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Radiative recombination of 2D electrons with photoexcited holes in a single GaAlAs-GaAs
heterojunction is used to illustrate the possibilities of the magneto-optic approach to

the investigation of the ground state of strongly-correlated electrons in the ultraquantum limit.
The method is used to determine the Coulomb gaps of quantum liquids and their

hierarchy in the fractional quantum Hall effect. Wigner crystallization of 2D electrons is
investigated and an analysis of time-resolved recombination spectra is used to reconstruct the

phase boundary of the Wigner crystal.

1. INTRODUCTION

Several events associated with the discovery of some
striking physical phenomena have taken place during the
last decade in the physics of low-dimensional semiconduct-
ing systems. The integral quantum Hall effect (IQHE)!
was discovered in 1980. Two years later, and before its
significance was fully understood, the fractional quantum
resistance’ was discovered. Today, almost ten years later,
we are confronted by one further surprise, namely, the
discovery of the crystal phase of two-dimensional
electrons—the so-called Wigner crystal. The aim of this
review is to familiarize the reader with magneto-optic stud-
ies of these phenomena. Magneto-optics has been found to
be a particularly effective tool in the experimental investi-
gation of Coulomb correlation effects in an interacting 2D
electron gas.

We note, at this point, that the quantum Hall effect,
subsequently refered to as the integral QHE, is a magne-
totransport phenomenon in two-dimensional electron
(hole) layers in metal-insulator-semiconductor (MIS)
structures, and also in heterostructures with modulated
dopant concentration.> The effect is seen phenomenolog-
ically by applying a strong enough magnetic field B per-
pendicular to the plane of free motion of the 2D electrons,
and is accompanied by the appearance of plateaus on the
Hall resistance {ratio of transverse voltage to the longitu-
dinal count). The zeros of longitudinal resistance corre-
spond to the Hall plateaus at 7=0. The phenomenon is
fully correlated with the appearance of single-particle gaps
in the spectrum of 2D electrons in a magnetic field,
namely, the cyclotron, spin, and valley-orbital gaps that
confine the electrons to Landau orbits with energies
E,=(n+1/2)#iw,, where w, is the electron cyclotron fre-
quency. The Hall conductivity o,, in the case of the inte-
gral QHE, i.e., on the plateaus, is very precisely given by

o, =ve'/h,

(1.1)
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where e and 4 are universal atomic constants and v is the
filling factor. The filling factor is defined by

v=N/N,, (1.2)

where N, is the density of 2D electrons and
No=1/2nli=eB/h is the maximum permissible electron
population or the capacitance of the quantum state
[lo=(#/eB)"? is the magnetic length]. The most striking
feature of the integral QHE is that the plateaus of o,, and
the zeros of o, occur for the integral values v=...4, 3, 2, 1.
The conditions v<1 refer to the quantum limit.

The integral QHE is a single-electron phenomenon and
is due to the specific structure of the 2D electron spectrum
in a transverse magnetic field in the presence of a random
potential, i.e., practically all the states in the energy gaps
are highly localized (in the spirit of the Anderson local-
ization) and the nondissipative Hall current transports a
few (1 at T=0) delocalized extended states.*> The high
precision of quantization of Hall conductivity in (1.1) is
due to the fact that the conductivity of all 2D systems can
be represented by a topological invariant that is indepen-
dent of the random potential of the defects that are always
present in real 2D systems.’

The discovery of the fractional quantum Hall effect
two years after the discovery of the integral effect was
totally unexpected. It was considered that, as the quality of
the samples improved (structures with better separation
boundaries, more uniform electric potentials confining car-
riers in 2D planes, and so on), and also as the quantum
region v <1 byond the limit is reached, one should be able
to see the crystallization of electrons, ie., the two-
dimensional Wigner crystal.%” This type of crystallization
had been seen earlier in the classical limit for the 2D elec-
trons on the surface of liquid helium.” However, for perfect
structures with 2D electron gas and high quantum mobil-
ity, the magnetotransport curves were found to display a
fine structure that was not directly related to Wigner crys-
tallization. In particular, new plateaus and zeros were
found in the magneto-transport parameters, i.e., in conduc-
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tivity and resistivity, for fractional filling factors v=p/q
where p is an integer and ¢ an odd integer. This phenom-
enon was subsequently called the fractional quantum Hall
effect (FQHE). It was found that FQHE could be ob-
served at much lower temperatures than the integral quan-
tum Hall effect. This clearly demonstrated that the energy
spectrum of 2D electrons contained totally new gaps that
could not be understood within the framework of this sim-
ple single-electron description. Soon after, the QHE was
explained® as being a consequence of an interaction be-
tween electrons that produces highly correlated many-
electron states (the so-called Laughlin states), often re-
ferred to as incompressible quantum liquids (QL). Such
states constitute a liquid because they do not display long-
range order among the electrons, and the incompressibility
is understood in the sense that a change in density or filling
factor would require an energy comparable with the cor-
responding gap that separates the ground state of the QL
from the continuum of quasiparticle excitations. Accord-
ing to Laughlin’s theory,® such unusual states of the elec-
tron quantum liquid occur exclusively for rational frac-
tional filling factors v=1/¢ with even denominators. In
accordance with the electron-hole symmetry, the hole
states of the QL exist for 1—(1/4). In the many-electron
theory,*® quasiparticle excitations carry the fractional
charge e*=e/q in FQHE. In contrast to the single-electron
gaps (cyclotron, spin and valley-orbital) of the integral
QHE, the fractional QHE involves Coulomb gaps that are
due to the interaction between the particles. The scale of a
Coulomb gap, A,, is determined by the fractional charge
and decreases with increasing ¢ in accordance with the
expression

A,=0,1e**/ely=0,1¢*/eq*ly~q~**H"?, (1.3)

where ¢ is the permittivity of the medium. The quantities
A, are very small, so that the QL is a very delicate sub-
stance in the QHE regime. It is therefore not surprising
that such states have been found only in high-grade struc-
tures containing the 2D electron gas, in which the random
potential does not destroy these states (the necessary elec-
tron mobilities are of the order of 10° cm*V~!s~! or more)
and, in addition, the necessary temperatures are very low
(of the order of 1 K or less). Despite the stringency of
these conditions for the observation of FQHE, whole fam-
ilies of such states have been found in magnetotransport
experiments'®!! and the hierarchy of these families has
been established up to v=1/7, in accordance with the the-
oretical predictions.?

The odd denominator rule is a consequence of the
Pauli principle and is due to the antisymmetric many-
electron wave function that describes the ground state of
the QL which, in the Laughlin theory, consists of electrons
with the same spin projection. Subsequent experiments
demonstrated (well after this was shown theoretically in
Ref. 13) that, in principle, the ground state of the QL can
be a singlet (in contrast to the spin-oriented Laughlin
state) and consists of electrons with opposite spin
directions.'*!® Quasiparticle excitations above the gaps can
subsequently occur with spin flip. In these special cases, in

550 Physics - Uspekhi 36 (7), July 1993

which there are additional spin degrees of freedom, and
which we shall not pause to consider in detail, rational
fractions can be observed under the conditions of the
FQHE with even denominators. The odd denominator rule
is therefore hardly universal in FQHE.

In the colorful and strikingly successful history of the
fractional quantum Hall effect, the question that has be-
come increasingly topical is: where is the Wigner crystal-
lization of 2D electrons and when does it occur? This prob-
lem has become particularly accute after reliable numerical
calculations have defined more accurately the region in
which the proposed crystallization can occur (v.<1/5,
Ref. 16). It is important to remember that it is simply
unrealistic to expect that direct experiments based on the
elastic scattering of neutrons or X-rays will provide a di-
rect demonstration of long-range order in an interacting
system of 2D electrons. Nevertheless, different and meth-
odologically independent recent experiments (studies of
radiofrequency absorption,'” magneto-transport,'®!® sound
absorption,?®*? magneto-optics,2! and also cyclotron
resonance’’) have provided substantial evidence (though
not direct evidence) for the existence of this crystallization.
As we enter the ultraquantum region (v<1) and the region
of low temperatures, increasingly strong localization on
fluctuations in the random potential ensures that electrons
lose their ability to traverse macroscopic distances. This
means that the magnetotransport method encounters fun-
damental difficulties in this region because the system con-
taining the 2D electron gas begins to resemble more and
more a dielectric, and becomes more like an electron glass.

We now turn to the magneto-optic method for which
strong localization effects do not constitute such a strong
limitation. It is well-known that radiative recombination of
2D electrons and nonequilibrium holes injected in some
way into the system can be used as a basis for measuring
the electron energy spectrum. It is, of course, assumed in
this approach that the energy spectrum of the holes is
known in detail. We shall be interested in systems with a
single 2D electron channel. They are encountered in MIS-
structures and heterostructures. The electric potential that
confines the 2D electrons to the neighborhood of the inter-
face and repels nonequilibrium holes from the separation
boundary into the interior (buffer) region. However, be-
cause the wave function of the 2D electrons extends in the
direction perpendicular to the interface, radiative electron-
hole recombinations still have a finite probability. This is
the basis of the luminescence method for the direct mea-
surement of the single-particle density of states of 2D elec-
trons in Si-MIS structures’?® and the single GaAlAs—
GaAs heterojunction.”* The method has been successively
used under the conditions of the integral QHE to measure
the size of energy gaps in the single-particle electron spec-
trum in a transverse magnetic field, the density of quantum
states during variations in their filling, nonlinear screening
of fluctuations in the random potential, and so on (see the
review literature®*2%).

