 1/3. A further reduction in V occurs when the
condition Г<тсоЬ is violated (see Sec. 3.5). An analogous
model gives the following expression for three-channel in-
tensity interference (Fig. Ib) when (3.3.3) is taken into
account for constant input intensities na, nb, nc:

1

4'
(3.3.9)

whereas for TV channels

-1. (3.3.10)

Let us now return to the scheme of Fig. la and con-
sider the following differences [in quantum theory, these
observables can also be expressed in terms of phase differ-
ence operators; see (119)]:

(3.3.11)

When the parametric condition x +y=0 and the possibility
of phase-independent intensity fluctuations are taken into
account, their correlation normalized to (nanb) takes the
form

(nanb)
= V cos q>,

V=2(\ala2blb2 )/(nanb).

(3.3.12)

(3.3.13a)

For constant na and nb, this normalization ensures the
validity of the Bell theorem because, in any realization, the
modulus of the measured relative variables does not exceed
unity [see (3.2.9)]:

/li-JI*
(3.3.14)

Thus, in the 'classical' version of the experiment de-
signed to verify BI, the intensities of the parametrically
generated waves must be maintained constant in all the
series of measurements, which is readily achieved when
parametric generators are in fact used.

In quantum theory, (3.3.13a) is replaced with

V=- (З.ЗЛЗЬ)

and, as will be shown in Sec. 3.4, the visibility can become
equal to unity. Moreover, there are states 11/>) for which
VN=\ for arbitrarily TV (see Sec. 5).

Thus, an increase in the number TV of channels is ac-
companied by an exponential increase in the relative dif-
ference between the classical and quantum predictions of
visibility (of the form 2N~l) and becomes noticeable from
TV=2 onwards. This results is conveniently different from
the Bell theorem prediction (5.1.8) in which the relative
increase in the discrepancy is only 2(A'^1)/2. However, in
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this case, we are confining our attention to a particular
model of the experiment, in contrast to the general formu-
lation of the problem in the Bell theorem.

It is interesting to note that, if the correlation between
Дл„ and Дль is normalized to the variance of fluctuations
in the difference (Ли2— <Дл>2=<Ли2), i.e., if we consider
the usual correlation coefficient

<ДлаДл6>
(3.3.15)

the classical and quantum interpretations become identical
for two-channel interferometers. The Bell theorem condi-
tion (3.3.9) is not of course satisfied in this interpretation
because the measured relative quantities Дла(Дл2}1/2 and
ДЛйЛДл2,}172 can exceed unity. This was first pointed out
by Barut and Meystre93 who analyzed the behavior of two
particles with anticorrelated angular momenta. Their
scheme is described in greater detail in Appendix II. Here
we merely note that, in this case, the visibility is limited to
1/3, which depends on the number of equally probable
projections of the three-dimensional angular momentum
vector.

The above classical models describe experiments with
analog detectors that produce readings with a continuous
spectrum of values. The interference structure then takes
the form cos <p as in QT, but the maximum classical cor-
relation does not exceed 1/2 in optical experiments and
1/3 in spin experiments, which is different from QT which
allows complete correlation, i.e., correlation equal to unity.
This difference is due to the use of continuous variables
whereas photon counters give л=0 or 1, so that Дл0>й are
dichotomic variables: Дло й=±1 (in the case of one-
photon states in each channel).

Complete correlation E= ± 1 can also be obtained
classical theory by using dichotomic observables with a
discrete spectrum (see, for example, the spin models de-
scribed in Refs, 3 and 15). We now turn to a discrete wave
model.

Let us suppose that we periodically record the readings
of four detectors (Fig. la) in steps of Дг>тсо1>7\ This
gives a sequence of random numbers /i±*(f,-)> /=1,2,...,L
where L&t is the total duration of the sequence. We now
use the two difference files Длай(Г,) to form three dichot-
omic "sign" sequences

-5,-=sign

(3.3.16)

Thus, Af= +1 symbolizes an event in which the phto-
current from "detector ГР+ is greater than that from EP_."

We shall take as our source two parametric generators
with a common coherent pump, so that the condition x(t)
+y(t)=Q is satisfied. This means that the instantaneous
frequencies co(t) =ca+dx/df of signal (a) and the idle (b)
waves always drift in opposite directions. We note that
й)а=о)ь is not a necessary condition: for stationary inter-
ference (without beats) we need only have ы\ = а>\ and

b b
CO л ^— CO1)*

According to (3.3.11) and (3.3.16), we have
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FIG. 2. Diagrams illustrating the relation between hidden parameters
(random phases x and y) and the sampled dichotomic observables in the
classical model. Parametric limitation ensures that the phases correspond
to the bisector x= —y. Thick solid lines correspond to observables equal
to +1 and and dashed lines to — 1; A =A0, А' =А„п, В= B0, B' = B,n.

^a,-=signcos(a+x,-), (3.3.17)

Fapi=siga[cas(a+P)+ca&(a-P+2xi)],

where x,-sx(/,-). Consequently, when q>=a+P=0 or тг,
we have complete correlation (or anticorrelation)

Fa0i= + 1 (°r ~ 1) as m QT-
From the classical standpoint, the function x(t) is

completely determined by processes in the parametric gen-
erator (possibly at the atomic level), i.e., there is a single-
valued relation x,=;c[A(/,)] where A(0 is the set of all
parameters influencing the phase. It is thus natural to re-
gard the phase itself as a 'hidden' parameter over which the
average is evaluated. The relation between the random
phases x(t) and y(t) on the one hand, and the recorded
values of the observables is clearly illustrated in Fig. 2.
Suppose that x(t) has the uniform distribution p(x) = l/
2ir in the interval — тг, тг, in which case

1

1 г*
=T~ sign[coso;+cos(2x)]dx

2тг J_ T

= 1-2-
7Г

(3.3.18)

for \<р\ <тг. A derivation of this is given in Appendix IV
and a graph of Ey is reproduced in Fig. 3b.

The Bell observable now assumes the form

|)]/ir. (3.3.19)
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FIG. 3. Interference curves, i.e., graphs of the correlator Я as a function
of the sum of channel phase shifts q>=a + ... (a,b) and one of these shifts
(а„) (с) for the following models: a—hquantum model, number of
observers N?2 arbitrary, open and full points represent optimum values
of the phases for even and odd N, Ь—classical model with uniformly
distributed random phases for N=2 (broken line) and #=3 (mutually
inverted segments of parabolas), с—classical model with discrete phase
distribution (random signs of amplitudes), N>2 arbitrary.

When we use the combination of phases given by
(3.1.11) with tpi=TT/4, which ensures the maximum vio-
lation of BI in quantum experiments, we have

so that (S)p= 1 and the BI is not violated. This is not
unexpected because the system that we have described is a
particular implementation of the universal Bell model. On
the other hand, the BI may not be satisfied in individual
realizations because, for example, A and A' are recorded at
different times with different values of the 'hidden' param-
eters x(t/) [see also (3.2.6) and the following text].

It is now a relatively simple matter to use (3.3.16) and
(3.3.17) to find the joint probability distributions P%jf,

РАЛ и18* are analogous to (3.1.3). However, the existence
of observables A and A' that are incompatible in QT is a
specific feature of HVT. We recall that the distributions
P t̂ do not exist in QT for а.фа.'.

Thus, although the above model provides complete
correlation (as in QT), the 'rectification' of the harmonic
interference curve Ev=cosg} into a sawtooth curve (see
Fig. 3) ensures that the model does not violate BI. We note
that, according to Appendix I, this scheme is isomorphic
with the model of two classical particles with spin, dis-
cussed by Bell3 (see also Ref. 15), which also leads to the
linear relation (3.3.18).

3.4. Quantum theory of two-photon interference

In the experimental scheme of Fig. la, the source is
assumed to be a parametric amplifier-converter that incor-

porates piezocrystals. It spontaneously produces photon
pairs ('biphotons') with correlated times of creation (or
energies),65 and also correlated directions of emission.
Parametric converters are the most effective sources of
two-photon light.

It will be shown in Appendix III that two such con-
verters with a common coherent pump will frequently pre-
pare an initial four-mode field in the state

1

(3.4.1)

where a^2, b^2 are photon creation operartors in the signal
and idle node's, and 10) = \ 0>? 10)f 1 0 ) 2 1 0 ) 2 represents the
vacuum state. We interpret (3.4.1) as follows: the signal
(idle) photon can be created with equal probability in one
of the two crystals, i.e., it belongs to two modes al and a2

at the same time, but the associated idle (signal) photon is
necessarily created in the same crystal. When the pump
power is low enough, so that not more than one pair of
photons is transmitted during the time Г of a single mea-
surement, we may consider that the state (3.4.1) corre-
sponds to each single measurements. Such nonfactorizable
states, consisting of two or a large number of particles, are
called entangled. Many of the quantum mechanical para-
doxes are associated with these states.

The effect of the phase delays a, /3 and of the beam-
splitters (Fig. la) on the initial field will now be described
in the Heisenberg representations, i.e., with the aid of
(3.3.1). The photon number operators for the two output
modes of channel A then assume the form [cf. (3.3.2)]

where

г — (cr"_ ) +. (3.4.3)

Hence we find that the operator corresponding to the
observed event, i.e., a flash of the green or red lamp in
channel A, is

Aa=n\ - n"_=o*_eia+h.c., (3.4.4)

where h. c. represent the Hermitian conjugate.
The operators nb±, Bp can be defined by analogy.
We emphasize that our quantum observables have pre-

cisely the same 'locality' property as the classical variables:
Aa is independent of /3 and Bp is independent of a. The
Heisenberg representation that we are using enables us to
treat the locality of QT as an obvious fact. Actually, the
state vector (3.4.1) at the interferometer input determines
the statistical properties of the light source, i.e., a pair of
parametric converters, until the photons depart in opposite
directions. Their subsequent state, i.e., propagation in lin-
ear devices, can be adequately described by classical
laws.155

The time delays in interferometer channels did not
arise in (3.4.2) and (3.4.4) because of the use of mono-
chromatic modes. Allowance for the finite width of the
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spectra, i.e., multimode description of two-photon interfer-
ence, introduces nothing significant into the question of
locality.156

The 'nonseparability' of the quantum picture in such
experiments is often referred to, meaning the nonfactoriz-
ability of the state vector of the particle pair whose sepa-
ration has become large. However, this concept arises only
in the Schrodinger approach that involves the wave func-
tion of a pair that has already separated, i.e., it takes the
propagation effect into account. The equivalent Heisenberg
description clearly shows that QT is just as local as, for
example, classical stochastic electrodynamics in which in-
teresting correlations, analogous to quantum correlations,
are also possible (see Sections 3.3 and 3.6, and also Ap-
pendix II).

We now return to our main discussion and use (3.4.4)
to find the multichannel operator

where we have discarded the terms 0^=0 .̂ exp /(±a=F/8)
because, when applied to the vector (3.4.1), they yield
zero.

We note that, in general, A=Aa and A'=Aa>, B=Bp
and B' = Bp>, and also FV and FV> do not commute (see
Appendix III).

Consequently, the corresponding observables cannot
be measured in a single sampling. This is not difficult to
understand: for example, the phase a cannot have two val-
ues at the same time.

It is readily verified that (3.4.1) is the eigenvector with
eigenvalues ± 1 of the following operators

А\=В1=Р\=1, (3.4.6)

(AA')2=(BB')2=(FapFa,/3,)
2=-I, (3.4.7)

F0|^> = |^>, (3.4.8)

Р„\ф) = — \ф), (3.4.9)

where / is the unity operator, a'=a±ir/2, /3'=/?±тг/2,
F=o^o^, Fv= —o^a^, and ax is the Pauli matrix (see also
Appendix I). In the identities (3.4.6) and (3.4.7), we have
used the more general expressions given by (3.4.4) instead
of (3.4.5). We can now understand why the observable F0

does not fluctuate in the experiment. It always assumes the
value +1 in the state (3.4.1), i.e., we have complete cor-
relation. Similarly, Fv is always equal to — 1 (anticorrela-
tion).

The negative eigenvalues of the squares of the opera-
tors in (3.4.7) are due to the following property of Pauli
matrices158 (see also Appendix I):

(<jxay)
2=(iaz)

2=-l. (3.4.10)

Although operators such as а^у are formally possible,
they cannot describe single measurements and are non-
Hermitian (like A A' in the general case):

= -<тх<Ту. (3.4.11)

In the state described by (3.4.1), the correlator is
(afl_ab_) = \/2, so that according to (5)

(Fv)^=cos<p. (3.4.12)

When (3.4.6) and (3.4.12) are taken into account, the
variance of fluctuations in the multichannel obervable is
given by

= ((Ff-
(3.4.13)

As before, we define the Bell operator for even values
of the phases:

(3.4.14)-^) +h.c.

We note that, according to this definition, S is the sum of
four noncommuting operators, which has a corresponding
observable that must be measured by four samplings with
different phases <p.

The average of (3.4.14) is

<5")^=|(cos <pi + cos<p2 + cosq)3 — cos<p4). (3.4.15)

According to (3.4.13)-(3.4.15), the variance of the
Bell observable is given by

j 4 j 4

<ДЯ%=т I <AF<"»2>=- I sin2<pm. (3.4.16)
4 m=\ * m=l

Here we have simply taken the sum of variances of fluctu-
ations in each series of measurements because taking a
'quartet' of experimental results does not imply any par-
ticular algorithm and can be a purely fortuitous choice
(the only restriction is that we have to avoid repetition,
i.e., using the same outcomes of samplings in different
'quartets'). Thus, there is no coupling between F(m) and

(3.4.17)

The combination of phases

— <pi = <f>2 = фз — Ф4/3 = If/4,

that originally appeared in (3.4.15) gives (5)^=v2, which
agrees with the exact upper limit for the norm of the op-
erator S (Refs. 87-89) and is greater by 41% than the
maximum classical value (unity). According to (3.4.16),
we then have < Д52) = 1/2.

We recall that, in classical statistical models, the for-
mula given by (3.4.12) is replaced with Vcosq> where
K<l/2 [see (3.3.12)] or l-(2|<p|/ir) [see (3.3.18)],
which explains their agreement with BI.

We also note that, in discrete HVT models, all four
variables Л, A', B, B' can only assume the values ± 1 (they
are dichotomic) and the Bell inequality | (S) \ <1 follows
from the classical condition 5A= ± 1 [see (3.2.6), (3.2.7)
and (3.3.16)]. However, the observables А, А', В, В'
have the same spectrum in QT. The question then is: why
is the equation S=±I not satisfied in QT? It turns out that
it is precisely the nonzero commutators [A^A'] and [B,B']
that increase the norm of the operator S beyond its classi-
cal limit (unity)87~89 (see Appendix III).

The fact that the operators do not commute means
that they do not have common eigenvectors and, conse-
quently, there are no joint distributions, e.g., we cannot
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define PAA> for афа! in QT. On the other hand, in the
classical approach, the existence of the distribution is pos-
tulated (explicitly or implicitly), which imposes an addi-
tional restriction on the Bell observable S1 (Ref. 107).

On the other hand, the operators Aa and Bp commute
and their joint distributions (3.1.3) can be evaluated with
the help of general QT recipes (see Appendix III).

