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A generalization of the force-free equation describing steady-state axially symmetric flows in
the vicinity of a Kerr black hole is carried out to the case of ideal magnetohydrodynamics.
It is shown how this equation changes from an elliptic to a hyperbolic type in the vicinity of the
horizon. The limits of applicability of the approach under discussion are examined for
different astrophysical sources. It is shown that a high photon density strongly restricts the
limits of applicability of the MHD approach.

1. INTRODUCTION

Axially symmetric steady-state magnetohydrodynamic
flows in the vicinity of a central compact body have already
been studied for a long time in connection with many as-
trophysical sources. Spherically symmetrical accretion
onto ordinary stars1'2 and black holes,2 axially symmetric
stellar (solar) wind,3"6 jets from young stellar objects,7

outflows from the axially symmetric magnetosphere of a
rotating neutron stars~12-they are all flows of the type un-
der consideration. It can not be excluded that such mag-
netohydrodynamic flows also play an important role in the
galactic sources which are regarded as candidates for black
holes.13'14 It is the equations describing axially symmetric
steady-state flows that are the basis of the progress in our
understanding of more complicated systems, for example
radio pulsars, which have no axial symmetry,15'16

MHD-models are now actively developed in connec-
tion with the theory of the magnetospheres of rotating su-
permassive black holes (^ ~ 108-109 ̂ Q), which are be-
lieved to be a 'central engine' in active galactic nuclei and
quasars.17"22 In fact, it is an accretion of material onto such
compact objects that provides insight into the nature of
their extremely high energy production 1046-1048 erg/s
and the stability of observed jets from it. The energetics of
these jets may reach 1043-1045 erg/s.17 Since further we are
basically interested specifically in black hole magneto-
spheres, we shall everywhere give all expressions in the
framework of general relativity. Selfgravitation of matter
and fields, i.e. their influence on the space-time metric of a
black hole, will be neglected, which corresponds to real
astrophysical conditions.17

Let us stress that the necessity of taking into account
general relativity effects is not so obvious for many com-
pact sources. For instance, there exist some indications
that the jets in young stellar objects are connected not with
the central rotating star but with the accretion disk around
it.18 If jet formation in galactic nuclei and quasars has the
same nature as in young stellar objects, than one can not
exclude that the black hole plays only a passive role in the

jet formation process, and general relativistic effects in this
case may not be fundamental for a description of flows in
the region of jet formation.

At the same time gravitational effects make, appar-
ently, a noticeable contribution in determination of physi-
cal conditions in compact objects. First of all this is indi-
cated by hard spectra and annihilation lines observations in
galactic X-ray sources, which are believed to be solar mass
black holes.14 Such characteristics are never observed in
X-ray sources which are firmly established to show accre-
tion not onto a black hole but onto a neutron star. Another
indication comes from superluminal motion of some details
in quasars17 which may be due to relativistic electron-
positron plasma flow ejected along with the weakly relativ-
istic jet.23 All this testifies in favor of the existence of an
additional mechanism for particle creation and accelera-
tion, for which general relativistic effects may be of prin-
cipal importance. So it is undoubtedly interesting to con-
sider the magnetosphere structure under the most general
conditions, i.e. in the presence of a rotating black hole.

In this paper, the basic equation describing a steady
axisymmetric flow in the vicinity of a Kerr black hole is
given. An analysis of this equation is carried out. Particu-
larly, it is shown how the type of the equation changes at a
fast MHD-point from elliptic to hyperbolic in the proxim-
ity of the event horizon. The validity limits of the MHD
treatment of the phenomena occurring in active galactic
nuclei and quasars is discussed. It is shown that the photon
density in the vicinity of the black hole must be sufficiently
small for the MHD treatment to be applicable.

2. BASIC EQUATIONS

Let us consider a steady-state axially symmetric MHD
plasma flow in the gravitational field of a Kerr black hole.
In Boyer-Lindquist coordinates the Kerr metric is24

(1)

where
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(2)

and

(3)

а>=— sn

Неге, as usual, Л and a are the black hole mass and the
angular momentum per unit mass respectively, i.e. a—J/
J( '. Units where c=G=\ are used throughout the paper
except for some estimates where this is pointed out explic-
itly.

Due to axial symmetry and steady-state conditions
there exist two Killing vectors k = d/dt and т = д/д<р (see
Ref. 24), so we have two conservation laws: conservation
of energy E and conservation of the z-component of angu-
lar momentum Lz

ра—Ь^т» /а_1 — К Г 1 a, J — — (4)

where Tp is the total energy-momentum tensor of matter
and field. This fact remarkably permits us to divorce the
problem of the structure of the poloidal magnetic field and
electric currents from the problem of particle acceleration
and of the toroidal magnetic field structure. This possibility
is connected with the general existence of five integrals of
motion describing a steady-state axially symmetric flow in
the one-fluid ideal magnetohydrodynamic approximation.
Given this, the solution of the latter problem in a pre-
scribed poloidal field is expressed by simple algebraic rela-
tions.

2.1. A flow in a given poloidal magnetic field

In this section we list the main algebraic relations
which permit us to determine all the characteristics of a
plasma flow in the magnetosphere when the poloidal mag-
netic field is given. At first we are going to show how the
five integrals of motion appear in the formalism under con-
sideration.

