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The zitterbewegung of an electron in the case of a field with a constant nonzero scalar
potential is examined. The relationship of the average velocity of the particle and its
momentum is discussed, and also the relation between the energy and the scalar
potential. It is shown that taking this relationship into account enables one to resolve the well-
known Klein paradox in Dirac's relativistic quantum theory of the electron.

1. INTRODUCTION

As is well known, already in 1929 Klein1 in solving the
Dirac2 relativistic equation formulated a paradox which, as
has been noted, for example, in Ref. 3 (see also § 35 in Ref.
4, § 5 in Part 2 of Ref. 5 and in Ref. 6) is a famous example
of the difficulties of the Dirac quantum theory of a relativ-
istic electron. This paradox refers to the problem of ex-
plaining the process occurring in the incidence of a free
electron wave with positive energy on a rectangular poten-
tial step of height UQ. Using in this case the usual condition
of continuity of the wave function at the potential barrier
we arrive for a sufficiently large value of U0 obeying the
condition

where E is the energy, m0 is the rest mass of the particle
and с is the velocity of light, at the paradoxical conclusion
that the electron flux reflected from the potential step ex-
ceeds the incident flux. The unusual nature of this conclu-
sion is characterized, for example, by the authors of Ref. 3
in the following words: "The picture ceases to correspond
to reality".

It seems to us that the Klein paradox can be resolved
if we take into account the characteristic for the Dirac
theory2 "uncoupling" of the well-known in classical me-
chanics connection between the momentum and the veloc-
ity of a particle. The first one to call attention to this cir-
cumstance was Breit7 (see also p. 550 in the collected
works of Pauli8). According to the Dirac theory the oper-
ator vz of the projection of the velocity of the particle on its
momentum (we assume that the z axis is chosen along the
momentum) is proportional not to the operator pz of the
projection of the momentum (which would correspond to
the equality pz=mvz of classical mechanics), but to the
Dirac matrix az (cf., for example, formula (24) in § 69 in
Ref. 2):

vz=caz. (2)

From (2) it follows that the operator vz has the eigenvalue
± c, since the eigenvalues of the Dirac matrix are equal to

± 1. This result which, at first glance, contradicts the fact
that the electrons observed in practice have velocities
whose magnitude is smaller that the velocity of light, led to
the concept of the zitterbewegung of the electron. This was
first shown by Schrodinger9 (see also Refs. 5, 8 and oth-
ers). The "jittery" part of the motion of a free electron can
be easily obtained if one integrates the quantum equation
of motion for the projection of the electron velocity, i.e.,
according to (2) for the matrix az. This equation of mo-
tion has the form

iMz=azH0-Haaz, (3)

where 2-irfi is the Planck constant, the dot above the line
denotes a derivative with respect to the time t, and H0 is
the Hamiltonian of the free particle (cf., below formula
(6)). It can be easily shown (cf, for example, § 70 from
Ref. 2) that the integration of (3) yields

=az,osc+az>const ,
(4)

where (az)0 is a constant equal to the value of az for r=0.
Thus, according to (4) in the case of free motion the pro-
jection of the velocity of the electron on the direction of its
momentum is equal to the sum of the oscillating aZiOSC and
the constant az.const parts.

In Ref. 10 we have shown that the zitterbewegung
from (4) corresponds to the representation of the steady
state of the electron in the form of a superposition of two
eigenstates of the operator (2) with the eigenvalues +c
and — c. Here the average value of the operator (2) is
given by the equation

(5)

This expression coincides, according to (2) and the second
term in the right hand side of (4) with the eigenvalue of
the constant part of the velocity operator t>z>conSf From (5)
we can also see that the directions of the average velocity
and the momentum coincide only in the stationary states of
positive energy. In states of negative energy they according
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to (5) are antiparallel. This last circumstance is what leads
one, as will be shown below, to a resolution of the Klein
paradox. However, at first one should examine how the
zitterbewegung of a particle in a field with a constant scalar
potential will be altered.