It is shown in Appendix I that the fact that the oper-
ators AQ and Aw/2 do not commute is analogous to the
noncommutation of the Pauli matrices ax and ay that cor-
respond to the position and momentum operators qk, pk of
the two oscillators. A further useful interpretation is pre-
sented in Appendix I and shows that A0 and Av/2 are iden-
tical to the noncommuting phase-difference operators C12

and 5"12, respectively.159 The classical analog of this is
given by the harmonic functions in (3.3.11), namely,
cos(x2—Xi) and sin(x2—Х]) which assume a continuous
set of values in the interval [—1, +1]. In states with a fixed
total number of photons (stationary state), the operators
C12, S}2 have a discrete spectrum.159 In particular, in the
two-mode single-photon state that we are considering, they
assume only the two values ± 1/2, i.e., the phase difference
has an equal probability of assuming the value ir/3 or 2тг/3
for C12, and ±77/6 for Su- In view of the connection
between Cl2, S12 and the Pauli matrices ax,ay, we thus
have an optical-wave analog of the space quantization of
spin 1/2. By increasing to 2j +1 the number of modes over
which the single photon is distributed, we can naturally
extend this analogy to the space quantization of an arbi-
trarily spin j of a single particle.39

3.5. Effect of random coincidences

In real experiments, we usually measure the photon
coincidence rate,31 i.e., the rate R + + of simultaneous trig-
gering of detectors D°+ and E^+ (Fig. la), the correspond-
ing rate R + - for D°+ and Db_, and similarly for R-+,
R__. If the efficiencies of all four detectors are the same,
then symmetry shows that there are only two quantities to
be measured, namely, R+=R++=R __ and
R_=R + _=R_+ are identical
ized correlator is then

=R_. The normal-

(3.5.1)

Actually, this expression is the same as the 'frequency'
definition of the average (3.1.1) because the numerator is
multiplied by the time occupied by the measurements is
equal to E^F, and the denominator multiplied by the same
time is the total number of recorded pairs.

When the detector output pulses due to successively
emitted photon pairs begin to overlap, random coinci-
dences begin to appear and are characterized by the rate
/?acc that is independent of the phase q>=a+/3. Conse-
quently, (3.1.3) shows that the recorded rates are given by

=RSLCC+R' cos2(<p/2),

where R' is the maximum rate of 'true' coincidences (in
particular, R'=R+ when Ласс=0 and <p=0).

Substituting (3.5.2.) into (3.5.1), we obtain

where

(3.5.3)

(3.5.4)

Recalling that the visibility V is not equal to unity, we
find that the Bell observable is given by

<S>exp=v2>, (3.5.5)

so that BI is violated only for V> lA/2^0.71 (Refs. 39,
59, and 160).

We must now elucidate the dependence of V on the
parametric conversion efficiency and the quantity
2=2ДуГ~7Утсо11 where Ду=Д«/2тг is the frequency
bandwidth of the generated radiation and T is the time
constant of the detector. If the radius of the detector ap-
erture is Rdet<pcot, where pcoh is the coherence length of
the received radiation, the photon counting rate R, i.e., the
probability of detection of a photon per unit time, is given
by

r=T)'N/T, r,' = r,(T/Tcoh)(Rdet/pcoh)
2, (3.5.6)

where 17 is the quantum efficiency of the detector and

#=<n>=sh2r (3.5.7)

is the mean number of photons per mode at the center of
the band ДУ (see Appendix III). The relation given by
(3.5.6) applies to each of the four detectors.

Since the mean interval of time occupied by the re-
corded photons is R~l, the probability of a count being
recorded in time T^R~l is T/R~l, and the rate of ran-
dom coincidences in the channels is equal to the ratio of
the square of this probability and T:

R =R T.

It can be shown154 that

(3.5.8)

(3-5.9)

where f(Q)=2&/[l-exp(-2Q)+2Q\, i.e., /(0 = 1
for £<1 and f(q) =Q for Q>1. The parameter ju is deter-
mined by the relative nonstationary correlator (see Appen-
dix III):

/*=-
\(ah)\

N
= cothr= (3.5.10)

Actually, this is a measure of the nonclassical character of
the parametric noise (the nonclassical parameter was in-
troduced in a more general form in, for example, Ref.
161). For classical averaging, it follows from the Cauchy-
Schwartz inequality that50

(3.5.2)

\(ab)\2<(a*a)(b*b),

so that

(3 .5 .11)

(3.5.12)
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The condition ц2 < 1 also determines the range of ex-
istence of the Glauber-Sudarshan P-distribution154 that
plays the part of the probability distribution for the ampli-
tudes a, b (Ref. 43). Moreover, the parameter /x is simply
related to the photon bunching parameter:

g= (a+ab+b)/(a+a)(b+b) = (3.5.13)

For Poissonian and Gaussian statistics, g is equal to 1 and
2, respectively.

For parametrically scattered radiation, the strong ine-
quality д2>1 means that the true coincidence rate is much
greater than the delayed (random) coincidence rate. This
effect was detected experimentally by Burnham and
Weinberg162 in 1970; the existence of the nonstationary
correlators (ab) and their superclassical magnitude were
predicted in Ref. 163.

We note that the radiations emitted by two amplifiers
with a common pump are not independent: the correlators
(a^bi) and {a262) ^

ave definite phases that are related to
the pump phase; according to (3.3.4) this leads to intensity
interference.

In accordance with (3.5.9) and (3.5.10),

R' N+\ cth2

(3.5.14)

and, if we use (3.5.4), we find that the visibility is given by

= (N+l)/(2Nf(Q)+N+l). (3.5.15)

In a typical experiment with continuous unfocused
pump #~т*~10~* and 6-1000, so that F~l. For a
stronger pump (pulsed and/or focused), or if we use a
resonator, the parametric conversion efficiency is found to
be higher and N increases. When JV> 1 (parametric super-
luminescence or generation), we have the following limit
even for small Q<\:

V=
N+l 1 1

ЗЛЧ-1 l+2tanh2r~3'
(3.5.16)

This is a typical value of visibility for intensity interference
in the case of chaotic sources of light.33'34

According to (3.5.5) and (3.5.15), BI is violated for

2 Л 6)
' vz-i «4.9ЛС) (3.5.17)

or

ЛГ<;
V2-1

(3.5.18)

In particular, for g<l, we have N<0.26 (Ref. 39).
If we use (3.5.12) and (3.5.15), we obtain

1- (3-5-19)

Usually, the values encountered in experiments are
V=L 1 and Q~ 103, so that this limit is exceeded by several
orders of magnitude! Consequently, there is a visibility
range between (3.5.19) and 1/vl in which the classical
statistical model that satisfies the Cauchy-Schwartz ine-

quality is contradicted, but BI is still not violated.19'50'160

The difference between the predictions of classical and
quantum theories is thus much clearer in this case than in
the Bell theorem. However, the latter is much more fun-
damental because it does not depend on any particular
model of the experiment and is based on very general pre-
mises.

We also note that, for two-photon intensity interfer-
ence based on the Francon scheme,33'154'156'164'165 Ou and
Mandel166 obtained the following visibility limit from gen-
eral stochastic theory of ergodic random processes with

-I]-1. (3.5.20)

They emphasize that the fact that this conflict with exper-
iment can be removed at the cost of abandoning the er-
godic hypothesis. The situation resembles the discussion of
BI violation9'93'152"153 in which an alternative to QT was
indicated, namely, a negative joint distribution function.152

Our model result (3.5.19) satisfies (3.5.20). On the
other hand, parallel classical and quantum descriptions of
the Francon scheme154'156 lead to the conclusion that clas-
sical visibility obeys an inequality such as (3.5.20) which
follows from (3.5.11) in the case of random amplitudes.

3.6. Interference of squeezed noise

Consider a modification of the experiment illustrated
in Fig. la which can be performed both in the optical
(including infrared) and radio-frequency ranges.33'154 Its
distinguishing feature is the presence of 'seed' Gaussian
noise at the input of both parametric amplifiers with inten-
sity N0 photons per mode, i.e., spectral brightness
Ba>a='ticN0/A3. If JV0>1, the amplifier quantum noise
which appears as a result of the vacuum 'seeding' can be
neglected because the fact that the operators do not com-
mute ceases to have an effect on the final result. All that
remains at the interferometer inputs is the squeezed Gauss-
ian radiation transformed by the phase-sensitive paramet-
ric amplifiers, and the classical description becomes admis-
sible. The properties of this type of radiation are analogous
to those of squeezed quantum noise: the variances of fluc-
tuations in the two quadratic components are different in
the degenerate amplifier regime (coa=ci}b). It can therefore
be called 'classical squeezed noise'. We recall that the
phrase 'quadrature components' is understood in quantum
theory to refer to the operators (Hermitian operators)
X=(a+a+)/2, Y=(a—a+)/f2, whereas in classical the-
ory they are the real and imaginary parts of the slowly-
varying complex amplitude of the wave.

This analogy was first noted by S. A. Akhmanov
et а!. 167~170 The classical theory of parametric conversion
of noise was developed by S. A. Akhmanov et al, Yu. E.
D'yakov, and A. S. Chirikin era/.167'171-176

If the classical condition NQ> 1 is used only in the final
formulas, we can follow the continuous transition from
quantum to classical theory. It is striking that the only
difference between the results is then the lower visibility in
the classical case, which is a consequence of the assumed
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Amplification

FIG. 4. Visibility V as a function of the growth rate of parametric am-
plification, т, of the source of radiation for different intensities N (photons
per mode) at the amplifier input. The dashed horizontal lines are the
visibility upper limits above which BI( 1/V2) and the prediction (1/2) of
the classical model (3.3.8) are found to fail.

linearity of the conversion process.33'154 We note that
three-photon or multiple-photon parametric amplifiers are
nonlinear and occassionally produce qualitative differences
between the properties of spontaneous and amplified
noise.35'177

It is shown in Appendix III [see (III32) and (III33)]
that, when seeding noise of equal intensity Л^ is present at
the signal and idle mode inputs, the formula for the mean
number of photons per mode (3.5.7) is replaced by

сЬ2т, (3.6.1)

and the nonstationary correlator at the output of each of
the amplifiers becomes

M= (ab) = (ЛГ0-И)8шп 2т. (3.6.2)

Let us suppose that 2~7Утсо11<1, which will enable
us to ignore random coincidences between photon pairs
due to the fact that we are using 'multimode' detectors.
According to (3.5.15) and (3.5.10), the interference visi-
bility is then given by

M2

ТАГ22N2+MZ

1 +(2N0+l)
1 [ (N0+1 )tanh T+NQ coth т]'

(3.6.3)

Figure 4 shows graphs of this function. They readily reveal
the conditions under which the Bell and Cauchy-Schwartz
inequalities are violated.

The reason for the reduction in visibility with increas-
ing N0 is the same as in the last Section, namely, random
coincidences due to photon-pair overlapping.

In practice, the seeding noise can be accompanied by
multimordality of the detectors (Q> 1) and the visibility
must be calculated from (3.5.10), (3.5.15) and (3.6.1) and
(3.6.2) without assuming that

FIG. 5. The principle of the homodyne interferometer: 1—frequency
doubler for the laser L, 2—parameteric frequency down-converter, oper-
ating in the frequency-degenerate regime. The remaining notation is the
same as in Fig. 1.

The classical visibility limit as N0-> oo follows from
(3.6.3) [compare this with (3.5.16)]:

1 1

"1+2 coth2 2т 3'
(3.6.4)

Thus, both in the quantum case (7V0<1) and in the
above classical model (JV0>1), the visibility is У =1/3 for
т>1, which, by the way, is typical for Gaussian interfer-
ence as well.33'34

3.7. Homodyne detection in intensity interference

In the scheme of Fig. 1, observer A receives two waves
flj and a2 with independent random phases x\ and x2. The
difference x between these phases is measured by the inter-
ferometer. Correlation with measurements by observer В
will clearly require correlation between the phase differ-
ences x and у in the channels, and this is expressed by
(З.З.ба). This interpretation is also valid for the quantum
description of the process provided the phase-difference
operators are suitably defined as indicated in Appendix I.

It is natural in this situation to consider measurement
of the 'absolute' values of the phase differences rather than
the differences themselves. The former are measured from
a particular phase reference, i.e., the homodyne reference
wave. This could be exploited to avoid the use of more than
one parametric sources of radiation. A possible solution of
this kind is illustrated in Fig. 5. It is clear that the homo-
dyne phases in channels A and В must be correlated, so
that we again have to have two communication lines to the
source for each observer. According to the interferometer
classifications given in Refs. 33 and 34, this is four-mode
intensity interference.

Let us now denote the signal and idle mode operators
of a given parametric converter by a=al and b=b\, and
the homodyne mode operator by с=а2=Ь2. Analogous
schemes were examined in Refs. 54-59 and 178. The ad-
justable phases a and & can be regarded as additional ho-
modyne phases. We recall that the phase of the nonstation-
ary correlator (ab) include the pump phase <p0 which we
usually assume to be zero. Hence, the homodyne phase
must be related to <p0. A single master laser is, of course,
used in a real experiment.
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Suppose that the homodyne mode is a coherent state
with amplitude Viz According (3.4.3) and (3.4.4), we
have

<p=a+p. (3.7.1)

where for simplicity the homodyne phases are set to zero.
The normalizing divider К now takes the form [cf.

(III36)]

(папь) + (па+пь) (nc

2 + 2N\z\2+\z\ (3.7.2)

where the functions N(T,NO) and M(T,NO) are defined by
(III 32) and (III 33).

We recall that this is the universal normalization in
both classical and quantum approaches provided the fol-
lowing conditions are satisfied: each pair photon count is
assigned the value +1 or — 1 in the photon counting re-
gime, depending on which detector records it; in continu-
ous observations, the radiation intensities are held constant
at all interfermometer inputs.

With the above normalization, we have

(AaBp)
Ev=—рг—=^cos< (3.7.3)

V=2M\z\2/K2. (3.7.4)

Optimizing the homodyne amplitudes so that

|z|4pt=#2+M2, (3.7.5)

we obtain the maximum visibility

" 1/2]. (3.7.6)

If we have vacuum at the input of the parametric con-
verter (JV0=0) and, there is no 'seed', we have 7V=sinh2 т,
M=(l/2)sinh2T, and

r+ ( 1 +tanh2 т) 1 (3.7.7)

This is the result reported by Tan et al 59

In the case of parametric scattering, т< 1 and we have
|z|opt=JV/4=T2/4 and the visibility is F=l, which is the
pure quantum case. If we increase the conversion efficiency
to

т=\ arccosh f =;0.37,

we obtain the HVT limit V= I /VI.
Assuming that JV0>1, we obtain the classical squeezed

noise for which N=N0cosh2r and M=N0 sinh 2т, so
that

F x ~
sinh 2т

max~cosh 2т+ (cosh 4r)1/2
2~T> r

for

(3.7.8)

(3.7.9)

Thus, effectively squeezed classical noise gives a har-
monic interference structure with 41% visibility in the ho-
modyne field. Of course, BI is not then violated.

4. Experiments with three observers

A natural though not very realistic generalization of
the above experiment is shown19'21 in Fig. Ib. The differ-
ence as compared with Fig. la is that there is now a further
two-mode channel. This is an implementation of the GHZ
idea14'15 which provides a demonstration of the violation of
the Bell inequality | (53) | <1 in a relatively small number
of samplings, since 53 reaches its maximum value of 2
(instead of V2 for {S2}^) in the case of complete correla-
tion, i.e., for extremal values of the components of its four
correlators of the form P= (ABC) = ± 1. Statistical analy-
sis of the results of individual (threefold) coincidences is
thus unnecessary, at least in principle. This also brings us
closer to the EPR program which, in its original form,
assumes complete correlation between the measured
quantities.1'15

Moreover, the addition of further two observables C,
C' to the original four AyA',B,B' enables us to formulate
very clearly a new type of paradox, namely, the Bell theo-
rem without the GHZ inequalities.14'15 This is a clear ex-
ample of a transition from quantity (number of observers)
to quality (new type of contradiction).

