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Work on the physics of nonlinear optical lenses is reviewed. The foundations of the theory of
optical systems with thin nonlinear lenses are examined. The results of investigations of
nonlinear lenses under different conditions of laser excitation are presented and analyzed. The
basic applications of nonlinear lenses in optical measurements and for control of laser
radiation are discussed.

INTRODUCTION

The property of curved interfaces between optical me-
dia to focus (defocus) light rays has been used in optics for
many centuries (lenses, microscopes, telescopes, etc.). In
the last few decades graded-index optical elements have
appeared. The focusing properties of these elements are
determined by a specially selected continuously nonuni-
form spatial distribution of the index of refraction. The
appearance of lasers opened a new page in the development
of optical systems. Due to the changes occurring in the
index of refraction in strong laser fields the standard slab of
matter bounded by plane-parallel surfaces acts on a light
beam as a graded-index lens whose optical power increases
with the power of the laser beam. Such a nonlinear lens can
give rise to self-focusing of the laser beam and damage to
the material due to catastrophic growth of the radiation
intensity occurring when the power increases, the focal
point of the photoinduced lens moves into the nonlinear
medium.1"3 In a sufficiently thin layer of matter, however,
the redistribution of the radiation intensity occurring in the
process of nonlinear refraction of the light rays is negligibly
small, and just as a standard thin lens, the nonlinear layer
acts only on the phase of the light wave.4 Nonlinear lenses
differ from standard lenses mainly by the fact that the
focusing properties of nonlinear lenses depend on the light
intensity. This opens up new possibilities for application of
lens optics for controlling the characteristics of light fields.

Nonlinear lenses have already found diverse applica-
tions in optics and laser physics. Due to its simplicity and
high sensitivity the "nonlinear lens" method is widely used
for measuring weak absorption in liquids and gases5"16 as
well as for studying the properties of semiconductors,17"33

liquid crystals,34"36 and other nonlinear materials. Impor-
tant information about the mechanisms of nonlinearity and
the relaxation of the nonlinear response of optical materials
exposed to pulsed laser radiation can be obtained by study-
ing the dynamics of nonlinear lenses.21'25"30

Nonlinear lenses are important in the optics of high-
power lasers. Such lenses are especially strongly manifested
in high-power cw lasers, where these lenses are formed due
to the thermal nonlinearity in the active elements and the
feedthrough optics. Nonlinear lenses are important for the

optical channels of pico—and femptosecond laser systems,
where due to the high intensity of the light even compar-
atively weak electronic nonlinearity of optical elements can
result in significant deformations of the wavefront.

Nonlinear deformations of the transverse distribution
of a beam by photoinduced lenses can be used for solving
diverse problems of control of laser radiation. This field has
been developing rapidly in the last few years. A nonlinear
lens, coupled with a spatial filter, can be used for stabilizing
radiation power, 37 °̂ changing the duration of light
pulses,39'41 controlling the radiation of cw lasers by pulses
from an auxiliary low-power laser,42 in the optics of
bistable devices43^*5 and nonlinearly optical laser-power
and laser-energy limiters (self-limiters),24'37'46"59 and for
Q-switching103 and modelocking.110'111

Thus nonlinear lenses have very diverse applications in
modern laser physics and technology. There are more than
100 works in this field. However, a review of works on
nonlinear lenses and their applications still does not exist.
We attempt to fill this lacuna. This review consists of three
sections. The basic theoretical ideas on the focusing prop-
erties and aberrations of nonlinear lenses are examined in
Sec. 1. Experiments with nonlinear lenses are analyzed in
Sec. 2. In Sec. 3 the material on application of nonlinear
lenses in optical measurements, lasers, and for light control
is generalized and analyzed.

1. OPTICAL SYSTEMS WITH "THIN" NONLINEAR LENSES

1.1. Optical power of a nonlinear lens

Consider a light beam propagating along the z axis
along the normal to a plane-parallel slab of a transparent
material with index-of-refraction variations kn(x,y,z)
(Fig. 1). The bending which the wave beam undergoes in
such a slab is determined by the phase increment

АФ(х,у),у)=
Jo

(1.1)

where Аг=2тг/А is the wave number and A is the wave-
length of the light, / is the thickness of the material, and the
integration extends along the light rays. In a uniform non-
linear medium the change in the index of refraction is de-
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FIG. 1. Transformation of the wave front of the beam with bell-shaped
transverse distribution of the intensity during passage through a nonlinear
medium.

termined by the radiation intensity I(x,y,z). To a first ap-
proximation it is usually assumed that this relation is
linear:

Дп = п2/, (1-2)

where и2 is the coefficient of nonlinearity of the refractive
index of the material. The relation (1.2) is strictly valid for
a cubic (in the field) noninertial nonlinearity.0 In this case
the sagging of the wavefront in a sufficiently thin nonlinear
layer repeats the transverse intensity distribution I(x,y) in
the light beam, i.e., a thin nonlinear layer of the linearly
transforms the intensity profile into the transverse distri-
bution of the phase. For beams with a bell-shaped profile
this is equivalent to passage through a thin lens whose
focal length depends on the beam power.

In the general case the linear intensity dependence of
the nonlinear correction of the refractive index holds only
approximately, and higher-order terms must be included in
the expansion of the function Ди(Л in powers of /. In
addition, for a number of mechanisms of nonlinearity the
inertia and nonlocal nature of the nonlinear response of the
material are important. These factors distort the nonlinear
sagging of the wavefront with respect to the intensity dis-
tribution. In particular, they can decrease or increase the
transverse scale of the nonlinear phase shift compared with
the beam width. In spite of the difficulty of describing the
nonlinear response of a material in the general case, most
effects considered in this review can be explained by as-
suming a simple power-law intensity dependence of the
nonlinear correction to the index of refraction

A „ „ та/2 I 1 -5 \
l±n = nal , \l-J)

where na is the effective coefficient of nonlinearity of the
refractive index and a is the order index of the nonlinear-
ity. This expression is strictly valid for noninertial nonlin-
earity of fixed order (a = 2, 4, 6,...). If components of non-
linear polarization of several orders contribute
simultaneously to the nonlinear change in the index of
refraction, then a can also be a positive nonintegral num-
ber. The expression (1.3) with a =1/3 for single-photon
and a =4/3 with two-photon absorption of light describes
well the nonlinearity of the index of refraction of many
semiconductors, if Auger recombination of photoexcited
carriers is taken into account.25'20 For this reason, the the-

FIG. 2. Approximate calculation of the focal length .FNL of a nonlinear
lens in terms of the transverse size «' and sag Д of the wavefront.

oretical analysis of nonlinear lenses is performed here with
the help of the expression (1.3) for both even and odd
integral and positive nonintegral values of the order of
nonlinearity a.

Different formulas are presented in the literature for
the focal length of nonlinear lenses in different
approximations.4'17'61'63 The focal length of a nonlinear
lens with a bell-shaped transverse radiation intensity dis-
tribution and nonlinearity of the type (1.3) can be esti-
mated from simple geometric considerations (Fig. 2):

FNL = «'VA, (1.4)

where 2co' and Д are the transverse and longitudinal mag-
nitudes of the nonlinear sag of the wavefront. The nonlin-
ear sag Д is proportional to the nonlinear phase increment
on the beam axis

^NL = ̂ «a
Jo

(/(0,0,2) ) (1.5)

and is equal to Д = 4>NL/k- The width of the sag, as is easily
seen from Eq. (1.3), is approximately a172 times smaller
than the width of the light beam. For this reason, in a
power-law approximation of the nonlinear increment to
the index of refraction (1.3) the focal length of the non-
linear lens is given by the expression

/"NL = A:&)2/aONL, (1-6)

where со is the half-width of the beam at the exit of the
nonlinear slab.