In what follow we shall everywhere carry out our com-
putations using the so-called '3+1'-formalism. This means
that all the quantities are expressed as 3-dimensional vec-
tors measured by so-called zero angular momentum
observers.24 These observers are moving with angular ve-
locity ы (2) around a rotating black hole. Roman sub-
scripts and superscripts without carets denote vector and
tensor components referred to the coordinate basis d/dr,

д/дв, д/дф in 'absolute' 3-space, while those with carets
denote the same components referred to the orthonormal
basis

VA з
~р~~дг'

i д i a

Everywhere the symbol V means covariant differentiation
in 'absolute' 3-space having the metric gik (2). For details
see chapters 2 and 3 in the book by Thorne et a/.24

Thus in the steady-state axially symmetric case the
poloidal magnetic field may be written in the form

BP= (5)

so the Maxwell equation V - B = 0 holds identically. One
can easily see that BVP=0. Therefore, the magnetic sur-
faces are given by the expression Ф(г,0) = const. The pro-
portionality coefficient in Eq. (5) is chosen such that the
quantity Ф is equal to the magnetic flux inside the magnetic
tube 4*= const. It is convenient for us to write down the
toroidal magnetic field in the form

21

аш
(6)

Here 1(г,в) is the total electric current flowing inside the
region У<У(г,в) and the caret denotes, as usual, the
physical component of the vector (for more explanation
see the book by Thorne et a/.24).

In line with other authors we assume that the mag-
netosphere contains enough plasma to screen the longitu-
dinal electric field component and the corresponding con-
dition E • B=0 holds. Therefore, the electric field E must
be parallel to V*. The electric field is determined directly
from the Maxwell equation24'25

(S* U (7\
-Z Ba> ( * I

where

is a Lee derivative. From the expression (7) one can obtain
that BVftf=0. As a result we arrive at the following ex-
pression for the electric field

E=- 1 V*. (8)
2тга

Then the angular velocity flF must have a constant value
on the entire magnetic surface Ф=const as is evident from
the condition BV(1F=0.

The next equation we must involve expresses continuity of
the particles flow

V-(ami)=0, (10)

where и is the particle concentration in the reference frame
comoving with the hydrodynamic flow, u = v/^l—v 2 is
the space component of 4-velocity of the flow. The relation
(10) together with the Maxwell equation V • B = 0 and the
frozen-in condition enables the poloidal component of
4-velocity of the flow up to be expressed as
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Here we introduced a new quantity 17 which, due to the
relation V • (tjBP) =0, must also be constant on the entire
magnetic surface Ф = const

77 = т/(*). (12)

Thus the quantity 17 (Ф) has the meaning of an integral of
motion similar to the angular velocity £LF. In the MHD
treatment, the following frozen-in condition is an exact
statement

E + vXB = 0. (13)

Using this equation one can obtain the expression for u

BpV

BPV

277

/

—
Z7T

(19)

= 0,

where the quantity jU is the specific enthalpy per particle

/,=^. (20)n

It immediately follows from the relations (19) that the
quantities E and L must be conserved along a magnetic
field line

(21)

(14)

where y— ( l — u 2 ) 1/2 is the Lorentz factor of the plasma
flow.

To find two more integrals of motion corresponding to
relations (4) we have to write down the energy-momentum
conservation law 7*^ = 0. In the '3 +1'-formalism and un-
der the condition d/dt=0 it takes the form24

1
^7a

1

a'

(a2S)+HikT
ik

, , 1 da
j*+r*)__1c=

a ax

(15)

(16)

Here g= — (l/a)Va is the gravitational acceleration,
Hj/c^ (l/a)Vf/f is the gravimagnetic tensor field; the grav-
itational redshift a and the bias function /3 are defined by
the relations (2). The energy density e, the energy flow S
and the stress tensor Tik are exactly identical to those in a
flat space-time and are expressed as

£em (
O17

Sem=— (EXB)

1
= 4l7

(П)

and

(18)

Substitution of the expressions (17), (18) for components
of the energy-momentum tensor into the energy equation
(15) and into / = (p-component of the momentum equation
(16) gives us, after using the definitions (5), (6), (8),
(14) and carrying out some algebra, the following relations

(22)

The possibility of defining E(4>) and L(40 is connected
with the existence of conserved flows of energy and
z-component of the angular momentum (4).

One must add the equation of state to the hydrody-
namic equations. To specify the equation of state, it is
convenient to use the pressure P and the entropy per par-
ticle s as thermodynamical variables. The corresponding
thermodynamical potential in this case would be just the
specific enthalpy \i (20). The first law of thermodynamics
implies26

(23)

so that

n = n(P,s}, T=T(P,s).

The relations -above allow one to express ц, Т and P as
functions of n and s. For instance, if the equation of state is
polytropic, i.e. P=k<yir, then we have2

where т is the rest mass of a particle. In the special case of
cold plasma this yields simply ju = w. It is worth noting
that one must use for т the averaged mass of all the par-
ticles constituting the plasma. In particular, for an e~p
plasma m^nip/2, for an e+e~ plasma m = me. n is the
total concentration of all the particles in the plasma.

