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A discussion is presented in which it is considered how properly to evaluate the results of a
statistical analysis of the data of physical experiments and how, in particular, to teach
statistical methods to students. The case is made that hopes traditionally placed on statistical
procedures and methods are often betrayed. Ultimately, the reason is that usual
probability model of errors of observation are, as a rule, invalid if considered as physical
models. However, if the results of data analysis are evaluated in the frameword of a statistical
paradigm, then it is entirely possible that they will be useful for physical applications.

1. INTRODUCTION

The occasion for writing this paper was my reading of
the very interesting paper by Yu. I. Alimov and Yu. A.
Kravtsov "Is probability a 'normal' physical quantity?"1

On the whole, I am in basic agreement with the critical
views regarding the application of probability methods as
expressed in that paper. There are, however, certain differ-
ences in the general theoretical premises that lead to con-
siderable differences in the practical conclusions. Briefly,
these differences involve the following.

It is sinful, of course, to doubt that in fundamental
physics probability is a "normal" physical quantity, i.e., a
physical quantity is true and/or noble to the extent that
physical values exist. There exists in addition an entire
world of other physical phenomena different from the
world of fundamental physics, in which there naturally
arise statistical ensembles of various processes and averag-
ing over an ensemble. With the aid of correlations, calcu-
lated by averaging over an ensemble, a new approach to
randomness and determinateness is possible in this world
(see the last part of Ref. 1 and also Refs. 2 and 3). Of
course, in this world, too, probability is a normal physical
quantity.

However, there is yet a third world—a world of errors
in measurements and observations, which was basically the
subject of Ref. 1. The concepts and methods of the theory
of probability have been applied to this world for 200
years. It appears to me that historical experience shows
quite definitely that in this world probability is not a nor-
mal physical quantity, since it does not have either truth or
nobility in the required measure. If we assess the
probability-statistical methods of analyzing experimental
results from the point of view of a physical paradigm, then
we are obliged to discard them all as being insufficiently
reliable. At the same time, I am completely convinced that
these methods are extremely helpful in the area in which
they are applicable, and will try to demonstrate this by
example in this paper. In other words, renouncing the ap-
plication of many concepts and methods of mathematical
statistics (which were put forth in Ref. 1), I propose to
replace them by an approach in the framework of another
paradigm, which I will attempt to describe in this paper.

I have already written a great deal about the applica-
tions of the theory of probability and recently the publish-
ing house of Moscow State University has granted me what
is a rare luxury in these times—that of publishing my
book.4 However, in the same recent years I have been
given—I do not even know how to say it: the good fortune
or luxury?—to work on statistical methods in a new field
for me: clinical physiology. This field has proved to be, as
is not strange in our times, a completely virgin field in the
sense of understanding and applying statistical methods.
Of course, each experimental mean is accompanied by its
standard error, but these errors have been interpreted ei-
ther incorrectly or not at all; but actually they contain
valuable information that allows one to plan further inves-
tigations. As a result, although my opinion of the truth and
nobility of probability methods still stands as before, my
opinion of their usefulness has been greatly reinforced.
This will be the import of a new publication.

The core of the discussion will be to pose the question
of what part of the theory of probability and mathematical
statistics should be included in the university curriculum. I
am more than ever convinced that under the name "theory
of errors" or "theory of analyzing experimental results"
the student may be presented with a fantastic mixture of
statements, some of which are incorrect mathematically,
others are meaningless, and yet others are not supported by
the experience of the historical development of science. It
appears to me that the root cause of this situation is that
the probability theory of errors was in fact conceived of by
Gauss and Laplace as a physical theory, but as such it did
not stand the test of time. Nonetheless, it was not dis-
carded because it demonstrated its usefulness over and
over again. Therefore, the result was some disorder and
confusion in the concepts, to say nothing about the un-
avoidable human limitations, a topic I plan to discuss in
some detail.

2. THE CONCEPT OF SCIENTIFIC UTILITY

According to the dictionary of Dal', a wise man is one
that combines truth with utility. As with any human, I
would of course like to be a wise man, but I know that I
will not succeed. Specifically, I wish to combine the bitter
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truth that probability models are not adequate in the anal-
ysis of observations with the conviction that they are very
useful. What is meant by utility for science?

I found it difficult to choose the proper term: philoso-
phy or religion. If we use the term "philosophy" in its
original meaning "love of wisdom", then the term will be
philosophy. On the other hand, the term "philosophy of
science" is used in a number of scientific disciplines, each
of which has its own particular questions, but, however,
not the question of what is noble and useful. If, on the
other hand, I choose the word "religion" in the sense of L.
N. Tolstoy, as a study of that which is noble, then the
proper term will be religion. However, L. N. Tolstoy re-
garded science as a trifle not worthy of attention, and
would be offended by the use of the term "religion of sci-
ence". In any case, I see with interest that I cannot avoid
tracings of the Christian dogma, and this is yet another
proof that in its depths human thought is the same in all
times.

What, then, is the analog of original sin for the person
engaged in science? The answer, of course, is that knowl-
edge, ability, experience, and the practical skill of each
human being comprise only a negligible part of the entire
volume of scientific knowledge; in short, original sin is the
sin of stupidity. Our stupidity is revealed inescapably and
constantly; one need only stray slightly beyond the limits
of his competence. An individual, of course, is different.
For example, I have many times been convinced that A. N.
Kolmogorov understood things an order of magnitude
faster than the mathematicians around him, although they
themselves were not lacking in intellect. But some of the
things that A. N. Kolmogorov did, it is better to forget as
quickly and firmly as possible.

And what then is the blessed condition for the scien-
tist? Well, of course it is the historical development of
science, during which that which is true was maintained
and that which is false was rejected and forgotten. We shall
not dispute the fact that present-day physical theories are
more profound than those that existed previously, the facts
are more extensive, and from the modern viewpoint we can
quite correctly judge the past. (We shall at once apply this
principle to the theory of probability). But this state of
grace is a present-day miracle, since it directly contradicts
our everyday experience. Indeed, no matter how the sin of
stupidity is overcome and is atoned for in science by col-
lective efforts, from everyday experience we now know
very well that when a discussion arises in any collective
body, from kindergarten to the Academic Council, and
from the Academic Council to the Supreme Council, it is
carried on the at the level of the most ignorant (i.e., the
least competent as regards the issue) of its members?!

Silence, i.e., nonparticipation in the discussion, is fre-
quently not only golden, but also virtuous. The renowned
P. L. Chebyshev did not often participate in the sessions of
the Academy of Sciences (see Ref. 5, p. 275), except, of
course, when he was asked to give a scientific opinion.
However, not long before his death it seems his intellect
changed somewhat, and he participated in a discussion of
the following question (Ref. 5, p. 288). In Russia of that

day the law required that a certain number of copies of a
dissertation be published at the expense of the candidate.
The candidates requested that when the essential part of
the dissertation was a paper published in the journals of the
Academy of Sciences then the author receive not the usual
50 reprints, but 100, so that they could be counted as pub-
lications of the dissertation. Since the type-setting and all
the preparations for publication would be all the same, to
demand additional reprints would be downright ridiculous,
and in the tone of the minutes published in Ref. 5, one
might assume that a positive solution was arrived at. How-
ever, P. L. Chebyshev said: "...Is it consistent with the
dignity of the Academy..." that it generally considers such
commercial nonsense as the defense of a dissertation? The
academicians of the physical-mathematical division were
surprised at this and carried over the question to the gen-
eral session. As a result, they resolved "not to enter into an
examination of what the authors wish to do" with their
publications. They were the object of shame in that the
simple and reasonable request was inconsistent with the
dignity of the Academy.