However, the efficacy of the luminescence method in
FQHE is not obvious at first sight. Actually, the nonequi-
librium holes, i.e., effectively charged particles, should first
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produce a strong perturbation of the delicate system that is
the quantum liquid under the QHE conditions. Next, it is
not clear a priori whether it is possible in an optical exper-
iment with 2D systems of this kind to achieve the low
temperatures indicated by the scale of the Coulomb gas
(1K or less) and whether the system of 2D electrons will
be in quasiequilibrium under such conditions? Finally, the
above luminescence method leaves unanswered questions
such as the disposition of the nonequilibrium holes, with
which electrons recombine, relative to the 2D electron
channel. These complications can be overcome by using
specially fabricated structures containing the 2D electron
gas. When such objects are chosen for magneto-optic stud-
ies, preference must be given to semiconducting systems
with well-defined asymmetry in the electron-hole interac-
tion. A successful object of this kind can be a single hetero-
junction in which the two-dimensional electron channel is
spatially separated by a region occupied by photoexcited
holes. It is desirable to have these holes ‘attached’ to ac-
ceptor centers that lie at a sufficiently long and fixed dis-
tance from the interface. Such structures can be imple-
mented, for example, in the single GaAlAs-GaAs
heterojunction with an acceptor &-layer ‘built in’ by
molecular-beam epitaxy and modulated doping at the re-
quired distance from the interface. Since the acceptor is
neutral and distant from the interface, there is minimum
masking of Coulomb correlations by the excitonic effect
under the conditions of FQHE and Wigner crystallization.
We note that in systems that are symmetric in the
electron—hole interaction, e.g., in quantum-wells, the influ-
ence of exitonic effects is very considerable. If the electrons
and holes are not spatially separated, the excitonic effect
completely compensates Coulomb correlations in the elec-
tron subsystem and, as a consequence, such correlations do
not appear in the corresponding luminescence spectra.
Our review is arranged as follows. In Section 2, we
consider the foundations of the magneto-optic method that
relies on the radiative recombination of 2D electrons with
photoexcited holes localized on acceptor centers (BE at-
oms) in the §-layer of the single GaAlAs-GaAs hetero-
junction. Studies of the single-particle energy spectrum of
2D electrons in a strong transverse magnetic field are pre-
sented in Section 3. The magneto-optics of 2D electrons in
FQHE is discussed in Section 4 where it is shown that the
magneto-optic method can be used to explore the ground
state of interacting electrons by varying the filling of the
quantum states, and the efficacy of optical measurements
of the quasiparticle Coulomb gaps is demonstrated. Fi-
nally, Section 5 describes optical experiments involving the
Wigner crystallization of 2D electrons in a strong trans-
verse magnetic field. It is shown that pulsed photoexcita-
tion and analysis of time-resolved recombination spectra
can be used to distinguish between the crystalline and dis-
ordered (glassy) electron phases and, in the final analysis,
construct a phase diagram for the Wigner crystal.
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2. RADIATIVE RECOMBINATION OF 2D ELECTRONS IN A
SINGLE HETEROJUNCTION

It is well-known that the spectroscopic method em-
ploying the radiative recombination of 2D electrons and
photoexcited holes is successful in studies of the electron
energy spectrum. The method is particularly widely used
in the case of quantum wells (QW) containing a 2D elec-
tron gas [see, for example, (27) and (28) and also the
review given in Ref. 29}. When we are interested in Cou-
lomb correlations between 2D electrons, it is better to use
the single heterojunction than the quantum well. There are
several reasons for this. First, the radiative time constant
for the QW is of the order of a nanosecond or less in the
case of semiconductors in which optical transitions are al-
lowed in the zero order in the wave vector k. Sufficiently
low electron temperatures (of the order of 1K or less)
cannot be produced in such systems with such short radi-
ative recombination time constants. Second, photoexcited
holes and electrons are not spatially separated in the sym-
metric quantum well, so that the excitonic effect in such
systems compensates Coulomb correlations in the 2D elec-
tron gas. Finally, the properties of the QW, e.g., the elec-
tron mobility, are inferior as compared with the single het-
erojunction structure. This is due to the presence of the
reverse heterojunction in the QW whose structure is infe-
rior to that of the direct heterojunction.

These defects and limitations are practically absent
from specially fabricated GaAlAs—-GaAs n-type hetero-
structures with an acceptor 8-layer at a considerable dis-
tance Z; from the region occupied by the 2D electrons.
The energy scheme for this type of heterostructure is illus-
trated in the insert in Fig. 1. They are grown by molecular
epitaxy.* Diffusion effects and the subsequent spreading of
the acceptor monolayer can be avoided by using low
enough grid temperature and low dopant concentration in
the 8-layer (<10'©cm™2). In contrast to the quantum well,
high grade structures with very high mobility of 2D elec-
trons (of the order or greater than 10® cm®V—!s~!) can be
produced in single heterojunctions with d-doped layers.

Radiative recombination of 2D electrons and holes in
acceptor centers localized in the §-layer is usually investi-
gated in such structures by photoexcitation that generates
nonequilibrium electron-hole (e,h) pairs near the
heteroboundary.?! The surface concentration of acceptors
in a monolayer is lower by almost two orders of magnitude
than the concentrations of 2D electrons, so that the radi-
ative recombination process does not affect the electron
density. Figure 1 shows the luminescence spectra of
GaAlAs-GaAs heterostructures for different distances of
the acceptor &-layer (Be atoms) from the
heteroboundary.*? For comparison, the figure also shows
the spectrum of a single heterojunction without special
6-doping. In this structure, the B-band is due to the resid-
ual density of acceptor centers (C atoms) in the buffer
GaAs region. The bands 4, B, and B, in these spectra
represent the recombination of 2D electrons with free holes
(A lines) and holes in acceptor centers (B lines) (the sub-
scripts indicate the band number in the dimensional quan-
tization of the 2D electrons).*! The B, and B, line inten-
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2 FIG. 1. The luminescence spectra of GaAlAs—GaAs het-
erojunctions with different distances Z; of the 8-layer of
acceptors from the heteroboundary. The insert shows het-

erojunction configuration. The top spectrum was ob-
tained without special §-doping.
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sities are normalized to the A4, intensity measured under
identical conditions. It is clear that when the acceptor
S-layer is closer to the heteroboundary, B-line intensity is
higher. At the same time, the B lines are broadened and
their position on the energy scale is very dependent on Z;.
The changes in the positions of the B lines in the spectrum
is due to changes in the binding energy of the acceptors in
the §-layer as the distance Z; is varied (Stark effect®?).

Let us now consider the shape of the luninescence
spectrum due to the radiative recombination of 2D elec-
trons with holes in acceptors in the §-layer ( B, lines). The
shape of the spectrum can be accurately represented by the
convolution of single-particle densities of state of electrons
and holes D, ;(E), their distribution functions f,,(E),
and the optical transition matrix element

I{(fiw) ~ Jow D(E) Dy(fis—E) f( E) f1(fio— E)dE.
2.1

Momentum is conserved in direct radiative recombinations
of 2D electrons and acceptors because of the recoil of the
impurity center, and the transition matrix element is prac-
tically independent of energy. The density of states of holes
and their distribution in the é-layer can be represented by
a O-function with sufficient precision. The shape of the
B-line luminescence spectrum then directly reflects the
single-particle density of states of the 2D electrons for a
given equilibrium filling function f (E):

I(E) ~ D(E) f(E). (2.2)

In zero magnetic field, this spectrum is rectangular in
shape, reflecting the constant density of states of the 2D
electrons (De=m/‘n'fi2 ), and its total width at half height
at T=0 is equal to the Fermi energy of the 2D electrons.
Such rectangular spectra had been observed earlier for
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Si-MIS-structures.?>?* The 2D electron wave function has
the following form in the direction of dimensional quanti-
zation:

Y2 (Z) ~expl —Z(2mEy,) /4], (2.3)

where E, and E; are the effective potential-barrier heights
for the ground and first excited dimensional quantization
subbands. The By and B, line intensities can be used by
varying Z; to analyse the tails of the wave functions (2.3)
and to determine, among other things, the barrier heights
E;, (Ref. 32). The probability of radiative recombination
of a 2D electron and a hole in an acceptor center in the
&-layer is determined by the corresponding overlap of their
wave functions, i.e., wg ~ | <I/J§D(Z) |¢fl\) |2. It is clear that
the radiative recombination probability should decrease ex-
ponentially with increasing Z;, so that the radiative time
constants should correspondingly decrease. Figure 2 shows
the luminescence decay time constant measured for the 2D
electrons in the ground band of dimensional quantization
under pulsed laser excitation in different structures with
Z,=250, 300, and 350 A. The radiative time constant in-
creases, as expected, by almost an order of magnitude. The
function 7(Z,), which is determined by the change in the
overlap of the electron and hole wave functions, can be
used to deduce the coordinate dependence (in the
Z-direction) of the 2D electron wave function.

The time constant for the radiative recombination of
2D electrons in the ground subband and holes bound to
acceptors in the 8-layer is thus of the order of 107%s. The
corresponding time constant for electrons in the first ex-
cited subband is smaller by approximately an order of mag-
nitude because of the long tail of the wave function in this
state, other things being equal. This constitutes a radical
difference between these heterostructures and the recombi-
nation of 2D electrons with free holes in quantum wells in
which §=~10"° s (Ref. 35). This means that, in a single
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FIG. 2. Decay of the luminescence intensity due to 2D electrons in the
ground subbands o dimensional quantization under pulsed laser excita-
tion. 1, 2, and 3 correspond to the following distances between the accep-
tor 8-layer and the interface, respectively: Z,=250, 300, and 350 A. The
insert shows the function 7(Z;).

GaAlAs-GaAs heterojunction with an acceptor 8-layer,
the superheating of the electron system in an optical ex-
periment is smaller than in the quantum well.

We now turn to the question of a possible variation in
the concentration of 2D electrons in a single GaAlAs-
GaAss heterojunction by photoexcitation of nonequilibrium
¢, h pairs near the heteroboundary. It has been shown
experimentally>® that when continuous illumination is used
to create carriers in the Ga,Al;_,As layer (photon energy
greater than the direct band gap of Ga,Al,_,As for given
composition x), a significant change can be achieved in the
stationary concentration of 2D electrons when the power
density is high enough. This experimental fact is explained
qualitatively by saying that the nonequilibrium holes pro-
duced by illumination travel towards the heteroboundary
in which they recombine with the 2D electrons. At the
same time, some of the injected electrons are trapped by
ionized residual donor centers in the region of the spacer
(undoped GaAlAs layer near the interface). Both pro-
cesses produce a reduction in the stationary concentration
of 2D electrons and, in the final analysis, the quantum well
containing the electrons becomes wider and shallower. The
significant point is that the injection of nonequilibrium e, h
pairs is accompanied by a considerable reduction in the
concentration of 2D electrons (by a factor of between 1
and 10) and an increase in their mobility. The latter phe-
nomenon is due to the fact that the resulting number of
charged centers near the heteroboundary decreases under
illumination. These qualitative considerations have re-
cently been described analytically,”” and the results are in
agreement with experiment.