Under the standard experimental conditions the opti-
cal power of nonlinear lenses can reach a significant mag-
nitude with quite sharp focusing of the beam in the non-
linear medium. Thus for 4>NL=7r, wavelength of 1 цт, and
beam radius of 100 цт, the optical power of a photoin-
duced lens with cubic nonlinearity (a = 2) is 100 D. For
liquid carbon disulfide (with orientational nonlinearity
«2=10~u CGSE), a medium widely employed in nonlin-
ear optics, such a nonlinear lens is induced in a slab of the
order of 1 mm thick with laser beam power of about 6
MW, easily realizable in pulsed lasers. For thermal nonlin-
earity, strong nonlinear lenses can be observed even with
low-power cw-gas-laser radiation.64"6

The sign of a nonlinear lens with a bell-shaped beam
profile is determined by the sign of the nonlinear correction
to the index of refraction. When the correction to the index
of refraction is positive Ди > О the nonlinear lens is positive
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(converging) and when Дл <0 the nonlinear lens is nega-
tive (diverging). It is evident from Eq. (1.5) that the op-
tical power of a nonlinear lens increases with beam inten-
sity as /a/2, and under otherwise equal conditions it
increases more for layers with high order of nonlinearity a.
At the same time the relation a>'=co/at/2 implies that the
fraction of the beam cross section affected by the nonlinear
lens decreases with increasing a. Due to this effect the axial
and peripheral zones of the beam are focused by the non-
linear lens at different distances. This means that nonlinear
lenses with large values of a have strong aberrations. The
considerations presented here determine the basic features
of nonlinear lenses for different orders a of the nonlinear-
ity. These features will be studied in greater detail in Sec.
1.5. We note also that nonlinear lenses can arise in ordi-
nary lenses when high-power light fluxes pass through
them.107

1.2. Thin nonlinear lenses

It was tacitly assumed in the forgoing discussion that
the radiation intensity distribution I(x,y,z), unperturbed
by nonlinear effects, in a nonlinear slab can be used in the
calculations. This is valid only when the focal length of the
nonlinear lens is much greater than the thickness of the
nonlinear layer:

^NI>/- (1-7)

In the opposite case the nonlinear lens can change the
amplitude profile of the light beam even in the nonlinear
slab itself. For a sufficiently thick slab the nonlinear change
in amplitude gives rise, in turn, to an additional phase
increment, which itself gives rise to a new change in the
amplitude, and so on. Such feedback, which is character-
istic for nonlinear systems, makes nonlinear lenses less con-
trollable at high initial radiation power. Such internal feed-
back plays an especially important role in media with
positive nonlinearity, for which it gives rise to
self-focusing.61'67"69 This effect consists of the fact that
when the radiation power exceeds some critical magnitude
the beam collapses in the nonlinear focal point. The focal
point of a nonlinear lens induced by the laser pulse moves
into the slab from the back side, and this ultimately gives
rise to damage in the material due to catastrophic growth
of the radiation power density. It is important to note that
for such thick positive nonlinear lenses the focal length can
be much shorter than predicted by the expression (1.5).
Conversely, in thick slabs with negative nonlinearity the
change in the amplitude due to self-defocusing of the beam
results in a significant decrease of the radiation intensity in
the nonlinear medium and corresponding weakening of the
nonlinear lens.26'53

In what follows a nonlinear lens in which the nonlinear
changes of the beam intensity profile in the nonlinear slab
can be neglected is considered to be thin. In contrast to the
self-focusing regime, the thin nonlinear lens regime admits
a comparatively simple analytical description, gives stable
behavior of light beams, and does not result in damage to
optical elements. For this reason, only thin nonlinear
lenses are of practical significance for problems of optical

measurements in the control of light fields. Thick nonlinear
lenses can be of definite interest for such problems only in
the case of negative refractive-index nonlinearity.

1.3. Thin nonlinear lens condition

It is obvious that for a slab of nonlinear material pre-
scribed thickness a nonlinear lens is thin only in a certain
range of light-beam powers. For this reason the thin non-
linear lens condition should have the form of a restriction
on the thickness of the nonlinear layer

/<ZNL. (1.8)

where ZNL is the characteristic nonlinear-refraction length
of light beams, which depends on the beam power P. We
now consider the thin-nonlinear-lens condition for a
Gaussian transverse field distribution, which is the most
important case for practical applications,

(O;,- — +*»<>: (1-9)

where U-m, «in, and Rin are, respectively, the on-axis am-
plitude, the half-width, and the radius of curvature of the
wavefront of the beam at the entrance (z=0), and
г=(х2+уг)1/2. Such a distribution approximates well the
structure of the laser beam of the fundamental mode of a
stable laser resonator.

The field E in the material is described by a nonlinear
parabolic equation61

ЭЕ
2ikn0 д-+AI E=2k2n0kn • E,

where и0 is the linear index of refraction of the nonlinear
material and Дх is the transverse Laplacian. It is well
known that in the absence of nonlinearity (Ди=0) the
solution with the boundary condition (1.8) is a Gaussian
beam with z-dependent parameters. In particular, as a re-
sult of diffraction, the width <o of a collimated beam
(Л(п->оо) varies as

1/2

(1.10)

where z0=^«o«fn/2 is the diffraction length.70 Then, fol-
lowing the approach of Ref. 71, the following expression
can be derived for the nonlinear sag of the wavefront:

ДФ(х,.у)=Фж,ехр - (1.11)

where the on-axis nonlinear phase shift <J>NL is calculated
according to Eq. (1.5) and is expressed in terms of tabu-
lated integrals with integer values of the parameter a. Thus
for cubic nonlinearity (a = 2) we obtain

I
-,
Z0

(1.12)

where P=(cn0/8)(Umo)-m) is the beam power and we
have introduced the critical self-focusing power61'67"68
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FIG. 3. General optical scheme for studying nonlinear lenses. /—laser,
2—forming optical system, 3—slab of nonlinear material,
4—transforming optical system, 5—system for recording the field distri-
bution of the beam.

(1.13)

This gives the following estimate for the relative nonlinear
change in the beam amplitude:72

ДС/,ML a + 2
ФN L l (1.14)

A necessary and sufficient condition for the nonlinear lens
to be thin is | Д £/NL | < UL \, where UL is the field ampli-
tude calculated neglecting the nonlinearity of the medium.
In particular, given the criterion AZ7NL| < | C/L /10 we
obtain from Eqs. (1.12) and (1.14) the thin nonlinear lens
condition in the form

/<zNL=z0(exp
1/2

(1.15)

For finite radius of curvature R{n of the wavefront at the
entrance into the slab we obtain from the condition (1.15),
using the so-called lens transformation, the thin nonlinear
lens condition in the more general form

(1.16)
+ (zNI/Rin)

1.4. Beam transformation in an optical system with a thin
nonlinear lens

Nonlinear lens investigations described in the litera-
ture were conducted for diverse configurations of the rela-
tive arrangement of the laser beam, the nonlinear lens, and
the recording plane. In spite of this, the seemingly most
diverse (with respect to the value of specific parameters)
optical systems with nonlinear lenses can be studied from a
unified standpoint and they can be compared with the help
of the dimensionless complex /? introduced in Ref. 73 for
an optical system with a nonlinear lens.

For this, we consider the general optical arrangement
of an experiment with a nonlinear lens. The arrangement
contains a laser source and an optical system with a non-
linear lens. In a general optical system with a nonlinear
lens it is possible to separate in the general case, besides a
nonlinear element, two linear auxiliary subsystems (Fig.
3). The first subsystem forms the beam at the entrance into
the nonlinear material with the required parameters (the

forming optical system). The second subsystem performs
the linear transformation of the beam after the nonlinear
lens (the transforming optical system).

In experiments with nonlinear lenses the source is usu-
ally a single-mode laser with a nearly Gaussian transverse
field structure. The radiation of such a laser has the prop-
erty that its Gaussian transverse distribution is conserved
during propagation in linear optical systems. For this rea-
son, the field distribution at the entrance to the nonlinear
element is also Gaussian and can be described by the ex-
pression (1.9). The parameters of this distribution U-m,
&)in, and Rm can be easily calculated in terms of the pa-
rameters of the exit beam of the laser and the ABCD ma-
trix of the forming optical system with the help of the
well-known ABCD rule for linear optical systems.70 We
describe the transformation of the beam in the transform-
ing optical system (see Fig. 3) by a modified Fresnel
integral70

E(r) =— JJ dr'2£'(r') xexp
(=o )

ik
—
LD

(1.17)

where A, B, and D are the elements of the ray matrix of the
transforming optical system and E'(r') is the field at the
exit of the nonlinear element. When the restrictions (1.15)
and (1.16) on the thickness of the slab are satisfied, the
field E'(r'), as shown above (Sec. 1.3), has the form

u>

(1.18)

where U, a>, and R are the parameters of the Gaussian
beam at the exit of the layer and are calculated neglecting
the nonlinearity of the medium. Switching to dimensionless
transverse coordinates p'=r'/co at the entrance and p
= (k(o/B)r at the exit of the transforming system, we ob-
tain

ikco2 A
(1.19)

Hence one can see that for a prescribed nonlinearity (pre-
scribed value of a) the character of the nonlinear defor-
mations of the beam in an optical system with a nonlinear
lens is determined by the single dimensionless parameter

kco2 I \ A
(1.20)

In the simplest case, when the wavefront at the exit from
the nonlinear element at low power is planar and the trans-
mitted beam is transformed as a result of propagation in
free space over a distance z, the parameter (3=k(o2/2z.
Therefore the transformation of the laser beam with non-
linear sag of the wavefront (1.19) in optical systems with
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А<0

FIG. 4. Ray ABCD matrix and /3-complex for a collimated beam in a
nonlinear slab with free propagation over a distance z (a) and realization
of negative equivalent distances with the help of a transforming optical
system (b).

an overall spherical wavefront with radius R occurs, as in
free propagation of the same beam with an initially planar
wavefront, at the equivalent distance

1 A
(1.21)

In contrast to real free propagation, zeqv can be both posi-
tive and negative, depending on the plane from which the
image is transferred to the exit of the optical system (Fig.
4). Such an analysis makes it much easier to interpret the
effects observed in these systems.