In brief, we cannot love ourselves in science for we are
sinful to abhorrence (as in the Christian dogma), and we
can only love the mysterious and miraculous blessing of
the historical development, thanks to which each subse-
quent generation of scholars chooses and maintains the
truth arising from all the complex discussions of the pre-
ceding generation without being burdened with all the
complications of these discussions. The role of probability
methods of analyzing information in this process involves
the fact that with the help of these methods one can ana-
lyze and turn to scientific use a relatively large part of the
observational data (we shall see that two or three tens of
numbers is already a large quantity of data), which other-
wise would be impossible to comprehend. It is true that
here there is a relatively high risk of drawing incorrect
conclusions, but if we recall and set out hopes on the bless-
ing of the historical development, this risk may perhaps
not be so important.

3. THE BLESSING OF THE HISTORICAL DEVELOPMENT
AND THE THEORY OF PROBABILITY

Perhaps it makes sense to recall the structure of the
principal mathematical concepts of the theory of probabil-
ity in general and the probability theory of errors in par-
ticular. Laplace imagined a random event in the form of
drawing a ball from an urn. The random quantity is a
function of the ball (i.e., each ball in the urn is put into
correspondence with a number). As far as I can judge,
Laplace did not have the notion of a distribution density of
a random quantity that can take any real value.

In the hundred years after Laplace, his urn was con-
siderably improved by the mathematicians: now we can
place in the urn all real numbers, as well as vectors, ma-
trices, quaternions (and, anything at all), and even func-
tions of a real or otherwise variable. The concept of equal
probability of selection from such a set of objects loses its
meaning (by the way, Laplace never did insist on equal
probability), but in order to think in a mathematically
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correct way about a random choice we must turn to the
mathematical measure theory. The mathematical kitchen
of measure theory and measurable functions appears to
many as being too exotic, and in fact it is so, at least with
respect to measure in the space of functions, i.e., the theory
of random processes (for more detail see Ref. 4). But I
personally think that this kitchen is unavoidable not only
in the education of professional mathematicians, but also
in the education of physicists and in general in any broad
mathematical education. Actually, we shall forget about
the theory of probability and think about what is a self-
adjoint operator. We must define it (in the simplest case),
we postulate, in the space of functions that are quadrati-
cally summable. But in this space we must include all the
measurable functions, otherwise it will not be complete,
and this is extremely disappointing. Thus if we wish to
instruct a student of quantum mechanics then he must
know what a measurable function is. But then, even in the
exposition of the theory of probability it is natural to use
this concept, and we arrive at one or another variant of the
axiomatics of Kolmogorov. Let us see how the probability
model of measurement errors looks like from that vantage
point.

(Here it is necessary to make a stipulation. At the
present time many authors study theoretically and practi-
cally models of errors in the form of dependent random
quantities, i.e., as random processes (see e.g., Refs. 6 and
7). I believe, however, that the progress that has been
made is not so much that one can consider introducing the
results into student education. Very frequently in the anal-
ysis of factual data we do not have sufficient information
for the model of random processes to be useful for errors.
Therefore in this paper we consider only the model of in-
dependent random errors.

The idea that the measurements of any particular
quantity must be repeated several times to extract infor-
mation on the accuracy of each particular measurement is
an old one. In the time of Laplace, in particular, with
astronomic and geodesic measurements as an example, it
was well known that the results of repeated highly accurate
measurements could not be repeated precisely and usually
oscillated chaotically, being reminiscent of drawing num-
bered balls from some mysterious urn. Thus each observa-
tion has the form

where a is the unknown true value of the measured quan-
tity (in the simplest case, which we shall quickly abandon,
a is. the same for all и observations) and 6,- is the error of
the /-th observation. The errors vary chaotically. We shall
say provisionally that Laplace and Gauss made the decisive
step by declaring the errors of the observations to be ran-
dom quantities (it would be more correct to say that in the
era of Laplace and Gauss this viewpoint was applied in
science). The modern version is conceived in the following
way. There are some spatially elementary events fl with a
probability measure on them. By an element cotCl, i.e., a
single elementary event, many statisticians mean the direct
result of an observation (or value of an error), but in my

opinion this is unorthodox, and the correct way of under-
standing the meaning of со is as the set of all conceivable
parameters that influence the error of observation, and
which therefore are functions of со, i.e., random quantities.
The question arises, of course, why should we think about
all these parameters, of which we have only the dimmest
knowledge? However, the issue is that the second impor-
tant element of the concept of Laplace and Gauss is the
assumption of statistical independence of the errors of the
individual observations. If the error 6[ of the first observa-
tion is a function of the set of interfering parameters co^ and
the error 62 of the second observation is a function of the
set <i>2, then we in fact assume that between the first and
second observation so much time has elapsed that the sets
ft)] and ft>2 are statistically independent. Thus if we think of
fl as proposed here, then we should certainly not be sur-
prised that the classical theory of errors is inapplicable in
radar observations, which can be made very frequently
(Ref. 6). We must think the set of all n observations as a
function on the и-fold direct product of probability space
with itself (for greater detail, see e.g., Ref. 4). Finally the
third and essentially unalterable element of the classical
concept is the assumption of the absence of systematic er-
rors: it is assumed that the mathematical expectation is
M6,=0. It is even frequently assumed that the normal
probability distribution applies to errors, but in general
little is changed if it is assumed that all the errors have the
same probability distribution even though it is not the nor-
mal distribution.

What follows from all these assumptions if they are
correct? It follows, if not directly on a level of mathemat-
ical rigor, then on a level close to mathematically rigorous
(and on a level exceeding the requirements of a physical
paradigm), that there are a number of very remarkable
things. For example, as an estimate of the unknown value
a we take, naturally, x = "Zx/n. Do you wish to know how
large the error is? Very well, let us calculate

Then with a probability of 0.95 we have

1.96s
\x—a\ (2)

and if a reliability higher than 0.95 is desired, 0.99, let us
say, then it is necessary simply to replace 1.96 with 2.57. If
expression (2) is written in the form

1.96*
x—- <a <.

1.96s

then we obtain the so-called confidence interval, i.e., the
interval with random ends (depending on the results of the
observation), which catches the nonrandom but unknown
to us value of a with a probability of 0.95. The confidence
intervals in this (modern for us) meaning was already
widely used by Laplace. In 1845, in his master's disserta-
tion, Chebyshev calculated from the data of Cavendish the
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confidence interval for the mean density of the Earth with
a reliability of 0.9924794 (Ref. 5, p. 85). Therefore, the
authors of Ref. 1 were not entirely correct in calling the
confidence intervals the Fisher intervals. A student and
Fisher at the beginning of this century only introduced into
the theory and practice of calculating confidence intervals
some small refinements which are important only for a
small number of observations (less than ten) and for a
normal distribution of errors.

Before turning to a more complicated situation, we
should emphasize the following fundamental feature of the
classical theory of errors as well as of other methods of the
statistical processing of information: to apply them it is
quite unnecessary to know what method was used to take
the measurements, or indeed, in general what it is that was
measured. It is sufficient to know only the numbers x\ ,...,xn

themselves. Herein lies the particular power (in some sit-
uations) and the particular weakness (in other situations)
of statistical methods.

It would be incorrect to reduce the classical theory of
errors (as is sometimes thoughtlessly done) to the analysis
of measurements of one and the same quantity. The prin-
cipal creation of Laplace and Gauss in the area of analyz-
ing experimental results is the method of least squares.
This, as it appears to me, is also the minimum required
statistical education of students of physics and other spe-
cializations with a broad mathematical training. Even at
the beginning of the last century (and more so now) the
principal interest lies not in the so-called "direct" observa-
tions, where in each experiment one measures the value of
the quantity of interest, but in indirect observations, where
the quantity of interest appears as a parameter in the di-
rectly measured function. For example, in astronomy, one
is interested in the parameters of the orbit of some object of
the solar system, and he measures the angles that charac-
terize its positions on the celestial sphere at a series of
instants of time. The geodesist is interested in the length an
arc of the Earth's meridian, and measures the sides and
angles of a triangle. Later in this paper I will give an ex-
ample where the author was interested in the electromotive
force and the internal resistance of a current source, and he
measured the current-voltage characteristic. The main
mark of indirect measurements is that they have some laws
of nature, i.e., equations, which the measurements must
satisfy if they were perfectly accurate, and the main idea of
Gauss and Laplace was that according to the "discrep-
ancy" or "residue", i.e., according to how much the equa-
tion is violated for the real measurements, one can:

1) Estimate the magnitude of the error of the individ-
ual measurements.