We also make an additional assumption that the mat-
ter flow is isentropic

In the axially symmetric case this condition and (10) yield

so the entropy per particle я(Ф) is, in fact, the fifth integral
of motion.

The next step is to show that for the known poloidal
field Bp and for the given five integrals of motion П^Ф),

and £(Ф) one can reconstruct the to-
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roidal magnetic field BV, the matter density n and the
velocity v. For this purpose we use the conservation laws
(21), (22) which together with the ^-component of equa-
tion (14) allow expressing the electric current /, the Lor-
entz factor у and the physical toroidal velocity иф=ич/а>
as follows

(24)

(25)

(26)

"/"A

2тг a2-(flf-ca)2o}2-M2

1 a2(E-ClFL)-M2(E-coL)
Y=

From now on we denote

. 4тп72^и
A f = .

n

Introducing the Alfven velocity UA

write M2 in the form

(27)

Bp/ ^4nnfi we can

Thus M2 is (up to the factor a2) the Mach number calcu-
lated for the poloidal velocity up with respect to the Alfven
velocity и A. It is the value of M2 which is convenient to be
used subsequently because it remains finite at the horizon
provided the field and matter fluxes are regular there. Ac-
cording to equation (23) fj.=[i(n,s) and hence Eq. (27)
allows the particle number density n (and, hence, the spe-
cific enthalpy /z) to be expressed as a function of 17, s and
M2. It means that besides five integrals of motion £1F(W),
iy(*), 5(Ф), £(Ф) and L(^) only one additional quantity
(the Mach number M) enters the expressions for /, 7 and
иф.

To determine the Mach number M one should use the
obvious relation

72-u2=l. (28)

where

Substitution of expressions for у and Нф (Eqs. (25)-(26)),
and Eq. (11) for up into this relation gives

(29)

(30)

(31)

and

K=a2£2(E-flFL)2[a2- (П/г-

+M4[o?(E-a)L)2-a2L2].

Equations (24-26) and (29) are the desired algebraic re-
lations, which for the known poloidal field B/> (5) (and,
hence, for the known stream function Ф ) and for the given
integrals of motion allow us to find all components of the
plasma four- velocity и' and toroidal magnetic field B^ (6).

FIG. 1. The phase diagram representing the dependence of the poloidal
flow velocity и on the distance r to the pointlike Newtonian gravitating
center. The MHD flow is nonrelativistic and is at the equatorial plane of
the monopole poloidal magnetic field Ч^ФоП—cos в). The diagram is
obtained as a result of solving the algebraic equation (29) for different
values of E. The quantities UA , rA are the values of и and r at the Alfven
point; F is the fast magnetosonic point and S is the slow one. The values
of the other four integrals of motion are chosen so that the solution
passing through all three critical points exists. This solution is subsonic
when r—0 and supersonic when /•—oo. It is shown by the heavy line
(Weber and Davis4).

It is equations (24-26, 29) that have been analyzed in the
papers on solar wind,4"6 on accretion onto neutron stars
and black holes,1'2 on plasma ejection from pulsars10"12 and
in the most general case of the Kerr metric in Refs. 19-22.

2.2. Critical points

The MHD-flow, described by the algebraic relations
obtained above, is characterized by the following singular
points. These points are

1. The Alfven point A defined from the condition of
setting to zero the denominator A (30) in the relations
(24-26)

A=0. (32)

As pointed out in Ref. 4 for a monopole magnetic field, the
Alfven point is a higher order singular point in coordinates
M'—r than those of ordinary "X"- or "0"-type (see Fig. 1).
At the same time all tracks with positive squares of energy
E pass through this point irrespectively of the values of the
integrals of motion.22

2. The fast magnetosonic point jpis defined as a singu-
larity in the expression for the gradient of M (and, hence,
as a singularity in the gradient of four-velocity u). Indeed,
Eqs. (29-31) may be expressed in the form

, E, L, r,, tf,n),

where

64тг4 К 64тг4

(33)

(34)
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Taking the gradient of both sides of Eq. (33) one can
obtain the following expression for VM2

VJV/ =—

^

(35)

Here and again later the subscripts a, b run through the
values г, в only and the gradient V acts on all the variables
except M2. We denote by D in (35) the quantity

A dF

(36)

which may be written as

A

''M2

where a2=(\/n)(dP/dn)s is the square of the speed of
sound. In deriving Eq. (36) we used the first law of ther-
modynamics (23), which implies (see, for instance, Ref.
2)

a? dTj dM2 1 1 (dP\
- I — + Т ds.
n \ds I

\ 'n
(37)

It is the condition D=0 that determines the position of the
fast magnetosonic point. In contrast to the Alfven point, in
a monopole magnetic field a fast magnetosonic one is of the
saddle point-type.22 Due to this fact regular solutions with-
out any stagnation points and infinite derivatives exist only
when an appropriate relation between the integrals of mo-
tion holds and the numerator in (35) vanishes at the fast
magnetosonic point (see Fig. 2). The condition D=0 de-
termines the position of the slow magnetosonic point in the
same way.