4.1. Six-mode, three-channel interferometers

Figure Ib shows two parametric sources (A: =1,2)
emitting a triplet of photons (v=a,b,c) where
(1)а+й)ь+сдс=о)0. In each channel there are adjustable
phase delays a, /3, y. There are three light splitters and six
photon sources (or simply detectors) Dv± with three green
(+) and three red (—) lamps attached to each them for
the sake of clarity.

The sources and detectors are not perfect, but this can
be overcome, as before, by using a coincidence scheme
which accepts only triple events in which three photons
(/=1,2,...) produce the simultaneous flashing of three
lamps in different channels. The observables Aa, Bp, Cr

are assigned the values ± 1 depending on the color of the
lamp that has flashed. The pump power is chosen to be low
enough to ensure that neighboring photon triplets do not
overlap accidentally during the detector time constant T.

Quantum theory predicts the following results that will
undoubtedly be confirmed experimentally after the rele-
vant technical difficulties have been overcome.

For a certain value of the resultant phase <р = а+/3+у,
which we take as our origin q> = a=/3=y=0, we have
complete correlation, i.e., each sampling / produces the
flashing of an odd number (one or three) of green lamps
and an even number (2 or 0) of the red lamps. When
cp= ±ir, the reverse picture obtains. Thus,

Fo,-=l, Fv=-l,

where

(4.1.1)

(4.1.2)
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We recall that for fully correlated measurements in
two-observer experiments, no conflict with HVT has been
observed. On the other hand, in the above case, the 'exper-
imental' results (4.1.1) are incompatible with classical
ideas. This has been clearly demonstrated by Mermin with-
out the use of any mathematics.118

We now continue our thought experiment by varying cp
and calculating the average multichannel observable FV.
When the duration of the series of samplings is long
enough, the dependence should be harmonic, i.e.,

L
Elp=(Flf)^=cosq>^(F<f)e^ = L'~^ 2, F<pi- (4.1.3)

This is an example of three-photon intensity interference
with 100% visibility.

The root mean square deviation of the observable Fv in
QTis

<AF2)Jj,/ 2=|sin<p|. (4.1.4)

By analogy with the two-observer experiment, we use
two fixed values of the phases in each channel:

(4.1.5)

and select the following combinations:

(o'Ar), (сдЗ'.Г). (аДЛ. (a'j3',yf), (4.1.6)

for which we perform four successive series of samplings in
which we record

FW=A'BC, F(2)=AB'C,

', FW=A'B'C',
(4.1.7)

where A=Aa, A'=Aa', and so on.
According to (4.1.3), the averages are given by

(4.1.8)
£l(4)=cos(<p-3i7/2)

for fluctuations described by (4.1.4) in which <p=a

+Р+Г-
We now impose the additional condition 93=77/2

which is realized, for example, for a'=/?'=y'=0. This
fixes the observables A=Av/2, A'=AQ, and so on (in spin
language, these are the Pauli operators A=a"y, A'=a"x (see
Appendix I). According to (4.1.4), the observables F^
do not now fluctuate, but assume two possible values,
namely, either +1 (complete correlation) or —1 (com-
plete anticorrelation).

We now use four separate samplings (/'= 1,2,3,4) and
obtain the twelve values

A(B\, Q; ...; A'4, B'4, C'4. (4.1.9)

Multiplying together the triples in (4.1.2), and using
(4.1.8), we obtatin

)_ i1,
(4.1.10)

We note, by the way, that from the standpoint of QT
this introduces a particular inconsistency: the right-hand
sides contain operators and the left-hand side contain num-
bers. Strictly speaking, therefore, we have to replace .F(m)

with {.F(m)},(,, and 1 with the unity operator /. Combining
the first three inequalities, and subtracting the fourth, we
obtain the Bell variable for the three-channel experiment20

= -2. (4.1.11)

If on the other hand, we follow Mermin25 and multiply
together all four equations in (4.1.10), we obtain the GHZ
observable

Z= П F(m)=A{B}Ci...A'4B'4C4.
m=l

(4.1.12)

These are 'experimental' results. For example, the first
eleven quantities in (4.1.9) could be equal to — 1 and the
twelfth is C'4 = +1. We now compare the 'measured' 5
and Z with HVT predictions.

4.2. Bell Inequalities for three observers

The experimental values At, A\ , and so on, are prede-
termined in HVT by means of determined functions
Л(А,), Л'(А,) ..... , where A,-=A(r,-) is a set of variables
(whose number may reach, say, 1023) that completely
specifies the instantaneous state of the experimental ar-
rangement. In particular, it also determines the time t/ at
which the successive event takes place and the twelve spe-
cific values of the six observables А, В, С,А', В', С' in the
above experiment with four events. In each sampling, a
given photon a is thus forced, say, upward in the interfer-
ometer channel with phase a, so that we have the event
Aa= + 1. Moreover, the same photon also carries informa-
tion on how it would behave if we were to encounter an-
other phase a'.

Thus, we obtain, at least in principle, the determined
function

(4.2.1)

that describes the outcomes of four samplings with differ-
ent adjustable phases a, (3, y, where A,=A(?() We note that
it does not follow from (4.2.1) that, for example, we must
have C(A,) =C(A2), since A, need not in general be equal
to A2. HVT introduces restrictions on only the average
experimental data.

As in Sec. 3.2, let us evaluate the average of S over the
times t f :
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(4.2.2)

The result is

where (...), represents averaging over the set of realizations
at different instants of time.

We shall suppose that the evolution of A(r) is a ran-
dom argodic process with a distribution /эя, and evaluate
the average over the ensemble of experimental systems,
e.g.,

(4.2.3)

(4.2.4)

(4.2.5)

The observables under the integral sign in (4.2.1) thus
lose their time subscripts, so that they can group them-
selves in an arbitrary manner.

Let us now define two auxiliary variables S2 and S2

that differ by the interchange of the primed and unprimed
observables (for the moment, we omit the index A):

S2=\[A(B+B')+A'(B-B')},

<S)P=

where all the A's are now equal:

-Я)]. (4.2.6)

It is clear that S2 and S'2 can only assume the values
± 1 for dichotomic observables [see (4.2.6)].

We now form the quantity

S=S3^[S2(C+C')+S'2(C-C')] = •. (4.2.7)

where either C=C" and S=S2C=±l or C=-C" and
5 = -S'2C' = ±1. This result is valid for any set of
phases a, /?, у and a', /?', y', and not only for (4.1.5). The
sole essential point is the assumption that (4.1.2) is local,
i.e., that A is independent of P, j, and so on, which enables
us to group the observables as in (4.2.6) and (4.2.7).

In classical probability theory, the measure ря is al-
ways non-negative and / /c^dA = 1 , so that the integral in
(4.2.4) cannot lie outside the interval [— 1,4-1]:

(4.2.8)

Si. (4.2.9)

This is in fact the Bell inequality for three
observers.20'71 It is also valid in experiments with continu-
ous observables А, А', В, В', С, С" whose numerical values
do not exceed unity [see (3.2.9)].

We note that, if we remove the subscripts / from
(4.2.1), we obtain (4.2.5) which leads to the erroneous
conclusion that the Bell inequality is satisfied in each ex-

Thus, in HVT,

perimental series of four events. Actually, the unaveraged
Bell observable (4.2.1) lies in a wider interval of possible
values, namely, [—2, 2].

The BI can also be derived without explicitly involving
HVT by starting with the assumption that, immediately
before each successive triple event, the future readings of
the detectors are predetermined for two variants of the
phase delay (in the present case 0 and тг/2) in each of the
channels. This is equivalent to an it a priori instruction to
a photon to move up or down in the beamsplitter for both
phase delays (0 and тг/2). A simple radio-frequency model
of this situation is described in Sec. 4.4. The 'instruction' is
then carried by the random phase difference between the
signals from the two parametric generators.

It is clear from the derivation of the BI that, to remove
the contradiction between (4.2.9) and the 'experimental
value' <5>exp=<5'>^=-2 [cf. (4.1.11)], it is sufficient to
abandon one of two assumptions, namely, (a) locality [if
Aa-*Aapr, Bp-*..., then (4.2.6) and (4.2.7) are violated]
or (b) nonnegativity of ря [which violates (4.2.8)]). Both
alternatives lead to equally unpleasant contradictions, e.g.,
conflict with relativity theory,142 but judging by generally
accepted terminology, most physicists prefer 'nonlocality'.
The mathematical equivalence of these alternatives was
demonstrated by Wodkiewicz153 who considered the exam-
ple of two spins in a singlet state (see also Refs. 93 and
152).

There is, finally, a third way of escaping from this
difficulty: we can abandon the assumed existence of a joint
distribution function for the six observables, which can be
constructed from /ол. This approach is adopted in the
Copenhagen interpretation of quantum mechanics: primed
and unprimed operators do not commute, e.g., according
to (3.4.4)

so that there is no meaning to the distribution P(ArA').
Other variants of classical theories that allow violation

of BI are discussed in the extensive literature now available
(see, for example, Refs. 8 and 9). Each approach involves
the abandonment of some firmly established physical prin-
ciple.

As in the case of two-observer experiments, random
coincidences limit the measured correlators to the interval
± V, so that, for example, experiment can yield
EW=E(2)=EW=-V, E(^ = + V. We then have

I Wexpl =2Fand the BI is violated only if the visibility V
(relative number of values of FJm' with the 'wrong' sign)
exceeds 50%. We recall, finally, that the corresponding
threshold in the two-channel variant was 71%.

4.3. Bell theorem without inequalities

This theorem, or the GHZ paradox,14'15 can be briefly
formulated as follows. According to the definition given by
(4.1.12), each local observable appears twice with the
same adjustable phase in the composite observable Z:

(C',C4) = -\. (4.3.1)
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The phases and combinations of them are chosen in accor-
dance with (4.1.5) and (4.1.6), and (4.1.10) is satisfied.
The subscripts in (4.3.1) identify the sampling numbers. It
is traditional to consider that the GHZ paradox can be
demonstrated in four identical samplings, i.e., without any
statistical analysis of the results of numerous measure-
ments, which distinguishes it from the 'usual' BI. Actually,
if we discard the indices in (4.3.1), we obtain

Z=(AA'BB'CC')2= (4.3.2)

This is in conflict with the right-hand side of (4.3.1) which
summarizes the quantum-mechanical analysis.

We shall now try to elucidate the meaning of the above
procedure, i.e., the process of ignoring the sampling num-
ber in the light of the contradiction that has arisen between
the 'experimental' QT prediction (4.3.1) and the HVT pre-
diction given by (4.3.2).

The multichannel composite GHZ variable Z corre-
sponds in HVT to the following single-valued (deter-
mined) function of hidden parameters:

•Z(A] ,Я2,Яз,Я4)

=A'(Al)BUl)C(Al)...A'U^B'(A4)C(A4) ( 4 3 3 )

where A, is the set of values of the hidden parameters at the
time of the /th sampling, e.g., Aj=A(k,) is the specific
value of the observable A =Aa in this realization.

The set of values Л1 predetermines in HVT not only
the actually observed variables in a particular sampling,
e.g., A\ = Вi = Сi — ± 1, but also the three unobserved
quantities A \ = B\ = CJ = ±1. This is in contrast to QT in
which this possibility is excluded by the complementarity
principle, so that the symbol (AA') is simply meaningless
because the phase delay (or the orientation of the magnet
in the spin experiment) cannot simultaneously have two
different values a and a'. In other words, HVT postulates
a single-valued correspondence between the point A] in
continuous phase space A = {A} of the source and the val-
ues of the six observables А, А', В, В', С, С', e.g.,
cr\ =( + + + + + + ). It is clear that the same set o-j is
generated by a subset of points (subspace) in the space A,
which we shall denote by A!, where A , e A j .

The total number of different sets ak for 2N=6 dichot-
omic observables is 26=64. The set CTJ, a2, ..., аы forms а
discrete set of observables {a} = 2.

Another point af£a\ in 2, e.g., cr2 = ( — + + + + + )
corresponds to a different subspace A2. It is important to
note that A! and A2 have no common points (they do not
intersect), i.e., Л[ПЛ2=0 since otherwise the correspon-
dence between A and the set 2 will not be single valued: a
given cause A ( A e A j n A 2 ) will then generate two mutually
exclusive consequences, a\ and a2, which is in conflict with
Laplacian determinism.

Thus, each 'point' ak in the set 2 has its own subspace
\k=k= 1, 2, ..., 64 in A. Some of these subspaces can be
empty, e.g., in the next Section we consider a model in
which half of the 64 points are not realized (Fig. 6). In the
language of set theory, we have a single-valued function /
or a mapping of A onto 2 which is represented by

AB'C ABC' -A'B'C'

FIG. 6. Diagrams illustrating the mapping of the random-phase space
(x,y) occupying the square [ir, + -rrf onto the set of values of the six
dichotomic variables A, A', B, B', C, C. Thick solid lines correspond to
+1 and dashed lines to — 1. The shaded triangle in the phase subspace
gives — 1 for all the observables. The wavy line is a possible trajectory
representing the evolution of phases in time. The black triangles in the
lower diagrams give +1 for the BI terms F(l\ F(2\ F(3\ and — Fw,
given by (4.1.5)-(4.1.7). It is assumed that a=P=Y=ir/2,

{/:A->2}; in particular, a,=/(At). The reverse transfor-
mation is not single-valued and is represented by
A1=/""1(^i); A! is called the complete prototype of al.
The union of subspaces U A A A =A exhausts the entire set of
possible values of the hidden variables A.

In the course of time, the mapping point A ( f ) in the
phase space of the source leaves A^ for another region, so
that if at the time t{ it crosses AA (if we take into account
the time taken by the particle between the source and the
detectors), the outcome of the experiment is ak.

Suppose that in all four samplings the mapping point
A(0 is found in the same subspace A A :

А,-еЛь /=1, 2, 3, 4, (4.3.4)

in which case the subscripts in (4.3.3) can indeed be dis-
carded or, more correctly, we can write

This possibility cannot be excluded theoretically. In
this sense, it may be said that the GHZ paradox does not
require repeated samplings. However, in reality, during the
time occupied by the individual measurements separated
by macroscopic intervals Д? (in optical language Д/>тсоЬ,
the mapping point is most likely to leave A A . For example,
suppose that the region A] defined above corresponds to
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time Г2 and A2 corresponds to f3. In that case, in (4.3.1) we
have A2= +1, A3= — I, and (4.3.4)-(4.3.5) are not satis-
fled. Consequently, four samplings will not reproduce the
GHZ paradox, and indeed the measured value Z= — 1 can
always be explained by the violation of (4.3.4), i.e., the
necessary condition for discarding the subscripts in
(4.3.3).

In general, it is impossible to monitor the validity of
(4.3.4). The only way of escaping from this situation is
therefore by carrying out a large number of samplings that
will indicate whether Я, enters the same subspace Л* for all
/'= 1, 2, 3, 4 with a particular probability that exceeds the
probability predicted by HVT.