2) Select more-correct values of the parameters that
enter into the dependences studied, having estimated the
accuracy of their measurements.

3) Understand whether the laws of nature that are
studied are indeed satisfied with the required accuracy, or
if they are in need of correction.

Of course it is necessary that the number of observa-
tions be larger than the number of parameters to be eval-
uated. The main calculational idea is that at first a small

number of observations (by hypothesis observations of suf-
ficient accuracy) are used for an approximate estimate of
the values of the parameters, and then the equations that
express the laws of nature are linearized in the neighbor-
hood of these estimates and in this way the arbitrary equa-
tions are replaced by linear ones. As a result we obtain the
following mathematical model of the method of least
squares

x.=a+d, i=l,...,n, (3)

where a, is the exact value of the quantity measured in the
/-th experiment and 6, is the error of this measurement. In
a manner that is different in each case but is always quite
natural and straightforward, the laws of nature that are
used go over to the proposition that the vector
a=(alv..an) belongs to a known submanifold of
и-dimensional space. For example, for the model (1) it is,
so to speak, the "bisector" that is expressed by the equa-
tions а^=а2 = ... = а„. The errors 5, are assumed to be in-
dependent random quantities with M<5, = 0. For their dis-
persions D8j, the following very intelligent model was
constructed by the classicists:

a2

where a2 is a parameter that is to be determined from the
discrepancy (there is only a single unknown parameter for
the dispersion) and wt are numbers that are known in some
way and are called the weights of the observations. In the
simplest case (for example, for the model (1)) equal
weights are used (where they can be taken equal to unity)
but in general the weights are determined from some as-
sumptions or statistical data regarding errors prior to the
measurements and the conditions of linearization of the
laws of nature.

From the point of view of the actual calculations, the
mathematics associated with the method of least squares
can be very complicated and tedious. Fortunately, we can
now use the facilities of computers for carrying out the
calculations, while the principal part may be expounded
simply. The first such exposition in the Russian language
was given by A. N. Kolmogorov8 (originally published in
1946). It is possible to go slightly further and almost en-
tirely free the exposition from mathematical formulas, us-
ing only simple facts from linear algebra (see, e.g., Ref. 4).
However, in 1946 Kolmogorov in his book,8 which was
addressed to a wide audience, was able to expound the
theory of the method of least squares without mentioning
whether the model based on the theory was valid or not.
Now, however, after almost fifty years new facts have been
accumulated (see, e.g., Refs. 6 and 7), and to tacitly as-
sume that everything is in order in this respect is simply
impossible. I plan to examine the following questions:

1) Is the classical probability model of the theory of
errors correct for real errors?

2) Is this model comprehensible even in present-day
practice in teaching and in scientific investigations?

3) Wherein, nevertheless, might lie its utility?
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4. IS THE CLASSICAL MODEL CORRECT?

It is not necessary, of course to imagine that the clas-
sical authors thought that the theory of errors was appli-
cable to any measurements. Little can be done to improve
the quality of measurements by merely mathematical op-
erations: above all it is necessary to improve the measure-
ment methods: a project that physics, chemistry, and ma-
terials science can participate in. At a certain stage
metrology is involved, and of course there is nothing to
prevent good instruction to the observers. We can speak of
the probability model when it is applied to those errors that
yet remain after all means have been taken to improve the
apparatus and to train the observers. The classical ap-
proach assumes that with good observations random errors
will begin to play the major role. However, if we adopt the
point of view from which physics judges the validity of a
particular theoretical model, then we must inevitably ac-
knowledge that the classical model, which was undoubt-
edly conceived of as a physical model, has not stood the
test of time. Brief arguments are as follows.

From a general theoretical point of view the physicist
cannot recognize any subjective or other kind of probabil-
ity and prefers to speak of probability in those cases where
there is some ensemble of experiments having a certain
statistical stability (see, e.g., Ref. 1). In the 200 years that
have passed since the time of Laplace and Gauss science
has made no progress in the fundamental issue—that of
when statistical stability arises. To learn whether it does or
not can only be done from experiment, and the authors of
Ref. 1 have rightly insisted on a careful examination of the
experimental record. It might appear strange that a statis-
tician begins his work with an examination of the experi-
mental record without looking into the experimental
method, but if one takes into account the sin of stupidity,
then it becomes clear that this classical course is conceived
quite to the point. In fact, there is a transfer of experimen-
tal material from one specialist (the experimental physi-
cist), who has been taught to make measurements on a
particular device but cannot subject his data to analysis, to
another specialist (in mathematical statistics) who knows
the data analysis methods but would certainly burn out an
electrical multimeter as soon as he handled it, when by
absent-mindedness he connects it incorrectly. An analysis
of the experimental record of the measurements is not un-
like a give-and-take procedure.

But there is every reason to suppose that in the major-
ity of cases this procedure terminates with unfortunate re-
sults: statistical stability may be repudiated. Let us take an
example of a geodesic nature: let us assume that the mea-
surements consisted of measuring, from the site of one
landmark, the angle between the directions to two other
landmarks. Malicious tongues may say that there exists the
phenomenon of horizontal, or lateral refraction, in which,
because of the horizontal gradient of the refractive index of
the air the beam of light will deviate in the horizontal
direction by some amount that depends on the weather
conditions. In this case two records of the measurements
given for diiferent weather conditions will give rather
sharply different results, and the statistical stability will be

repudiated. The issue here is not the errors in the device
and/or of the observer, but in the fact that the investigated
object (the angle between two rays of observation) does
not exist with the degree of accuracy with which we wish
to measure it. Recognizing the problem, we define the true
angle as an average of the values of the angle in all weather
conditions. This average may be determined from observa-
tions if they are made over several seasons, many times
each season; but how do we know whether the Earth's
crust has moved somewhat during this time? Now, we can
attempt to average over the motion of the Earth's crust,
but this surely requires several centuries. Perhaps we can
articulate the fundamental practical divergence between
the opinion of the authors of Ref. 1 and mine: Let us
assume that for any geodesic grid it happens that the sit-
uation is the one described here—there is no statistical
nonuniformity. Does it make sense to smooth out the ob-
servations by the method of least squares? As I understand
it, the authors of Ref. 1 would answer that question defi-
nitely in the negative. I, however, believe that to smooth
out is proper—not for the sake of generating confidence
intervals for the angles of the grid (in which there is really
not much sense), but to determine with confidence for
which of the triangles the lateral refraction is the most
important.

The model of the theory of errors, as is the case for any
other model, can also be verified according to the conclu-
sions that come from it. The confidence intervals of the
form (2) are sometimes brilliantly verified by subsequent
observations of higher accuracy. For example, the confi-
dence interval of Chebyshev for the mean density of the
Earth (5.48 ±0.1 g/cm3) actually contains (and with
room to spare) the modern value of 5.52 g/cm3. But fre-
quently the confidence intervals obtained in more and more
accurate measurements of a particular quantity present a
delightful picture: they indeed all become smaller, but the
later ones do not contain any of the earlier ones, but lie in
a somewhat different place on the numerical axis.

In addition to the prerequisite of randomness, i.e., sta-
tistical uniformity, the classical model contains other pre-
requisites, those of the independence of the errors and the
definite relations between their variances (in the simplest
case the variances must be equal), and also the prerequisite
that there be no systematic errors. Let us present some
factual information from the book of Novitskii et al.1 from
which it follows that for electrical measuring devices such
things are impossible.