Finally, a characteristic point is
3. The light cylinder RL defined as a surface where the

electric field E is equal in magnitude to the poloidal com-
ponent of the magnetic field Bp.

One more property inherent exclusively in the black
hole magnetosphere should be noted. It lies in the fact that
general relativistic effects lead to the appearance of the
second family of singularities near the black hole horizon
side by side with the usual outer singularities—the "outer"
light cylinder RL, the Alfven point A lying inside it and,
probably, the "outer" fast magnetosonic point F (Ref. 25).
According to Takahashi et a/.,22 in the case of a monopole
poloidal magnetic field the F-point is always between the
horizon and the inner Alfven point A (see Fig. 2).

We should point out that the outer Alfven point (as
has already been mentioned, all tracks pass through this
point) lies in the upper half of the phase plane ur>0 cor-
responding to the outflowing plasma, while the inner
Alfven point always lies in the lower one ur<0 correspond-
ing to the accreting plasma. This extremely important fact
is in contradiction with the assumption that the function 77
is constant along a given field line Ф = const because dif-
ferent signs of longitudinal velocity ur must correspond to
different signs of 77 according to Eq. (11). Consequently, a
plasma flow cannot be continuous everywhere in the black

FIG. 2. The solutions of the algebraic equation (29) for different values
of E at the equatorial plane в= тг/2 of a Kerr black hole with a = 0.8. ft
for cold matter (s=0). The magnetic field is monopole, 0<flf <ПЯ.
Outer and inner Alfven points are denoted by A, F is an inner fast mag-
netosonic point, Is is the point of matter injection with zero speed as a
result of plasma generation, Ls is the light cylinder. In the hatched region
there is no solution, i.e. equation (29) cannot be satisfied for any values
of E. The separation lines of the saddlepoint-type singularity F are shown
by heavy lines. The quantities E, L, 77 have a discontinuity when ы,=0
caused by the plasma creation at a point Is (Takahashi el a/.22).

hole magnetosphere. It must have a discontinuity on the
field lines penetrating the horizon. So, one has to allow the
existence of a plasma source between two Alfven points
determining different values of 77 in the outer and inner
parts of the black hole magnetosphere.

2.3. The equation for a poloidal magnetic field

Thus, the system of algebraic relations (24-26, 29)
describing plasma motion in a given poloidal magnetic field
allows us to advance substantially in our understanding of
the main features of steady-state axially symmetric flows.
But on the basis only of these algebraic relations one can-
not determine the values of the integrals of motion Clf, 77,
s, E and L themselves, which is of principal importance for
obtaining one of the main characteristics of the system,
namely, the energy loss by the central object. Moreover, in
the overwhelming majority of studies plasma flow was con-
sidered only for a monopole magnetic field (Refs. 10, 12,
22) which is, in general, not selfconsistent (i.e. does not
satisfy the poloidal field equation). Obviously, it is impos-
sible to understand the nature of the jets observed in active
galactic nuclei and quasars remaining in the framework of
the monopole magnetic field geometry. Finally, it is clear
that in the case of an equation in partial derivatives, the
behavior of the solutions in proximity of the singular
points must be specially investigated.

The situation with the structure of the poloidal mag-
netic field and longitudinal currents is much less defined.
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At the same time, only by considering this problem can one
hope to investigate, for instance, the possible jet collima-
tion to the rotational axis. The greatest progress in this
problem has been achieved only in the force-free approxi-
mation, when the magnetic field energy density greatly ex-
ceeds the plasma energy density and it is possible to disre-
gard particle masses and to write down т=Т*т. This
approximation is interesting, first of all, for the description
of a neutron star magnetosphere and an appropriate equa-
tion for the structure of the poloidal magnetic field was
already obtained long ago.8'9 This equation is a generaliza-
tion of the Grad-Shafranov equation derived for toroidal
plasma configurations as far back as the 1950s. In the gen-
eral case of the Kerr metric it has the form25

' — ̂ em + ^matter — 0,

1
-V
a

a
Л2 1 —

ClF-co

167Г2

~T
агат

(38)

Equation (38) is an elliptic second-order equation for the
stream function Ч?(г,в) which contains as sources two un-
known functions—the angular velocity П^(Ф) and the
current /(Ф). We note that in the force-free approxima-
tion, the current /(Ф) becomes an integral of motion as
well, as it is seen from the definition (22).

However, it is clear that in the force-free approxima-
tion the information about the influence of particle masses
on the magnetic field structure is lost. But this influence
must undoubtedly be taken into account, for instance, in
the outer regions of a neutron star magnetosphere.10'11 As
we shall see later, Eq. (38) is deliberately violated near the
black hole event horizon as well. So it is of indubitable
interest to investigate a more general equation for a poloi-
dal field including effects related to nonzero particle
masses. Similar to Eq. (38), such an equation must contain
only the stream function Ф, the integrals of motion flF (Ф),
77(40, L(W), Е(У) depending on Ф and, in general, the
entropy per unit particle j(*P).