Let us now examine the experimental procedure in
greater detail. In four series of samplings, we measure the
multichannel observables F(m\ m = l~4 corresponding to
the phase combinations (4.1.5)-(4.1.6). In the ideal situ-
ation, the quantum mechanical treatment predicts the
complete correlation (4.1.10). However, random coinci-
dences may give [1 — V(L)] with 'incorrect' signs. Suppose
that for each т the total number of 'correct' answers is
much greater than the product of 64 by the number of
'wrong' realizations. We may then reliably conclude that at
least four of the 'correct' (one for each series m) had the
same subspace Л4 as the prototype. Consequently, for these
four samplings, (4.3.4) is satisfied and the sampling num-
ber / in (4.3.1) can be excluded, i.e., (4.3.2) and (4.3.5)
can be justified.

Thus, a file of say of 4x64x10 realizations should
clearly demonstrate the GHZ paradox and thus the inad-
equacy of HVT. Although this does not require formal
averaging, the procedure is nevertheless statistical in char-
acter, i.e., it enables us to draw a final conclusion with
finite probability. The latter can be increased by increasing
the number of realizations and is limited only by random
coincidences.

Apart from its exceptional clarity, the GHZ paradox
has the further positive property that none of the HVT
'rescalings' proposed by Santos44'45 to explain experimental
violations of BI appears to resolve this paradox.

How then do we escape from the contradiction —1
= +1? The most obvious solution is (this is the 'minimal'
interpretation10) the abandonment Laplacian determinism
[single-valuedness of ст=/(А)] and reconciliation with the
principle of complementarity in view of the fact that it is
impossible to assign a priori values to noncommuting ob-
servables. This is the standpoint adopted by supporters of
the orthodox of Copenhagen interpretation of QT. How-
ever, a continuing search has been in progress for different
loopholes in the above derivation as a means of justifying
new variants of 'objective realism' (see, for example, Refs.
44 and 45).

We shall show later that the QT result Z= — 1 follows
from the operator identity (AA')2= —I which is possible
only for noncommuting operators A and A', i.e., they can-
not be measured simultaneously in a single sampling.
Moreover, the operator A A' is non-Hermitian,
(AA') + =A'A=£Ar, which means that it cannot describe
an observed variable.

4.4. Stochastic models of three-channel interference

In complete analogy with Sec. 3.3, we shall now de-
scribe the interferometer input field by six complex ampli-
tudes ak, bk, сk. The intensities of all six modes will be
assumed to be constant and equal, nv=l, and the phases
xk(t), y/c(t), zk(t) will be subjected to the 'parametric'
conditions

k=\,2. (4.4.1)

The phase fluctuations are transformed by the interfer-
ometer into intensity fluctuations [see (3.3.2)]:

(4.4.2)

where a, /3, у аге adjustable phases and
x(t) =x2—xl,y(t) —y2—y\ •

The correlator of the photocurrents from the three de-
tectors, e.g., (n"+ ,nb

+nc

+) exhibits 'third order' interference
with phase ^?=a+/3+y and visibility 1/4 [see (3.3.7) and
(3.3.9)]. This concludes our discussion of the model with
continuous variables, and we now turn to the discrete di-
chotomic А, В, С.

We shall record the signs of the difference between
currents Дпу=и+пЦ in the three channels at successive
times t/ separated by intervals Дг>тсоЬ. This gives the di-
chotomic sequences

(4.4.3)

C, sign cos(Y—x—yj) .

The two random phase differences x(t), y ( t ) or л,, j>,
now play the role of the hidden parameters. Assuming that
they are ergodic random functions with a uniform distri-
bution p(x,y) = l/Чтг2 in the square Л=[— тг,+тг]2, we ob-
tain the following expression for the correlation between
the signs of the multichannel observable Ft (see Appendix
IV for further details):

=7-3 I I siga[cosxcosycos(x+y—<p)]dxdy

for

for (4.4.4)

where ф=2ф/тт. The graph of this function consists of four
identical segments or parabolas turned in opposite direc-
tions relative to one another. It is shown in Fig. 3b.

The experimental values of EV are ±1/2 for cp=0 and
±ir, i.e., complete correlation is not observed in this case
[compare this with (3.3.18)].

For the combinations of phases given by (4.1.5) and
(4.1.6), the BI is satisfied in the limit:
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<S)p =i(_i_i_i_i) = _l. (4.4.5)

The space Л of hidden parameters is readily realized in
this model and is, clearly, connected with the set 2 of
dichotomic variables А, А', В, В', С, С', (A=Aw/2,
A'=A0, and so on, in accordance with (4.1.5) which was
analyzed in a general form in the last Section. The mapping
Л-»2 is illustrated in Fig. 6. The two-dimensional space
A = {x,y} occupies the square [ — тт,тг]2 in the xOy plane.
According to (4.4.3)

A = — sign sin x,

B= —sign siny,

C=sign sin(;c+>>),

A' = sign cos л:,

В' = sign cos y,

C' = sign cos(x+y) (4.4.6)

and the four multichannel observables F(n) used to form
the Bell and GHZ observables are given by

) = — sign [cos x- sin у sui(x+y)],

' = — signfsin* -cos v-sin(jt + v) l ,
(4.4.7)

F( 3)= sign [ sin x • siny cos (x +у)],

F'4' = sign[cos x • cosj>- cos(x+y)].

We note that, for given x,y (the same for all m= 1-4),
we have

Z=F^F^F^F^ = +1 ( 4 4 8 )

i.e., we have pairs such as F(l\ F(3) and F(2)=FW and
other combinations of m.

According to (4.4.6), half of the 26=64 possible vari-
ants of the six observables ak have as their prototypes
empty subspaces Л^, e.g., a\ = ( + + + + + + ) are never
realized in this model and Л|=0. The remaining 32 sub-
spaces are indicated in Fig. 6 by the triangles, and the
corresponding signs of the observables by straight seg-
ments.

The random phase functions x(t) and y(t) enter each
of the 32 nonempty subspaces Ak an infinite number of
times for f-+oo, and uniformly fill the square
Л = [ — ir, + ir]2. It is therefore a relatively simple matter to
use Fig. 6 to calculate the correlators E(m) = (F(m)) as
ratios of sums of areas and subspaces Л+ and Л _ , giving
F= + \ and F= -1, to the total area Л:

8-24
= 8 + 24 =

(4.4.9)
24-8 1

'24+8 2 '

In these expressions, the unit measure is the area of the
elementary triangle ЛА in Fig. 6. The resulting numbers are

special values or EV of the form of (4.4.4), which give
(4.4.5), i.e., the 'classical' value of the Bell observable:
<S)p=-l.

The question now is whether it is possible, in the clas-
sical model, to reach complete correlation (or anticorrela-
tion) between the observables F for 7V>3 or whether this is
the exclusive prerogative of the quantum-mechanical treat-
ment. To find the answer to this very legitimate question,
consider the nonuniform phase distribution p(x,y). Sup-
pose, for example, that the phases of two parametric gen-
erators, whilst remaining independent and random, are
confined to the shaded triangle in Fig. 6. All six observ-
ables A, A',,.., C' then assume the single value —1 and,
naturally, we have complete anticorrelation, e.g.,
.F(1)= — 1. However, this model is not consistent with our
hypothetical experiment in which A is equal to ± 1 and so
on with equal probability.

If, on the other hand, we abandon the independence of
the phases л: and y, we obtain pair correlation between the
channels. Thus, assuming that x=y, we obtain A = В and
A' = B', which is again in conflict with 'experiment'.

The absence of pair correlation is assured by the fac-
torization of the distribution function:

p(x,y)=px(x)py(y), (4.4.10)

and the uniformity of the positive and negative outcomes
for each of the six observables, i.e., the symmetry of the
functions px(x) and py(y) with respect to the points at
which the observables change sign.

The following model satisfies these conditions. Suppose
the phase differences x and у randomly assume values
within the intervals 0±6ip and 77±6<p with 6qp«<77/2. This
situation occurs when a degenerate parametric generator is
repeatedly turned on. It was called phase quantization by
Akhmanov et a/.171'172 We may therefore suppose that

p(x,y)=\[8(x)+8(x-ir+0)]

Х[6(у)+8(у-тт+0)]. (4.4.И)

The shift of the 6-functions by the infinitesimal positive
amount will be convenient when we evaluate the integrals
in the course of averaging.

According to (4.4. II), all three phase differences x, y,
and z=— x— у display in pairs random and independent
jumps by TT between realizations. Substituting (4.4.II) in
an integral such as (4.4.4), we obtain

E= F(x,y)p(x,y)dxdy
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=sign(cosa • cos/3- cos y) = ±1, (4.4.12)

where we now have

F(x,y)=sign[cos(a+x) -cos(^+y)

Xcos(y—x—y)]. (4.4.13)
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For any a, /3, у, ± ir/2, we thus have complete corre-
lation (or anticorrelation) whose sign can be altered by
any of the three observers, e.g., by altering a for fixed /3
and y. Of course, BI is satisfied: the phase combinations
given by (4.1.5) and (4.1.6) with the addition of the in-
finitesimal shift -f 0 give E(m) = + 1 for all m = 1-4.

Complete correlation (anticorrelation) is thus not spe-
cific to the quantum model. Moreover, our classical model
gives the same low-order moments as the quantum model:

(4.4.14)

The only observed difference is the П-shaped dependence
of E on each of phase a, /?, 7 (see Fig. 3c) instead of the
harmonic interference curve cos (a +/7+ у ) in QT. These
results can be generalized to an arbitrary number of re-
cording channels N. This is discussed in Sec. 5.4.

We also note that the GHZ observable in discrete clas-
sical models (with dichotomic observables) is independent
of the form of p(x,y), so that (4.4.8) is always satisfied.
We emphasize once again the conflict between this result
and QT in which, in the absence of random coincidences,
Z= -f 1 is never found to occur [conditions (4.1.5)-(4.1.7)
must, of course, be satisfied]. Nevertheless, as was shown
in the preceding section, experimental confirmations of this
fact will be statistical in character. We shall illustrate this
with the help of Fig. 6 by considering the following clear
example. Without restricting the distribution function
p(x,y), we assume that a series of four samplings was used
to find the random phases (x,y) =A at times r,, = 1, 2, 3, 4
at the points indicated by these numbers in Fig. 6. At
points 1 and 2, we record the readings
(A'BC)i = (-- + ) and (AB'C)2=( + --), so that
Cj^C2 and the conditions for the appearance of the GHZ
paradox are not met (the four sets A t m ) do not belong to
one triangle). Actually, according to Fig. 6,
F(i) =F(2) =F(V = + 1> pW = _\t so that Z=-l and
5= +2. Hence, in accordance with HVT, individual series
of samplings can give results lying outside the classical
frame and requiring that the hidden parameters be identi-
cal.

4.5. Quantum theory of three-photon Interference

Suppose (see Fig. Ib) that we have three photons a, b,
с at the interferometer input, each of which is distributed
between two modes k=\, 2:

I 2

=̂  (110>
e
| 10>

6
| 10>

c
+ |01>

e
|01>

t
|01>

c
).

(4.5.1)

The observables Aa, Be, Cy are given by (3.4.4) and
the multi-channel operator Fv is given by

(4.5.2)

where <f_=a\a% and so on, <p=a+/3+y, and h.c. repre-
sents Hermitian conjugates. Terms that simultaneously in-
clude cr_ and a+ are omitted.

We now apply the observable operators (3.4.4) to the
state vector (4.5.1) and obtain

(4.5.3)

and Cy.and similarly for
Next, we find that the average and variance of the

multichannel variable are given by

E9 = (Ff)=cos <p, (Д/12 > = sin2 <p, (4.5.4)

i.e., we have complete agreement with the results obtained
for the two-photon interferometer. These results will later
be generalized to an arbitrary number N of observers [see
(5.3.9)].

The joint distribution of the observables А, В, С differs
from (3.1.3) by only a numerical factor due to the increase
in the number of observation channels:

c= <»i»Z«f > =i cos2 for £4f = + 1,

ч sin2- for fft£=- (4.5.5)

where g, т), £=±1.
We now turn to the justification of the GHZ theorem

and the 'experimental' result given by (4.3.1). For the
phase combinations given by (4.1.5)-(4.1.6) and chosen
for the four modifications of the experiment, we obtain the
following expression for the GHZ observable if we use
(4.1.7):

Z=F(l)F(2)F(3)F(A)=A'BC....C'=—I. (4.5.6)

On the other hand, since different operators commute,
i.e., [A,B] = [A',B]=...=0, we have

>' = (BB')2=I+B[B',B]B'. (4.5.7)

This means that, it is precisely the neglect of the fact
primed and unprimed operators (in this case, В and B')
do not commute that leads to Z= +1, i.e., the HVT con-
clusion. The GHZ, Bell, and KS theorems all formally
follow from the noncommunitivity of the algebra of observ-
able operators.

It is shown in Appendix I [see (II 9)] that, for the
corresponding phases, the operators A and A' or В and B'
are practically identical with the Pauli operators ay and ax.
Hence, the essence of the GHZ paradox can be summa-
rized as follows:

Z= (4.5.8)

We also note that, since Z is a product of a noncom-
muting operators, the corresponding variable cannot be
measured in a single sampling. This in turn means that, in
experiments with incomplete correlation, we can compare
experimental results with the product of averages
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{F(1)){F(2))(FW)(FW), but not with the average of the
product (FWF(2}F(3)FW), since it is simply impossible to
measure the latter.

Next, we turn to a generalization of the above model
for the case of amplification by a parametric converter of
initial Gaussian noise of intensity NO=(OQ(IO)O

= (bo~b0)0= (CQCO)O. We have already performed the anal-
ogous operation for the two-channel variant of the inter-
ferometer (see Sect. 3.6). In the limit as N0-> oo we have
generation by the source of the classical analog of three-
photon squeezed light.35'177

In the Heisenberg representation, three-mode paramet-
ric conversion is described by the equations of motion

(4.5.9)
db

dr''
-=a+c+,

dc_ + +

dr=fl

that are the analogs of (III 2). The nonlinearity of (4.5.9)
leads to a number of interesting properties (see, for exam-
ple, Refs. 33 and 179 and the literature cited therein).

We shall take the solution of (4.5.9) in the form of a
perturbation series in r:

- ... . (4.5.10)

Analogous expressions can be obtained for b and c.
For an initial vaccuum state (N0=0), the first two

orders in т give the previous results (4.5.4) and (4.5.5)
after the appropriate normalization. The third-order cor-
rections enable us to take into account random coinci-
dences whose rate in the three-photon experiment is R3T2

[see (3.5.8)] where R is the photon count rate in each
channel and Т is the 'window' of the coincidence system,
largely determined by the detector time constant. From
now on, we shall confine our attention to the second-order
approximation in т.

The 'appropriate' normalization of the observable
mentioned above is analogous to one that we already know
from (3.3.14), (3.5.1), (3.7.2) and (III35):

_— n"

В а —

К

n\-nb_
(4.5.11)

CY=-

in which

K

(4.5.12)

We recall that the normalization is universal for both clas-
sical and quantum models, e.g., averaging over the state
(4.5.1) gives K=\.

where the interference visibility is given by

We now substitute (4.5.10) in (4.5.11) and form the
normalized correlator

(4.5.13)

1. (4.5.14)

The following intermediate results were used in deriving
these relations:

(4.5.15)

I т=о+

= 2(r2+47V3). (4.5.16)

Since we are using the Heisenberg representation, the av-
erage {...)0 is evaluated over the initial chaotic mixed state
characterized by the correlators given by (III 27). The
approximation defined by (4.5.14) and (4.5.16) is valid for
N0<1 and т2^!, and enables us to avoid exceedingly labo-
rious exact calculations. Mixed terms such as AV0, AV2),
and so on, are neglected in (4.5.16) because, from now on,
we shall be interested in values JVo~r2>T2JV0, Av2),... •
The ratio of (4.5.15) and (4.5.16) gives (4.5.13) and
(4.5.14) for#0<l.