3. MAGNETO-OPTICS OF 2D ELECTRONS IN IQHE

We now consider the radiative recombination of 2D
electrons in a single heterojunction in a transverse mag-
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FIG. 3. Luminescence spectra due to 2D electrons in a single GaAlAs—
GaAs heterojunction in a perpendicular magnetic field and also in a field
H=5.7 T and 45° to the 2D plane.

netic field in the case of IQHE. When the magnetic field is
applied, the density of states of the 2D electrons (if we
neglect spin) is a set of §-function peaks separated by #iw,_ .
Each Landau level is degenerate and its capacity is deter-
mined by the magnetic length. In real 2D systems with
disorder, the interaction between electrons and the random
potential lifts the degeneracy, and the Landau levels ac-
quire a finite width. For example, in the case of short-range
scattering centers, the single-particle density of states in
the wings of the Landau levels is described by*

D(E) ~exp(—E/2T)?, (3.1)

where T ~#w /(uH)? and p is the electron mobility. The
distribution of the density of states is determined by the
nature of the inhomogeneities and by the screening of their
potential, which in turn depends on the filling factor. This
information is particularly significant for the microscopic
description of magnetotransport properties of 2D electrons
in a wide range of variation of the filling factor. The ad-
vantages of the magneto-optic method, to which we shall
return later, include the fact that it can be used to find the
total-energy distribution for a single-particle density of
states, directly under the Fermi level, to determine the
single-particle gaps in the energy spectrum and their be-
havior as the filling factor is varied, and to examine the
random potential itself, i.e., its amplitude and linear scale.

3.1. Luminescence spectra of 2D electrons in the single
GaAlAs-GaAs heterojunction in a transverse magnetic field

An example of this spectrum is shown in Fig. 3 in
which we can clearly see the Landau splitting of the 4; and
B, lines. The splittings are proportional to the normal com-
ponent of the magnetic field. The dependence of the spec-

I. V. Kukushkin and V. B. Timofeev 553



I Ng=49- 10" 2

hw, ev
e -
6 12 v 1/2
.
hy—=292_yp
:’;77_-24-3/2
) 1=
7,50 7,49 7,98 hw,ov

FIG. 4. Polarized luminescence due to 2D electrons a magnetic field,
measured in the Faraday geometry.

tral positions of the lines split by the magnetic field on the
field H is shown by the fan of Landau levels at the top of
the figure. These diagrams can be readily used to locate the
bottom of the dimensional quantization band and the po-
sition of the Fermi level on the energy scale (indicated by
the arrows in Fig. 3).

The Landau splittings are different for 4; and B; lines.
The effective cyclotron mass found from 4; line splitting is
m¥ = 0.06m,, whereas the B, line splitting gives 0.067m,
which is very close to the cyclotron mass of 2D electrons in
the single GaAlAs-GaAs heterojunction. These differences
are due to the fact that the resultant splittings in the case of
A; lines include contributions due to free holes, i.e., heavy
holes (th = 0.57m,). The two-dimensional character of
the electrons that recombine with the holes is indicated by
the splitting of the 4; and B; lines in the inclined field.
Figure 3 shows that the splitting of the 4 and B lines is
sensitive only to the normal component of the magnetic
field.

3.2. Optical polarization in the spectra

When the temperature is low enough, the lumines-
cence spectra observed in a magnetic field are polarized as
a result of spin splitting in the 2D electron and hole sub-
systems. Figure 4 illustrates the splittings and the optical
transitions in the case of recombination with a neutral ac-
ceptor center. It also shows the 4, and B, luminescence
spectra recorded in Faraday geometry for o° and o™ po-
larizations. It is clear that the B, line has a high circular
polarization. In accordance with selection rules, the spec-
tra become completely o~ polarized if uog. 2> kT and if
the nearest electron and hole sublevels are populated (as a
result of recombination between an electron with spin pro-
jection S,=+1/2 and a hole with angular momentum
z-component J,=—3/2).
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The circular polarization measured in different mag-
netic fields at different temperatures is well-described by
the expression

1—exp(—AE/kT)
Y1 texp(—AE/KT)’

where AE,=2u.g; H is the Zeeman splitting between hole
levels with J,= —3/2 and J,= +1/2, and gy, is the g-factor
of a hole in the acceptor. This dependence is approximately
represented by taking the g-factor of a hole in the acceptor
to be g, =1.1.

The polarization of the A4, line for H<10 T is much
smaller than the polarization of the B, line (see Fig. 4).
This result is due to the mixing of the spin states of light
and heavy holes. We note, finally, that the circular polar-
ization is not the same for different Landau levels, but
increases as they approach the Fermi level. This is due to
the spin polarization of the 2D electrons in the upper
Landau level, which is a maximum for odd filling factors
v=..53 L

(3.2)

3.3. Oscillations and enhancement of the electron g-factor

As in the case of Si-MIS structures, radiative recom-
bination in a single GaAlAs-GaAs heterojunction at suf-
ficiently low temperatures involves 2D electrons with only
one spin projection, i.e., S,=+1/2 (filling factors 2m <v
<2m+1; m=0, 1, 2,...). In measurements of spin split-
ting, the temperature can be increased to achieve sufficient
population of the Zeeman sublevels of the acceptor center
(J,= %3/2,+1/2). The spectra then acquire a component
with the other electron spin projection, namely, S,= —1/2.
This was in fact the approach adopted in the case of the
Si-MIS structures.’®° There is, however, another way of
measuring the spin splitting. It is based on an analysis of
the variation in the position of a luminescence line in a
magnetic field at low temperatures 7. We note that the
enhancement of spin splitting (uoAgSeH) occurs only for
levels close to the Fermi level, since it is only then that
there can be appreciable differences between the popula-
tions of the corresponding spin states (AN=N,—N,5#0).
The change in the spin splitting of the 2D electrons due to
the exchange interaction is described by

N,—N, & AN

exch N‘|‘+sze_lo Nr_'_NlE.u’OAgeﬂ' .H’
(3.3)

where 2., is the exchange integral. Hence, it follows that
the enhanced g-factor (Ag.s~ANH™1?) should oscillate
as the filling of the magnetic sublevels is varied (g4 is a
maximum for strictly odd v). Figure 5a shows the position
of the luminescence lines (4 components) as a function of
the magnetic field (or v). For v=3, 5, 7,... and, in partic-
ular, near the Fermi level, AE ceases to be the linear func-
tion caused by cyclotron splitting. This is due to spin split-
ting associated with volume effects. Specifically,
AE= —1/2u,AgesH and is unrelated to the renormaliza-
tion of the gap. Below the Fermi level, the Landau level
shift is a linear function of H, and the Landau level sepa-

AEspin =2
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ration is strictly equal to fiw . The oscillating dependence
of Ag.¢ on v measured by this method is shown in Fig. 5b,
from which it is clear that Ag. is a maximum for v=3, 5,
7,... . For example, in the above experimental situation, the
magnitude of Ag.q for v=3 is greater by a factor of almost
30 as compared with the bulk value of g for an electron in
GaAs (go=—04).

3.4. Spin relaxation of photoexcited electrons and holes

In the magneto-optic method discussed above, we have
considered the relaxation of the electron-hole system in
respect of all the degrees of freedom, including spin, during
photoexcitation. The point is that we need to know the
relation between the interband and spin relaxation time
constants for the 2D electrons and holes in the acceptor
center, on the one hand, and the radiative recombination
time constants, on the other. Without this information it is
difficult to judge the equilibrium or otherwise of the 2D
electron and hole systems, and the electron temperatures
that can actually be attained in an optical experiment.

This information was recently obtained by studying
the kinetics of circularly polarized magnetoluminescence
of single GaAlAs—GaAs heterojunctions under pulsed la-
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FIG. 6. Circular polarization of luminescence as a function of time, de-
termined by holes () and electrons (¥,).

ser excitation with monsecond resolution.*”*! Radiative re-
combination of 2D electrons from Landau levels in the
ground subband (B, line) and the first excited subband
(B, line) was investigated. In the ground subband, the
Landau levels are completely filled, i.e., the populations of
the two spin components are equal, so that the circular
polarization of the By line is determined exclusively by the
state of the hole spin subsystem. The B, line polarization
includes contributions of both hole and electron spin ori-
entations, which in the final analysis can be separated. Fig-
ure 6 shows the polarization due to the holes (curve ;)
and the resultant contribution of electrons and holes to this
polarization (curve ¥,) as functions of time. It is clear that,
even for zero delays, the electron system exhibits apprecia-
ble polarization. The observed reduction in the electron
contribution to the polariation is due to the establishment
of electron spin equilibrium. Thereafter, when the curves
7e and 7, in Fig. 6 become parallel, it may be considered
that the electron contribution has ceased to vary.

The following sequence of relaxation time constants
was finally established experimentally for the above sys-
tem: the shortest were the time constants obtained for the
interband electron relaxation with conservation of spin
projection (less than 0.3 ns). The next was the time con-
stant for establishing electron spin equilibrium (of the or-
der of 0.5 ns); finally, the time constant for the spin relax-
ation of holes in the acceptor was about 2 ns. All these time
constants are shorter by at least two orders of magnitude
than the time constant for radiative recombination from
the ground 2D electron subband. Equilibrium is estab-
lished in the system for these values of the relaxation and
radiative recombination constants. The single heterojunc-
tion with an acceptor §-layer has undoubted advantages
from this point of view as compared with symmetric quan-
tum wells for which the electron (hole) relaxation and
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recombination time constants are not very different.

3.5. Magneto-optic oscillations in the intensity of
recombinational emission

So far, we have been concerned with the behavior of
the resultant spectrum due to the radiative recombination
of 2D electrons with photoexcited holes, which reflects the
properties of the single-particle density of states above the
Fermi level in a magnetic field. On the other hand, it is
well-known that quantization of the motion of electrons
ensures that the thermodynamic and Kinetic variables os-
cillate as functions of the magnetic field (this is seen, for
example, in the Shubnikov—de Haas effect). By direct anal-
ogy with this, one would expect that the luminescence in-
tensity corresponding to the recombination of 2D electrons
near the Fermi level should also oscillate as a function of
the magnetic field. There have been several recent publica-
tions on this optical analog of the Shubnikov—de Haas os-
cillations, observed in the magnetic-field dependence of the
intensity of recombinational emission by 2D electrons.*?#¢
The intensity of magnetoluminescence from the first ex-
cited subband with nonequilibrium population has been
investigated for 2D electrons recombining with free holes
(quantum well*’, single heterojunction®*) and with holes
in acceptor centers (single heterojunction with an acceptor
8-layer*>*). In the case of recombination with free holes,
the magnetic-field dependence of the luminescence inten-
sity is found to exhibit sharp peaks that correspond exactly
to integer filling factors of 2D electrons in the ground sub-
bands. This effect is explained by the screening of the Cou-
lomb potential of photoexcited holes by 2D electrons.