Ardavan27 was the first to obtain in 1979 a similar
equation for an axially symmetric steady-state magneto-
sphere disregarding gravitational effects. This equation was
subsequently discussed in Refs. 28-30. The equation for a
poloidal magnetic field was numerically investigated for a
nonrelativistic plasma in Refs. 18, 31-34 and for a relativ-
istic plasma in the presence of a gravitational field—in
Refs. 35-40. Finally, recently in Ref. 41 this equation was
obtained in the most general case of the Kerr metric but for
cold matter, i.e. when ,$(Ф) sO.

So, let us write down the poloidal component of the
momentum conservation equation (16)

1

a

where the indices a and b run through the r and 9 only.
Substituting the energy density e, the energy flow S and the
stress tensor Т from Eqs. (17), (18) into this equation, we
obtain

(39)

a a
(40)

Here the first term (Eq. (39)) corresponds to the electro-
magnetic contribution (17) and the second one (Eq. (40))
corresponds to the hydrodynamic contribution (18).

We see that in the force-free approximation, where
/=ДФ) and, hence, V0/=(d//d*)Vfl*, the first term
(Eq. (39)) is proportional to the l.h.s. of Eq. (38). At the
same time, contrary to Eq. (38), the equation Zem=0 is of
a vector type and cannot be reduced to one second-order
equation for the stream function Ф in the general case.
However, we shall show that the equation Z=0 can be
reduced to a scalar one.

Indeed, using Eq. (14) which relates the four-velocity
u to the magnetic field B, and substituting in the last term
of Eq. (40) the quantity \ + иьиь+(ифУ for y2 one can
obtain after some simple but awkward calculations the fol-
lowing vector equation

1
aco

xv,

[о2-(П/'-й))252-Л/2]7**

16773

X- (41)

Here М2=4тгцг)2/п as before.
Then we substitute into Eq. (41) the quantity

JlAviOVS2 its value determined from the relation (29),
differentiate and reduce similar terms. As a result, it turns
out that the coefficients at the gradients V^M2, V^, Vja
and VaCt) are identically equal to zero. For transformation
of the pressure gradient V^P we must use the first law of
thermodynamics in the form (23) which gives us

dP=ndp-nTds. (42)

Here we take into account that the flow is isentropic, so the
entropy s must be constant along a magnetic field line

s=s(4>) (43)

(for the polytropic equation of state P=ktfir the fifth in-
tegral of motion corresponding to s(V) will be the quantity
k0=k0(^f)). As a result, the vector V^P—wVji must be
orthonormal to the magnetic field line and, hence, parallel
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to VaW. Finally, it is obvious that the gradients of the
integrals of motion S I F ( V ) , 17(Ф),£(*) and £(Ф) are
proportional to Vfl* as well.

Finally, the equation for the poloidal field (39), (40)
was reduced to one scalar second-order equation multi-
plied by the 7аФ similar to that in the force-free approxi-
mation. It can be expressed as

ds

(44)

where

(45)

The fact that the terms in Eqs. (39), (40), which are
not parallel to \аУ are cancelled may be understood as
follows. Let us write down the energy-momentum conser-
vation in the orthonormal basis eg, e^, ej, e$, where
ео=еб, е^=еф, ej=B/|Bp|, e*=V*/|V*|. We have
T>j~ = 0, where T^v is a sum of^the parts given by the
expressions (17) and (18). The 0 and ip components of
this equation can be integrated according to (19) and lead
to the relations (21), (22) with two arbitrary functions
Е(У), L(V) arising due to the integration. Then one can
show that, provided the frozen-in condition u^F^=Q is
fulfilled (this condition is identical to Eq. (13)), the
energy-momentum conservation law projection onto the
plasma 4-velocity и~ГЧ~ = О leads to the flow being adia-
batic (43). Adiabaticity was explicitly used when deriving
Eq. (44). Thus, only one of the four components T^~
= 0 is not identically satisfied by the relations (21), (22),
(29) and (43). It is this component that we obtain in the
form (44).

Thus, the poloidal component of the momentum equa-
tion (16) is in fact the equilibrium equation for the mag-
netic surfaces 4х=const.

Finally, expressing in Eq. (44) the terms У„М2 accord-
ing to Eq. (35) we obtain our main equation

D

-a> dCLF 64т74 1 д /G

a

ds
(46)

where the gradient V^ denotes the action of Va under the
condition that M is fixed and the derivative д/дУ is acting
only on the integrals of motion while the other variables
are considered as constants. Let us stress that in equation
(46) the pressure P, the temperature Т and the specific
enthalpy ц are to be expressed via an equation of state in

terms of the entropy s(4>) and the square of the Mach
number M2. In turn, the quantity M2 is to be considered as
a function of (УФ)2 and the integrals of motion

(47)

The latter relation is an unexplicit form of Eq. (29). The
stream equation (46) with the definitions (30), (34),
(36), (45) is the desired equation for the poloidal field
which contains only the magnetic flux Ф and the five inte-
grals of motion ClF(y), ту(*), s(V), Е ( У ) and L(*)
depending on it.

3. DISCUSSION

3.1. Basic properties of the equation for a poloidal
magnetic field

Let us discuss the basic properties of equation (46) — a
nonlinear second-order differential equation. It is a mixed
type equation. One can easily check that in the region
where D > 0 the equation is elliptic and where D < 0, it is
hyperbolic.