We note that (4.5.13) does not, by far, exhaust the
manifold of three or more photon interference of different
order,33'35'157'177 which makes itself felt despite the linear-
ity of the interferometers. For example, in some arrange-
ments, the interference maximum can evolve into a mini-
mum as Л 0̂ increases from zero to infinity.35'177

However, let us return to our case. As noted at the end
of Sec. 4.2, the upper limit of the visibility V for which BI
is still satisfied is 1/2. Hence, according (4.5.14), BI is
violated for

7V0<(T2/4)1/3. (4.5.17)

The fall in visibility with increasing N0 is again due to
random coincidences, but for Nf£Q they occur even in the
interferometer with perfect detectors and coincidence win-
dow Г=0.

We note one further interesting point. If the channel-
independent Gaussian noise is fed not to the parametric
converter, but directly to the interferometer inputs, there is
no interference and the visibility is V=0. It is readily ver-
ified for the superposition of the quantum state (4.5.1) and
the chaotic mixed state with (nv

k)Q= 1/2, v=a, b, c; k= 1,
2 (i.e., (nv>0=l), the visibility is У =1/2 and BI is satis-
fied. Hence, the addition to each photon in a correlated
triple of only one chaotic photon ensures that the pure
quantum effect vanishes and BI is violated. This agrees
with the analogous conclusion derived in Ref. 161 in a
more general case.

As in the case of the two-observer experiments, we can
have the homodyne modification of the three-photon ex-
periment, namely, the replacement of one of two paramet-
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ric sources of 'triphotons' with a coherent homodyne that
provides a general phase reference for the three channels.
An obvious transformation of the scheme of Fig. 5 is then
performed in accordance with the rule -»16 (Fig. la).

If the conditions introduced in the derivation of
(4.5.13) and (4.5.14) are met in the homodyne variant in
the experiment, then (4.5.13) remains valid and the visi-
bility is given by

where |z|2<<l is the intensity of the homodyne radiation
introduced into each channel (assumed to be the same in
all channels).

If we optimize the efficiency of the parametric process
so that

2 3 / 2To p t=(7V0+|z|2)

we obtain the maximum visibility

(4.5.19)

2)Г3/2. (4.5.20)

BI is thus violated for N(/\z\2<0.59, which corresponds
to a reduction in visibility from 1 to 1/2 as N0 increases
from zero.

5. BELL THEOREM FOR N OBSERVERS

tions
There is a considerable number of publica-

l90'116 on the generalization of the Bell theorem
and inequalities to the case of an arbitrary number of cor-
related particles (usually with spin 1/2). An interesting
version of this problem was recently solved by Mermin16

and in a somewhat improved form by Roy and Singh.17

Subsequent studies were performed by Ardehali18 and
others.19'21 In all cases, other than those of Refs. 19 and 21,
the treatment was based on the ./V-particle spin model. The
principal result of these investigations is the discovery of
the possibility of a nontrivial exponential increase with in-
creasing ./V" in the relative discrepancies between the QT
and HVT predictions for the ./V-particle observable SN:

l)/2. (5.1)

When N=2 and 3, this expression gives the familiar
results, i.e., (3.1.12), (3.1.13), (4.1.11), and (4.2.9).
However, as N-* oo, Mermin16 shows that a new quantum
effect can appear. It is important to remember, however,
that the detection of this effect would require the detection
of each of the N particles separately.

We now present a derivation and a discussion of the
Bell theorem that leads to (5.1) in the case of an optical
interference experiment (a hypothetical experiment as
yet).19'21

5.1. /V-channel interferometer

Let us now return to Fig. 1 and replace the two or
three observers with an arbitrary number of ^-observers.
We now use two ^-frequency parametric converters that
successively, at random times t/, generate ensembles of N
photons, each of which belongs to two modes. The dichot-

omic observables An=(an) = ±\, m=l, 2,..., N are re-
corded. Let а„ be the phase delay in the n-th channel. In
the spin variant of the experiment, the phase delay an de-
fines the orientation of the Stern-Gerlach analyzer by anal-
ogy with the model described in Appendix II. A homodyne
scheme generalizing Fig. 5 is also possible.

Now consider the ./V-channel observable

F({a})=Al(ai,ti)A2(a2,ti)...An(aN,ti). (5.1.1)

QT predicts a harmonic interference modulation with
100% visibility:

<p= (5.1.2)
n = l

The relations given by (3.1.4) and (4.1.3) have thus re-
ceived a natural generalization.

For complete correlation (En=\), it is convenient to
establish reference values of the adjustable phases in each
of the phases: al=a2 = ... = aN—Q.

Although the experiment becomes less graphic as N
increases, the contradiction (5.1) with HVT that it intro-
duces becomes more dramatic.

5.2. Bell Inequality for N observers

In HVT, the results of samplings are predetermined by
determined functions of hidden variables: Л„(ал,А,-) = ± 1,
A,=A(r,). To simplify our notation, we shall not in future
explicitly indicate this dependence on A.

Meeasurements in each channel will be performed for
two values of the phases, an and a'n, and we shall place two
observables in correspondence with these phases, namely,
А„=А„(а„) and A'n=An(a'n), which also assume the val-
ues ±1.

The next to arise is the problem of finding the
./V-channel Bell observables SK that would produce the
maximum conflict between QT and HVT, as for S2 and S3.
The obvious way of solving this problem is to continue the
iteration procedure, which will enable us to find S3 in the
form of (4.2.7):

- 1

S0=S'0=\, N=\, 2,...;
(5.2.1)

where S'N differs from SN by the interchange of the primes:
An++A'n. We have used a more general configuration of
signs as compared with (3.2.6) and (4.2.7), but this will
not upset the BI established below. The only important
point is that the signs inside the parenthesis should always
be opposite. In particular, we shall need the following com-
binations:

(- + + ), ( + + -), (-- + ), ( + --)
(5.2.2)

for N= 1,2, 3, 4 with period 4 (mod 4), respectively. This
provides us with a compact form of SN as in (5.2.13) and
(5.2.14). For lower N, we have

S{=Alt S\=A[, (5.2.3)
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(5.2.4)

= (A^+Afa+A^-A'^A'jn

= (A2 + 2AA'-A'2)/2,

S3=[S2(A3-A'3)-S2(A3+A'3)]/2

= (AlA2A3-AiA2A'3-A{A2A'3-A'lA2A3)/2

= (A3-3AA'2)/2, (5.2.5)

= (А*+4А*А'-6А*А'*-4АА'*+А'*)/4, (5.2.6)

)/4, (5.2.7)

where KA"A'N~" represents symbolically the sum of К
nonidentical permutations of primed and unprimed quan-
tities. Hence, SN is formed from all the possible variants of
the nonlocal observable Ff^—А^..Л^ with different dis-
tributions of primes, and constitutes the determined di-
chotomic function

with the average

(5.2.8)

(5.2.9)

which, because, p(A)>0 and Jp(A)dA=l obeys the
^-channel BI of the form

\(SN}p <1. (5.2.10)

We note that An and A'n do not have to be dichotomic to
satisfy (5.2.10). The sufficient condition is

\An\<l, K|<1. (5.2.11)

The Bell observable SN can also be written more ele-
gantly. We shall show this by Mermin's compact method16

in a somewhat modified form. Consider the complex func-
tion

N

Пл/„. (5.2.12)
n=\

It is readily verified that the iterational expressions for
the Bell observable, given by (5.2.1) with the sign combi-
nations given by (5.2.2) are identical with the following:

[N) (5.2.13)

(5.2.14)

for the even N=2m and

for the odd N=2m+1.
The function П^ contains 2N terms, which means that,

according to (5.2.13), SN includes K= 2N terms; according
to (5.2.14) the number of terms is K=2*~l. For example,
when N=2, 3, 4, 5 we have К=4, 4, 16, 16. On the other
hand, in the iterational definition (5.2.1), KN+l=4KN.
However, half of the terms in (5.2.1) cancel out for even

N, and the remaining terms are equal in pairs and, as in
(5.2.13) and (5.2.14), we have K2m+l=K2m.

Apart from compactness, the expressions given by
(5.2.13) and (5.2.14) have the following further advan-
tage: they can be readily used to calculate SN, using the
symbolic formula Пдг= (A -\-iA')N and Newton's binomial
theorem, which was done in (5.2.4)-( 5.2.7).

Next, we shall show how we can obtain BI directly
from (5.2.13) and (5.2.14) by Mermin's argument.16 Ac-
cording to (5.2.12), when (5.2.11) is satisfied, the ex-
tremal Mn and Пдг are given by

(5.2.15)

(5.2.16)

. For even N=2m,

nN=±2N/2exp(iSir/4),

where Sn= ± 1, S=^=lSn = Q, ±1...
we have 5=0, ±2, ±4, ..., and

|1тПж|=0

or

=2m. (5.2.17)

For odd7V=2m + l, we have S= ±1, ±3, ..., and

\RenN\ = \ImnN\=(V2)N~*. (5.2.18)

In all cases

SN=±l, (5.2.19)

and we again arrive at the BI of (5.2.10).

5.3. Quantum theory of /V-photon interference and violation
of the Bell inequality

The aim of this Section is to show that the quantum
average (^\SN\il>)^{SN)^ can exceed unity for a certain
combination of the phases {а„,а'„}.

To perform the optical variant of the experiment, we
must prepare the W-photon state of the 2Ar-mode field in
the form

(5.3.1)

This is a natural generalization of the familiar states
(3.4.1) and (4.5.1), which can be prepared, for example,
with the help of 27V-frequency parametric converters. The
quantities a+1>2 are operators representing the creation of
photons in modes и! and «2.

According (3.4.4) our observable is

'=o cos a sin а„, (5.3.2)

where cr^=anla+2, о^=а+,а„2.
We must now specify an and a'n. Mermin16 uses the

restriction а„=0, а'„ = тг/2. Ardehali considers the variant
а„ — тг=4, а'п = 3ir/4 (Ref. 18), and Mermin's results for
even and odd N change places. We shall now examine a

677 Physics - Uspekhi 36 (8), August 1993 A. V. BelinskiT and D. N. Klyshko 677



more general case by imposing a less stringent condition on
the phases [we recall that no phase restrictions were im-
posed in the derivation of the BI (5.2.10)]:

(5.3.3)

It then follows from (5.3.2) and (5.3.12) that

(5.3.4)

[(5.2.12)-(5.2.14) are now looked upon as operator rela-
tions in which Re ПЛг^(ПдГ+П^)/2, Im П^
= (IIjv— I!jv)/2/ are, respectively, the Hermitian and non-
Hermitian parts of UN, so that the average of the operator
nN over the state (5.3.1) is simply [see (13)]

N

n=\

(5.3.5)

where

<P= 2 ««•
n=l

Thus, according to (5.2.13) and (5.2.14), we have

<SV>,j=2m-l/2sm(ir/4-<p) for N=2m, (5.3.6)

2mcas<p for TV=2m + l. (5.3.7)

We now take the resultant phase in (5.3.6) to be q>=
—17/4, or 0 when the number of channels is odd [i.e., in
(5.3.7)]. In both cases

(SN)^=2(N-"/2 (5.3.8)

and, if we use the BI (5.2.10), we obtain the final result
given by (5.1). Its universal form — for both odd and even
TV — is different from Mermin's result16 in which (S2m}y is
smaller than our value by the factor v2. The reason for this
is that the Bell observable is not defined in the same way:
Mermin uses an expression such as (5.2.14) for any N;
Roy and Singh17 in their derivation of the more general
relation (5.1) use instead of (5.3.1) a special state that is
different for even and odd N.

Braunstein et я/.90 have shown that (5.3.8) gives the
limiting value of the Bell observable in Mermin's form.16 It
is also the maximum value in our case.

The validity of (5.3.8) is also confirmed by the special
cases of four- and five-channel systems. Since, in accor-
dance with (5.3.1) and (5.3.2),

=sin2<p, (5.3.9)

we find after taking the average of (5.2.6) and (5.2.7) that

<p+4 c

ir/2)+cos(tp+2ir)], (5.3.10)

(5.3.11)
The expression given by (5.3.10) resembles (3.1.11)

for N=2. When <p= —тг/4, each of the 16 terms in (5.2.6)
and all the cosines in (5.3.10) (including their signs) are

equal to 1/V2, so that (S4)^=23/2, in agreement with
(5.3.8). As in the two-channel interferometer, complete
correlations of the measurements do not, of course,
occur.18 However, it would be wrong to conclude that they
are in principle impossible in the four-channel variant. In-
deed, it was for TV=4 that the GHZ paradox was first
formulated14 and the formulation relied on complete cor-
relation (and anticorrelation). However, we have used
only four correlators out of the possible sixteen, which for
particular values of <p can be equal to ± 1; this obviously
follows from (5.2.6) and (5.2.10) [see Sec. (5.5) for fur-
ther details)]. The final conclusion that may be drawn
from this discussion is that it is possible to generalize to
arbitrary even TV: although complete correlation (and an-
ticorrelation) of the results of some measurements is pos-
sible, the conditions for this to happen are not identical
with the requirement that cp=— тг/4 which ensures that
the Bell observable in the form given by (5.2.1) or (5.2.13)
is a maximum.

The situation is different when the number of channels
TV is odd. For example, when TV=5 and <p=Q, all the 16
terms in (5.3.6) and the cosines in (5.3.11) (with allow-
ance for the signs) are equal to unity. We then find that
(5$)ф=22 is a maximum and we have complete correlation
(and anticorrelation):18 EN= ± 1 [if we take into account
(5.3.9) and the primed А„]. It is precisely under these
conditions that we encounter the GHZ paradox for TV=3
(see Sec. 4.3 for further details). Complete correlation is
thus observed for all the phase combinations that we have
employed (but with q>=0), and the observables
FN=A1A2...AN (including primed An) do not fluctuate: in
all samplings FN= ± 1. The last condition can be used in
the experiment to establish reference values of the phases
in each of the channels. In practice, the correlators EN will
differ from unity by the factor V (visibility) due to random
coincidences (see Section 3.5). Consequently, the experi-
mental value of the Bell observable is

<^>«p=^2(JV-1)/2, (5.3.12)

and the necessary condition for the violation of the BI
(5.2.10) is

FJV>2(1-JV)/2. (5.3.13)

Nevertheless, in two-photon experiments, the fulfill-
ment of this type of conditionjs often 'faciliated' by intro-
ducing the corrected value (S2) = (S2)eXs/V2> so that the
interference dependence 'automatically' leads to the viola-
tion of the BI.

5.4. Classical wave models

We shall now generalize some of the classical experi-
ments considered in Sees. 3 and 4 to the case of arbitrary
number TV of observers. In particular, we shall verify that
complete correlation or anticorrelation EN(an) = ± 1 of
the readings of TV distant detectors whose sign is controlled
by any of the TV of the local parameters am is not itself
specific to quantum models and is entirely amenable to
classical treatment. The validity of the BI is then deter-
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FIG. 7. Upper limits of visibility V above which the BI (triangles) and
the predictions of the classical model (3.3.10) (squares) are found to fail.
QT allows V=\ (circles).

mined not only by the visibility but also (or) by the char-
acter of the interference dependence of EN on а„.