The magneto-optic oscillations may also be due to an-
other effect associated with the complicated kinetics of re-
laxation processes under photoexcitation. In particular,
when the system is subjected to continuous photoexcitation
it can be in a nonequilibrium (but stationary) state and the
observed line intensity can be determined not only by the
equilibrium thermodynamic distribution of particles, but
also by the relaxation kinetics of the nonequilibrium com-
ponent of the electron gas. The magnetic-field dependence
of the line intensities, due to transiently occupied states,
will therefore contain valuable information not only about
the energy spectrum, but also about the character of the
relaxation processes involving 2D electrons in the quantiz-
ing magnetic field. This situation was examined in Ref. 45
which reported an experimental study of magneto-
oscillations in the luminescence emitted by 2D electrons
from transiently filled first excited subband of dimensional
quantization in the case of recombination with holes bound
to acceptors (neutral centers). Magneto-oscillations in the
luminescence from the first excited subband are shown in
Fig. 7a. The lower part of this figure shows the band of
Landau levels obtained by analyzing the resultant lumines-
cence spectra in a magnetic field. It is immediately clear
that the oscillation peaks do not lie strictly in accordance
with the integer filling factors established by independent
experiments with the same illumination, using the minima
of the Shubnikov oscillations in magnetoresistance. It is
also clear that there is a one-to-one correspondence be-
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FIG. 7. a—Radiative recombination intensity due to 2D electrons from
the first excited subband as a function of magnetic field for eg<¢q.
b—Position of Landau luminescence peaks as a function of magnetic field.
Downward arrows show the crossings of the zeroth Landau level of the
excited band and the levels of the ground subband. Upward arrows—even
filling factors. c—Buildup of spin states at lower temperatures.

tween the position of the signal edges on the luminescence
peaks (indicated by downward arrows) and the crossing of
the corresponding Landau levels, namely, the ground sub-
band and the zeroth Landau level of the first excited sub-
band. The mechanism for this is most likely to be elastic
relaxation of carriers from a subband with nonequilibrium
filling to the ground subband. The perturbation that mixes
the wave functions of different subbands can then be pro-
vided by the residual-impurity atoms near the 2D channel.
This interpretation is confirmed by experiments on the op-
tical detection of cyclotron resonance.*’

These magneto-oscillations in luminescence intensity
are very sensitive to temperature. For relatively high 7, the
oscillation peaks correspond to even v, whereas at lower
temperatures, peaks with odd filling number begin to dom-
inate the magneto-oscillation phenomenon (Fig. 7¢). This
effect is explained by the enhancement of spin splitting at
lower temperatures. For example, guH > kT for T=0.4
K, so that a significant difference between the populations
of spin sublevels in the ground subband is found to arise,
and this in turn leads to an effective increase in spin split-
ting because of the enhanced exchange interaction. All this
means that, for odd v, the vacancies, i.e., unfilled positions
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to which electrons relax, exist only in the upper spin state
of the ground subband. Hence, effective relaxation, i.e.,
relaxation without spin flip, can occur only for electrons
from the upper spin state of the excited subband. On the
other hand, relaxation of electrons from the lower spin
level is highly suppressed, which is seen experimentally as
an increase in magnetoluminescence intensity. When v be-
comes smaller than the odd values, vacancies available to
relaxation are also found in the lower spin sublevel, and
there is a sharp fall in the intensity. Magneto-optic oscil-
lations carry interesting information, not only about the
relaxation processes, but also about the states in the spec
trum, i.e., single-particle states in IQHE and Coulomb
states in FQHE.

3.6. Energy spectrum of 2D electrons in an inclined
magnetic field

An inclined field is widely used in experiments with 2D
electrons to demonstrate their two-dimensional character,*
to investigate the influence of spin degrees of freedom on
the energy spectrum,15 and so on.

It is interesting to consider two limiting cases. The
limit of weak magnetic fields corresponds to the situation
where the magnetic length /=1,/sin'? a determined from
the longitudinal component of the magnetic field
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H;=Hsin a is much greater than the linear size of the
quantum well /, (/>1,). The effect of H on the spectrum of
2D carriers can be taken into account in this limit by per-
turbation theory. The correction 8E, to the energy E, of
the nth level of dimensional quantization then arises in the
second order in H, i.e., 8E,~ (#w, sin a)?(E,—E,) ", and
the position of the Landau levels changes only because of
the anisotropy in the effective mass of the 2D carriers, due
to the parallel field. When neighboring Landau levels from
different subbands, e.g., the ground and the first excited
subbands, are crossed, the magnetic field component lifts
the degeneracy because of the repulsion between the levels:

0|Z|1)
=|/1—H(|ﬁ (2N)V21VzcoC sin a.

AESN! (3.4)
The significant point here is that, in this limiting case,
cyclotron rotation is two-dimensional in character and is
entirely determined by the normal component of the field
(o.=eH cos a/m_). The effect of H on the splitting of
Landau levels in weak fields was investigated with the help
of cyclotron resonance in Refs. 48 and 49.

The other limit, for which / </, and the fastest motion
is the rotational motion of electrons around the direction of
the magnetic field with frequency o .=eH/m,, is also in-
teresting and is determined by the total magnetic field H.
The particle does not then ‘feel’ the dimensional quantiza-
tion and travels classically on a cyloid whose axis points
along the field. In this case, the ground-state energy shifts
with increasing field more rapidly than in the case of weak
fields. On the other hand, motion along the field may be
looked upon as adiabatic, and for H— «, the low-lying
part of the carrier spectrum is determined by the position
of the levels in the one-dimensional potential. The split-
tings of E¥,(a) between low-lying levels do not depend in
this limiting case on the magnetic field, and are much
smaller than the original interband splittings of E,,,,. For
example, for the model potential U(2) ~Z"

E* (a)=cos®/"*Nq -E,,., (3.5)

and for the parabolic well***!

1 1
Bl(@) = (n=m) |5 (o4 Elp) [1 (o2 + B2

172172
—w2E3, cos’a ]

~E,,cosa. (3.6)

The capacity of each level is determined by the normal field
component.

The electron energy spectrum in a strong inclined field
(1<l,) has been investigated by studying the radiative re-
combination of 2D electrons with photoexcited holes.>?
Figure 8 shows the position of the energy levels as a func-
tion of the magnetic field and the splitting between the
levels, determined by analyzing the magnetoluminescence
spectra. It is clear that, in a strong inclined field H, the
measured relationships depart from straight lines and the
splitting between neighboring levels ceases to depend on H.
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The residual splitting decreases with increasing angle a. It
may be concluded that, beginning H > H¥, the splitting
between the levels £, is determined by dimensional quan-
tization of electrons in the potential well in the direction of
the magnetic field. It is important to emphasize that, for a
given concentration of 2D electrons, H} is independent of
a, whereas for fixed a the field HY decreases significantly
with decreasing n,. We note in conclusion that the mea-
sured ratios E},(a)/E g and E,, (a)E), as functions of the
angle a can be successfully used to determine the shape of
the quantum well to which the carriers are confined.

4. MAGNETO-OPTICS OF QUANTUM LIQUIDS IN FQHE

The ground state of an incompressible quantum liquid
in the case of the FQHE is described by the trial wave
function of a many-electron system proposed by Laughlin®:

1
Y= II f(Zj—Zk)exp(——Ez > lzl.ll)’
j<k 0
(4.1)
f(Z2)=24

Although an exact analytic solution of this problem has
not yet been found, the wave function (4.1) has been en-
tirely successful. The starting point for Laughlin’s idea of
the incompressible quantum liquid was Ref. 53. The expo-
nential factor in (4.1) follows from the eigenfunctions of
the bottom Landau level, which are classified in accor-
dance with the projections of the angular momentum m
(Ref. 54):

2 omo—12(Z\" Z|?
Y= Q2mly - 2™"m!) —1| exp| ——= ). (4.2)
lo 4

The pre-exponential factor is taken in the Jastrow
form, i.e., a product of pair functions. The power form of
f follows from (4.2) because only a polynomial that is
homogeneous in Z can be an angular momentum eigen-
function. This property guarantees that ¢ belongs to the
ground Landau level. The degree of the polynomial is de-
termined by the total angular momentum which is a good
quantum number, so that m is an odd integer. Next, by
analyzing this problem in terms of the single-component
classical plasma, Laughlin demonstrated that the wave
functions given by (4.1) describe the ground state for
v=1/m where m=q is an odd integer. The odd denomi-
nator rule of Laughlin’s theory is thus seen to follow from
the antisymmetry of the many-electron wave function con-
structed for electrons with the same spin projection. The
quantum-liquid wave function can in principle be a singlet,
but its exact form is still not known.

For T'=0 and H=const, the ground-state energy
E(N) of the interacting electrons, where N is the total
number of the particles, exhibits a series of cusps for values
of N corresponding to fractional filling factors n=1/¢g. A
cusp on the E(N) curve signifies that there is a discontin-
uous change in the chemical potential u=dE/dN as N
passes through values N, corresponding to filling factors
n=1/q. This in turn shows that there is a gap in the spec-
trum, given by
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A=(dE/dN)_—(dE/dN) .. (4.3)

The Coulomb gap separates the ground state of the quan-
tum liquid at the point ¥, from the continuum of quasi-
particle excitations. The variation in N near N, produces
elementary excitations, i.e., quasiparticles with charges
—e/q for N> N, and quasiholes with charges +e/qg for
N <N,. It is clear that this picture has nothing in common
with the usual elastic compression (expansion) of the elec-
tron phase, e.g., the usual Fermi liquid. This means that, in
this particular case, the quantum liquid is incompressible
for fractional v, and gapless (acoustic) excitations are ab-
sent from its spectrum.