First of all, consider the region near the black hole
event horizon. If we suppose that the square of the Mach
number M2 (27) does not approach 0 at the horizon r=r+

then the quantity D(r+) (36) may be rewritten as follows

D(r+) = - (48)

Here the second term in the r.h.s. is finite when a-»0 by
virtue of the definitions (6), (8). Equation (29) implies
that if M2(r+)^0 the following relation must be fulfilled
at the horizon

(E-tlHL)2

64тг4 (49)

where Пя=а> (r+) is the angular velocity of the black hole
rotation. Then, taking into account Eqs. (6) and (24) we
obtain the equality

Вф(г+)=Ед(г+). (50)

This result is in full agreement with the basic proposition
of the "membrane paradigm" that the zero angular mo-
mentum observer situated close to the horizon must detect
only the (^-component of the magnetic field and the
^-component of the electric field, both diverging like I/a
with the Pounting vector directed toward the black hole.24

Hence, the following condition must be fulfiled at the event
horizon

D(r+) = - (51)

so for the case M2(r+)^0 equation (46) near the black
hole horizon is hyperbolic. In Fig. 2 the hyperbolicity re-
gions are lying to the left of the separation line /. In par-
ticular, equation (46) is hyperbolic for the inner part of
separation line // passing through the fast magnetosonic
point.

Thus, we come to an important conclusion that a re-
gion where equation (46) is hyperbolic exists between the
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black hole horizon and the fast magnetosonic point for the
integrals of motion corresponding to separation line II. So,
if a plasma source is situated in the ellipticity region then
equation (46) is of mixed type for an accreting plasma. As
for relation (49), in this case it does not mean the bound-
ary condition at the event horizon but it may be under-
stood as a relation for determining the value of M2(r+).

On the other hand, for the integrals of motion corre-
sponding to tracks on the phase plane up— r deflecting to
the separation line / so that и/,->0, M2-»0 as r-*r+ on
these tracks, one can formally see that the quantity D re-
mains positive there and equation (46) is elliptic. How-
ever, it is clear that in this case the particle number density
must go to infinity on approaching to the horizon. So the
approximations used for the derivation of equation (46)
will be violated near a black hole event horizon. The result
is that plasma emission and other processes not allowed for
by Eq. (46) become significant in this region. This makes
senseless the discussion of "boundary conditions" at the
black hole horizon.

Let us mention some other important properties of the
equation for a poloidal magnetic field. First of all it is
necessary to stress that the solution of this equation can be
obtained only when the five integrals of motion, £1F(4>),
т)(У), 5(Ф),£(Ф) and £(Ф), are known. These integrals
of motion must be determined first of all by a particular
particle creation mechanism and must be given, in fact, as
boundary conditions.15'16 As we have already seen, on the
magnetic field lines penetrating into the black hole such a
source must ensure both an outflow to infinity and an ac-
cretion onto the horizon. At the same time, because the
poloidal field equation (46) is highly nonlinear, it may
have physically admissible solutions only if the integrals of
motion themselves are appropriately chosen. This problem
is well known in connection with the construction of a
self-consistent model for a neutron star magnetosphere and
arises even for the force-free equation (38) in a flat
space-time.16

Finally, it is interesting to compare the question itself
about posing the problem for a black hole magnetosphere
with an analogous one arising in the investigation of a
radio pulsar magnetosphere. In a neutron star the mag-
netosphere plasma is believed to be created in the vacuum
gap near the star surface15'16 and, probably, in the outer
gap.42 Such a plasma source can determine, in general, four
parameters—the longitudinal velocity component УЦ , the
density, the electric current and the entropy, i.e. four inte-
grals of motion £(*), £(Ф), TJ(^) and s ( V ) . But for a
neutron star magnetosphere, besides these four integrals of
motion a fifth one, П^(Ф), is also defined. Indeed, the
electrical potential determining the value of CLF (and held
constant on the magnetic surface Ф = const, as, is done for
HF is uniquely defined by the rotational angular velocity of
the neutron star and by the voltage drop across the gap
(see Refs. 15, 16 for details). The situation is substantially
different in the case of a black hole magnetosphere. The
reason is that the black hole event horizon does not have a
causal relationship with the plasma generation region.20'21

As a result, the fifth integral of motion O,F, which is re-

sponsible for the energy flow in the magnetosphere accord-
ing to relation (21), remains what we think of as a free
parameter of the problem (see, however, Refs. 19, 25).