1.5. General properties of optical systems with thin
nonlinear lenses

We now consider the nonlinear transformation of laser
beams in an optical system with thin nonlinear lenses. In
order to analyze such systems we investigate the diffraction
integral (1.19) as a function of the parameters /3 and ONL.

The conflgurational parameter [3 is the main parameter
used for classification of different types of transformations
of laser beams in optical systems with a thin nonlinear lens.
According to its definition J3 has the same sign as the
equivalent-propagation distance zeqv, defined in Eq. (1.21),
and the modulus is equal to the Fresnel number for an
aperture of radius ca. The observation plane of the trans-
verse distribution of the field will correspond to the near
field of the beam in the case | /31 > 1 and the far-zone of the
beam in the case |/?|<1. The on-axis nonlinear phase in-
crement <I>NL characterizes the optical power of the non-
linear lens, and this power will be manifested differently in
the near and far fields.

The properties of a nonlinear lens can also depend
significantly on the nonlinearity order parameter a, which
in accordance with Eq. (1.19) determines the transverse
scale <u' of the nonlinear lens (see Fig. 2).

In the present section we examine some general prop-
erties of nonlinear lenses for characteristic combinations of
the parameters a, /?, and Фыь. We note first that the in-
tensity distribution of the transmitted beam does not de-
pend on the signs of /3 and ONL separately, but rather it
depends on the sign of their product. Indeed, as is evident
from Eq. (1.19), when the signs of & and 4>NL are changed

simultaneously we arrive, to within a factor, at the field
distribution which is the complex conjugate of the initial
distribution and rotated with respect to it by ISO0.27'73 Such
a symmetric property makes it possible to reduce the anal-
ysis of an optical system with a nonlinear lens to two cases:
/?Фмь < 0> which, as will be shown below, corresponds to
nonlinear expansion of the emerging beam, and ДФмь > О.
for which nonlinear pinching of the beam occurs at the exit
of an optical system with a nonlinear lens. For this reason,
we assume below, without loss of generality, that Ф№ is
positive. All results obtained also hold for negative nonlin-
earity, if/3 is replaced by —/3.

1.5.1. Aberration-free approximation

For some optical nonlinearities (for example, satura-
tion nonlinearity20) the parameter a in Eq. (1.19) can take
on values that are small compared to 1. The scale of the
transverse nonlinear change in the phase of the field is then
so much larger than the beam diameter that exp(— ар2)
can be replaced by the first two terms of its series expan-
sion: exp( —ар2) ~ 1 — ар2—.... Therefore, in this approx-
imation a nonlinear lens is a quadratic phase corrector. It
then follows from Eq. (1.19) that a Gaussian beam at the
exit of an optical system with a nonlinear lens remains
Gaussian with ФNL-dependent parameters:

'̂ *NL — "•
l+zfo^L-/^ (U2)

It is evident from Eq. (1.22) that for /?<0 the beam ex-
pands as Фкь increases (the width of the beam doubles at
Фм,:=(3+02)1/2/а). For /?>0, as ФЫ1^ increases, the exit
beam is pinched from zero to zz/3/a, when the maximum
pinch ratio (1+/32)172 is reached. As Фкь increases fur-
ther, the nonlinear pinching of the beam is replaced by
expansion.

Thus strong nonlinear deformations of the transverse
intensity profile of the transmitted beam should be ex-
pected when ФМУ^> \/3/a\, and in the near field ( |/?|>1)
the nonlinear lens is much stronger with pinching than
expansion of the beam. In the far field ( | )31 < 1) nonlinear
expansion of the beam prevails over pinching.

1.5.2. Weak nonlinear lenses

For а > 1 the aberrations of nonlinear lenses can no
longer be neglected, so that for nonlinearities which are
most often encountered in practice (cubic nonlinearity (a
= 2); fifth-order nonlinearity (a=4), associated with two-
photon absorption in semiconductors;31 etc.) the transmit-
ted beam can be calculated accurately only numerically.
For small nonlinear phase shifts (Ф^<1), however, the
following analytical expression can be obtained for the dif-
fraction integral (1.19):73

exp -
1-43

exp -

1-43
+ г'Ф

s-ifi
NL" s-j/3

(1.23)
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FIG. 5. Typical pattern of aberration rings in a laser beam which has
passed through an optical system with a strong nonlinear lens.

where s= 1 +a is the order of the nonlinearity of the ma-
terial. The differences from the aberration-free approxima-
tion lie primarily in the fact that the interference of the two
terms in Eq. (1.23) determines the distortion of the Gauss-
ian envelope of the transverse intensity distribution in the
form of aberration rings. This distortion intensifies with
increasing order a of nonlinearity. In addition, for large
and small values of |/?| the intensity profile of the exit
beam remains virtually Gaussian, while maximum distor-
tions appear for the intermediate values |/3| ~a/2.

1.5.3. Strong nonlinear lenses. Aberration rings

In the presence of strong nonlinear sags of the wave-
front (ONI>1) a characteristic ring structure appears in
the transverse intensity distribution of radiation which has
passed through the nonlinear medium (Fig. 5). The ap-
pearance of aberration rings is explained by interference of
light rays arriving at the point of observation p from the
points pi and p'2 with different phases Ф(р[) and Ф(р'2)
(Fig. 6), when

= птт, и = 0,±1,±2,..., (1.24)

light rings forming for even integers n and dark rings form-
ing for odd integers n. Thus a prerequisite for ring forma-
tion is that due to aberrations the light rays must intersect
off-axis. However, amplitude-phase relations of the inter-
fering rays play a determining role in the formation of the
aberration ring structure. In order to perform a qualitative
analysis of the phenomenon it is convenient to calculate the
diffraction integral (1.19) approximately by the stationary-
phase method (this is equivalent to the geometric-optics
approximation). We obtain from the condition of station-
ary phase of the integrand that the rays emanating from
the points of the initial distribution whose coordinates p'
satisfy the equation

-ар'2)), (1.25)

(1.26)

FIG. 6. Formation of aberration structure of the transverse intensity
distribution of a transmitted beam with interference of light rays emanat-
ing from different points p\ and p'2 on the wavefront of the initial beam.
The figure shows rays whose phase difference at p gives a minimum of the
field.

and the phases of the corresponding rays are

Ф(р') =Фщ. ехр( -ар'2) ( 1 +2ap'2) -fo

make the main contribution to the field of the exit beam at
the point p. Hence it follows, in particular, that in the far
field (Д-»0) radiation from two points p\ and p'2 is di-
rected into each point on the aperture of the exit beam, the
distance | p[ — p'2 \ between these two points being maxi-
mum for rays arriving near the axis ( | p | < 1) and mini-
mum for rays forming the edge of the transmitted beam
(| p| ~ртах

 = Фм1,) (Fig- 6). Therefore the difference of
the phases and amplitudes of pairs of interfering rays in-
creases as the observation point p moves away from the
edge toward the center of the beam. For this reason, the
widest and darkest rings form in the peripheral region, and
the period and amplitude of the spatial "beats" of the in-
tensity decrease toward the beam axis (see Fig. 6). For
large values of Ф^ the total number of rings in the far field
is given approximately by the expression34

JV = ONL/2ir. (1.27)

According to the expressions (1.25) and (1.26), aber-
ration rings form in the near field (| j81 > 1) only if Ф№

exceeds a definite threshold (Фмь.1Ь.= \Р/а\ )> and rings
appear in the region of defocusing of the transmitted beam
for any sign of the parameter 13. For negative values of /?
the light rays intersect, due to aberrations, only at the edge
of the beam, so that there are no rings near the axis. For
positive values of /3 rings form, as Ф№ increases, only after
the nonlinear paraxial focal point bypasses the observation
plane and the additional nonlinear focusing of the beam is
replaced by defocusing of the beam. The total number of
rings in the near field, naturally, is less than in the far field,
and the laws governing ring formation are much more
complicated, since, as follows from Eq. (1.25), ring ap-
pearance in the near field is now associated with the inter-
ference of not two but three rays.2)

The geometric-optics approximation employed above
can be be used to describe the field at the light-shadow
boundary as well as small-angle components of radiation in
the far field, where diffraction must be taken into account.
Diffraction calculations73 show that, in particular, for val-
ues of Ф]̂  far above the ring-formation threshold the ab-
erration part of the radiation with comparatively large di-
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FIG. 7. Evolution of the space-time distribution of the in-
tensity of light pulses which have passed through an optical
system with a thin layer of a cubically nonlinear material for
different values of fi (shown in Figs. a-f).