We shall begin our discussion of classical models with
a particular form of detection of continuous observables.

We return to the arrangements in Fig. 1 and consider
an arbitrary number N of measuring channels instead of
the two or three shown there. We also note that the para-
metric converters using N-frequency generators that emit
2N classical quasimonochromatic waves with constant in-
tensities and slowly-drifting phases xnk, k=\, 2 play the
role of the hidden parameters Я„А. These phases are related
to the constant phases of the coherent pump waves <pm and
<p02 by the 'parametric' conditions (here and henceforth we
shall put jc=A)

= Ф01—<Р02-

Without loss of generality, we can put q>oi=<po2

(5.4.1)

л=1
Я„— О, Я„=Я„2 — Я„]. (5.4.2)

We note that the phase reference can also be taken to
be a stable local homodyne if the TV-channel scheme is
organized by analogy with Fig. 5. A single parametric gen-
erator will then suffice. An additional phase an is then
given to one of the signals in the measuring channels, and
the two are mixed and rectified. Each observer measures
the difference Ди„ between the rectified signals, which is
given by the harmonic form (3.3.11). This achieves pure
phase detection. Next, we use the measured quantities to
form the correlator

(5.4.3)

which in this case [for p(A)=const], as in (3.3.12) and
(4.4.2), describes the harmonic interference curve

(5.4.4)

We recall that the classical visibility VN is subject to
(3.3.10), i.e., a more stringent limitation then is necessary
for BI [see (5.3.13)]. It follows that there exists an appre-
ciable interval of values (Fig. 7)

2 \—N*- V ^оП"ЛО/2 tс л с\<- vjv~4^ , (.эл.з)

that is consistent with HVT but is conflict with the specific
classical wave model whose perculiar quantiative advan-
tage, i.e., its smaller discrepancy from QT, is a conse-
quence of this specificity.

The restriction on visibility, given by (3.3.10), is lifted
in the discrete classical model presented here.

Let us now dichotomize the observables that appear in
the phenomenological Bell theorem, using the sign func-
tion by analogy with (3.3.16) and (4.4.3):

j4n(a,,,A)E=sign A«n=signcos(an4-An), (5.4.6)

i.e., in each channel we have a bipolar telegraphic signal
whose sign changes randomly and which has a correlation
time Tcoij. As in the above case of continuous observables,
all the signals are detected at time intervals A?>rcoh. This
variant yields N random dichotomic sequences

The correlators of these sequences, for example
(5.4.3), are determined by a distribution function which
we assume to be factorizable:

JV-l

y-i)= П ри(А„). (5.4.7)
n=l

This involves only N—\ random phases (of the indepen-
dent hidden parameters) because one of the N phases is
given by (5.4.2).

If we evaluate the average we find that

-л N-1

П
п=\

N-\

X\a N ,-
и=1

(5.4.8)

When the phase distribution is uniform (pn= l/2ir) in
the interval of 2ir, complete correlation (EN=±l) can
occur only in the two-channel interferometer (see Sec.
3.3). For N=3, we already have \E3\ <l/2 [in both cases,
the limitation on visibility in (3.3.10) is removed]. We
cannot expect the return of complete correlation when
N>3. However, generally speaking, complete correlation is
still possible in classical theory even for arbitrary N. Let us
replace the uniform phase distribution with the inhomoge-
neous distribution

р„(Я„) = [6(Я„) +«5(А„-7г+0) ]/2,

— 7Г<Я„<7Г, (5.4.9)

i.e., let us assume that the phase difference between the two
original signals (or simply the phase of the signal in the
case of the homodyne) in each of the channels changes by
IT at random instants of time. In other words, the ampli-
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tudes of each input mode of the interferometer undergo
independent and random changes of sign in pairs:
ank^-ank (see Fig. 3c). We then find from (5.4.8) that
(see the concluding part of Appendix IV)

N

£W({aJ)=sign П cos(an) =
n=l

(5.4.10)

The fact that the JV-order moment is nonzero is a conse-
quence of the unique relation between the phases in
(5.4.2), and all the lower-order moments are all zero:

(5.4.11)

According to (5.4.10), EN=±l as in the quantum
model with odd N and <p=0 or IT [see (5.3.9)], but now EN

depends on each of the phases а„ individually and not
merely on their sum

ff

<P= X <**•
n=l

It is interesting to note that the sign of the correlator EN

can be determined by any of the N observers and that there
are no intermediate correlation values (the only values are
±1).

This last model refutes the commonly held view that
the reason for BI violation is that correlations in quantum
theory are stronger than those in classical theory. When
the Cauchy-Schwartz inequality is violated [see (3.5.11)],
this proposition is well founded, but in the case of BI, both
the extremal values of the correlator and the specific form
of the function EN(an), i.e., the shape of the interference
curve, are significant.

5.5. The GHZ paradox in the Atohannel experiment

A detailed discussion of the GHZ paradox for three
observers is given in Sec. 4.3. When N=2, the number of
model parameters is insufficient and the paradox arises
only at the cost of a considerable complication of the ex-
perimental method22'23 (the essentially similar KS paradox
may appear;24'25 see Sec. 6.1). The case N=4 also deserves
attention because it can be useful in elucidating the pros-
pects for further increase in N. Moreover, it was precisely
the four-channel thought experiment that was involved in
the original GHZ proposal.14

Let us rewrite the correlator (5.3.9) in the form:

=cos <p,
(5.5.1)

We now perform four series of samplings in each of
which complete correlation is realized ((Д/'2)=0). We
shall use the following sets of phases:

(0,0,0,0,),

(5.5.2)
7Г IT \ I ТГ ТГ

2,0,5,0 , o.-^.o).

We shall adopt the notation A =A0, A'=Av/2, B=B0,
B' = Bv/2, and so on, which ignores the sampling number
(this 'simplification' is discussed in Sec. 4.3). According to
(5.5.1), experiment gives the following results:

F(

0

l)=ABCD=l,

F(2}=A'B'CD=-\,

F(?=A'BC'D=-\,

(5.5.3)

We have omitted the averaging symbol because the ob-
served F do not fluctuate, i.e., (&F2)=Q. By multiplying
these expressions together, we obtain a contradiction of the
form

4

Z= П
m=\

= (АА'ВВ'СС'1?)г=-\. (5.5.4)

We note that the phase 8 of the fourth channel is not
varied, i.e., we could do just as well without it.15 This
provides a trivial generalization of the formulation of the
GHZ paradox to arbitrary Л':

Z=

(5.5.5)

We thus see that nothing new is achieved by increasing
the number of channels beyond 3. Moreover, the problem
of ensuring that the set of hidden parameters A falls into
the same single-valuedness set Л in all four series of exper-
iments becomes even more acute, since the total number of
basically possible outcomes of samplings increases as 22jV

and reliable demonstration of the inadequacy of HVT re-
quires a larger number of realizations (see Sec. 4.3 for
further details).

We also note that, within the framework of the above
classical model with discrete phases, and despite the com-
plete correlation, the GHZ paradox does not, of course,
arise because the correlator (5.4.10) does not conform to
condition (5.1.1).

6. OTHER EXAMPLES OF CONTRADICTIONS BETWEEN
QUANTUM MECHANICS AND 'COMMON SENSE'

6.1. The Kochen-Specker theorem

We know that noncommuting operators cannot simul-
taneously assume determined numerical values. This fol-
lows formally from the fact that they do not have common
eigenfunctions. Kochen and Specker (KS) have shown by
considering a particular example that an algebraic contra-
diction of the form +1 = — 1 arises when this rule is ig-
nored.

Let us consider the simplest examples of proofs of the
KS theorem, following Peres24 and Mermin.25 Suppose
that we have two spin 1/2 particles. To be specific, we shall
consider the experimental arrangement illustrated in Fig. 8
(see below, page 35). All the observable properties of the
system are operator functions of the six 'basic' Pauli ma-
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FIG. 8. The experiment proposed by Barut and Meystre.93 a and — a are
the angular momenta of the two halves of the original monolithic body.
The projections of these vectors along a and b are measured.

these two values. We shall show later that (6.1.3) and
(6.1.5) do not then fit into the HVT framework.

In the first series of samplings

(6.1.6)

This is the HVT result and A,(1J is the set of hidden param-
eters of the particle source in the /-th sampling in the first
series. The averaging symbols are omitted because the ex-
perimental result (6.1.5) is completely correlated with the
single-valued outcome — 1.

According to (6.1.3), the samplings in the second and
third series should yield

(6.1.7)

trices сг„п) (л = 1, 2; a=x, у, z) and the unity operator /.
We shall put o "̂ =xj and so on, and write down the basic
relationships between these operators in the form

(6.1.1)

We also define the operators

which describe the correlation between the spin projections
in the measurement channels.

We begin by assuming that the system is in a singlet
state \if>) of the form given by (II 6), in which case, ac-
cording to (3.11),

(fxx)j,= {F }j,= {F },/,= —1, (6.1.3)

where in the absence of random coincidences, the corre-
sponding measurements will take place under the condi-
tions of complete correlation with fluctuations having zero
variance. We now form the product

F I7 _, „ ., „ „ ,, -, „ _ E* /•/: i л ч
ХуГуХ

==Х]У2У\Х2— *\у\у2Х2 — Z\Z2 — * zz * V". l.T1^

Since the operators Fxy and Fyx commute, a simultaneous
measurement of the corresponding observables is in prin-
ciple possible. Without specifying the details of this proce-
dure, and allowing only for its potential realizability, we
are entitled to expect from (6.1.4) and (6.1.3) that

even when the measurement results are completely corre-
lated.

The eigenvalue spectrum of all the operators used in
this Section consists of the two numbers ± 1, i.e., all the
observables are dichotomic and experiments yield only

(6.1.8)

As in the GHZ paradox, when the selections made in
each series of samplings are sufficiently representative, we
can find realizations for which the arguments A;"' in
(6.1.6)-(6.1.8) need not be taken into account, or they
can be assumed to be the same throughout. The product of
(6.1.7) and (6.1.8) is then identical in HVT with the left-
hand side of (6.1.6), but is equal to +1, and we again
encounter the +1 = — 1 contradiction.

All the above manipulations can readily be translated
into the 'optical' language with the help of Appendices I
and III. We note that, although this is not required in this
case, measurement of the observables corresponding to
a\n) can be accomplished in accordance with Fig. la with-
out the beamsplitters.

An interesting variant of the interference experiment,
designed to demonstrate the +1 = — 1 contradiction, has
been suggested by Hardy.22 Its particular advantage as
compared with the original GHZ proposal14'15 lies in the
use of the usual parametric source of two-photoin light,
i.e., the experiment is feasible in the present state of devel-
opment of modern technology. This also applies to the very
recent paper by Bernstein et a/.23

All the formulations of the +1 = — 1 paradox that we
have examined so far, which included the GHZ paradox,
relied on the preparation of singlet quantum states. The
question is: is this condition necessary? The KS theorem
gives a negative answer to this question: the original ver-
sion of the theorem is valid for arbitrary states,26 but in-
volves the use of 117 spin one observed particles. Mermin25

has succeeded in restricting number to 9. The following
table is based on Peres" recipe:24
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Around the table we show the products of operators in the
corresponding columns and rows. Clearly, according to
(6.1.1)

xlx2(x\x2)=x\x\=I, (6.1.9)

(6.1.10)

(Х]У2)(У\Х

Х]У2(х]у2)=х]у2 = 1,

=xylz]y2x2z2=iz2

l( -и2,) =/,
(6.1.11)

(6.1.12)

(6.1.13)

) (z\z2) =x]ylzlx2y2z2= (/z,z2)
2= -/.

(6.1.14)

The important point here is that the operators in the
three-operator products in these equations the commute in
pairs, so that they have common eigenstates in which they
assume the value +1 or —1. It is therefore natural to
replace the operators in the identities (6.1.9)-(6.1.14)
with one of the two eigenvalues ± 1. These 'modified' op-
erators will be indicated by the symbol [...]. The operator
identities then assume the form of the following algebraic
equations

[ x l ] [ x 2 ] [ x l x 2 ] =
(6.1.15)

where the unity operators in (6.1.6) and (6.1.14) are re-
placed with 1. By multiplying together the left- and right-
hand sides of these relations, we obtain the products of 18
eigenvalues:

[xl][x2][xlx2]...[zlz2] = - (6.1.16)

Each of the nine symbols [...] appears twice in the
left-hand side of (6.1.16), so that

([*1][*2П*1*2] — [z\z2])2= — 1, (6.1.17)

i.e., +1 = — 1. The conclusion is that it isn't always possi-
ble to ascribe to the operators their eigenvalues. Claims
such as 'algebraic proof of nonlocality of quantum theory'
are sometimes encountered. We note in this connection
that if in (6.1.16) we perform the reverse replacement of
eigenvalues with operators (i.e., the remove the square
brackets), the resulting operator identity involves noncom-
muting operators, for example, xl and y}. Consequently,

the contradictory equation (6.1.17) actually originates
from the fact that we have ascribed eigenvalues to noncom-
munting operators.

The hidden parameters do not explicitly appear in the
last version of the paradox, and locality is not emphasized
although it is implied in the statement that observations of
the first particle are independent of the orientation of the
second detector (Stern-Gerlach analyzer) and the form of
this independence determines whether we measure c^2' or
<r(2). We have already noted that this form of locality ap-
pears in both classical and quantum descriptions. It would
seem that the logical escape from the contradiction
(6.1.17) ought to be as follows: "for the above system, the
QT formalism and the classical description with a priori
values of the observables are mutually inconsistent." On
the other hand, the interpretation of (6.1.17) as a mani-
festation of the nonlocality of QT seems unconvincing. We
also note that the frequency used word 'contextual' also
implies that the measuring devices in different channels
depend on one another.

Formally, the GT and GHZ paradoxes follow from a
property of the Lie algebra (6.1.1) of Pauli operators:

(6.1.18)

However, any operator / that meets the condition
/2= — / in a certain vector subspace of states is non-
Hermitian, i.e., it cannot describe an observable variable
and there is no meaning in ascribing to it a numerical
value. Actually, the matrix elements of a Hermitian / are
related by /y = fjf from which we have

</*)«= 2 l/y!2>o,j
whereas it follows from /2= -/ that (/2),,= -1.

If we now turn to the practical aspect of the problem,
we note that it is not obvious how we could experimentally
demonstrate the contradiction defined by 6.1.17. One sam-
pling cannot produce the values of all nine observables
because there is no way of simultaneously measuring, say,
ст^1' and CT}". This means that there is no guarantee that all
pairs of identical operators in (6.1.16) will have the same
recorded value, since some of them may be obtained in
different samplings. The paradox thus assumes a statistical
character once again.

Having formulated the KS theorem for two spin 1/2
particles, we can readily generalize this to a large number
of such particles. For example, for three particles we need
ten observables and the corresponding operators.25 In our
notation, this follows immediately from (4.1.10). If we
replace 1 with / in these formulas, and multiply the result-
ing operator identities from the left by F(m\ we obtain

F("A'BC=I, F(2)AB'C=I, F(3)ABC'=I,
(6.1.19)

F(4)A'B'C'=I,

The first four relations actually have the form
(F(m))2=I and the last follows from (4.5.6). we also note
that [F(m),F(m')]=0.
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Multiplying together all five identities, we obtain an
expression in which all the ten operators are encountered
twice, and on the right we have —I. The subsequent steps
repeat those that follow from (6.1.14).