3.2. Particular cases of the equation for a poloidal
magnetic field

a) Force-free approximation fj, -»0
One can immediately see from the relation (39) that

equation (46) goes over to the force-free Eq. (38) in the
limit ju-»0, i.e. when the magnetic field energy density is
much higher than the energy density of particles. This is a
second-order elliptical equation. In application to active
galactic nuclei and quasars it has been investigated in Refs.
43^8.

b) Hydrodynamic limit M2-> <x
We now consider a hydrodynamic limit when the

plasma energy density is much higher than that of the
magnetic field. In this case it is natural to introduce a new
potential Ф(Ф) according to the following relation

(52)

Pure hydrodynamics corresponds to the limit Ф-»0, rj-> oo
where, however, the product т/Ч* remains finite. By the
definitions (5) and (11), the expression for plasma flux
density is

1
(53)

The surfaces of Ф=const are the plasma flow surfaces.
It is easy to check that from the mathematical point of

view the replacement (52) corresponds to the condition
77 = 1. As a result, in this approximation there will be only
three integrals of motion

Е(Ф) = (54)

(55)

and х(Ф). Then, the algebraic relation (29) will be rewrit-
ten in the form

where the square of the "Mach number" M is

M2=

(56)

(57)

For the equation for the stream function Ф one can easily
obtain the expression

1 / 1
-V* H=Za \ ao) га2ы1\\Ф\2

32тг4 д

D

-а
2
/,

2
]-16тг

3
иГ—=0, (58)
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where

64тг4

[S1(E-a)L)2-a2L2-S1a2

ti
2].

(59)

(60)

Equation (58) contains only one singular point, i.e., the
sound point determined by the condition Z>=0. Just as
should be expected, at a sound point the poloidal four-
velocity is equal to the sound four-velocity2

Equation (58) describes an axially symmetric steady-
state hydrodynamic flow in the vicinity of a Kerr black
hole. In the special case of Schwarzschild space-time when

L(<t>)=0 and for spherically symmetrical boundary con-
ditions it has a simple solution corresponding to a spheri-
cally symmetrical accretion. This solution of Eq. (58) is
the following monopole flow field

= Ф0(1-С050). (61)

As for the condition of passing through a sound point
(which in this case is a saddle point), it determines in fact
the accretion rate Jtf = 2/иФ0

" s i , 1- 1+-
Ис

(62)

where ns and us are quantities evaluated at the sound point.
In the case of the polytropic equation of state,
Р=&0(Ф)яг, one can explicitly express ns and us and,
hence, Ф0 via two nonzero integrals of motion, £ХФ) and

'm\2 I " 7m\2

5Г-6-2(Г-1) - + ,(ЗГ-2)2-12(Г-1) -

8-4Г+(Г-1) -
m

Г-1

Of course, the relation (62) coincides with the Bondi con-
dition for spherically symmetrical accretion.1'2

3.3. Validity area of the equation for a poloidal magnetic
field

In conclusion we shall make some remarks on the va-
lidity area of the equations discussed above. First, it is clear
that following the approach under consideration, one can-
not take into account particle interaction with radiation
which may undoubtedly be important for the case of active
galactic nuclei and quasars.17 The radiation will produce a
force acting on each particle. So, it is clear that Eq. (46)
can be applied to objects with a low luminosity L only
(and, correspondingly, with a small photon number den-
sity U). The natural limit for luminosity in the case of an
electron-proton plasma is the Eddington luminosity
LEd=:1038^/.^Qerg/s. But for an e+e~ plasma the re-
striction L < Z,Ed will be invalid because the force pro-
duced by the photons will be the same for e~ and e+ and,
as a result, there will be no charge separation and no as-
sociated polarizational electric field.49

At the same time, regardless of plasma composition,
particles have losses due to inverse Compton scattering in
the photon field.50 For an e+e~ plasma the condition for
these losses crrC/72eph being much smaller than the energy
gain rate dy/dr~8Y/r+ , <5<1 may be written in the form

L< )erg/s,

(63)

where L = ephUc4irR2

L is the luminosity of the photon gas
with the photon energy £ph and the number density U oc-
cupying a region with a characteristic dimension R L. The
restriction (63) is probably the most crucial for a possible
application of the approach considered in the present pa-
per. If the inequality (63) is violated then particle retar-
dation (or acceleration) in a photon field will play a sig-
nificant role in the plasma dynamics and, as a result, the
energy E(4>) (22) and the angular momentum L(W) (23)
will no longer be integrals of motion. It should be noticed
that pure kinetic effects must be important under such
conditions.51

We stress that in the case of a sufficiently rare plasma
M <^ 1, when the particle energy density is much smaller
than that of the electromagnetic field, a violation of the
algebraic relations (24)-(31) does not lead to a noticeable
distortion of the force-free equation (38). At the same time
the interaction of particles with the radiation field would be
essential irrespectively of the value of M2 in the vicinity of
the singular points where the value of M2 is very close to
the difference a2— (SIF—co)2^. Any small nonzero pres-
sure and temperature must also exert an influence upon the
plasma motion in the vicinity of singular points.

Then, the pattern discussed here may be distorted be-
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cause of the plasma selfradiation leading to a change of the
entropy s along a magnetic line of fore. However, one can
notice that the term nTds/(№ in equation (46) is signifi-
cant only for a nonrelativistic plasma. Indeed, it is easy to
verify that the pressure gradient V^ in Eq. (41) is of the
order of the terms connected to 1 in the relation y2 — «2= 1,
i.e. is of the order of the term a2rf2^2 in Eq. (29) and of the
last term in Eq. (41). In the ultrarelativistic limit these
terms may be neglected, so in the region where y>l, in
particular in the vicinity of the black hole event horizon, a
change of the entropy s along a field line cannot lead to a
strong violation of the approximation considered in the
present paper.