For electrical measuring devices there is a metrological
service that periodically checks the devices (by comparison
with more accurate devices) and adjusts them to maintain
the error within specified limits (which are normalized to
the per cent of the smallest division of the scale, and not to
the measured value!). According to Ref. 7, the errors that
arise in this method in the first approximation are linear
functions of the measured quantity, the parameters of
which vary with time (zero adjustments, the possibility of
which has been foreseen by the design of the device, are
more often harmful than helpful). When, during the peri-
odic calibration, it is observed that the largest error of the
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device (which usually is usually obtained somewhere near
the upper end of the scale) is close to being greater than
the specified per cent, the device is adjusted with a large
margin to spare so that it will operate for another several
years before another adjustment. The benefit of a computer
(if the data can equally well be fed into a computer) might
be that the adjustment of the device would be replaced
with a table of errors in the computer. In any case the true
values of the errors depend both on the value of the mea-
sured quantity and on the time that has elapsed since the
last calibration (as well as other troublesome factors that
show up in the use of the device outside the calibrating
laboratory).

In short, from the point of view of a physical paradigm
we can scarcely attribute any status to the probability
model of observational errors other than the status of a
myth. One hundred years ago the concepts of "science"
and "myth" were diametrically opposite: science was con-
sidered a noble thing and myth an ignoble thing. Now,
however, the idea of the deep unity of all manifestations of
human thought is more and more prevalent, so that one
can scarcely take offence if, for example, modern cosmol-
ogy is called a version of the myth of the creation of the
world that corresponds to the level of science (and in gen-
eral the culture) of the twentieth century. According to my
observations, for the student youth today such a philoso-
phy is entirely applicable, and I am speaking of my lectures
on the theory of errors as an example of the foregoing.

A person cannot think of any objects and/or work
with them without creating for himself some ideal model of
their essence. For the anthropologists this is called ani-
mism, i.e., attributing to them a soul. For example, "the
soul of the hunter runs on the soul of the skis over the soul
of the snow in pursuit of the soul of the elk". In this sense
these mathematical concepts such as random quantities,
independence, mathematical expectation, etc., are a soul
that we attribute to the specific results of the observations
in order to be able to work with them. In the twentieth
century, however, we wish to obtain from the analysis of
observations scientific results, that is, results that are com-
paratively reliable and at least worthy of attention. There-
fore our problem of the study the theory of errors does not
include how to calculate any particular formula nor rec-
ommendations on the analysis of the observations (possi-
bly our computer has already done this for us), nor does it
include instructions on teaching how to understand which
of the results of the data analysis done by the computer are
reliable and what is the degree of the reliability.

5. IS THE MODEL OF THE THEORY OF ERRORS
UNDERSTOOD IN THE MODERN PRACTICE OF
INSTRUCTION AND SCIENTIFIC RESEARCH?

No, it is not understood. For example, we have seen
how in the practical work of physics the instructor has
tended to create a universal theory of errors in which any
error, for instance:

1) The inaccuracy in the value of a particular quantity
taken with an insufficient number of decimal points from
the handbook.

2) Systematic errors in the device.
3) Errors committed by the student while reading a

length or the time,—all are characterized uniquely, by its
"sigma" which are added up according to the rule of the
"square root of the sum of the squares". In any large en-
semble of observations, for example, of all the students and
all the problems of the course of experimental study, some-
thing similar might be, perhaps although of little interest,
the question of what might be the error of carrying out the
problems of the experimental laboratory course, averaged
over all the observations, all the students, and all the prob-
lems the experimental laboratory course. However, in the
framework of an individual student and an individual
problem I do not see much sense in this approach.

As another example, let us consider the teaching of the
classical science of geodesy, for whose needs the theory of
errors was primarily created (I obtained this information
from a textbook9). In geodesy, there are many mathemat-
ical problems, in particular, the calculational problems of
the application of the methods of least squares; yet there is
no other method that we have. There is no mention of what
is the mathematical meaning of a random quantity or of
independence—concepts which alone provide a framework
within which the smoothing itself has meaning: the
smoothing procedure is simply carried out to the end with
no idea of how the weights of the observations are ob-
tained. By the way, in our time it is entirely possible with
the aid of radar to measure a very large number of dis-
tances between the nodes of a given triangulation grid.
Each new measurement of the distance adds not just one
superfluous relation to the equation, but many, because the
known segments can be connected via very different
chains, consisting of triangles of the grid. I have been given
the impression that it is recommended that one should
measure somewhat fewer lengths in order not to compli-
cate the equation. It is also not clear how in the model of
the observational weights the weights of the observations of
the angle and of the measurement of the distance are put
together: in the method of least squares it is assumed that
there is only a single unknown parameter for the variance.
In general, as it seems to me, in geodesy one should strive
not so much for the comfort of the soul that comes when
the smoothed values of the lengths and angles in the end do
not contradict the theorems of geometry, but for a more
useful application of the model of errors, for example for
the selection of those observations whose errors are appar-
ently large so as to repeat them if possible.

If we now speak of the general-science fate of the the-
ory of errors, of course, after 200 years it has become clear
that the probability model may be incorrect. However, the
generally accepted alternative model is rather wretched: it
leads to the result that the errors of observation <5, can have
a nonzero mathematical expectation: M6, = c,, where the c,
are also called systematic errors. In the calculation of the
systematic errors the identically distributed random quan-
tities (random errors) must again remain independent.
Here it is not possible to make the c, arbitrarily dependent
on i, since this model will be useless (anything at all can be
explained by systematic errors). It is simplest to make
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them all equal: c\ = ...=cn=c, and then с is called in En-
glish the "inaccuracy" and in Russian the systematic error
(in a single number). The quantity (D5))1/2

= ... = (В(5„)1/2=<7 in English is called the "imprecision"
and in Russian it is called "sigma" or the standard devia-
tion. A paradigm has been constructed according to which
any observational data must be properly associated with
their inaccuracies and imprecisions. But then, after all that
has been said (on the basis of Ref. 7) regarding what in
reality may be the observational errors, it is perfectly clear
that systematic and random errors in actual fact do not
exist. However, this form of the probability myth also can
be very useful for analyzing large quantities of information.

If I propose to attribute to the probability model the
status of a myth regarding the soul of the observational
results, then I must be consistent and attribute to the sta-
tistical procedure of analyzing information the status of
augury. Randomness and augury, as we know very well,
are closely connected in deep psychology: one can augur by
the results of any random (in the sense of unpredictable)
"experiment": by the cards or the dice, by the flight of the
birds, the entrails of animals, etc. It would not hurt to
mention that here too there have always been specialists:
some make their predictions according to the flight of the
birds and others according to the entrails—no single per-
son can master everything at once. In our time, in the
analysts of experimental data one augurs with numbers
that are the results of observation, and this is an art, dis-
tinct from the art of measurement. In the twentieth cen-
tury, however, we wish to augur at a scientific level and it
is time to tell how this can be possible and useful.

6. THE UTILITY OF PROBABILITY-STATISTICAL METHODS
OF DATA ANALYSIS

6.1. Philosophical introduction: the paradigm of applied
statistics

During a period of about twenty years at Moscow Uni-
versity there was a curious entity that in the end was called
the Inter-Departmental Laboratory of Statistical Methods.
It was planned (probably on the model of the Indian Sta-
tistics Institute) and directed by A. N. Kolmogorov, and
the assistant director was V. V. Nalimov. The laboratory in
the end was disbanded: the statistics institute did not turn
out successfully for some deep reasons that I am unable to
analyze, but it is interesting what happened to it. What
happened is that V. V. Nalimov when he was invited to
join the laboratory was engaged in applied statistics, in
particular the planning of experiments, which was based
precisely on the classical model of errors of observation,
but then his interests started to change. As long as this
interest was science metrology, i.e., the analysis of the
quantity of scientific publications and the number of their
citations, this was quite tolerable for a statistics laboratory.
But when he went into Indian philosophy, transcendental
psychology, the probability model of speech,... well, to
make a long story short, a number of young coworkers
became disturbed by these inappropriate interests and
launched an attack on this sort of business. The attack, by

the way, ended only when A. N. Kolmogorov decided that
V. V. Malimov, as a prominent scientist, had the right to
occupy himself in any way he saw fit. But now after twenty
and more years I see quite clearly that applied activity in
the area of mathematical statistics can be successful only if
the mathematics of Kolmogorov has combined in it the
philosophy of Nalimov.