It can be shown that the identities in (6.1.19) differ
from the original identies in (4.1.10) by the fact that they
are valid throughout the space of states of the system under
consideration, which indicates that they are more general
in character. This seems to be the only significant differ-
ence between the KS and GHZ paradoxes (a more detailed
discussion is given in Ref. 25).

6.2. The Stapp contradiction

Stapp73 has found a further interesting form of the
contradiction between QT and the assumption of the a
priori existence of observables independently of whether
they are detected or not. This assumption is sometimes
referred to as contrafactual definiteness.™'14

Stapp uses the frequency definition of averages, avoid-
ing the explicit introduction of hidden parameters Я and
simultaneous probabilities of noncommuting observables
of the form P(A^4'). His variant of the corresponding ex-
periment assumes both complete correlation between the
readings obtained by two observers (see Fig. la) for <p=Q
and E=co&<p=l and incomplete correlation ( \ E \ <1).
The paradox has common features with the Bell and GHZ
theorems and occupies in effect and intermediate position
between them. Stapp considers a experiment with two
spins (Fig. 8), but we shall find it convenient in our pre-
sentation to use its optical analog (see Fig. la).

Consider four series of experiments (m=l, 2, 3, 4)
with* the following sets of phases:

=0, а'+Р=тг/2,
(6.2.1)

For example,

а=Д=0, a'=ir/2, P' =

For the state defined by (3.4. 1 ), QT gives the following
correlators:

(6.2.2)

Since (6.2.2) is not in conflict with experimental data,
we require that the classical average values should be the
same.

As in the formulation of the KS and GHZ paradoxes,
we ignore the dependence of the observables on the number
of the sampling and of the experimental series. The signif-
icance of this was discussed in detail above. The assump-
tion is theoretically justifiable, but in practice is satisfied by
a limited selection from the set of realizations.

There is thus a series of quartets A\, A',, Bit B\, i= I,
2,..., L that assume the values ± I and after averaging give
the quantum results (6.6.2) as L-» oo e.g.,

Consequently, for complete correlation, Aj=Bt and, re-
placing BJ with AJ in the second series of samplings, we
have

(6.2.3)

We recall once again that the symbol (AA') does not have
an operational meaning in QT.

Consider the following combination of observables:

Ti=(Ai+A'i-VlB'i)
2. (6.2.4)

It can assume only three values, namely, (2—V2)2^0.34,
2, and (2+V2~)2=:12, i.e.,

<Г»0.34. (6.2.5)

On the other hand, according to the definition given by
(6.2.4), we have

Ti=4+2(AiA'i-v2AiB'i-VlA'iB'i), (6.2.6)

where we have used the fact that Aj=A'J=B'J= 1.
However, if we average (6.2.6) and use (6.2.2) and

(6.2.3), we obtain

which is not consistent with (6.2.5).
It follows that the classical pair moments cannot as-

sume values from the quantum set defined by (6.2.2).

6.3. Contradiction based on the Cauchy-Schwartz
inequality

The paradox formulated below is remarkable in that it
gives rise to enormous discrepancies between the classical
and quantum theories (by eight orders of magnitude!), but
it does not have the universality typical of the Bell, KS,
and GHZ theorems because it is associated with a partic-
ular model of an experiment. The model is simple. Suppose
that each of the parametrically created pair photons is di-
rectly recorded by its own detector, i.e., in the scheme of
Fig. la there is only one piezocrystal and two photodetec-
tors connected in coincidence.

The two-photon state of the two-mode field is prepared
by a parametric converter and is described by the vector
given by (III6). We now rewrite the formula in the some-
what more general form

lOJOi, (6.3.1)

(6.3.2)

(6.3.3)

so that the lower-order moments are

= |СП|2.

The quantity (nanb) gives the general probability of
coincidence between photon counts, of which a fraction
proportional to (na) (nb) does not depend on the time de-
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lay and consist of random coincidences that provide the
background. For example, the maximum of the correlation
function

G(Ar)s <««('«)«»('*)>. bt=ta-tb (6.3.4)

corresponds to the moment (n^ib) at Af=0 and its wings
(pedestal) correspond to the products (na)(nb) = G(as),
where ta and tb at the times taken by photons between the
source and the detectors in the signal and idle channels,
respectively.

For single-mode detectors, the photon count rate in
each channel is given by (3.5.6):

Rv=r,'v(nv)/T,

where v=a,b.
Similarly, the total coincidence rate is

(6.3.5)

(6.3.6)

and the random coincidence rate is

The photon bunching parameter is thus given by

g= .A
~ n

•"•H(*f<«a)<«i>

where the ratio of true to random coincidences is

C m

2 \(ab}\2

-00

(nanb)

(6.3.8)

(6.3.9)

This makes use of the normalization condition

(6.3.10)

is subject to theIn classical theory, the coefficient
i «4

restnction

from from the

(6.3.11)

Cauchy-Schwartzwhich follows
inequality.50

The fact that д does not have to obey (6.3.11) was
discovered in Ref. 163 and was verified experimentally by
Burnham and Weinberg.162 For parametric scattering, it is
found that, typically, |/л,|2~108. This kind of difference
between the maximum of the correlation function and the
background is evidence that light cannot not be described
by a classical wave in this experiment.

7. CONCLUSION

The flood of publications concerned with the questions
discussed above shows no signs of abating, and it is likely
that this review, in which we have tried to present the most
interesting ideas and experiments published up to and in-
cluding 1992, will probably be out of date by the time it is
published. Indeed, some interesting publications have only
just appeared.186"203

Nevertheless, we hope that our review will help readers
to acquire an appreciation of the current literature, and
that the detailed analysis and clear classical models pre-
sented above will provide a basis for new ideas.

We have tried, on the one hand, to attract the attention
of the 'silent majority' of physicists to quantum paradoxes
that can be demonstrated by optical methods, whilst, on
the other hand, we have attempted to to sharpen up the
meaning of the widely used word 'nonlocality'. The optical
interference effects discused above are, in our view, no
more nonlocal than the effects described by classical sta-
tistical optics and the semiclassical theory of photodetec-
tion. In the Heisenberg approach, the propagation of light
in interferometers and other linear optical devices is de-
scribed in terms of the essentially classical Green's func-
tions (propagators), so that the quantum specificity re-
duces merely to unusual statistical properties (violation of
the Cauchy-Schwartz inequality by mode amplitudes) of
the 'nonclassical' light source used at entry to the interfer-
ometer.

The above models with phase-coded classical noise
waves generated by parametric devices (Sees. 3.3, 4.4, and
5.4) show that complete correlation of the readings of TV
distant detectors, E(a\, a2, a3, ..., a#) = ±l, whose sign
is determined by any of the parameters a,, is not the ex-
clusive prerogative of quantum models, contrary to the
widely held view.

Although studies of the EPR-Bell paradox are essen-
tially methodological and interpretational ('meta-
physical'10) in character, history of physics shows that
they can lead to important practical consequences, e.g., the
development of new interferometers and data-transmission
techniques.132435 Studies in quantum photometry136"138

and quantum cryptography128431, using two-photon light,
can also be of practical interest.

Finally, the continuing hunt for logical loopholes that
has been casting serious doubts on experimental demon-
strations of the incompatibility of 'local realism' and quan-
tum formalism (cf., for example, the crytical analysis by
Santos44'45) has stimulated the emergence of new ideas and
new avenues for experimental research. It has also been
beneficial in reducing excessive conformity and compla-
cency that has impeded creativity.

It is my pleasant duty to thank Alevtina Prokhorovna
Krylova for her unfailing and invaluable help in this re-
search.

APPENDICES

I. Spins, photons, and phases

We shall now consider a set of two-mode single-photon
states in which a photon belongs to one of the two modes
with equal frequencies:

W> = Cb,|01)+C10|10), |q,,|2+|C,o|2=l. (ID

These states form a Hilbert space that is isomorphous with
the space of states of a spin 1/2 particle or, generally, a
two-level quantum system. We know that this space maps
on to a sphere of unit radius (Bloch or Poincare sphere).
To link the photons to the spins, we introduce the follow-
ing notation:
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<7_=aia2 = (о,—/crv)/2,x—y

(12)

+, oy=i(o_—a+),

az=nl—n2=[a+,a_],

so that

where j = (n^ + n2)/2. The operators crXtytZ correspond to
Pauli operators in the space (II).

It follows from these relations that the operator
a_ — (<r+ ) + transfers a photon from the first mode to the
second and a+ performs the reverse operation:

(13)
=|01>, a_|01>=0,

= |Ю>> а+|10>=0.

From ( I I ) and (12),

(14)

(Tz|i/-)=C10|10)-C01|01),

Repeated application of the operators yields

(15)

Thus (II ) is an eigenstate of the operators 2 j, 0^,0^,0^
with eigenvalue + 1 and of the operators а\. and a2, with
eigenvalue 0. Consequently, in this single-photon Hilbert
space, these operators are scalars

о2

+=ст2_=0. (16)

From (12) we also have the following relations typical
of Pauli matrices and, in general, the Lie algebra of SU(2):

[0-,,ст2]=2/<г3, (П)

where the subscripts 1, 2, 3 are obtained from x,y,z by
even permutation.

The transformation matrices for the state vectors of
the field (II) that correspond to linear optical elements
(beamsplitters, interferometers, polarizers, etc.) can be
given in the form of linear combinations of Pauli matrices,
and this also applies to quantities observed with two pho-
ton counters. This is an example of a general rule: observ-
ables play a two-fold role—they can be measured and they
are generators of transformations. For example, according

to (3.4.4), the observed difference between the readings of
two photon counters at the exit of the beamsplitter is de-
scribed by the operator

Aa=n+-n_

(18)

= cr, cos a.+ av sin a

where na= (cos a, sin a) is a unit vector. For a spin 1/2
particle, this observable corresponds to the spin projection
along na in the xOy plane, i.e., na gives the orientation of
the magnet in the Stern-Gerlach experiment. If, on the
other hand, we are concerned with the single-photon field,
the vector na defines the phase shift a between the modes
incident on the beamsplitter.

In the general case, these modes are distinguished both
by the direction of the wave vector and the polarization.
When the modes belong to a single plane wave, the vector
(a) is related to the Stokes parameters, and an arbitrary
linear transformation of the state (II) is related to the
Jones matrices.33 The beamsplitter and the phase delay are
then replaced by a rotator that rotates the plane of polar-
ization through the angle la. If, on the other hand, the
states 1 10), 1 01) are referred to two modes with opposite
circular polarizations, the average (az)= |C1 0|

2— |C01|
2

can be interpreted simply as the angular momentum trans-
ported by the plane wave.

The definition given by (12) enables us to use the vec-
tor a (apart from an arbitrary phase) to map any state of
the two-mode field with given energy (classical or quan-
tum) on to a sphere. In classical theory this takes the form

crt=2Re(afa2), ay=

(19)

Let us now return to quantum theory and continue our
study of the properties of Aa . We can readily show, using
(13) and (18), that the vectors

| ф+ > = 10>+e'a/2|01»/V2,

(110)

are special cases of (II), i.e., the eigenstates of Aa:

Аа\^)=\ф+), Аа\ф~) = -\^). ( I l l )

Assuming that a=0 and a'=ir/2, we find the eigen-
vectors for ax ,uy :

(112)
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Any two-mode state such as (II) can always be writ-
ten as a linear combination of two other states of the same
type, e.g., | i/O and |i/p.

We emphasize that Aa>Aa' do not commute for афа' ',
so that they do not have common eigenvectors.

We now introduce the Hermitian coordinate and mo-
mentum operators (they are identical, apart from the fac-
tor V2~, with the quadrature components X, Y mentioned in
Sec. 3.6):

(113)

(114)

and the observable Aa assumes the form

Aa=

There is one other possible interpretation of Aa , based
on the phase operators E* and the phase difference be-
tween two oscillators Cn, Sn (Ref. 159)

-1/2

\-1/2„

C]2=

Their classical analogs are

E-->a/\a\=e-'*, E+ ̂ е

— ф2).

(П5)

(116)

In the case of the two-mode Fock state |«in2), the
operators EfE^ differ from cr± only by a numerical factor:

1-1/2

According to (II) and (14),

(117)

4o>W>. (118)

In the single-photon space (II), our observables are
therefore identical with the phase difference operators mul-
tiplied by 2:

-f-_ \ 1C* /Т1П\-О! аг)=оу= — Lbu. Ц1У)

Thus, in a single-photon two-mode state, the operators
C12,S12 have eigenvalues ±1/2 (Ref. 159), which agrees
with the eigenvalues ± 1 of the operator Aa. We recall that
the phase of single-mode Fock states is undefined. The
relations given by (119) are usefully compared with the
definition of observables given by (3.3.11) in the classical
stochastic model. This shws that anticorrelation between
the counts produced by two detectors at exit from the
beamsplitter in one of the interferometer channels in the
case of a two-mode single-photon state (i.e., a photon re-
corded by one detector, say, D°+ cannot be accompanied by
a simultaneous count in another, Ef_) can be looked upon
as a demonstration of the quantization of the phase differ-

ence. In other words, each channel of the interferometer is
a phase-difference meter and, specifically, measures C12,
S]2 (in radio-frequency practice, this is simply a phase
detector). We note that the definition of the phase operator
and its measurement in quantum optics have recently at-
tracted considerable attention.180"183

The above discussion can be extended to an arbitrary
TV-photon two-mode state that corresponds to the state of a
particle with spin j=N/2 (Refs. 33 and 39). It is inter-
esting to note that the correspondence between the trans-
formation properties of the two-mode field and the group
SU(2) is not specific to the quantum field because the
classical TV-order moments a"a2~

n/nl/2(N—и)1/2 where
л=0,1,2,..., N also form a basis of this group with dimen-
sion N+l (Refs. 33, 184).

II. Model employing two particles with anticorrelated
angular momenta

Let us now consider a thought experiment that essen-
tially repeats Bell's model3'15 but incorporates the special
feature introduced by Barut and Meystre.93 Suppose that
some material body with zero initial angular momentum
splits into two parts whose angular momenta are equal and
opposite in accordance with the conservation rules. We
shall denote them by a and —a, respectively (Fig. 8). We
shall measure the projections of the angular momenta of
the two particles: one along a and the other along b where
|a| = |b| = 1. Measurement then yields

A=aa=crs\n в- cos ф,

В=-0Ь=-ст&тв-со5(ф-<р), (III)

where <j— \ a\, <p is the angle between the vectors a, b, and
ф and Q are the spherical (polar) coordinates, such that the
longitude is measured from the direction of a and the polar
angle Q from the normal to the plane containing a and b.

Multiple repetition of the experiment for a constant
magnitude and uniform angular distribution of the angular
momentum a gives

<А2>=г Г4тг Jo I
sin30d0=— =

o 3
(ПЗа)

This integral actually represents the locus of the end-point
of the vector a on the surface of a sphere of radius a and
the continuous evaluation of the projection of this vector
along a (or b). It is precisely for this reason that the inte-
gral in (H3a) acquires an 'extra' sine. Indeed, if this pro-
jection were identically equal to unity, then the integral

-2*(-2* Гт

d^Jo Jo
sin0d0=4ir

o o

would be the area of a sphere of unit radius.
Let us define the correlation between the quantities

that are being measured, normalized to o2:

(AB)
= -Vcos<p, V=\.
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The normalization that we have used corresponds to the
condition for Bell's theorem (3.2.9) because \A |/<7<1 and
\B/a<l.