-2,0 О 2,0

vergence drifts away from the central "core" of the
transmitted beam (the region bounded by the first dark
ring), so that as <$NL increases, the transverse distribution
of the field in the "core" approaches a Gaussian form. It is
interesting that in the case of cubic nonlinearity (a=2)
the total radiation power in the "core" is virtually inde-
pendent of the intensity at the entrance and is equal, in
order of magnitude, to the critical power for self-focusing.

1.6. Photolnduced lenses in a slab of a cubically nonlinear
medium

In this section we examine the case of greatest practical
interest: transformation of Gaussian beams in optical sys-
tems containing a slab of material with cubic nonlinearity
(a=2). This nonlinearity is usually associated with elec-
tronic and electronic-nuclear mechanisms and is observed
in the overwhelming majority of optical media exposed to
sufficiently short light pulses. The nonstationary correction
to the index of refraction, taking into account the finite
relaxation time of the nonlinearity, can be written as the
following more general expression instead of Eq.
(1.2):61'109

i=«2 Г Дг')ехр(-—-
J-oc V Г

(1.28)

It is easy to see that the characteristics of quasistation-
ary nonlinear lenses also extend to the case of inertial non-

linear response, described by the expression (1.28), of the
material. Because of the inertial nature of the response
nonlinear distortions accumulate toward the end of the
light pulse, while the quasistationary nonlinear lens de-
scribed by the expression (1.2) relaxes on the trailing edge
of the pulse. For this reason, in this section we study,
without loss of generality, the action of a nonlinear lens
only on the leading edge of the light pulse in the quasista-
tionary case (1.2). Even in this simple case the detailed
picture of the transformation of radiation can be obtained
only by numerical analysis of the diffraction integral
(1.19). Figure 7 displays the results of computer modeling
of nonlinear lenses under the assumption that the light
pulses are Gaussian as a function of both the transverse
coordinate and the time (Fig. 7). The intensity / of the
incident beam was chosen so that the nonlinear phase in-
crement at the maximum of the pulse would be 4тт. The
transverse coordinate x is scaled to the half-width
wL=2| B\ (l+/?2)1/2/fau of the beam at low power, and
the intensity is scaled to | ZQ/(BkIn2) |. Figures a-f display
the manifestations of the same nonlinear lens as a function
of the value of the configurational parameter.27'72 In accor-
dance with the analysis made above of the general proper-
ties of optical systems with a nonlinear lens, the changes in
the intensity distribution of the transmitted beam appear
when <I>NL becomes comparable to |/3|. If, however,
Фмь< I P I > tnen the spatiotemporal distribution of the in-
tensity of radiation which has passed through the optical
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system with a nonlinear lens is virtually identical to the
intensity distribution of the incident beam (Fig. 7a). For
/? > 0 the radiation is focused, the most striking effects of
nonlinear pinching being observed for large values of | /3 \
(in the near field). In this case strong nonlinear beam
pinching is replaced abruptly by nonlinear expansion, con-
sisting of redistribution of the light power from the region
near the axis into the first side maximum (first aberration
ring) (Fig. 7b).

As the observation plane moves out of the near field
into the far field (i.e., as /? decreases) the nonlinear pinch-
ing of the beam becomes increasingly weaker, and defocus-
ing starts at weaker intensities at the entrance, the light
power being redistributed between the side maxima of the
transverse intensity distribution (aberration rings) more
uniformly (Figs. 7c, d). The increase in the transverse
scale of the distributions, the broadening of the central
peak, and especially the broadening of the side peaks with
decreasing /3 are interesting. The maximum nonlinear
"spreading" of the beam is observed in the far field (13—0)
(Fig. 7d).

It is evident from the figures that the nonmonotonic
(oscillating) character of the defocusing with increasing
light intensity is connected with the formation of the side
intensity maxima (aberration rings) and redistribution of
power in them in favor of the higher-order peaks. It is also
evident that in the first minimum of the intensity oscilla-
tions on the axis the transmitted intensity decreases as /3
decreases (Figs. 7b-d). The calculations show that this
tendency also remains for negative values of /3 right down
to values /?:= — 1.1, when the on-axis amplitude of the field
in the first minimum reaches zero (Fig. 7e). As 13 decreases
further, the on-axis intensity of the radiation at the first
minimum starts to increase and the first peak decreases, so
that the nonlinear oscillations of the intensity near the axis
are smoothed (Fig. 7f). Comparing Figs. 7c and d to Figs.
7e and f, we can see that as /? becomes negative, the char-
acter of the formation of the aberration rings also changes
radically. For /? > 0 rings form on the beam periphery and
become narrower as the light intensity increases. For /? < 0
nonlinear "dispersion" of aberration rings away from the
axis occurs, the higher order rings now arising closer to the
axis. The nonlinear defocusing of the beam as a whole is
expressed in the fact that most of the power in the beam is
concentrated in the first (farthest away from the axis) ab-
erration ring (Fig. 7f). Figure 7 displays the effect of the
nonlinear lens only on the leading edge of the light pulse.
The qualitative character of the nonlinear lenses on the
leading edge of the pulse is identical for quasistationary
(1.2) and inertial (1.28) responses of the medium. In these
figures the computed radiation profiles can be extended to
the trailing edge of the pulse either symmetrically with
respect to the pulse maximum (for quasistationary nonlin-
ear lenses) or with further accumulation of nonlinear dis-
tortions (for inertial nonlinear lenses) (see also Sees. 2.2
and Fig. 9 below). The transformations of laser beams by
a nonlinear lens have been analyzed for some important
particular cases in a number of works (see, for example,
Refs. 11, 15, 16, 25, 47, and 72).

1.7. Thermal nonlinear lenses

As the duration of the laser action increases up to
magnitudes comparable to the thermodiffusion time
(10~3 —10~' sec), the photoinduced nonlinear lenses are
usually associated with the nonuniform laser heating of the
absorbing medium. In order to find the nonlinear correc-
tion to the index of refraction in this case it is necessary to
solve the nonstationary heat-conduction equation with pre-
scribed boundary conditions and heat source. This problem
has been solved analytically in Refs. 75-78 for a rectangu-
lar heat pulse with a Gaussian spatial profile (this corre-
sponds to a rectangular radiation pulse in the form of a
colimated Gaussian beam). In this case the nonlinear cor-
rection to the index of refraction can be expressed in terms
of a combination of exponential integral functions:

dn bP \ I r*\ / 2Г2

д^О.06 Ei _2-? _Ei
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(1.29)

where P and a> are the power and half-width of the radia-
tion beam, b and x are tne absorption coefficient of the
radiation and the coefficient of thermal conductivity of the
medium, and т is the characteristic time over which a ther-
mal lens is established

Ci>2pCp
(1.30)

and depends on the specific heat capacity cp of the medium.
In the transitional regime with тр^.г the nonlinear correc-
tion to the index of refraction increases with time in accor-
dance with the absorbed energy and can be described by
the expression (1.28), in which и2 is a combination of the
thermophysical parameters of the medium.16 Thus the the-
ory developed in Sec. 1.6 for cubic nonlinearity is applica-
ble to nonstationary thermal nonlinear lenses. For radia-
tion pulses with duration comparable to or greater than the
thermodiffusion time т, the nonlinear phase increment can
be calculated with the help of the expression (1.29) (for
thin thermal lenses) or the transfer equation for the field
can be solved directly and simultaneously with the heat-
conduction equation (for thick thermal nonlinear
lenses).78 Different aspects, associated with the thermal
nonlinearity, of the theory of nonlinear lenses are examined
in Refs. 79-83.