Philosophy here is understood in the sense of what we
expect from the use of a particular method and what we
consider good and bad. The philosophy of applied statistics
of A. N. Kolmogorov reduces, in general, to a physical
paradigm. He also provided remarkable examples of work
that satisfy these requirements, the best known of which
are work in the statistical theory of turbulence. However,
A. N. Komogorov simply rejected a great deal of his work
as defective for the reason that it "did not turn out", that
is to say, probability did not prove to be a "normal" phys-
ical quantity. I felt it a pity that among these investiga-
tions, which were never published, was included the work
on sun spots, because the preliminary analysis of the prob-
lem and the formulation of the problem, carried out in the
seminar of A. N. Kolmogorov, made an indelible impres-
sion on me. In general, the philosophy of A. N. Kolmog-
orov, which in my youth I naturally followed blindly, now
seems to me excessively rigid.

I do not plan to set out the philosophy of A. N. Kol-
mogorov in its entirety, but only in a comparatively trivial
part that bears upon the philosophy of science, where it
reduces to the fact that in relation to the object studied,
scientific work often may be only a metaphor, in that it is
similar to the object in some respects and not at all similar
to it in other respects. Thus the probability model of the
theory of errors, so to speak, at the microlevel of the errors
of single measurements, is clearly not similar to the object.
However, at the macrolevel—that is in the framework of a
rather large collection of experimental information—it
may give some average description of the object in the form
of standard random errors and/or systematic errors. We
can learn whether this description is sufficiently reliable,
i.e., scientific, by dividing judiciously the available infor-
mation into several parts and seeing whether the value of
the calculated characteristics are stable in going from one
part to another, or (if possible) by analyzing new informa-
tion by the same means: one should get about the same
characteristics as before. The utility of a statistical investi-
gation, however, depends in general on the feedback to the
experiment: if the results of the statistical analysis prompt
the experimenter to some new ideas for an improved exe-
cution of the experiment, then this is very useful. Any
combinations of reliability—i.e., stability of results—of a
statistical description with its utility is possible. For exam-
ple, a description may be unreliable but useful. Let us say,
if by the method of Ref. 1 a statistical instability was ob-
served in the record of an experiment, then this may be
very helpful for improving the way the experiment is set
up. A statistical analysis may also help to reveal (or make
more convincing) any new effect; that is, it can afford an
advantage equivalent to the acquisition of a more accurate
apparatus.
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TABLE I. Results of measurements of the current-voltage characteristic.

Resistance. R. fi Current. / . mA
Voltage for the various experiments, V

n n /'4

25000
20000
15000
10300
7500
5000
4000
3000
2000
1500
1200
1000

800
600
500
400
350
300
250
200
150
100
80
60
50
40
30
20
10
0

0
1,2
1.45
1,85'
2,58
3,3
4,5
5,4
7
10,5
13,8
17,4
18,6

22,8
33
34
45
51
60
67
81
99
126
138
160

175
189
204
227
247

276

32
30.1
29,4
28,5
26,7

25,4
23,4
22,2
21,3
21
20,7
20,5
19,9

19,8
19,2
18,6
18
17.8
17
16,5
15,9
14,6
12,5
11,4
10
8,9
7,7

6,1
4,4
2,5
0

32
30,1
29,4
28,5
26,7

25,4
23,4
22,2
21,3
21
20,7
20,5
19,9
19,8
19,2
18.6
18
17,9
17,1
16,6
16
14,7

12.7
11,6
10,3

9,2

8,1
6,5
5

3,2
0,8

32.6
29,4
29,1
28,5
27
25,6
23,8
22,6
21,1
20,8
20,7
20,3
29,2

20
19,3
19,2
18,4
18,1
17,4
16,9
15,9
14,7
12,8

11,8
10,1
8,7
7,7
6,6
4,8
2,9
0,05

—
—

—
—
—
—
—
—

21,1
20,8
20,7
20,3
20,2
20,1

19,1
19,1
18.1
17,6
17
16.3
15,4
14
11,8
10,7
8,9

7,5
6,4
5
3,2
1.6
0,24*,)

—
—

—
—
—
—
—
—

21,1
20,8
20,7
20,3
20,2
19,975
19,12'5
19,05
18,175
17,775
17,1
16,45
15,475
14,05
12,05
10,925
9,2
7,95
6,8
5,55

3,7
1,975
0,23*)

VI is measured with a crude instrument; VI lists the data of V\ with correction for the internal resistance of
measurements by an accurate set of instruments: K4 are the measurements with the same set of instruments but
the experiment ( f rom large to small values of / ) ; VI is an average over the four experiments,
*'/ =266 mA

the device; F3 are the
in the reverse order of

Thanks to the introduction of computers it is now un-
necessary to create a calculation bureau to carry out the
calculations. However, a correct interpretation of the re-
sults of a statistical analysis (if only in the application of
the method of least squares) can only be made by by some-
one that understands the probability model from which
stem the algorithms of the analysis: a correct interpretation
can never simply be purchased like a package of statistical
software. Thus the expense associated with the statistical
analysis consists not of acquiring a computer (it most
likely is already at hand) but in hiring a new person.

6.2. An example of the interaction of an experiment and
statistical analysis at the level a course in experimental
physics

At one time I had need of a dc power supply for some
everyday purpose. I put it together out of what was at
hand: a transformer that stepped down 220/24 V, which
was huge for my purposes, with a power of 250 VA; I also
found diodes for a diode bridge, a choke (I measured a dc
resistance of 70 П, and an inductance of 4.2 H) and a

capacitor that fitted in perfectly, having a capacitance of 22
000 /iF. Altogether the device weighed almost 8 kg, and I
stopped to think what the properties of this wonder might
be, and I started to take its current-voltage characteristic.
Then I considered that, although perhaps not necessary for
everyday use, it would not be such a bad idea to see what
the statistical method would give for analyzing such mate-
rial; moreover, it seemed to me that the results might have
some pedagogical worth.

The results of all the measurements are listed in Table
I. The first three columns R, I, and VI were obtained in
the following manner. With the aid of a TL-4M radio am-
ateur multimeter the resistance of the rheostat simulating
the load (and connected in parallel to the filter capacitor)
was set to some value (column R). Then the multimeter
used as an ammeter was connected in series with the load,
and the current was measured (column /). Finally, the
multimeter was connected as a voltmeter in parallel with
the rheostat and the voltage drop across the load was mea-
sured (column Fl). At first I assumed that the measuring
device would not introduce any distortions. The data of
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50 J50 200 250 /, mA

FIG. 1. Results of measurements of the current-voltage
characteristic. The dots show the results of measurements
by a crude instrument as the current / was raised. The
straight line is the result of smoothing by eye the points in
the linear region (/>7 mA). The line practically coin-
cides with the results of a linear regression analysis. The
nature of the deviations from the straight line (insuffi-
ciently random) suggest that there is a nonlinearity.
However, when the order of carrying out the experiment
is changed (measuring while lowering the current) sub-
stantially different values of the voltage are obtained
(crosses). Thus the current-voltage characteristic is not
determined by the conditions of the experiment with such
accuracy that one could attempt to study the character-
istic having only the observations shown by the dots.

columns / and PI are shown as points in Fig. 1.
Having obtained such a current-voltage characteristic,

I was surprised (expecting to see a straight line) and
stopped to think what my possibilities were for a theoret-
ical analysis of the data. At one time I was taught that
from a sinusoidal ac voltage a diode bridge puts out the
modulus of the sinusoid, and then it is necessary with the
aid of KirchhofFs laws to set up a system of linear differ-
ential equations with constant coefficients describing the
RCL circuit, with the modulus of the sinusoidal voltage on
the right-hand side of one of the equations. But I was not
measuring under transient conditions (because of the large
capacitance of the capacitor in my circuit the transients
last for a long time after turning on-up to minutes): in the
measurements I waited for a steady state to be established.
To study the steady-state regime, I knew, was simple: you
expand the right-hand side in a Fourier series, and each
harmonic passing through the filter is studied individually.
However, my experimental apparatus under dc conditions
was not at all sensitive to any harmonics, as can be seen by
connecting it directly into a network as a dc voltmeter.
Therefore I can assume that at the input to my filter there
is only a dc voltage E equal to the integrated average of the
absolute value of the sinusoidal signal, and nothing more.
But then the law of nature that I am studying is obliged to
have the form

V=E-rI, (4)

where V and / are the voltage and current in the external
circuit, and r is the dc resistance of the choke. Moreover,
Ohm's law must be satisfied for the external circuit

V=RI, (5)

where R is the external resistance.
According to the data of Fig. 1, the law of nature (4)

is clearly violated, as is evident without any statistical anal-
ysis. It turns out that I discovered a new phenomenon, but,
of course, it is new only in terms of my ignorance, while in
radio engineering it is surely well known. (But if one
makes a physics course of such material, then, of course
one must explain to the students what it is all about).