The Coulomb gap is given by A= Ce?/el, where C is a
constant calculated in different model approximations in
Refs. 9 and 55-58. It is commonly considered that the best
of these calculations is based on the Monte Carlo method.
They show that C=0.1 (Ref. 58). A particular Coulomb
gap thus corresponds to the creation of a pair of excitations
above the gap at infinite distance from one another. In
principle, bound (quasiexcitonic) pairs can also be excited.
Such excitations should have their own eigenvalue spectra.
The spectrum of these excitations contains a roton mini-
mum, in direct analogy with the spectrum of excitations of
superfliid He*. Theoretical calculations® show that the
roton minimum lies at transferred momenta kly~1.4.

The states of quantum liquids in the fractional QHE
regime obey the rules of the hierarchy of states. Haldane
has proposed a hierarchical scheme'® in which states p/q
with 1<p<gq, where p is an integer, are formed from new
generations of quasiparticle excitations in much the same
way that the Laughlin ground state (4.1) is formed from
electrons. Daughter states of quantum liquids thus arise
from the condensation of quasiparticle excitations of the
original ‘parent’ states. The size of the Coulomb gaps for
states with different 1/g should be described by the scaling
relation (1.3).

It is thus clear that Coulomb gaps determined experi-
mentally in the fractional QHE regime are essential for
comparisons with existing theoretical ideas and their fur-
ther development.

For a long time, activated magnetotranspor as
the only way of measuring Coulomb gaps. This was essen-
tially the method used to measure the mobility gaps in
FQHE, which are very sensitive to disorder. At very low
temperatures (7" < 1K), this method encounters difficulties
associated with hopping conductivity with variable hop
length, and also strong localization effects. It is quite clear
that there is a need for an independent method of measur-
ing Coulomb gaps. We shall therefore examine whether the
magneto-optic method can be used to solve this problem.

t59—63 w

4.1. The properties of magnetoluminescence spectra for
fractional v

Optical experiments with 2D electrons in the fractional
QHE regime were first performed with Si-MIS
structures.®* They revealed discontinuous luminescence-
line behavior along the energy scale at fractional values
v=28/3, 7/3. The magnitude of these discontinuities was
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used to estimate the corresponding Coulomb gaps. How-
ever, in the case of the 2D electron gas in Si-MIS struc-
tures at low temperatures and strong magnetic fields, radi-
ative recombination from the lower spin state S,= —1/2 is
not observed because of selection rules, and there are fun-
damental reasons that prevent observations by magneto-
optic methods in the ultraquantum limit. No such limita-
tions arise in the case of the GaAlAs-GaAs
heterojunctions because the electron g-factor is negative.

In this Section, we examine magneto-optic measure-
ments on single GaAlAs-GaAs heterojunctions at frac-
tional filling factors v=2/3,1/3,4/5, 3/5, 2/5, 1/5, 1/7,
and 1/9 for which the discontinuous behavior of the mag-
netoluminescence line was also observed.?! These studies
employed high-grade samples in which the 2D electron
mobility under illumination was p,>10%-—310°
s2V~!s~! and the electron density could be varied by the
means of a suitably chosen steady illumination in the range
0.5x10"-—2x10" ecm™2,

Figure 9 shows the Landau line peaks in the magne-
toluminescence spectrum, obtained by varying the mag-
netic field. For filling factors v> 2, the picture takes the
usual form of fan of Landau levels. However, for v<2,
when only one line remains in the spectrum, new features
are found to arise. The maximum deviation from the
straight line occurs in the region between v=2 and v=1.
These deviations are due to enhanced spin splitting that
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results from the exchange interaction between electrons
with the same spin projections (enhanced g-factor). Fur-
ther increase in the magnetic field results in additional
jumps in the spectral position of the center of gravity of the
line #id near v=4/5, 2/3, 3/5,2/5, and 1/3. The ampli-
tude of these jumps increases with decreasing temperature.
The size of the jumps is small in comparison with the basic
energy scale in the spectrum, which is determined by the
cyclotron energy. The same results are shown in Fig. 9b
after subtraction of the single-electron contribution due to
the energy of the bottom Landau level. This makes the
jumps in #iw at v=4/5,2/3, 3/5, 2/5 and 1/3 more clearly
defined. It is interesting to note that a small line broaden-
ing (about 10%) is observed near v=p/q. However, this
does not affect the line shape. There is also a relatively
broad singularity near v=1/2. When the temperature is
raised to 5 K, all the jumps corresponding to filling factors
with odd ¢ are found to vanish, but the v=1/2 singularity
persists up to 25 K. The slight temperature sensitivity of
this singularity is similar to that observed in
magnetotransport.>® In particular, magnetotransport
studies® show that the v=23/ 2,3/4,1/2, and 1/4 singular-
ities have a common origin that is unrelated to FQHE.

The dependence of AE on H becomes more negative as
the temperature is reduced, which is associated with strong
localization in the magnetic field. This can be used for the
analysis of disorder in the system.

By using a series of samples with decreasing concen-
tration of 2D electrons, it is possible to move deeper into
the ultraquantum region (v«1). The discontinuous behav-
ior of the center of gravity of the luminescence line for
v=2/3,1/3,4/5,3/5,2/5,1/5, 1/7, and 1/9 is illustrated
in Fig. 10. These results are fully reproduced after thermal
cycling. We note that similarly well-defined singularities at
v=1/7 and 1/9 in FQHE were found for the first time, but
magnetotransport measurements did not reveal the singu-
larity at v=1/9. This clearly shows that, in comparison
with magnetotransport, strong localization effects are
much less effective in restricting the magneto-optic
method. Figure 10 compares the functions AE(H) mea-
sured at three different temperatures. At 0.4 K, the behav-
ior of the function is discontinuous for all observed frac-
tions v=1/q up to 1/9, but no features are observed near
1/11. At T=1.2 K, the jumps at v=1/7 and 1/9 vanish;
however, they persist for other fractional v=p/q with
smaller g.

Finally, we turn to the very topical problem of the true
electron temperature in the above experiments under
steady photoexcitation. The problem was solved by analyz-
ing the linewidths of Shubnikov oscillations in longitudinal
magnetoresistance, which acted as an external electron
thermometer. The longitudinal resistance was measured si-
multaneously (in situ) with magneto-optic properties. For
example, under stationary photoexcitation by an argon la-
ser with a power output of about 1 MW and with a bath
temperature of 40 mK, the electron temperature was found
to rise, but did not exceed 100 mK. It follows that these
structures can be used to perform magneto-optic studies at
temperatures much less than 1 K because of the much
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FIG. 10. Center of gravity ® of the luminescence line due to the recom-
bination of an electron for the lower spin state as a function of the mag-
netic field. AE=#o— (1/2)#iw, .

longer time constants for radiative recombination of 2D
electrons in these systems.

4.2. Theory of magnetoluminescence from 2D electrons in
FQHE

We now turn to the interpretation of the above exper-
imental results. It was believed in early discussions® of the
discontinuous behavior of the center of gravity of the Si-
MIS magnetoluminescence line at fractional filling factors
that this behavior was directly related to discontinuities in
the chemical potential when the 2D electrons condensed
into the Laughlin quantum liquid: Ad=Au=qgA,. The
spectral jump A& could then be directly used to determine
the Coulomb gap corresponding to a given fraction 1/g.
This hypothesis was based on the assumption that the ini-
tial state of the NV electrons prior to recombination and the
final state of the N —1 electrons after recombination were
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both ground states. In other words, the interacting system
of 2D electrons was assumed to follow adiabatically the
radiative recombination with the acceptor center. This was
an attractive hypothesis because the recombination event
in the interacting system of N—1 electrons was followed
by the appearance of different excitations whose subse-
quent relaxation to the ground state after this shake-up
process required a sufficient interval of time.

A theory®’ capable of analyzing the radiative recombi-
nation of an interacting system of 2D electrons with holes
in an acceptor center has recently been reported. The anal-
ysis is concerned with the behavior of the first moment M,
of the luminescence line when the filling factor is varied
near a fractional value of v:

M= JI(E)EdE/JI(E)dE

coincides directly with the center of gravity of the line @.
The main result is that M, (v) reflects the behavior of the
mean energy of the interacting electrons and not the chem-
ical potential.

The theory is based on the following model assump-
tions. The electron density is assumed to be homogeneous
and the acceptor center originally neutral. The separation
Z, between the impurity center and the 2D plane, and the
magnetic length /y, are much greater than the width of the
electron layer and the radius of the impurity center (Z,,
o> rimp)- In the final state, the potential of the impurity
center is a repulsive Coulomb potential. At T"=0, the elec-
tron system is in the ground ith state; when this state is
degenerate, it is assumed that all the states are equally
filled. The magnetic field is assumed to be so strong that
#iw,>€*/ely, and mixing of the different Landau levels can
be neglected. In other words, the mixing parameter for the
Landau levels A= (¢*/ea) /#iw,= (1/2v)r, is assumed to be
zero [a=(mn,)~"? is the particle separation, r,=a/ap,
and @ g=¢#i/mée’ is the Bohr radius). This is equivalent to
the situation for which r,—0. The radiative quantum tran-
sition occurs at the point 7, in the 2D layer that is closest
to the impurity center. The calculations are performed nu-
merically in spherical geometry.*% All the equations are
thus written down for the homogeneous system with a
finite number of particles (in practice six and seven parti-
cles).

The normalized first moment of the magnetolumines-
cence line is thus given by

M\=E—(Hpg. (44)
where E; is the ground-state energy of the N interacting
particles and H; is the Hamiltonian of the system in the
final state, i.e., the energy of the N—1 electrons with co-
ordinates ry...,ry_ in the 2D layer, which interact with
one another and with a repulsive Coulomb center at r;. The
average in (4.4) is evaluated over wave functions
¥,(ry,..ry) of all states a belonging to the ith level, subject
to the condition ry=ry. After subtraction of the energies.of
the ground Landau level and the impurity center, the first-
order moment of the center of gravity of the magnetolu-
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minescence line contains only the energy of the Coulomb
interaction between the particles. Equation (4.4) then as-
sumes the form

M= [ (V=31 ~ VU3~ FaDsC | o105

~2EN"'= [ V(13,—BDeCIFo—BDAB. (45)

The integral in this expression is evaluated over the entire
2D layer, and the pair correlation function is given by

g pv—pPrn_1l)

1
=2 V=Dl 2 f |$alryory) [ 2dry - dry s
’ i (4.6)

where g; is the degeneracy of the ith level, 4 is the area of
the 2D layer, and p=r/e.