1.8. Thin nonlinear lenses in materials with quadratic
nonlinearity

In crystals the nonlinear correction to the index of
refraction can be caused by the quadratic nonlinearity of
the material.84 Nonlinear lenses associated with quadratic
nonlinearity are observed under conditions of three-wave
interactions in crystals with small detuning from phase
matching. Self-focusing of laser beams under conditions of
three-wave interactions in a thick slab of a material with
quadratic nonlinearity was investigated in Refs. 85 and 86.
Thin nonlinear lenses in crystals with quadratic nonlinear-
ity and their effect on second-harmonic generation were
studied in Refs. 87 and 88. We now consider a shortened
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equation for the complex amplitudes of the laser-pump
wave A] and the second-harmonic wave A2 with OOe-
interaction:

dA\ 3A-,
~ (1.31)

where the wave detuning k=2k\ — k2, kl and k2 are the
wave numbers of laser pumping and the second harmonic,
z is the coordinate in the direction of light propagation,
and the nonlinear coupling constant a is proportional to
the components of the quadratic nonlinearity tensor ̂ (2) of
the crystal. The solutions of these equations for the pump
phase Ф[ and the second-harmonic phase Ф2 have the
form 86

Ф]=Ф
Д • z тг

NL> (1.32)

where the nonlinear phase increment of the light for the
pump wave is expressed in terms of the known solutions
for the amplitudes of the interacting waves88

Д Г'
Фмь=7 dz

2 Jo

A2(z)
(1.33)

It is evident from these expressions that in the case of
nonzero detuning from synchronism the pump wave is sub-
jected to phase self-action. The sign of the nonlinear phase
increment depends on the sign of the wave detuning Д, so
that in the same crystal the nonlinear lens can be both
positive and negative (see Fig. 12). The magnitude of the
nonlinear phase increment can be very significant, espe-
cially in the case of large local transformation of the pump
into the second harmonic. In particular, for crystals of the
KDP group the effective coefficient of nonlinearity of the
index of refraction of the quadratic nonlinearity can exceed
пг of highly nonlinear materials, such as liquid carbon di-
sulfide (и2~1(Гп CGSE).88

The nonlinear lens associated with the quadratic non-
linearity of the crystal affects the transverse distribution of
the pump beam in the far field. In practice, however, the
most important effect of this lens is the change in the spa-
tiotemporal structure of the second-harmonic field already
in the nonlinear crystal itself. Indeed, it follows from Eq.
(1.31) that the energy of the waves interacting in the crys-
tal is transferred in a direction determined by the quantity

8т(2Ф,— -z)=cos
Д - z

(1.34)

Therefore, the direction of transfer obviously changes
when | Фр^ | increases by an amount of the order of tr/2.
The energy transfer induced between the waves by the
photoinduced lens results in distortion of the amplitude
distribution and decrease of the coefficient of conversion
into the second harmonic.88

x—coordinate

FIG. 8. Recording of the space-time distribution of the intensity of ul-
trashort laser pulses with the help of a streak camera.

2. EXPERIMENTS WITH NONLINEAR LENSES

2.1. Methods of experimental study of nonlinear lenses

A typical experimental arrangement for observation
and investigation of the properties of nonlinear lenses is
displayed in Fig. 3. The radiation of the laser 1 is focused
by the forming optics 2 in the slab 3 of nonlinear material.
This gives the required optical power density. The trans-
mitted beam is transformed by the optical system 4 and
enters the recording system 5. Depending on the problems
studied, either only the time-integrated spatial distribution
of the transmitted beam or the temporal evolution of the
distribution (for pulsed radiation) was studied in different
works. In a number of works nonlinear lenses, induced by
IR laser pulses, were recorded in the visible region of the
spectrum with the help of a probe beam from an auxiliary
cw laser.15'16

For pulsed radiation the record of the time-averaged
transverse structure of the transmitted beam does not give
adequate information about the optical nonlinearity, espe-
cially if the duration of the laser action becomes compara-
ble to and shorter than the characteristic times of estab-
lishment and relaxation of the nonlinear response.
Methods of fast scanning of radiation pulses separated by
spatial filters from different sections of the transmitted
beam are widely used for investigation of nonlinear lenses
induced by short (10~7 sec) laser pulses. In experiments
with submicrosecond pulses spatial filtering of the trans-
mitted radiation was performed with the help of circular or
annular diaphragms with the electric signal from a fast
photodetector, placed behind the diaphragm, time-resolved
on an oscilloscope.25'29 For pulses shorter than 1 nsec slit
diaphragms were arranged along the diameter of the light
beam and the transmitted radiation was resolved on the
screen of a streak camera (Fig. g).23'24'73'91 This is the most
informative approach for investigation of the dynamics of
nonlinear lenses and makes it possible to compare in detail
the experimental data to theoretical predictions. In addi-
tion, for pulses shorter than 1 nsec the nonlinear response
of the material can be considered to be spatially local to a
high degree of accuracy. For this reason, in what follows,
when the experimental data are compared to the theoreti-
cal calculations we consider primarily streak-camera ex-
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FIG. 9. Arrangement of the experimental apparatus for investigations of
thin nonlinear lenses. /—laser, 2—forming optics, 3—slab of nonlinear
material, 4—transforming optical system, 5—polarizer, 6—A/2 phase
plate, 7—regulatable optical delay line, 8—fast photorecorder.

periments with subnanosecond laser pulses. Among other
methods for investigating dynamical nonlinear lenses, we
call attention also to a method based on successive excita-
tion of a nonlinear lens by a high-power short laser pulse
and probing of the relaxation of the nonlinear response by
weak, time-delayed probe pulses.21 In this case photore-
corders with high temporal resolution are not required, but
the information obtained is averaged.

2.2. Investigations of nonlinear lasers in the field of
ultrashort laser pulses

Photoinduced lenses, which vanish over a time shorter
than 10~u sec after passage of the light pulse, were ob-
served back in the mid-1970s with the help of streak
cameras.89'91 Nonlinear deformations of the spatiotemporal
structure of picosecond laser pulses were observed for non-
linear lenses in semiconductors,27'28'92 glasses91 and liquid
carbon disulfide.27'90 The temporal evolution, due to thin
nonlinear lenses induced by laser pulses in the active ele-
ments of the system, of the transverse distribution of sub-
nanosecond pulses at the exit of a multicascade
neodymium-glass laser system was investigated in Ref. 89.
Dynamical nonlinear lenses in the field of ultrashort laser
pulses were studied systematically in later works.27'72'90'93

The /3-complex introduced above is convenient for analyz-
ing the results of these works. As noted in Sec. 1.5, optical
systems with a nonlinear lens exhibit symmetry, consisting
in the fact that the nonlinear transformation of radiation in
such systems does not change when the signs of the pa-
rameters 13 and <t>NL are changed simultaneously, and when
/3 and <I>NL have the same signs, nonlinear pinching of the
exit beam and nonlinear expansion—in the opposite case—
occur. This symmetry property was first observed experi-
mentally in Ref. 27, where nonlinear lenses induced by
ultrashort pulses in media with both positive (liquid car-
bon disulfide) and negative (semiconductors) nonlinearity
with different tunings of the transforming optical system,
were investigated.

The polarization interferometer arrangement90'93

shown in Fig. 9 is convenient for experimental investiga-
tions of nonlinear lenses. A thin element, in which a non-
linear lens is induced, is placed in one arm of the interfer-
ometer. The second arm of the interferometer is used to
produce a reference comparison channel, in which only
linear transformation of the radiation of the forming (2)
and transforming (4) optics occurs. The ratio of the inten-

FIG. 10. Evolution of the space-time intensity distribution of light pulses
which have passed through an optical system with a thin slab of liquid
carbon disulfide for different values of /3: 100 (a), 10 (b), 3 (с), О (d),
-1 (e), and -10 (f).

sities in the investigated channel and the comparison chan-
nel can be varied continuously over wide limits by rotating
the A/2 phase plate 6. In addition, the time interval be-
tween the pulses in the two channels can be established by
regulating the optical delay line (7). This organization of
the optical arrangement makes it possible to investigate the
nonlinear transformation of both the amplitude and phase
structure of the pulsed laser radiation in optical systems
with a nonlinear lens.