However, the law (4) is a physical one, and unlike a math-
ematical theorem, might not be absolutely or always true,
but only serves as a good approximation. As judged from
Fig. 1, linearity is satisfied over a very wide range of cur-
rent />7 mA, which is the region of interest for practical
purposes. Thus we obtain directly from experiment entirely
reliable information on the region of applicability and ac-
curacy of a physical law (4), and with respect to this in-
formation the term "augury" is entirely inappropriate.

Let us ask: could we obtain from Fig. 1 or any other
place such clear and reliable information on the applica-
bility of the probability model of the theory of errors to the
possible measurement errors as may be provided by devi-
ations of the data of Fig. 1 from a straight line (in the
region />7 mA)? Of course not; and in this example the
difference between physical measurements and the proba-
bility "soul" of the observations (and also between physi-
cal measurements and the statistical "augury") must, it
seems to me, be perfectly clear. But now we shall see
whether by some fortune telling it is possible to help the
measurement.

The concept of least squares requires, generally speak-
ing, complete smoothing of the measurements in accord
with the laws of nature (4) and (5) (henceforth we shall
refer only to the region of linearity />7 mA). But when
the actual values of the first three columns of Table I are
substituted into (5) very large discrepancies are observed,
which are attributed to the crudeness of the resistance mea-
surements by the multimeter in the ohmmeter mode. I did
not find any reasonable means of carrying out a smoothing
(what should be taken for the weight of the observations?)
and preferred to set up the experiment in the following
way: first (presumably) by means of the rheostat the cur-
rent as shown in column / was set up in the external circuit
and then the voltage drop shown in column V\ was mea-
sured. (Below, data of column R are used in a different
way. The current and the voltage could be interchanged by
solving Eq. (4) for /, but in that case the coefficients of the
equation would have slightly less direct physical meaning
than the coefficients of Eq. (4)).
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TABLE II. Results of a regression analysis of the data of Table I.

Version of Degree of

the L-xperiment Polynomial

П 1
2
3

Л 1
2
3

П 1
2
3

\n i
2

Constant

21,73
21,64
21,65
21,64
21,4
21,63
21,85
21,45
21,56
21,8
21.61

Coefficient of

/

-0,0762
-0,0662
- 0,0792
-0,0735
-0,0659
-0,0781
-0,0757
-0,0634
- 0,069
-0,0797
-ОЛ738

-39-
84

-30-
86

-49-
4,9

-23-

/2 /J

io-6

10-' -3 10-'

кг6

10-* -2,8 10-'

io-6

• io-6 -1,3-10-'

io-6

Correlation
Coefficient

0,9987
0,9993
0,9999
0,9989
0,9993
0,9995
0,9989
0,9999
0,9999
0,9979
0,9999

Estimate of
the Error

of Measurement

0.34
0,25
0,21
0,30
0,25
0,22
0,30
0,11
0,091
0,14
0,057

The standard smoothing of the data of the polynomials was carried out by the method of least squares with equa! weights of the
observations. For a polynomial of degree 1, the constant has the physical meaning of an emf. The coefficient of/ taken with the opposite
sign is the internal resistance, and since V was measured in volts and / in mA, the internal resistance is in kft. The last column gives
the estimate of the error of a single observation (standard deviation), measured in V.

Thus we are dealing with a linear regression on the
values of column VI on the values of column / We can
carry out a linear regression over the points of Fig. 1 by eye
(the straight line plotted in Fig. 1) or use the computer
(the first column in Table II): the results are indistinguish-
able. The correlation coefficient is 0.9987 (I am pleased
that in my amateur experiment I obtained such a good
correlation coefficient, but here the issue is the relative
simplicity of the technique).

I assume that most physicists not experienced in sta-
tistical augury, would, after obtaining this correlation co-
efficient, stop their measurements and their analysis: what
more can you look for than the linear dependence? It is
true that the values of E and r, £=21.73 V and r=76.2 f l ,
evaluated from the regression equation, are somewhat dif-
ferent from the expected values. Actually, the ac output of
the transformer was measured to be 25.4 V, which corre-
sponds to a peak value of 36 V and an average value of 22.9
V. The dc resistance of the choke was measured to be 70 SI.
However, the reason for these discrepancies must probably
be sought in the same place as the reason why with the
external circuit disconnected the capacitor is charged not
to the average value of the voltage, but almost to its peak
value.

But someone that knows what statistical augury is is
not so simply satisfied. Even the soothsayers that accom-
panied the emperor Julian on his ill-fated campaign, in
order to see that all was in order, looked to see whether the
sacred hens happily pecked their grain. The statistician will
examine Fig. 1 not as other people will—by holding the
sheet of paper in front of the eyes—but obliquely: placing
the eyes almost in the plane of the figure along the exten-
sion of the line of regression. Then he will see that the
deviations of the experimental points from a straight line
do not behave as postulated, as independent random (cha-
otic) quantities: the points meander around the straight
line like a sinusoid. This is terrible: the probability model is
not satisfied, the sacred hens are not happy.

We must find the reason. For a start I was interested in

the internal resistance of the multimeter in the voltmeter
and ammeter modes, and I found that in the voltmeter
mode it was quite high, and in the ammeter mode it was
quite low. Using the value of R in the first column of Table
I, let us calculate the correction (here is where excess in-
formation comes in handy) and show them by arrows in
Fig. 1. Are the sacred hens happy now? The points on the
right-hand side of the graph and lying farther than the rest
from the line of regression were actually shifted almost
onto the straight line, but the other points were also
shifted. It can be seen that the line of regression must be
drawn in a somewhat different way, and the nature of the
deviations from the line after this remains as before. No,
the sacred hens are not happy. Moreover, to the experi-
enced eye it can be seen that they will not become happy
even if instead of a linear regression we use a second or
third degree polynomial. But let us carry out the appropri-
ate computer calculations so that this fact is made clear
also for any student of the art of augury. x

The computer outputs all sorts of (in principle, useful)
information (specifically, the STATGRAPHICS software
package was used). But since the probability model is al-
ways the point in question, most of this information is not
needed (for example, the significance level of the coefficient
of regression or their standard errors; incidentally, it is
doubtful if any nonspecialist knows the difference between
the usual significance level and the limiting level, or the
p-value, which the computer also gives). But there is one
very important number—the mean square of the residues;
taking the square root of this number we obtain the stan-
dard error of the observations (under the assumption that
the regression model is correct). In the software package
that was used there is also a very important graph of the
residues, i.e., the differences between the regression line
and the observations. For the not very skillful augur it
replaces the operation of observing at an oblique angle. Let
us look at Fig. 2, which shows a graph of the residues for
the column V\ for a polynomial regression of degrees 1, 2,
and 3. It can be seen that the residues change with increas-
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FIG. 2. Graphs of the residues obtained by smooth-
ing the observations by regression polynomials (the
crude measurements of column V\, Table I). The
dark solid line represents the residuals for smoothing
a first degree polynomial, the light solid line repre-
sents the residues for a second degree polynomial, and
the dashed line is for a third degree polynomial. When
the degree of the polynomial is increased the residues
fall off somewhat and the graphs show mutual corre-
lations. This means that the nonlinearity (as shown
by the insufficiently random nature of the dark line) is
not accounted for by polynomials of second or third
degree.

ing degree of the polynomial, but in a somehow indecisive
way, and the graphs of the residuals remain correlated.
Also in Table II the estimates of the observation error fall
off, but not sharply. This means that increasing the degree
of the polynomial does not reveal the truth, but instead
only the precision of the approximation increases because
of the increase in the number of adjustable parameters.
This is terrible: the true shape of the deviations from lin-
earity is not made any clearer with the aid of a polynomial.
The sacred hens refuse to take their food in the form of an
increase in the degree of the regression. The pattern for the
column V2 is almost the same, so it is not presented here
(except for the regression in Table II). The corrections are
ineffective.