The physical significance of the number 3 in the de-
nominator of (II3a) and of the visibility V in (II4a) is
clear: the mean squares of the three components of angular
momentum are equal, i.e., (с2

х) = {аг

у) — (а1

2}=сг1/Ъ, be-
cause the model is isotropic. It is precisely because it is
isotropic that the results given by (II2a)-(II4a) do not
depend on the absolute orientation of the measuring de-
vices in space, but only on the angle between them [in
(H4a)].

The classical limit for the visibility therefore takes the
following form in this case:

F<l/3, (II5a)

because the nonideality of detectors can only reduce this
limit. We recall that, in the classical stochastic model of
the interferometer, considered at the beginning of Sec. 3.3,
the limit was F<l/2 [see (3.3.8)].

Bell's original model3'15 is very close to the experiment
just described. The only difference is in the algorithm used
to process the experimental data: the sign function was
used by Bell to transform A and В into dichotomic vari-
ables by analogy with (3.3.16). The dependence on <p in
the correlation function then takes the sawtooth form (Fig.
3b).

We now turn to the quantum analysis of this experi-
ment. We assume that the particles travelling in opposite
directions have anticorrelated spins ( j ) = ±1/2. Their
quantized state will be defined by the vector

i +); (П10)

(И6)

where

! + >„, o*|->*=-(->*. (in)
i.e., the vectors | =t)0>A are the eigenvectors of the Pauli
operators a** with eigenvalues ±1 (here and henceforth,
ax, ay, o2 represent the Pauli matrices).

The disposition of the measuring devices in space will
be described in its general form by

a =i {ax ,ay ,az} = {sin 6a • cos фа ,sin ва • sin фа ,cos 6a}
(П8)

and similarly for b.
The measured quantities are then

(И9)

Repetition of these measurements yields dichotomic
sequences consisting of ± 1. The conditions of Bell's theo-
rem are thus met.

When correlators such as (H2a)-(H4a) are evaluated,
we need relations of the form158

where subscripts a and b are temporarily discarded.
By averaging over the states (116) for all the possible

combinations of Pauli operators, we therefore obtain

«•%= <af af > = 0 for e

(ИИ)

where a, f3=x, y, z.
The required correlators are now readily determined:

=0, (1Kb)

(,= — ab= —cos <p,

where, as before, <p is the angle between the measuring
devices.

It is clear that the final results again depend only on
the mutual orientation of the measuring systems. The
quantum model (like the classical model) is isotropic.
However, in conflict with (II5a), the visibility in QT is
V—\. Consequently, BI such as (3.2.8) may be violated.

It is interesting to note that the correlation factor [cf.
(3.3.15)]

<AB)
(Ш2)

is the same in both quantum and classical models. The
clasical model does not then meet condition (3.2.9) of the
Bell theorem because the measured relative quantities
A/(A2)m, B/{B2)l/2 may be numerically greater than 1.

The following observations are appropriate in view of
the closeness of the above thought experiment, on the one
hand, and the Bell theorem and the EPR paradox, on the
other.1"3 The point is that particular misunderstandings
may arise in the analysis of the proccess of measurement of
the parameters of correlated moving particles. Actually,
whilst for a single particle we cannot measure two observ-
ables described by noncommuting operators (e.g., ax and
Oy), we find that, for two particles, correlation appears to
offer us the possibility of sidestepping this difficulty: for one
of them we might measure <fx in, say, channel A and for the
other we might measure cry, and since
cfx= — ax, (fy= — ay, we might obtain the entire necessary
information (for the sake of brevity, we identify observ-
ables with their operators). In actual fact, this is not a
sensible scenario if only because aa

x and ay are uncorre-
lated: <о>*) = Ю<а*>=0 [see (1111)], i.e., such mea-
surements on correlated particles are equivalent to mea-
surements on totally uncorrelated particles, and this
property is not exclusive to QT: in the classical model, a^
and ffy have to measured with detectors at an angle q> = ir/2
to one another. According to (II4a), however, we then
have (AB) = (A)(B)=0. Such paradoxes do not therefore
arise in this model.
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III. Radiation from a parametric frequency converter
In an interferometer

The simplest model of two-mode parametric amplifi-
cation in the field of a steady classical plane monochro-
matic pump is based on the Hamiltonian33

Н=тГ(а+Ь+-аЬ), (HID

where a+(a) and b+(b) are the photon creation (annihi-
lation) operators in the signal and idle modes and Г is the
gain parameter proportional to the nonlinearity ^(2), its
length z, and the pump amplitude. For simplicity, we sup-
pose that Г is real, which is equivalent to specifying a
particular pump phase angle.

From (III1) we obtain the Heisenberg equations of
motion

da
-

db
- (HI2)

that describe the 'mixing' of the creation and annihilation
operators. They can also be used to describe the classical
parametric amplifier if we replace the operators a+, b+

with negative-frequency slowly-varying mode amplitudes
a*, b* in dimensionless units, and a, b with positive-
frequency amplitudes. In an actual stationary optical ex-
periment, the process evolves in space but not in time, and
t is replaced with z/c (see Ref. 179 for a justification of
this).

In the Schrodinger representation, it is the field state
vector (and not the operators) that evolves:

(1ПЗ)

The solution of this equation can be written in the form

U(r)=eT(
(Ш4)

where | \l>0) is the initial state of the field and r=Tt. The
evolution operator U is now called the squeezing operator
because, in parallel with the generation of biphotons, we
have the suppression of the quantum fluctuations in one of
the quadrature components of the resultant field of the
signal and idle modes.168"170

The equivalent solution of (III2) in the Heisenberg
representation takes the form of the Bodolyubov unitary
transformation

(Ш5)

where и = cosh т and u=sinh т.
Suppose that the initial state of the field is the vacuum

field |^o)= |0)> so tnat i° first-order perturbation theory
in т we find from (III4) that

|1/»> = (Л-та+Ь+)|0)=|0)+т|1>а|1)6, (Ш6)

where 11)а| 1)ь= \ 1>а® | l)b is the state of field with the
simultaneous presence of one signal and one idle photon.

Since т is small (•<!), the specific contribution of vac-
uum to (III6) is very considerable. It is precisely the vac-
uum component of | ф) that is responsible for the nonzero

nonstationary 'anomalous' correlator that emerges when
when the 'fast' time dependence is taken into account and
takes the form

(Ш7)

where <а0=<0а+й)ь is the pump frequency. The presence of
this nonstationary moment is seen directly in homodyne
detection [cf., for example, (3.7.1)]. If, on the other hand,
we use conventional detectors of photon coincidences that
are not sensitive to the vacuum component, we may as-
sume that

|^)=a+6+|0)s|l)0 |l) f t . (III8)

The next step in implementing interference experiments on
BI verification is to distribute the signal and idle photons
over two further modes because we need four-mode inten-
sity interference.33'34 The simplest way of doing this is to
introduce a 50% beamsplitter into the signal and idle chan-
nels. The method was proposed by Reid and Walls,50 it was
discussed in an earlier paper by Paul185 and was used in an
experiment by, for example, Shih and Alley.11

According to (3.3.1), the transformation of the signal
beam by the beamsplitter for a=0 takes the form
fl[i2=(±flio+fl2o)/v^- One of the modes incident on the
beamsplitter (o20) is then in the vacuum state. The oper-
ators are written here in the Heisenberg representation.

The initial state at the beamsplitter input is described
by the vector |T/»0>fl=a^|00) = 110)a. The transformed
state can be found by expressing a10 in terms of al, a2 with
the help of the reverse transformation 010,20='

(Ш9)

The signal photon has thus become 'smeared out' over
the two output modes. The state (III9) is nonfactorizable,
but not 'entangled' because it refers to only one photon.
We note that the general theory of transformation of quan-
tum fields by different optical devices is discussed in Refs.
33 and 155.

As a result of the above distribution of signal and idle
photons, the state vector of the resultant four-mode field
takes the form

=\(a+ +a+ ) ® (6+ +6+ ) 1 0000)

=!( I ю>„| io>6+ |oi>0 |oi>f t+ 1 io>e |oi>4

10>4). (НПО)

When it is compared with the required state (3.4.1),
the state given by (НПО) is unfortunately found to contain
'superfluous' components, i.e., the last two terms, which
not only complicate the picture, but also reduces the inter-
ference visibility by a factor of 2. The scheme shown in Fig.
la is in this sense more favorable. The Hamiltonian of
(III1) is now replaced with
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H=ifiT (1П11)
k=\

so that instead of (НПО) we obtain (3.4.1).
In terms of the compact notation of (3.4.3) and (12),

we can readily verify that the 'entangled' state (3.4.1) has
the following properties [see also (I3)-(I5)]:

(III12)

(НИЗ)

д=1/2, (Ш14)

1

<«*>*= <»*>*= <и?

т°_ | ДО =а\аь_ | ДО =а\аь

+ | ДО =^5 | Ю>

(III15)

(III16)

(III17)

We now use the definition (3.4.4) to find the effect of
the operators corresponding to the observables Aa, B@,
andF=AaBp:

1
,|Ю)^а +

(III18)

(III19)

(Ш20)

V(v-f)] . (III21)

Next, find that the commutators of the observables in
the space of states | ДО are

(III22)

(III23)[F,F']=AA'[B,B']

According to (3.4.6) or (III20), A2 = B2=I. The
square of the Bell operator S=(AB+A' B+AB'
-A'B')/2is

[B,B'}/4, (11124)

from which we see immediately the effect of the fact that
the observables A, A' and В, В' do not commute. Indeed,
if we evaluate the average using (III 17) and (III22), we
obtain the 'quantum' BI87'89

(11125)

which does not contradict experiment.
Next, we must find the joint distribution of the observ-

ables A and B, using the standard formula

P/lB= = K^l Фа >Ф1}) | 2 > (III26)

where | ф„ ) and | ̂ ) are the eigenvalues of Aa and Bp of
the form given by (110), the substitution of which in
(III26) gives (3.1.3). The same results follow immediately
from definitions such as P^g =(па

+пь

+)-ф.
Finally, we turn to the quantum description of the

parametric amplifier of Gaussian 'seed' noise of intensity
N0 and the influence of this noise on the results of obser-
vations obtained with the arrangement of Fig. la.

The low-order even moments of the noise field have the
form (the odd moments are all zero):

(11127)

where k, /, т, л =1,2.
The output moments are readily calculated with help

of (III5) in the Heisenberg representation:

(bka,)=M8kl,

=N28kn8!n+M28kI8mn,

(11129)

(11130)

where

N=u2N0+v2(N0+1) = (N0+-2)cosh 2r-{, (III32)

M=uv(2N0+ \) = (N0+l)sinh2r. (III33)

We note the following invariant of the transformation
(III5):

N(N+\) -M2=N0(N0+1) =const. (III34)

Let us now renormalize the observables Aa and Bp so
that they assume values in the range [—!,+ !] under
photon-counting conditions:

Аа=(п"+-па_)/К,

Вр=(пь

+-пь_)/К, (Ш35)

where

689 Physics - Uspekhi 36 (8), August 1993 A. V. BelinskiT and D. N. Klyshko 689



=2(2N2+M2). (III36)

When N-4l, so that we may take it that, effectively, we
have vacuum at the amplifier inputs, we obtain

JV=sinh2T, M=N(N+1),

K2=2N(3N+l).

Conversely, if JV0>1, the classical result is

N=N0 cosh 2т, M=N0 sinh 2т,

(III37)

). (Ш38)

We now return to arbitrary N0 and form the following
operator for a normalized multichannel observable:

1

with the correlator

£=</•> = К cos ?.

The interference visibility is given by

_ _
"F" g+l l + (2//x2)

(III39)

(III40)

(III41)

which is identical to (3.6.3), but was obtained in a different
way. In this expression, g= 1 +/x2 is the photon bunching
parameter and

M 2N0+l
N0 coth T-f (7V0+1 )tanh т

for NU4,\,

T for-/V0>l. (III42)

IV. Averaging over random phases in classical models

The evaluation of the integral

1 г»
ЕФ—^~ sign [ cos <p+ cos (2x)]dx

2ir J _„.

1 Г
=—

т Jo
sign ( cos <p+ cos x)dx (IV!)

reduces to the determination of segments on the x axis on
which the sign function assumes positive and negative val-
ues. Since EV is even, it is sufficient to consider the interval
0<<p<ir on which, within the integration range 0<x<ir, the
integrand is positive for cos^>cos(ir— <p), i.e., 0<x<ir
— <p. The length of a 'negative' interval is <p. By adding
together these lengths algebraically, and dividing the result
by тт. we obtain the final expression given by (3.3.18).

Similarly, evaluation of (4.4.4), i.e.,

rfdxdy

-1

FIG. 9. Evaluation of (4.4.4). The shaded area corresponds to positive
arguments of the integrand.

=7-3 I I sign[cosx-cos>>cos(<p-|-.>c-|-.)>)]dxdj;

(IV2)

reduces to the determination of the areas Д± of portions
Л± of the square [—ir,ir]2 on the object plane (x,y) that
produce a positive or negative integrand.

By substituting

1Г
(IV3)

we transform the range of integration on the (u,v) plane
into the square [—2,2]2 consisting of 16 squares of unit
area (cf. Fig. 6). We shall at first by confine our attention
to the interval 0<ip<l.

In the square и,ие[0,1], the sign of the argument of the
sign function in (IV2) is determined by the factor COS[(M
+v+<p)-rr/2] which is positive in the equilateral triangle
formed by the u, v axes and the line

u + l)+(p=l. (IV4)

The length of a side of this triangle (Fig. 9) is 1 —<p, so that
the contribution of the square to EV is

A+-A_=2A+-1, Д+ = (1-<р)2/2. (IV5)

An equal but opposite contribution is provided by the
square и, ие[—1,0]. The two thus cancel out. The total
number of such pairs that transform into each other by the
rule (u,v) -»(— u,—v) and are arranged chessbard fashion
is eight (Fig. 6).

A representative of the other family of the remaining
eight squares that do not mutually cancel out is t/e[0,l],
ve[—1,1]. In this, a 'negative triangle' is defined by

(IV6)

The area of this triangle is Д_=^2/2, so that the contri-
bution of the square is 1 — <p2. Hence, recalling the normal-
ization condition, we have

|<p|<l. (IV7)
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Similarly, we can calculate EV for |^J€[1,2], which
follows from (IV7) after replacing \q>\ with 2— |<p| and
changing the sign. In (IV7), and henceforth, we replace cp
with | q> | because Ev is even.

To conclude, we evaluate the ./V-tuple integral in
(5.4.8), taking into account the parametric relation

and the random jumps by тг in (5.4.9).
Since all the А„ can only be equal to 0 or тг, we have

sin А„=0 and

N-l

со8(алг+Л„)=со8 \aN-
n=i

i f - i
=cos aN П cos А„. (IV8)

Consequently, the integrand can be factorized and we ob-
tain the product of TV— 1 integrals of the form

1 г*
- sign[cosAn-cos(an+An)][6(An)+5(An-i7-
*• J — 1Г

+0)]dAn

= sign cos а„, (IV9)

from which there follows the final expression given by
(5.4.10).
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