We present below the results of experimental investi-
gations of fast nonlinear lenses, obtained on an apparatus
of this type in Refs. 27, 72, and 94. The second-harmonic
radiation of an aluminum-yttrium garnet laser with neody-
mium (wavelength 0.53 дт), operating in the passive lon-
gitudinal modelocking regime and generating the funda-
mental transverse mode TEMgg, was employed in these
works. The radiation passing through the optical system
with a thin nonlinear lens entered the streak camera 8 with
time resolution of 4 psec. Figure 10 displays the evolution
of the transverse intensity distribution of a picosecond
pulse after the pulse passes through the optical system with
a slab of liquid carbon disulfide. The short duration of the
light pulses (50-100 psec) excluded nonlocal inertial non-
linearities (strictional, thermal, etc.). In addition, AnNL of
carbon disulfide is positive and associated with cubic (in
the field) polarizability of the medium. The high value of
the nonlinear refractive index of carbon disulfide made it
possible to obtain with comparatively low-power ( < 1
MW) laser radiation a nonlinear phase increment in car-
bon disulfide up to (3—4) • тт with a 5 mm thick slab and
beam diameter in the slab less than 100 /j,m. Comparing
the streak pictures in Fig. 10 to the corresponding com-
puted intensity profiles (see Fig. 7) shows that the exper-
iment agrees well with the theory. We note also that the
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FIG. 11. Evolution of the space-time intensity distribution of light pulses
which have passed through an optical system with a thin slab of the
semiconductor CdS for different values of 0: —100 (a), —10 (b), —3
(c), 0 (d), 1 (e),and 10 (f).

relaxation of the nonlinear lens on the trailing edge of the
pulse is also virtually inertialess (see Fig. 10). This agrees
with the relaxation time of the orientational nonlinearity of
carbon disulfide (2 psec).

Similar investigations have been performed for nonlin-
ear lenses in plates of single crystals and optical ceramics of
group A2Bf, wide-bandgap semiconductors (CdS, ZnS,
ZnSe).27'72'94 The mechanisms of optical nonlinearity in
semiconductors are very diverse, but for subnanosecond
laser pulses the most important ones are electronic impu-
rity recharging transitions22 as well as photoexcitation of
nonequilibrium bound (excitons) and free carriers.60 Fill-
ing of vacant impurity levels in weakly doped semiconduc-
tors occurs in comparatively weak light fluxes, so that for
sufficiently high radiation intensity the photoinduced
electron-hole plasma makes the main contribution to the
optical nonlinearity. The sign of the nonlinearity is nega-
tive, and the relaxation time exceeds 10~9 sec.60 The non-
linearity order parameter of wide-bandgap semiconducting
compounds increases with the gapwidth as a result of the
fact that the contribution of single-photon saturating ab-
sorption to carrier photogeneration decreases and the con-
tribution of multiphoton processes increases. Nonetheless,
as one can see from Fig. 11, the above-studied mechanisms
of nonlinear transformation of beams remain qualitatively
the same in this case also.

The main qualitative difference between nonlinear
lenses in semiconductors with picosecond excitation and
nonlinear lenses in carbon disulfide lies in the fact that in
semiconductors the nonlinear phase increment is deter-
mined by the moment of the envelope of the intensity I ( t )
of the laser pulse:

0 1 2 3 Д /

-n

FIG. 12. Nonlinear phase increment $>NL for laser pulses in materials
with quadratic nonlinearity as a function of the normalized wave detuning
Д/ from synchronism of second-harmonic generation (/ is the length of
the nonlinear crystal). The dashed line represents the value of <I>NL cal-
culated in the fixed-intensity approximation.87 The solid line was con-
structed using Eq. (1.33). The experimental data (crosses) are presented
for pumping pulses in the case of second-harmonic generation in a CDA
crystal by YAG:Nd-laser pulses with peak intensity /~ 100 MW/cm2.88

Ф'ML- (2.1)

where, generally speaking, a^2, and the nonlinear lens
does not relax on the trailing edge of the pulse (Fig. 11).

Nonlinear lenses in materials with quadratic nonlinear-
ity were investigated in Ref. 88. It was shown by the meth-
ods of dynamic interferometry that the nonlinear correc-
tion to the index of refraction at the pump frequency in
crystals of the KDP group can exceed the nonlinear cor-
rection to the index of refraction of liquid carbon disulfide
at the same intensities. The sign of the nonlinear lens can
be controlled by changing the sign of the wave detuning
from synchronism by rotating the crystal (Fig. 12). Con-
sidering that the response time of the electronic nonlinear-
ity lies in the femtosecond range, these features of nonlin-
ear lenses in materials with quadratic nonlinearity make
such materials promising for applications in ultrafast de-
vices for controlling light with light. A distinguishing fea-
ture of nonlinear lenses in materials with quadratic nonlin-
earity is that they appear mainly near synchronism of
three-wave parametric interactions and can significantly
change the transverse distribution of the intensity of inter-
acting waves already directly in the thin nonlinear layer.
This effect was observed experimentally in Ref. 88, when in
a number of crystals under conditions of generation of the
second harmonic of picosecond pulses the temporal struc-
ture of the second-harmonic pulse acquired with increasing
laser power the form of a "nucleus" in a "shell" (Fig. 13).

2.3. Experiments with thermal nonlinear lenses

The first investigations of nonlinear lenses were made
in experiments with thermal optical nonlinearity in liquids,
when changes in the size and shape of a laser beam which
has passed through a cell with a weakly absorbing liquid
were observed with increasing laser power.5'76"78 Similar
effects were observed on thermal nonlinearities in liquid
crystals,35 ferroceramics,66 and semiconductors.19'20 The
accumulation of nonlinear changes in the index of refrac-
tion over a long time interval (of the order of the relax-
ation time constant of the nonlinearity, which for many
thermal nonlinearities is several seconds and longer) made
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FIG. 13. Deformation of the space-time intensity distribution of picosec-
ond pulses of the second harmonic of a neodymium laser due to an
induced lens on a quadratic nonlinearity in a CDA crystal with small
detuning of synchronism and different peak intensities: / (MW) = 50 (a),
100 (b), 150 (c), 200 (d), and 250 (e).

it possible to observe thermal nonlinear lenses even in ra-
diation from low-power cw gas lasers. In this case the non-
linear wavefront sag Ф^ь ш the material can be much
greater than the wavelength of the light wave, so that more
than 100 aberration rings can be observed in the far field of
the beam.34'35'66 The total number of rings is estimated
from the nonlinear phase increment <I>NL on the beam axis
according to the formula (27) for different types of ther-
mal nonlinearities.34 The details of the spatial distribution
of the transmitted beam can, however, diifer strongly in
different types of materials. Thus a characteristic feature of
thermal self-(de) focusing of an axisymmetric laser beam in
liquids is vertical astigmatism of the transmitted beam.
This astigmatism increases with the radiation intensity and
is associated with convection in the presence of strong laser
heating.76"78 Thermal nonlinear lenses in the elements of
cw and pulsed laser cavities can significantly affect the
mode structure7'75 and the lasing dynamics of the laser,65

and they are also manifested in the fine structure of the
radiation spectrum.83'95 Thermal lenses, together with non-
linear lenses in liquid crystals with orientation of the
director,35 are the simplest and most striking demonstra-
tions of the nonlinear lens effect.64

3. APPLICATIONS OF NONLINEAR LENSES

3.1. Applications of nonlinear lenses for measurement of
weak absorption

Historically, the first5 and still one of the most impor-
tant applications of nonlinear lenses is measurement of
weak absorption (10~4 cm"1). Such absorption cannot be
measured by the methods of traditional absorption spec-

FIG. 14. Arrangement for measuring small coefficients of absorption
( < 10 cm"1) by the intracavity thermal nonlinear lens method.5 /—gas
laser, 2—cell with the experimental material, 3-5—apparatus for moni-
toring the transverse intensity distribution of the laser mode (photomul-
tiplier 3, scanning over the transverse cross section of the beam by means
of a stepping motor 4 and display on a plotter 5), 6-9—system for mon-
itoring the spectral composition of radiation based on a scanning inter-
ferometer 6.

troscopy, and in order to do so it was necessary to develop
special highly sensitive methods, such the optoacoustic
method96 and the method of nonlinear lenses.5"7 The crux
of the nonlinear-lens method is the determination of the
optical power of the light-induced thermal lens. This power
is proportional to the absorption coefficient of the liquid.
As follows from the expression (1.29), the optical power of
a thermal lens in the steady state76"78