If V(r) is a short-range potential, the second term in
(4.5) can be simply discarded. If we use the definition of
the chemical potential in the form v=3E,/dN then (4.5)
readily yields the following expression for the Coulomb

gap:
A, = (v/29)8(3@/3v) = (H/24)5(85/3H).

Hence the line center of gravity function @(v) follows the
mean energy of the Coulomb interaction between the par-
ticles and displays cusps for fractional v. The cusp
strength, defined as the discontinuity in the derivative d®,/
ddv, can be used to deduce the gap size A,.

However, V(r) is actually a long-range Coulomb po-
tential and, in principle, the second term in (4.5) has to be
taken into account. It is interesting to note, that as Z—0,
we have @=0. This means that, if the 2D electrons in the
impurity center (or free hole) are coplanar, the two terms
in (4.5) cancel out, and there are no singularities in @(v)
near fractional v.

For finite Z,, the extrinsic contribution to the cusp
strength in &(v) is not small. The general expression for
the cusp strength is

5(5)=T_fV(|pl_p|)5(—————;v )dp.
(4.8)

In the expansion for (4.8), the term ~Z; ! is absent from
the normalization condition for Zy> l,, whereas for Z;<1;
the expansion is proportional to Z2.

The pair correlation function can be used to calculate
the second (extrinsic) term in (4.8) as a function of # and
the results are as follows:

8(0/dv) =18A —37e(I/Zy)° for Zy>1,

4.7)

~0.71(Zy1)? for Z,<l. (4.9)

Hence it follows that the exintrinsic contribution to the
general expression for the cusp strength rapidly decreases
with increasing distance Z; of the impurity center from the
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2D plane. This means that, for sufficiently large distances
Z,, the procedure that has to be used to analyse the exper-
imental data on M;(v) in order to determine the gap size
becomes much simpler.

4.3. Coulomb gaps in FQHE

Let us now consider how the experimental data on the
center of gravity of a luminescence line or its first moment
M, (v) were used to determine the gap size in accordance
with the theoretical predictions.

The experimental luminescence spectra were analysed
by calculating the zeroth (M,), first (M) second (M,),
and third (M) spectral moments:”°

|
My= fI(E)dE, M1=ﬁ fI(E)EdE,
0

2 1 2
Mi=3r f I(E)(E—M,)XE,

1
Mg:ﬁ_? JI(E)(E—MI)JdE.
2

All the experimental data obtained for constant values of
the magnetic field were processed on a computer. We recall
that My, M, M, and moment M; characterizes the inte-
gral intensity, the center of gravity, the width, and the
asymmetry of a luminescence line. The uncertainty with
which the first moment M, was determined was less than
0.01 meV. Figure 11a compares the behavior of the func-
tion M(H) with the picture of Shubnikov oscillations in
magnetoresistance for a sample with high mobility”
(1.2x10% cm®V~!s~!), It is clear that the minima of Pxx
coincide with downward cusps of M,(H). This is more
clearly seen in Fig. 11b which compares the four moments
M, M,, M;, M, as functions of H with the minimum of
Pxx near v=1/3. It is clear that the minimum of p,, coin-
cides with the cusp of M, (H) at v=1/3, so that this func-
tion probably reflects the mean energy of 2D electrons
rather than its chemical potential. We also note that the
upward cusp of M (H) lies near the maximum of p,,. In
many cases, the spectrum of radiative recombination of 2D
electrons and an acceptor center was investigated in paral-
lel with spectra corresponding to recombination with free
holes. However, no cusps were found on M,(v) for frac-
tional v.

Figure 12 shows simultaneously recorded data on the
Shubnikov oscillations in p,,, the first-order moment
M (H), and its derivative dM,/dH measured for a sample
with 2D electron concentration 7,=2.4X10!! cm™?2 at
T'=100 mK in the neighborhood of filling factors v=38, 6,
4, 3,2, 1 and 2/3 (Ref. 71). The presence of downward
cusps on M, (H) becomes particularly clear if we examine
the corresponding discontinuities in the derivative
dM,/dH. Figure 12 shows the jumps for v=2, 4, 6, 8, 10
(cyclotron gaps), v=1, 3, 5, (gaps due to spin splitting),
and v=4/5, 2/3, and 3/5 (Coulomb gaps for fractional v).

For IQHE, the mean energy of electrons is determined
by the shape of their distribution over the Landau levels.
Here again we see downward cusps on M (H) that appear
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for even integral values of v. These cusps determine the
discontinuous behavior of the chemical potential as the
Landau levels are crossed. In the case of the ideal picture
of discrete Landau levels, one can readily use the jump in
the derivative dM,/dv to determine the cyclotron gap if
there is no electron-electron interaction and 7'=0. The
relevant expression is

Ag="iw,=v8(dM,/dv) = H5(dM ,/dH). (4.10)

We now draw attention to the fact that (4.7) and (4.10)
are identical apart from the factor of 2. In (4.7), which
gives the Coulomb gap in FQHE, this factor is due to the
pair character of the e, e interaction.

When v=2 and the temperature T is low enough, we
can readily verify (see Fig. 12) that the jump in dM/dH
is practically equal to efi/m_ which can be determined in-
dependently from the Landau splitting in optical spectra.
For high even integral values of v there are deviations due
to the broadening of the Landau levels and the relatively
large discrete step in the magnetic field under these exper-
imental conditions.”! As the temperature increases, the de-
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rivative dM/dH decreases in amplitude and monotoni-
cally broadens in the region of the cyclotron gaps. This
temperature evolution of the downward cusp on M,(H)
and the derivative dM/(H)/dH is not at all surprising
and is a consequence of the Fermi distribution function.
The jumps on dM(H)/dH in Fig. 12 are associated
with spin splitting for v=1 and Coulomb gaps in FQHE
for v=4/5, 2/3, and 3/5. The derivative dM,/dH was
calculated numerically from the directly measured M (H).
The Coulomb gaps and their dependence on the mag-
netic field, determined by this procedure, are illustrated in
Fig. 13 for v=p/3, p/5, p/7 and 1/9. The circles represent
A, determined directly from the size of the discontinuity in
the derivative dM(v)/dv, using the approximate formula
given by (4.7). The crosses show the same gaps after cor-
rection by the procedure described in Ref. 67, taking into
account the finite distance Z, between acceptors and the
interface. The experimental values are compared with the
theoretical dependence of A, on H (Refs. 58 and 72),
which is represented by the solid lines. The dashed lines
show the approximation giving the best agreement with
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experiment. We recall that theoretical calculations indicate
that the Coulomb gaps are reduced in size when the finite
width of the 2D electron channel and the mixing of the
Landau levels are taken into account.” Finally, for the
purposes of comparison, we also reproduce the data ob-
tained by activated magnetotransport (filled and open
squares represent data from Refs. 62 and 63). The agree-
ment between optical and transport measurements is
best—and completely satisfactory—for H> 10 T, but the
data show a considerable discrepancy for lower values of
H. The reason for this discrepancy is probably the fact that
the magnetotransport measurements yield the mobility
gaps. When the mobility gap is comparable with the
Landau level width, magnetotransport results in a consid-
erable underestimate of the true gap width.

The temperature dependence of a Coulomb gap is not
a trivial result. Figure 14a shows the derivative
dM,(H)/dH at v=2/3 and 3/5 at different temperatures.
The jump in the derivative is practically constant up to a
certain temperature. For fundamental reasons, this effect
cannot be detected by means of activated magnetotrans-
port. Figure 14b shows the Coulomb gap energies for
v=2/3,3/5, 1/5, and 1/7, determined from
6(dM | (H)/dH) by the procedure described above. It is
clear that each fraction has its own characteristic temper-
ature 7', after which the corresponding gap collapses. Sim-
ilar behavior had been observed earlier for FQHE in Si-
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MIS structures. The thermal collapse is also observed in
the case of spin splitting (v=1). There is a simple empir-
ical relation between the gap size A(7'=0) and the critical
temperature. To explain this effect in the case of the FQHE
it would probably be necessary to take into account the
total dispersion of the spectrum of quasiparticle excita-
tions, including its roton part.

4.4. Magneto-optic experiments in FQHE for other
heterosystems

The magnetoluminescence of 2D electrons and free
holes in a high-grade single GaAlAs-GaAs heterojunc-
tions was investigated in Refs. 74 and 75 (the mobility of
the 2D electrons in these structures under illumination was
of the order of 107 cm?V~!s™!). A study was made of
oscillations in intensity due to recombinations of 2D elec-
trons from the ground (E, line) and excited (E; line)
subbands of dimensional quantization as a function of
magnetic field. It was found that the Ej-line minima and
the E;-line maxima of magnetoluminescence intensity cor-
responded to integral v for IQHE and to fractional v for
FQHE. This oscillatory behavior is explained in terms of
the screening by electrons of photoexcited free holes, and
also the incompressability of the Fermi liquid. The oscilla-
tions are undoubtedly indicators of highly correlated elec-
tron states in FQHE. However, the oscillation can hardly
be used for the measurement of the size of Coulomb gaps.

The radiative recombination of 2D electrons with free
holes in doped asymmetric single GaAlAs—GaAs quantum
wells was investigated in Ref. 76. These experiments re-
vealed the splitting of luminescence lines near v=2/3,
which was not directly related to the corresponding Cou-
lomb gap; the nature of the splitting is not as yet entirely
clear.

Finally, there have been some very interesting experi-
ments on resonant electron scattering of light by 2D
electrons.”’” Inelastic scattering of light was detected in
these spectra and was related to energy transfers to the
roton minimum in the spectrum of quasiparticle excita-
tions. If these observations and, especially, their interpre-
tation, can be confirmed, the resonant scattering of light by
2D electrons may turn out to be one further optical tool for
the determination of the spectrum of Coulomb gaps in
FQHE.

5. MAGNETO-OPTIC OBSERVATIONS OF
CRYSTALLIZATION OF 2D ELECTRONS

In this Section, we consider the interesting problem of
how the crystallization of 2D electrons in the ultraquan-
tum limit can be observed by magneto-optic methods. We
shall be mostly interested in the competition between the
ground states of quantum liquids in FQHE and the Wigner
crystal, and in the effect of this competition on the phase
diagram of the crystal to liquid transition.