A number of hypotheses arise. Can it be that the sys-
tematic errors of the multimeter while measuring the cur-
rent and the voltage somehow combine together in such a
way as to obtain a deviation from linearity of a complicated
form? Or can it be that the reason stems from oscillations
in the voltage in the network? This Gordian knot of doubts
can be cut only with the aid of new measurements. Now
the supply voltage is monitored by the voltmeter itself and
is stabilized as well as possible with the use of a manual
autotransformer. An electronic digital voltmeter and a
pointer-type ammeter of class 0.5 are connected simulta-
neously in the measuring circuit. The rheostat is used to
establish the previous values of the current, and the volt-

meter records the value of the voltage (column V3). The
graph of the residues is shown in Fig. 3, and Table II shows
the results of a regression analysis.

Well, now it would appear that the sacred hens are
happy. When the degree of the polynomial is increased to
2 the residues are reduced quite sharply, while with an
increase to 3 they are essentially unchanged. The observa-
tion error turns out to be 0.11, which is quite reasonable,
since it was noted that the tenth-volt readings on the elec-
tronic voltmeter were unstable (which, probably is ex-
plained by short-term variations in the voltage in the net-
work, with a frequency of the order of 1 Hz). The third-
degree regression polynomial, obviously, is not required
(when the term in /3 is introduced the coefficient of/2 is
also treated by the computer as insignificant). It would
appear quite clear; a nonlinear effect has been found and is
reliably describable by a second degree polynomial.

There is only one small cloud on the horizon. All the
values in the columns V2 and F3 are very similar, respec-
tively, except the last one. An attempt was made to repeat
the last observation of column VI, and it was found... that
the value was not repeated. It was found that if the exper-
iment was carried out while increasing the current /, then
the same values of the voltage were obtained (the columns
V\, VI, and F3), and if, on the other hand, the current
was steadily reduced by means of the rheostat, then other
values of the voltage were obtained (the column F4 and

FIG. 3. Same as Fig. 2, but for the observations with
instruments of greater accuracy (column F3, Table I).
The nonlinearity is accounted for by a second degree
polynomial.
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the crosses in Fig. 1), which could differ from the other
values by an amount the order of 1 V. This phenomenon
(the current-voltage characteristic) is not determined by
the conditions of the experiment with an accuracy that
would allow me to study it. The reason for this is not clear,
but in order of magnitude it might be entirely explained by
a slight heating of the choke windings by the current. Thus
the description of the device with the use of the electromo-
tive force and the internal resistance is too crude even for
practical purposes, because it turns out that the device
might have some dynamic properties that are undesirable
for a power supply.

Then which values of E and r are to be used? For an
answer to this question I carried out two more experiments
with increasing and decreasing current, and averaged the
results with columns V3 and V4. The averages thus ob-
tained are given in column VI, and the results of a regres-
sion analysis are given in the last two columns of Table II.
If the data of column VI are plotted on a large sheet of
millimeter paper (A3 format), then it is easy to see that
they are not fit by a straight line at all well, but are fit
excellently by an upward-convex second-degree parabola.
The data of Table II are in agreement with this conclusion:
the coefficient of I2 is negative, and the estimate of the
error drops sharply in going from a straight line to a pa-
rabola. It should be noted that the error of 0.057 is smaller
by almost a factor of two than the error of 0.11 obtained by
smoothing the parabola of column V3. It may be that in
the averaging of the data of four experiments an average
parabola is obtained, and the random errors, being aver-
aged become, as conjectured, smaller by a factor equal to
the square root of the number of experiments.

Let us review what has happened. After the first series
of measurements (column VI) a region of linearity of the
current-voltage characteristic was discovered. From the
data of the smoothing of the observations in this region the
emf and the internal resistance of the current source were
determined, but the question arose as to the accuracy of the
determination, i.e., of the reliability intervals. But the reli-
ability intervals obtained by computer are worthless if the
probability model is violated, and this model is indeed vi-
olated because the deviations of the measurements from a
straight line do not behave in a sufficiently random man-
ner. The physically interesting question arises as to
whether the current-voltage characteristic in the (suppos-
edly) linear region is in fact linear or whether this effect
should be attributed to errors in the measurement. The
measurements, to the extent possible, are corrected (col-
umn V2) but this does not lead to any radical changes. The
nonlinearity is rather strange: it is not caught by a polyno-
mial of the second or third degrees. This consideration
together with the idea of the possible variations of the
voltage in the network accounts for the observations (in
the example of the appearance of a nonlinearity). Fortu-
nately, I was able to take more accurate measuring devices
from the shelf (it was not for nothing that at one time I
traded my vodka coupons for a decent second-hand labo-
ratory ammeter). Measurements of higher accuracy gave a
nonlinearity that was caught by a second degree parabola,

but this improvement is evidently not accounted for by the
fact that the device is more accurate, but by the fact that
when the two devices are used instead of one the electrical
circuit is not interrupted during the series of measure-
ments, and therefore the temperature dynamics is more
smooth (in time). The statistical example of the averaging
of four series of measurements gives a generally excellent
result that does not leave any doubt about the reality of the
nonlinearity. Practically, one should use any values of the
emf and internal resistance, from the first series of mea-
surements (V\) or from the last ( V I ) , it doesn't matter
which, but now it is clear that this description is rather
crude, and from the practical point of view my wonderful
device, weighing 8 kg and constructed on the principles
rooted in antiquity, is not entirely perfect: It would not
have hurt to put a regulator in it.

All of this interaction of the measurements and their
analysis went on without any use of the computer, which
was not available when it was needed (unlike the amme-
ter): I simply viewed the sheet of millimeter paper. But the
use of the computer makes the entire process simple, clear,
and therefore accessible to all: one has the graphs of the
residues and does not have to look at the graph at an
oblique angle. If the situation concerns some multidimen-
sional dependences, then without the computer the statis-
tician would be entirely helpless.

7. CONCLUSION: THE BASIC PRINCIPLES OF TEACHING
THE THEORY OF ERRORS

The probability theory of experimental errors is a hard
nut to crack for the student, the more so because (as we
have seen) things are not always entirely clear for the
teacher. It was designed by the classical authors and can be
somewhat logically presented only as an application of the
theory of probability, which mathematically is quite com-
plicated (since even in the simplest case of independence it
in fact has to do with the direct product of a large number
of probability spaces). But the theoretical sciences are
good in that they can be understood relatively easily and
quickly (of course, with the appropriate talent and train-
ing). It is well known (see, e.g., Ref. 4) how the theory of
probability together with the fundamentals of the method
of least squares can be presented (for adequately trained
students) in a semester course, that is, in about 15 lectures.
This amounts to 30 academic hours, or 22.5 astronomical
hours, or three working days. Meanwhile, by the same
accelerated method an accountant would be prepared in
about a month.