(3.1)

is directly proportional to the beam power P, the absorp-
tion coefficient b, and the thickness / of the slab of material.
Thus, if the thermophysical parameters of the material are
known, then it is easy to determine the absorption coeffi-
cient b by measuring Dx . The accuracy and sensitivity of
the nonlinear-lens method for measuring weak absorption
were investigated in Refs. 7, 12, and 15. The theoretical
threshold of sensitivity of this method islO"6—10~8cm~1

with an accuracy of the order of 30%.15 Different methods
have been developed to achieve maximum measurement
sensitivity and accuracy. One method is to place the cell
containing the experimental material into a laser cavity
(Fig. 14). The laser radiation induces in the cell a thermal
lens that changes the configuration of the laser mode. By
monitoring the mode composition of the radiation with the
help of a scanning interferometer and measuring the radius
of the laser beam with the help of a photomultiplier con-
trolled by a stepping motor it is possible to measure, to a
high degree of accuracy, the optical power of a thermal
lens and to determine with its help the absorption coeffi-
cient. As shown in Ref. 7, the maximum sensitivity of the
intracavity nonlinear-lens method is achieved in cavities
with a nearly confocal configuration. This method was
used in Ref. 6 to measure the absorption coefficients of 27
commercial solvents. A method in which high sensitivity is
achieved by using a two-beam method is now widely used.
In this method a strong nonlinear lens is induced by a
powerful laser pulse with a single wavelength, and this lens
"read out" with radiation from a highly stable cw laser at
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a different wavelength. This method is used successfully for
measuring weak absorption and investigating intramolecu-
lar transitions in gases and liquids.15

3.2. Applications of nonlinear lenses for measuring the
coefficients of nonlinearity of the refractive index of optical
materials

Different modifications of the nonlinear-lens method
are used for measuring the nonlinear refractive coefficients
of optical materials. In Ref. 18 the nonlinear refractive
coefficients n2 and и4 of semiconducting single crystals
were determined from measurements of the diameter of a
transmitted low- and high-power laser beams. When per-
forming measurements by this method it is important to
take into account the fact that the nonlinear change in the
diameter of the transmitted beam with the same nonlinear
phase increment will be different for different configura-
tions of the optical measurement scheme.20'28 As shown in
Ref. 73, in such measurements schemes characterized by /3
values equal in modulus to the order of nonlinearity of the
experimental material 5= 1 +a give the highest sensitivity.
This conclusion follows from the "resonance" dependence,
first described in Ref. 73, of the quantity y, determining the
sensitivity of the intensity /out on the beam axis in the
recording plane to the nonlinear wavefront sag, on the
value of (3:

y, arbitrary units

dln,
r=-

"NL

2a/3

*NL = °

(3.2)

Later, the so-called Z-scan method was also constructed on
the basis of this resonance-like dependence.33'97"98 This ver-
sion of the nonlinear-lens method is based on measurement
of the on-axis intensity of the transmitted radiation as a
function of the location of the nonlinear element along the
Z axis of the beam for fixed initial power (see Fig. 13).
When the recording plane is located in the far field /3 is
given by the ratio73

P=Z/Z0, (3.3)

where Z is the coordinate of the position of the nonlinear
element with respect to the waist of the laser beam and Z0

is the confocal parameter. Thus, when the coordinate Z of
the position of the nonlinear element is scanned, an
A^-shaped "resonance" curve is observed in the transmitted
signal. The order of nonlinearity 1 +a and the nonlinearity
constant na are determined from the height and position of
the extrema of this curve. Taking into account the depen-
dence of the intensity in the nonlinear element on the po-
sition of the element, the order of nonlinearity 5= 1 +a is
determined in terms of the corresponding values of Д at the
maxima of the curve in Fig. 15 from the formula

Another version of the nonlinear-lens method is based on
the oscillating dependence, mentioned in Sec. 1.6, of the
on-axis intensity /out of the transmitted beam on the inten-
sity Im at the entrance. In Ref. 25 it is shown that in the far
field the first maximum of this function occurs when some

FIG. 15. Measurements of the nonlinearity of refractive indices by the
z-scan method.3 The on-axis intensity of the transmitted beam is plotted
as a function of the coordinate z of the displacement of the nonlinear
material from the waist of the exciting beam.

nonlinear phase increment Ф^ь is reached. The value of
this increment can be approximated by the expression

ira +
'2 а

(3.5)

Thus if the order of refractive nonlinearity 1 +a is known,
then na can be determined with the help of the expressions
(2.1) and (3.5).

In Ref. 9 the coefficients of nonlinear refraction of laser
glasses were determined from the optical power of the non-
linear lens in the experimental sample, for which self-
focusing of the laser beam occurs in an auxiliary sample
whose nonlinearity is known.

For relative fast measurements of the coefficients of
nonlinear refraction (in the presence of a standard mate-
rial) it is convenient to compare the dynamics of nonlinear
conversion of pulses transmitted through the experimental
material and the standard material, which are installed in
different arms of a polarization interferometer, whose lay-
out is displayed in Fig. 9.93 The ratio of the light intensities
in the interferometer arms is regulated continuously by
rotating the half-wave plate 6. The relative values of the
nonlinear refractive coefficients of the experimental mate-
rial are determined from the angle of rotation of the half-
wave plate at which the nonlinear-lens dynamics in the
standard material is identical to that of the experimental
material.28'93

The thin nonlinear lens effect must also be taken into
account when measuring the nonlinearity of the refractive
index by the interference89 and polarization71 methods.
These methods are not directly related to nonlinear lenses,
but if the nonlinear lenses induced by laser radiation in an
experimental sample is neglected, than a gross error is
made when the nonlinear-refractive coefficients are deter-
mined with their help. In particular, it is shown in Ref. 71
for the case of cubic nonlinearity that in far-field measure-
ments the nonlinear phase increment decreases by a factor
of 2 due to diffraction. In the general case the true nonlin-
ear phase increment 4>NL in the sample can be determined,
with the help of the conversion factor К following from the
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FIG. 16. Nonlinear phase increment Ф ,̂ь in the recording plane as a
function of the nonlinear phase increment <1>NL in the nonlinear material
for different values of the configuration parameter of the scheme: /J= 10
(a), 3 (b), 0 (c), and -1.1 (d).

expression (1.23), from the value Ф^ь measured experi-
mentally (for example, by the interference method):

(3.6)ФML

It is obvious that in near-field ( | /31 > 1) measurements
the experimentally measured nonlinear phase increment in
the sample is identical to the true value. When the record-
ing plane lies in the far field, the nonlinear phase increment
decreases monotonically due to diffraction spreading (in
the far field the nonlinear phase shift decreases by a factor
of S with respect to the true value of the nonlinear phase
increment in the nonlinear medium).

These characteristics of the decrease in absolute mag-
nitude of the nonlinear phase increment in a beam as the
beam propagates from the near- into the far field are valid
for Фкь < 1. For large values of Ф^ the photoinduced lens
effect is even more significant from the standpoint of the
spatial evolution of the nonlinear phase increment. The
functions Ф^ь(Фмь) are displayed in Fig. 16 for different
values of /?. It is obvious from the figure that this depen-
dence is nearly linear for /3 > 10 and /?< 3 and as | /3\ de-
creases, the dependence acquires characteristic oscillations.
For /3= — 1 and +1 a sharp jump downwards by ir occurs
on the curve Ф^1,(Фмь)- Comparing these curves to the
plots in Fig. 7 shows that the depth of the phase oscilla-
tions increases in accordance with the depth of the inten-
sity oscillations, and the jump in phase by tr occurs when
the intensity on the axis of the transmitted beam becomes
zero. It is interesting to note that in this case the recorded
nonlinear phase increment can even change sign, while the
nonlinear phase increment in the sample increases mono-
tonically. This effect was observed experimentally in Ref.
94. In the far field ()3->0) the observed nonlinear phase
increment does not exceed тг/2, even for very large values
of Фыь.

3.3. Application of nonlinear lenses for investigation of the
properties of semiconducting materials

Nonlinear lenses are a convenient tool for investigating
different properties of semiconducting materials. In Ref. 18

the dispersion properties of CdS and SiC single crystals
were determined with the help of nonlinear lenses. In Ref.
22 the spatial distribution of impurities in the volume of a
semiconducting crystal was measured by the nonlinear-lens
method. In Ref. 30 the dependence of the relaxation time
constant of nonequilibrium carriers was determined as a
function of the impurity concentration by studying the dy-
namics of nonlinear lenses in и-InP samples. In Ref. 28 the
anisotropy of the nonlinear susceptibility of CdS single
crystals was measured by the nonlinear-lens method. In
Ref. 33 thez-scan method (Sec. 3.2), developed in Refs. 97
and 98, was used to determine the dispersion of the non-
linear susceptibility of an entire series of wide-bandgap
semiconductor compounds.