There is evidence (particularly, observations made in
the COMPTON y-ray observatory52) that many active ga-
lactic nuclei and quasars are sources of hard у radiation
which may be generated in the process of effective heating
occurring in the inner regions of accreting matter.53 A suf-
ficiently large number density of у quanta with energy ex-
ceeding mf2 may lead to direct e+e~-pair creation due to
the reaction y+y—e+e~ as pointed out by Kardashev
et a/.54 In this case, when M2>1, the accretion picture dif-
fers significantly from the model discussed in the present
paper because of the particle number TV changing along a
magnetic field line.

It is clear that the secondary particle creation will be
sufficiently effective when an optical depth with respect to
the pair creation process T~crTUyR is greater than 1. This
gives us the limiting value for the y-ray luminosity Lr of an
object below which our ideal MHD approach is valid

erg/s. (64)

For active galactic nuclei and quasars with R~ 1014 cm it
will be Lr< 1043 erg/s, for solar mass black holes Ly< 1035

erg/s. We see that the restriction (64) is also strong
enough.

The next possible limitation of applicability of equation
(46) under real astrophysical conditions originates from
the fact that turbulence and various plasma instabilities are
not included in our model. Therefore we do not claim to
describe a turbulent a-disk,53'55'56 magnetic field generation
and turbulent diffusion of the magnetic field.57'59 Particu-
larly, the boundary conditions imposed on the accretion
disk must be like those for the case of a force-free field. A
specific form of restrictions is determined by the plasma
composition, boundary conditions on the accretion disk,
geometry of the disk, photon number density in the vicinity
of the black hole and depends upon the physical conditions
in the source. A discussion of these conditions is beyond
the scope of the present paper.

Possible limitations of the validity area of equation
(46) may be due to a violation of the frozen-in condition
(13). First, it is clear that equation (46) cannot be used for
a plasma generation region where one can expect the ex-
istence of a strong longitudinal electric field (see, for ex-
ample, the work by Beskin etal.4*). As we have already
mentioned, in this region it is necessary to impose bound-

ary conditions determined by an appropriate particle cre-
ation mechanism.

Furthermore, a natural limitation on the validity of
equation (46) would arise if an electric field E were equal
to the magnetic one. Such a violation of the MHD ap-
proach will occur if the longitudinal current / and, conse-
quently, the toroidal magnetic field Bj, are not strong
enough for the total magnetic field В = ^B}>+ B2^ to be
greater than the electric field E~flFo}Bp (Ref. 16). This
case has been investigated in detail for the outer light sur-
face in a neutron star magnetosphere. As a result, in a
transition layer near the light surface E= В the frozen-in
condition (13) is violated and the particles begin to cross
equipotential magnetic surfaces gaining a large amount of
energy there. So the curves in Fig. 2 corresponding to small
current values / have an infinite derivative dur/dr at some
point. From the physical point of view the fact that E-> В
and dur/dr-> oo means that in a transition layer it is nec-
essary to take particle masses into account, i.e. to use the
following equation of motion

dp

dr
= E + vXB. (65)

Generally speaking, in a transition layer a region of mul-
tistream flow arises. As pointed out by Beskin et al. in their
book16 in the case of the outer light surface closing of the
electric current circulating in the magnetosphere also oc-
curs in this layer. Beyond the region of particle accelera-
tion and current closing a magnetohydrodynamic wave
may be generated where the energy of the particles consti-
tutes a significant fraction of the total wave energy. Here in
order to describe accretion onto a black hole one should
also use quite different equations.

4. CONCLUDING REMARKS

The equation for a poloidal magnetic field (46) now
obtained in the general Kerr space-time metric case pro-
vides the possibility to describe a wide range of MHD flows
in the vicinity of a rotating black hole. Thus one obtains a
tool for a consistent study of the processes occurring in
compact sources. In particular, construction of selfconsis-
tent magnetosphere models for such objects now becomes
possible.

Evidently, there are many important phenomena be-
yond the scope of the present paper which can play an
important role in a real accretion picture. In particular, we
do not discuss at all the problem of discontinuities, whose
presence in the magnetospheres of compact object cannot
be excluded. And moreover it is known that in some cases
only an introduction of discontinuities permits obtaining a
noncontradictory picture of a material flow.26 An analysis
of discontinuous flows in a neutron star magnetosphere in
connection with equation (46) was discussed in Refs. 30,
39, 40.

The significance of kinetic effects was not discussed in
this paper either. We did not touch upon the problem of
the outer magnetosphere structure (outer singular points,
jet formation), which can be investigated by using a sim-
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plified equation (46) without general relativistic
effects. 18|31~34 Separate investigations of physical conditions
in plasma generation regions and of the regular magnetic
field generation mechanism are also needed (see Refs.
57-59 on the latter topic). It is clear that the answers to all
these questions may be obtained only when the problem is
posed specifically and correctly. We hope that the use of
Eq. (46) will allow us to understand the main character-
istics and specific features of matter accretion onto black
holes which is believed to occur in active galactic nuclei,
quasars and, probably, in the vicinity of the galactic solar
mass black holes (of course, if the accretion there is really
magnetohydrodynamic in nature!).
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