However, having started from a purely mathematical
science, a student to his surprise suddenly finds himself not
in the field of physical science (as he would naturally ex-
pect and people have tried to believe for about 150 years),
but in the field of statistical science, which in style of
thought approaches such phenomena of our culture as eco-
nomic statistics or (in the best case) demographic statis-
tics. For the student of the physical, physical-technical, or
natural sciences, and indeed in general almost any special-
ist, the statistical paradigm is alien and must be explained.
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First, the reason why the student does not understand
at once, is because there is no physical theory of errors. For
example if science after 200 years still talks about the stan-
dard error a of a device, then why has no one ever learned
how to define it (with some precision, as a physical quan-
tity) and list it in the instruction manual for the device as
are the values of the main and additional errors? There the
student should be taught that the instruction manual pro-
vides very incomplete values, those that are more or less
guaranteed by the manufacturer for all the devices of that
particular construction. Usually the real errors are consid-
erably smaller. But, of course, to the scientist it is equally
undesirable to underestimate as to overestimate the mag-
nitude of the error: it may happen that he reads some new
effect into the errors of observation and becomes famous
without justification. However, when we begin to study
real errors, then we find ourselves in a dense forest: the
errors also depend on the individual device of that partic-
ular construction, and on the time elapsed since its last
calibration, and possibly on the skill of the user; but the
main phenomenon, the one that is being studied, might not
reproduced entirely uniquely under the conditions of our
experiment, and it is far from being perfectly clear how to
take into account such errors, and it is completely impos-
sible to list them in the certificate of the instrument. It is
simply fortuitous that the classical authors invented the
adjustable parameter a, which at least in some average
sense characterizes the accuracy of the reproduction and
observation of some dependence. The parameter, in addi-
tion, is useful for soothing our souls, since it usually allows
any experimental data to agree with the probability model
of errors without any particularly conspicuous inconsisten-
cies.

I believe the notion that, if the inconsistencies with the
statistical model nonetheless turn out to exist, then, the
analysis of their causes can undoubtedly be of use to phys-
ical investigations; this is a perfectly clear notion and in-
deed a trivial one for the normal student. Here we find the
constantly acting reason why the probability analysis of
experimental errors is not forgotten and not discarded by
science, but quite the contrary, packages of computer soft-
ware are written for such an analysis.

Of course, the averaged characteristic represented by
the parameter a, which expresses the correspondence of
our measurements to the known laws of nature—this es-
sence is possible not in the framework of a physical para-
digm, but as statistical paradigm. To contrast this para-
digm to a physical paradigm, employing the words such as
"myth", or "soothsaying", or "sacred hens" in Section 6.2,
in my opinion is very useful: it helps the student to under-
stand the situation in not 150 years, but in 15 minutes. It is
a good idea to bring up examples of model concepts from
other disciplines. I have used some experiments from work
in clinical physiology to cite the following example.

There exists a science—the physiology of respiration—
which, in particular, serves as a necessary and very useful
theoretical basis for developing a wide variety of breathing
devices: from the aqualung to the breathing of pure oxygen
at a reduced pressure in space, and from breathing in space

to the use of artificial blood circulation and artificial oxy-
genation of the blood during surgical operations. This sci-
ence recommends that the degree of inefficiency in the
working of the lungs of a patient can be estimated by the
index of venous mixing, or a shunt. In the textbook on
physiology this index is introduced in the following way. It
is temporarily forgotten that the lung has 300 million al-
veoli, and a model of the lung is considered consisting of a
single alveolus and two capillaries. The first capillary is
situated in the walls of the alveolus so that the blood pass-
ing through it (supposedly) is completely oxidized. The
second capillary is located on the side, and the blood pass-
ing through it remains venous. A simple algebraic compu-
tation follows, and the fraction of the blood that passes
through the second capillary (this is the shunt) turns out
to be expressed in terms of the concentration of oxygen in
the arterial and venous blood, and this latter quantity can
easily be measured by modern techniques at the bedside of
the patient. Actually, the efficiency of oxidation of the
blood in the lungs depends on the relations between the
ventilation and the blood flow in all of the 300 million
alveoli combined (a discussion of this is found on another
page of the same physiology textbook), so that in fact
everything does not occur as in the model: there is neither
complete discharge of the venous blood nor complete oxi-
dation. However the point of the shunt index is that it
accords with existing possibilities of measurement. It is
known that in some situations the dogmatic use of the
shunt leads to erroneous conclusions. This index reminds
me of the parameter a in the method of least squares,
which is also good in that it is determined from the mea-
surements.

A physical experiment can sometimes be constructed
with a particular orientation to the probability model of
errors. For example, one can create, as was done in Ref. 1,
sets of repeated observations of some quantity and test
their statistical stability. It makes sense to do this when the
statistical stability or instability has an important physical
meaning. Another example is the so-called "planning of an
experiment", when we are not particularly interested in the
exact form of some function of the experimental conditions
(for example the yield of the useful product), but would
rather maximize the value of this function. It is possible to
plan the experiment for the quickest determination of the
parameters of some theoretical function, being oriented to-
wards a particular probability model of errors, but this to
me personally appears as an unreliable business because of
the manifestly nonphysical nature of the model of errors.
Moreover, in this way one can miss the most interesting
point: for example, in the experiment of Sec. 6.2, if one
believes religiously in the linear model, then the experi-
ments need only be done at R= oo and R=0, but in fact
this is very unreasonable. It seems to me that in most cases
the experiment must be planned from considerations of the
physical investigation, but it must be planned very well if
the results of the observations then are to be analyzed sta-
tistically, for example, by the method of least squares. It
rarely happens that a statistical investigation does not yield
anything of interest.
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What is the price that must be paid for introducing
statistical analysis where it was not previously used? The
practical issue is that there must be a new person who will
with the aid of a computer and a standard package of
statistical software undertake a statistical analysis of the
data, which would in any case be entered into a computer
even if this person were not present. This may be a math-
ematician or a physicist by training, but this person must
understand the mathematical theory of probability, since
the algorithms of the statistical analysis always are based
on some probability model for the actual data, and without
understanding of to what extent this model may be incor-
rect one cannot interpret the results given by the computer.
What role in science can this person claim to play? Of
course, the answer is clear if we are speaking of a mathe-
matician who in our hard times simply makes a living that
way because nobody wants to hire him to do scientific
work in the field of mathematics.

But what kind of work can be given to the physicist?
For an answer to this question let us see first what is the
lifetime of physical concepts and theories in science. In
physics there once existed, for example the concept of phl-
ogiston, whose lifetime must have been short because the
scholastic tradition demanded that it be abused and humil-
iated in every way. But let us turn to the equation of heat
conductivity, which in the textbooks is derived from Fou-
rier's law (the amount of energy transported through an
area is proportional to the temperature gradient). I do not
see how the quantity of thermal energy is in principle any
better than the quantity of phlogiston; consequently a
physical concept can easily last three hundred years (of
course, in different guises). However, the active scientific
work of an individual scientist can be perhaps estimated to
be of the order of thirty years. Consequently by taking up
physics one can practically immortalize himself, leaving a
trace in science for a period of time an order of magnitude
longer than the duration of the work. For how much time
might the results of a statistical analysis be of interest to
science?

Millikan determined the charge of the electron in 1909,
and as one might suppose, gave a confidence interval: the
accuracy of the determination of the electron charge was

estimated at 0.1% of the true value. This interval (as well
as many others) later was not confirmed: the error was
about 0.6% of the true value (it is taken into account that
Millikan used a not entirely correct value of the viscosity of
water). But in the book by Bronshtein,10 the first edition of
which came out in 1935, the author cites Millikan's esti-
mate of the accuracy. Thus in this example the lifetime of
a statistical result is estimated to be thirty years, i.e., the
lifetime of one generation of scientists. This is quite under-
standable because statistical estimates of accuracy can re-
tain their significance until the appearance of essentially
improved methods and means of measurement. Thus if
physics is compared with a bricklayer, whose work re-
mains for a century in the edifice of science, then statistics
can be compared with a plumber or electrician (nothing
hinders replacing the water pipes or the electrical wiring
without rebuilding the edifice). The role is historically
more modest than that of the bricklayer but it is very
important and necessary from the point of view of the
concept of the utility of science, with which this paper was
begun.
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