3.4. Applications of nonlinear lenses for controlling laser
radiation

Nonlinear lenses can be used for solving a wide spec-
trum of problems involving the control of laser radiation,
primarily for creating different types of fast optical
switches. Thus, in Ref. 42 a nonlinear lens induced in a
semiconducting plate by low-power pulsed laser radiation
was used to switch the transmission of a powerful cu>laser
beam at a different wavelength. By returning part of the
transmitted radiation, with the help of auxiliary mirrors,
back into the nonlinear medium it is possible to change
significantly the nonlinear-transmission characteristics of
optical switches based on nonlinear lenses. Bistable optical
devices were realized in Refs. 43—45 with the help of such
feedback. In Ref. I it was proposed that dynamical switch-
ing of radiation from a compact beam into an aberration
ring (see Fig. 7b) be used to decrease the duration of
ultrashort laser pulses. The important role of nonlinear
lenses in the lasing dynamics of high-power pulsed lasers
with mode self-locking was pointed out in Refs. 100 and
I0l. Nonlinear lenses in a laser cavity can be used for
controlling the lasing regime. Thus this method was used
in Refs. 102 and 103 for ^-switching anrj generation of a
giant pulse. In Ref. 34 intracavity nonlinear lenses were
used for lengthening spikes and stabilizing the lasing power
of pulsed lasers. In the last few years there has been a great
deal of interest in using thin nonlinear lenses for modelock-
ing. Thin lenses with electronic nonlinearity are virtually
inertialess, and this makes it possible, in principle, to gen-
erate with their help pulses with duration right down to
several femptoseconds. The modelocking mechanism of a
nonlinear lens (Kerr Lens Modelocking110) is based on the
increase of the transmission of an intracavity spatial
filter—diaphragm with increasing radiation power. This is
observed with a special arrangement of the pair "nonlinear
element—diaphragm" inside the laser cavity. This method
has now been realized in tunable femptosecond lasers based
on sapphire with titanium, where the active element itself
plays the role of a nonlinear lens.111 Interest in laser cavi-
ties with thin nonlinear elements has stimulated the inves-
tigation of properties of light beams in periodic systems
with thin layers of a self-focusing dielectric. It has been
shown that some systems can be used for selection of light
beams according to power.63 The possibility of achieving
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effective suppression of small-scale self-focusing in systems
of this type by selecting a definite system configuration104

has generated interest in using such systems in complex
multicascade systems of high-power laser amplifiers.105

Nonlinear lenses in feedthrough optics can significantly in-
fluence the focusing properties of the optical systems of
powerful laser setups.89'106 This is taken into account in the
design of optical systems for focusing radiation in laser
thermonuclear fusion setups.107 Aberrations of nonlinear
lenses can be used to obtain beams with a quasisquare
intensity profile (see Fig. 7f).108 Thus nonlinear lenses
make it possible to solve different problems of passive
(adaptive) control of laser beams. Some of the most im-
portant applications of nonlinear lenses are, however, ap-
parently associated with the limitation of intensity, power,
and energy of laser radiation.

3.5. Limitation and stabilization of the intensity, power, and
energy of laser radiation with the help of nonlinear
lenses

One problem arising in applications of high-power la-
ser radiation is reliable limitation of light flux below a
prescribed maximum admissable level. This is important
for protecting complicated and expensive elements of op-
tical schemes from being damaged by high-power laser ra-
diation, for protection of highly sensitive photodetectors
from intense illumination, and in laser ophthalmology and
other medical applications. A different aspect of this prob-
lem is connected with the possibility of stabilizing the en-
ergy parameters of radiation by limiting them. This is es-
pecially important for pulsed generators of ultrashort light
pulses, whose parameters fluctuate significantly. Since the
concern here is to limit the energy parameters of radiation
by changing the intensity, power, or energy of the radiation
itself, in what follows we shall call this effect self-limiting
of the corresponding parameters of the radiation and we
shall call devices based on this effect optical self-limiters.46

Optical self-limiters are being intensely studied because
they are simple, fast, reliable, and they do not consume
energy.19'20'25'26'37'46-59 The principle of operation of optical
self-limiting is based on defocusing of radiation by a non-
linear lens at high power and cutoff of "excess" power with
the help of a diaphragm (Fig. 17). Under certain condi-
tions the intensity, power, or energy of the radiation trans-
mitted through the diaphragm no longer depends on the
input power. Then one talks about stabilization of the cor-
responding parameter. Self-limitation and stabilization of
the power of cw-laser radiation with thermal defocusing in
a weakly absorbing liquid was discussed in Refs. 37 and 59.
Self-limitation of light was investigated under conditions of
self-defocusing in semiconductors by the thermal
mechanism19'20 and by excitation of nonequilibrium carri-
ers by short laser pulses.24'25 In these works the inertia of
the nonlinear response of semiconductors to subnanosec-
ond pulses resulted in cutoff of the trailing edge of the
transmitted pulses due to accumulation of nonlinear bend-
ing of the wavefront over the time of the pulse (see, for
example, Fig. 11). As a result of this cutoff, the energy (or
integral parameters of the type / (I(t) )a/2dr with аф2) is

Time 50 Psec Time
b ' ' c

FIG. 17. Optical self-limiter of the intensity of ultrashort laser pulses (a).
Bottom: experimental densitometer traces of YAG:Nd laser pulses from
the screen of a streak camera for a self-limiter based on a cell with liquid
carbon disulfide (b,c).

limited. Limitation and stabilization of the transmitted en-
ergy have also been observed for other materials with in-
ertial cubic nonlinearity.36 Inertialess limitation of the peak
power of laser pulses was achieved in Ref. 47 with deep
focusing of radiation into a material with picosecond non-
linearity relaxation time. In this case the most intense part
of the pulse is degraded in the nonlinear medium due to
self-focusing and nonlinear light losses of different types
accompanying the self-focusing.

A large number of optical self-limiters for different
wavelength ranges and laser-pulse durations have now
been developed (see the reviews Refs. 57 and 58). The
achieved thresholds of limitation (10 nJ) with a dynamical
range exceeding 104 (Ref. 58) make it possible to use such
devices for reliable protection of elements with high pho-
tosensitivity. For purposes of stabilizing the energy param-
eters of radiation, however, such self-limiters are virtually
never used because, as a rule, they have high losses and the
optical quality of the transmitted beam is low. The prob-
lem of stabilization of the power and energy of laser pulses
is especially important for subnanosecond laser pulses, for
which intensity, power, and energy fluctuations are signif-
icant, and there are no active control devices, operating
with the required speed, or such devices are difficult to
obtain. A high-precision optical self-limiter of the intensity
of picosecond pulses was proposed and realized in Ref. 72.
In this self-limiter many of the drawbacks of optical self-
limiters are eliminated. The main distinction of this self-
limiter lies in the configuration of the elements of the op-
tical scheme such that j8ONL < 0 and 10 \ > 3 and nonlinear
transformation of the beam occurs in the manner displayed
in Fig. 7f. The instability of the peak intensity of picosec-
ond laser pulses can be reduced with the help of such a
device by more than an order of magnitude with a qua-
sispherical wavefront of the transmitted radiation and
weak-signal transmission coefficient of about 50% (see
Fig. 17).
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CONCLUSIONS

The works examined in this review illustrate the basic
properties of nonlinear lenses and their applications in
modern optics, laser physics, and technology. Nonlinear
lenses strongly influence the characteristics of high-power
lasers and multicascade laser systems. In contrast to self-
focusing of a beam in the volume of an optical material, the
contribution of thin nonlinear lenses to transformation of
light beams can be calculated beforehand and optimized.
However, a systematic theory of optical systems with thin
nonlinear lenses has been constructed only for beams in the
form of a fundamental Gaussian mode. This theory makes
it possible to predict the basic properties of nonlinear op-
tical filters, measuring schemes, and lasers with thin non-
linear elements. Further development of the theory of op-
tical systems with nonlinear lenses should proceed, from
our point of view, along three directions: 1) study of the
evolution of light beams of arbitrary form in optical sys-
tems with a thin nonlinear lens; 2) study of laser cavities
with a thin nonlinear lens; and, 3) study of nonlinear lenses
in the field of femptosecond pulses, for which, together
with nonlinear transformation of the phase of the field, it is
also necessary to take into account the linear and nonlinear
dispersions of the material. The latter problem is important
for the physics of high-power femptosecond lasers and
technology of formation of ultrastrong optical fields. As
the theory and experimental studies of nonlinear lenses are
further elaborated, their ranges of application will expand
primarily for problems of control of light by light and
optical measurements.

In conclusion we wish to point out that this paper
could not have been written and published without the
participation and support of Sergei Aleksandrovich Akh-
manov. It was his idea to write this review, and his remarks
and suggestions significantly influenced the content.
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