5.1. Theoretical aspects of the problem
Almost sixty years ago, Wigner predicted’® that, when
the Coulomb interaction energy (¥) is much greater than
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the kinetic energy (K), a set of electrons should form a
stable configuration with long-range order. In the free-
dimensional case, the lattice with the lowest internal en-
ergy is the body-centered cubic, whereas in the two-
dimensional case, it is a hexagonal lattice.

For 2D electrons in zero magnetic fields, it is common
to distinguish between classical and quantum limits in
which this type of crystallization can take place. The clas-
sical case (or the low-density region) is defined by the
inequalities #/m*a* < kT <¢*/ca where m* is the effective
mass of the electron and a is the separation between the
particles. In this limit, the phase transition from the liquid
to the electron 2D crystal occurs for (V)/(K)
=e*(mn)%/ekT > >T =102 It is precisely this type of
crystallization of 2D electrons in the classical approxima-
tion that was detected and investigated in experiments with
electrons on the surface of He (Refs. 79 and 80). These
studies have resulted in the determination of the transition
phase boundary on the ng, T, plane, the classical melting
point T,=e*(mn,)"/*/T £k, and the magnitude of the pa-
rameter I',,.

The quantum limit (or the region of high concentra-
tions) occurs when kT <#/m*a*<e*/ea. In this region,
the ratio (F)/(K) is analysed as a function of the dimen-
sionless parameter r,=a/ap. Since the correlation energy
is(V)~ nSV 2 and the kinetic energy is (K) ~ ng, the Wigner
2D crystal is stable for r,>T'y, i.e.,, when the electron
density does not exceed a certain limiting value defined by
n<nyw=(T3map) "\ In this situation, the phase diagram
has an end-point on the concentration axis. Numerical cal-
culations show®' that I'y ~33. If we adopt this value of
I'w, we find that quantum crystallization of 2D electrons
occurs on the surface of helium for ny~10"® cm~?
whereas the corresponding figure for 2D electrons in a
GaAlAs-GaAs heterojunction is ny=~10® cm™% These
conditions cannot be met in such systems, which has meant
that Wigner crystallization of 2D electrons has not been
observed in the quantum regime in the absence of a mag-
netic field.

The situation is radically different when a strong trans-
verse magnetic field is applied. The electrons then lose their
previous degrees of freedom and execute finite motion on
cyclotron orbits with dimensions (2N+1)"%,. In the
quantum limit (v <1), the correlation interaction ensures
that the mean energy of the 2D electrons is reduced with-
out any loss in kinetic energy. A strong magnetic field thus
establishes favorable conditions for the spatial ordering of
electrons, i.e., it stimulates Wigner crystallization.

We have to know the critical filling factors v, above
which the crystalline phase of electrons becomes energeti-
cally more favorable than the quantum liquid in FQHE
before we can carry out experiments in the quantum limit.
The phase boundary between the Wigner crystal and the
liquid can be fully described by using three parameters,
namely, the filling factor v, the dimensionless density r,
and the dimensionless temperature I'=kT/(e?/£a). In the
three-dimensional space (v,I,r,), the transition phase dia-
gram should take the form of a topologically complex sur-
face. For high densities, r, may be looked upon as the
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equivalent of A which characterizes the mixing of Landau
levels A= (e*/ea)/#iw.=vr/2. Most microscopic calcula-
tions of the ground-state energy of the Wigner crystal are
concerned with the limit »,—0. They yield values of v,
between 1/5 and 1/10 (Refs. 30 and 82). Correlation ef-
fects in the case of mixing between Landau levels are taken
into account in Refs. 83 and 84 where it is shown that there
is an associated increase in the stability of the Wigner crys-
tal. The most stable crystal phase occurs for v.=1/3. For
example, r =20 for the hole-type 2D channel in GaAlAs—
GaAs.

A reduction in the dimensionality of the system results
in new properties of the 2D crystal and in singularities in
the transition from the liquid to the 2D crystal as com-
pared with ordinary three-dimensional objects. The prop-
erties of the 2D crystal were first examined by Peierls who
showed that the amplitude of zero-point oscillations, or the
root mean square deviation of a particle from its equilib-
rium position in the lattice, increases logarithmically with
the size of the system at any finite temperature. This means
that the 2D crystal with unlimited dimensions is unstable.
The problem can be solved in two different ways.

First, numerical model calculations show that the sta-
bility of the two-dimensional crystal is greater when it is
split into domains, and that the smaller the size of the 2D
domain, the higher its melting point.®’

Another approach was developed by Kosterlitz and
Thouless® (see also the review in Ref. 87). They showed
that long-range order cannot occur in the 2D case in the
ordinary sense, but that it is possible to introduce a crite-
rion that will distinguish between liquid and crystal phases.
In particular, in the liquid case, positional order vanishes
exponentially, whereas in the two-dimensional crystal this
occurs much more slowly, i.e., the loss of order is described
by a power function of distance. In contrast to the ordinary
three-dimensional liquid-to-crystal transition, which is a
first order transition with a particular latent heat, theory
predicts a continuous transition from the low-temperature
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phase with quasi-long-range positional order to the high-
temperature disordered phase. The transition itself is char-
acterized by singularities in energy and heat capacity.

Nelson and Halperin have suggested®® that the melting
of the 2D crystal is the result of the dissociation of struc-
tural defects, namely, dislocation pairs. The phase transi-
tion itself occurs in two stages and is characterized by two
critical points, namely, T, for the transition between the
2D crystal and the hexatonic liquid with orientational or-
der (the so-called hexatonic phase) and T, above which
the orientational order is lost in the liquid phase.

One of the most suitable objects for the investigation of
2D electrons in a strong magnetic field in Wigner crystal-
lization is the single GaAlAs—GaAs heterojunction.
Improved technologies can be used to produce in
such structures two-dimensional channels with electron
mobilities of 10°-10" cm?V~'s™! for 2D carrier concen-
trations n,=10'°-10"" cm~2. Recent experiments that
are conceptually and methodologically different have
examined radiofrequency absorption,’”®  nonlinear
magnetotransport,'#¥-1%  the attenuation of surface
acoustic waves,”? cyclotron resonance,” and magneto-
optics.?"”* They have produced substantial evidence for the
fact that this crystallization does occur. Its manifestations
in magneto-optic experiments are examined below.

5.2. Luminescence spectrum in Wigner crystallization

It was found in Ref. 21 that the spectrum of radiative
recombination between 2D electrons and holes in a §-layer
of acceptors in a single GaAlAs—GaAs heterojunction con-
tains a new line (the so-called S-line) for v<wv, and
T <T,. The relative intensity of the S-line increases with
decreasing filling factor.

Figure 15 shows the normalized luminescence spectra
obtained in different magnetic fields for a particular sample
in which the 2D electron concentration under stationary
illumination was n,=5.4%10* cm~2 In addition to the
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well-known L-line that corresponds to the recombination
of electrons from the lower spin state in the liquid phase,
the spectrum now contains the new S-line that appears
when certain particular values of the magnetic field are
reached. The line becomes stronger with increasing H, and
dominates the spectrum for v=~0 and 1. The S-line is
shifted toward lower energies, and the splitting between the
S and L lines amounts to 1.4 meV. It is significant that the
appearance of the S-line in the spectrum is accompanied by
the beginning of a rapid reduction in the integral lumines-
cence intensity in this region. This is illustrated in Fig. 16
which shows the integral luminescence intensity and the
S/ L intensity ratio as functions of the magnetic field H.
The fall in the integral intensity and the rise in the S-line
intensity occur for the same magnetic field H, . Measure-
ments on samples with different concentrations n, have
shown that H, increases linearly with increasing ;.

The phenomena described above for this particular
range of concentrations are thus found to be independent
of n, and are observed for filling factors v <v,=0.26. It is
important to note that the S-line intensity decreases
sharply near v=1/5, 1/7, and 1/9 for which condensation
into the quantum liquid takes place. At the same time, the
integral luminescence is found to rise due to the increase in
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the L-line intensity for the same fractional filling factors.

The S-line is very sensitive to temperature. It vanishes
from the spectrum for T>1.4 K and H=26 T. This is
accompanied by an increase in the integral luminescence
intensity and a return to the initial values for H <H, . The
critical temperature is very dependent on the filling factor:
for v <w, it increases with decreasing v, but it falls sharply
for v=1/5,1/7, and 1/9.

The appearance of the new S-line in the spectra, which
is accompanied by the simultaneous sharp reduction in the
integral luminescence signal, is due to the emergence of the
crystal phase in the system of interacting electrons. In this
interpretation, the S and L lines correspond to the radia-
tive recombination of 2D electrons from the crystal and
liquid phases, respectively (quantum Fermi liquids for
v=1/5, 1/7, and 1/9). The shift of the S-line toward lower
energies as compared with the L-line signifies that the
ground state of the crystal phase is the lowest state. The
vanishing of the S-line for v=1/5, 1/7, and 1/9 indicates
that, for such fractional fillings, the ground state of the
system is still the quantum liquid. The sharp reduction in
the integral luminescence signal is a consequence of the
strong localization of electrons under crystallization con-
ditions. Actually, the size of the electron and hole wave
functions participating in recombination is determined by
the magnetic length in the 2D plane. On the other hand,
the magnetic field has little effect on the wave functions of
the recombining particles in the perpendicular direction. It
is clear that the overlap of the wave functions of the highly
localized electrons and holes decreases with increasing H.
The localization of electrons is intrinsic in this case. This
follows from the fact that a qualitative change in structure
does not affect the critical filling factor v.. The observed
phenomenon is due to the appearance of the 2D crystal
that is pinned on inhomogeneities in the random potential.

5.3. Effect of the electric field

We must now consider the effect of the electric field on
the properties of the S-line, observed during Wigner crys-
tallization. It has been found that there is a threshold for
the increase in the intensity of this line, which is accom-
panied by the appearance of additional noise due to the
luminescence-signal instability near the threshold.** These
features are explained by the disruption of the Wigner crys-
tal pinned down by the electric field. Moreover, by varying
the electric field, it is possible to isolate the S-line indepen-
dently of the main luminescence signal, and thus investi-
gate its properties. The Wigner crystal has been shown to
melt in two stages that can be characterized by two critical
temperatures 7, and T,.

Figure 17a shows the luminescence spectra of a single
heterojunction with 2D electron concentration 5.5 10'°
cm~%ina magnetic field of 16 T (v=0.135) for different
potential differences, namely, ¥=0 and V=5 mV (electric
field 0.02 V cm_l). For V=0, the luminescence spectrum
contains both the main L-line and the S-line shifted toward
lower energies. In a weak electric field, the spectrum is
modified: the S-line intensity is much higher whereas the
L-line intensity remains unaltered. This was used to sepa-
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FIG. 17. (a)—Luminescence spectrum for H=16 T and T=80 mK,
measured in zero and other electric fields. (b)—Differential luminescence
spectra with modulated electric field.

rate out the S-line in the differential luminescence spectra
by modulating the electric field. Figure 17b shows the dif-
ferential spectra obtained for different voltage modulation
amplitudes. As can be seen, only the S-line is present.
Figure 18 shows the S-line intensity as a function of
the voltage amplitude. The function has a threshold char-
acter: a rapid rise in the luminescence signal is observed
when the voltage exceeds 2 mV. We note that the differ-
ential signal becomes very unstable near the threshold volt-
age. Figure 18b shows the noise level associated with the
luminescence signal, measured as the root mean square
deviation from the mean, as a function of the applied volt-
age. It is clear the noise level is much greater near the
threshold. The threshold behavior of the signal and noise is
correlated with the nonlinear behavior of the current-
voltage characteristic,'” and also with the generation of
electric noise near the threshold. This is interpreted as the
depinning of the Wigner crystal by the electric field. In this
case, the depinning of the Wigner crystal produces an in-
crease in the luminescence signal. This is said to occur
because recombination of 2D electrons in the pinned
Wigner crystal is less effective. In a strong magnetic field,
the size of the wave function of a 2D electron is equal to
the magnetic length. Holes participating in recombination
are also localized (the Bohr radius of an acceptor is ag~40
A). We may thus conclude that the overlap of the wave
functions of an electron and a hole localized in the 2D
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FIG. 18. S-line intensity (a) and noise level (b), recorded in differential
spectra using a modulated electric field.

plane decreases with increasing magnetic field, which leads
to a sharp reduction in the luminescence signal. The de-
pinning of the Wigner crystal by the electric field sets the
electrons in motion, which produces an increase in the
recombination probability. The luminescence-signal insta-
bility near the threshold voltage is probably due to the
presence of a large number of crystal domains in the sys-
tem, whose dimensions vary with time. Since the threshold
voltage may depend on the domain size, the observed in-
stabilities near the threshold voltage are not surprising. By
direct analogy with the depinning of a charge-density wave
by an electric field, the threshold can be used in this case to
estimate the coherence length or the linear size of 2D do-
mains. Such estimates yield L1 gm (the number of 2D
electrons per domain is <1000).

5.4. Critical temperature

Figure 19 shows the temperature dependence of the
S-line intensity, measured for H=16 T (v=0.135). It is
clear from this figure that, in addition to the above tem-
perature and filling threshold, there is also a temperature
threshold, namely, 7,;=0.35 K for which the lumines-
cence intensity is found to fall abruptly. However, the
S-line does not vanish altogether at T=T,: it persists in
the spectrum up to T,=1.2 K. These observations show
that the Wigner crystal melts in two stages. This two-stage
melting was predicted theoretically in Ref. 88 where it was
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shown that the crystal to liquid crystal transition should
occur at T, and the liquid crystal to liquid transition at
T.,. The observed depinning by the electric field for tem-
peratures T, <T <T is in conflict with the melting
model that relies on an intermediate liquid-crystal phase
because the liquid crystal cannot be pinned down. Another
possible explanation of the existence of two critical tem-
peratures is provided by model numerical calculations of
T, as a function of the size of the 2D crystal.®® According
to this calculation, the critical temperature for melting of
the 2D crystal decreases with increasing crystal size. It
follows that 7';, may be the melting point of domains with
a low number of electrons (of the order of 10). Magneto-
optics as a local method may be sensitive to the properties
of polycrystals with very small dimensions.

The two critical points 7';; and T, have been observed
independently in magneto-optic experiments in which a
study was made of the recombination of 2D electrons with
free holes in a single heterojunction. These experiments
revealed an analogous S-line, and its temperature proper-
ties were investigated.”

5.5 Kinetics of luminescence spectra and the phase
diagram of the Wigner crystal

Studies of time-resolved luminescence spectra under
pulsed excitation have shown that it is possible to separate
in time the spectra due to liquid (L-line) and crystal (S-
line) phases. This possibility relies on the fact that the
radiative recombination time constants of electrons in the
liquid and crystal phases are different by more than an
order of magnitude.

Figure 20 shows the luminescence spectra of a sample
with 2D electron concentration of 5.3%10° cm~2 in a
magnetic field of 164 T at T'=45 mK. The uppermost
spectrum in the figure was obtained under continuous pho-
toexcitation and contains the two lines—L and S—that
correspond to the liquid and crystal phases, respectively.
The evolution of the spectra in time is shown in the lower
part of the figure. For delays At=100 ns, the spectrum is
dominated by the L line, whereas only the S line, which
corresponds to the crystal phase, remains for Ar=500 ns.

The radiative time constants of the liquid and solid
phases can be determined from the time dependence of the
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FIG. 20. Luminescence spectra of a sample with 2D electron concentra-
tion n,=5.3%x10'" cm~2, measured using continuous-wave and pulsed
excitation with different delays.

integral photoluminescence for different fields A (Fig. 21).
For H<2 T, the intensity falls exponentially with time
constant 7=220 ns, which corresponds to the recombina-
tion of electrons from the liquid phase. As H increases, a
long tail due to radiative damping associated with recom-
bination from the solid phase is found to appear. The ra-
diative time constants corresponding to this tail are shown
in the insert in Fig. 21 as functions of H. From v=1 on-
ward, 7 increases monotonically, and then follows the ex-
ponential law

=19 exp(H/Hy) =719 exp(A/v), (5.1)

where 7 is the recombination time constant for H=0 and
A=0.3.

The exponential dependence of 7 on H is due to the
overlap of the wave functions of electrons and holes in the
2D plane. Actually, the wave function of localized elec-
trons in the 2D layer is determined by the magnetic length:
Y~exp(—x/48), I,> rimp (acceptor radius). The largest
posible electron—acceptor separation in the plane is
d=(k/ny)""%. Hence the probability of finding an electron
and a hole at the same point in the 2D plane is given by

w=uwq exp( —d?/2ly) =wqy exp(—k/v), (5.2)

in agreement with the exponential behavior of 7(H).

The competition between liquid and solid phases is
seen in the behavior of the luminescence intensity which
reflects the relative importance of these phases. The spec-
trum of each of them can be investigated independently by
suitably choosing the delay (Ar=100 ns and 1500 ns for
the liquid and solid, respectively). This is illustrated in Fig.
22. The luminescence signal from the liquid is constant up
to the critical filling factor v,=0.26 and then falls for
v<v,.. The peaks at v=1/5 and 1/7 show that the quan-
tum liquids are stable for these fractional values of v. For
the solid, the luminescence signal appears near v=1 and
then rapidly increases for v <v,. The intensity oscillations
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with well-defined minima at v=2/3,2/5, 1/3,2/7,2/9, 1/
5,2/11, and 1/7 are very similar to the Shubnikov magne-
toresistance oscillations in FQHE.

The key to the behavior of the luminescence intensity
of the solid is its temperature dependence (Fig. 23). For
T <200 mK, this dependence is found to exhibit a series of
thresholds (indicated by the vertical bars at v, v,, v; in
Fig. 23). These occur because, for v<1, the luminescence
signal corresponds to highly localized electrons due to
magnetic freezeout. The electron crystal begins to emerge
at 7=200 mK for v,>v> v, and v;> v, and the lumines-
cence signal rises at the threshold. When 77=40 mK, the
crystal phase occupies the wider region v<wv_, and the
transitional behavior remains only for v=1/5 and 1/7. In
contrast to the magnetic freezing out of electrons on in-
homogeneities in the random potential (extrinsic single-
particle localization), the strong localization found in the
case of the 2D electron crystal is intrinsic in origin.

The phase diagram of the Wigner crystal can be con-
structed by analysing the luminescence intensities corre-
sponding to the liquid and solid phases. This is done by
measuring the intensity as a function of temperature (in-
sert in Fig. 23). In the neighborhood of fractional values of
v, this reveals a transitional behavior: there are sharp
thresholds near v=1/5 and 1/7, and no thresholds at these
fractions.

Figure 24 shows the resulting phase diagram of the
Wigner crystal. The crosses represent the critical points
T, (melting) in different magnetic fields; the open circles
represent the values of v, taken from Fig. 23. The liquid-
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to-crystal transition temperature on the phase diagram is
found to be lower than the classical melting point (7 =420
mK) for the particular electron concentration. The un-
usual form of the phase diagram is due to the properties of
the crystal/liquid-crystal/crystal transitional behavior
near v=1/5 and 1/7. For these fractional fillings, the
quantum liquid is more stable than the crystal. Finally,
magneto-optic measurements show that the phase bound-
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FIG. 24. Phase boundary of the Wigner crystal. Crosses and open circles
represent measurements in H=const and 7 =const, respectively.
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ary of the Wigner crystal begins with v,=0.26, whereas
nonlinear magneto-transport and radiofrequency absorp-
tion data suggest that v,~0.22.

6. CONCLUSION

We have used the example of radiative recombination
of 2D electrons with photoexcited holes to examine the
possibilities of the magneto-optic approach to the experi-
mental investigation of the ground-state energy of strongly-
correlated 2D electrons in the ultra-quantum limit. The
method was found to be effective in the study of Coulomb
gaps and Wigner crystallization. This subject, and indeed
the entire field of quantum liquids in FQHE and the crys-
tallization of 2D electrons, is still incomplete and will con-
tinue to develop. We conclude with a resume of the most
fundamental and promising avenues for future research.
Magneto-optics used in conjunction with the technique of
short-wave nonequilibrium acoustic phonons can be suc-
cessful in direct studies of positional long-range order in
systems of 2D electrons, and also in investigations of the
2D crystal to liquid phase transition itself. The techniques
of correlation optics can be effective in studies of quasipar-
ticle excitations in FQHE, and also of states such as the
‘electron glass’ that arise in the case of strong localization
of 2D electrons on fluctuations in the random potential.
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