2. THE ZITTERBEWEGUNG OF PARTICLE IN A FIELD WITH
A CONSTANT SCALAR POTENTIAL

In the case of motion of a particle with rest mass m0 in
a field with a constant nonzero scalar potential UQ the
Dirac Hamiltonian has the form (cf., formula (23) in § 69
of Ref. 2)

H=cazpz+0m0c
2+ U0=H0+ U0, (6)

where az and /3 are the Dirac matrices, and H0 is the
Hamiltonian for free motion, utilized above in (3). Thus,
in the presence of a constant scalar potential an equality of
the form of (4) holds for az in which one should replace
H0 by H— U0. Therefore instead of the second term in the
right hand part of (4) we shall have

•cp (H—U )-1, (7)

(8)

and in place of (5)

cPz
2 E-U0'

where E is the eigenvalue of the Hamiltonian (6), which is
equal to

E— U0=±(m2f4+c2p2

z)
l/2. (9)

It is not difficult to convince oneself of the validity of (9)
by squaring the expression H— U0 from (6) and using the
relationships aJ3+paz=0 and az=/?2= 1 which are satis-
fied by the Dirac matrices (cf., Ref. 2). It can be seen from
(8) and (9) that when in the right hand side of (9) the
plus sign appears the quantities vz and pz have the same
sign, while in the case of a minus sign these vectors are
antiparallel. From formulas (8) and (9) it also follows
that the dependence of the average velocity and its root-
mean-square indefiniteness [(Auz)

2]1/2=[c2—(uz)
2]1/2 on

pz and m0 have externally the same appearance as the de-
pendence (5), and the dependence

т
(10)

where т is the mass of the moving electron, which were
first established by us in Ref. 10 (see there formula (12))
for the case of free motion.

From the normalization condition W(c) + W(— c) = 1
( W ( c ) is the probability of the state), in which the eigen-
value of the velocity is equal to +c, while W(— c) is the
probability of the state where this value is equal to —c, and
also from the preservation of the dependence of the average
value of the velocity vz on pz and mQ (it is related to the
probabilities by the relationship vz=c(W(c) — W(— c)))
it follows that in a field with a constant scalar potential the
same dependences are preserved externally which were ob-
tained in formulas (9) and (10) for the first time in our

paper of Ref. 10 for the probablities in the case of free
motion. This agrees with the fact that in correspondence
with gauge invariance the addition to the Hamiltonian of a
constant potential is equivalent to multiplying the wave
function by the phase factor e~'Uot/f and, consequently,
this should not alter the probabilties of the states the su-
perposition of which forms in accordance with Ref. 10 the
steady state of a particle the motion of which is described
by the Dirac equation.

3. RESOLUTION OF THE KLEIN PARADOX

We denote the region of space with z < 0 in which the
potential is U=0 by the number 1, and the region z> 0 in
which the potential is U= U0 > 0, by the number 2. Then in
region 1 the positive energy according to (9) is equal to
E=(m2

yc
4+n+c1pirZ)

l/2 while in region 2 it is determined
by the expression (9) with the momentum /?2z. As the
particle moves in region 1 the inequality /?2,2>0, holds
which means that the momentum p\>z is real. At the same
time the energy which has just been introduced above sat-
isfies the inequality £'>m0c

2. Together with the condition
(1) this is equivalent to the inequality U0 > 2m0c

2 and, as is
well known from the Dirac theory, the energy gap between
levels with negative and positive energies is equal to 2mtf2.
Therefore this inequality means that the potential energy
C/o is so great that under its influence the energy levels
which for U=0 were negative can now under the influence
of U0 be elevated and turn out to be in the region of pos-
itive energies where E>m0c

2. Correspondingly the energy
in the region 1 (cf., formula (9) in the text above) and the
energy in the region 2: E= U0— (m2yC4+c2pliZ)l/2, which is
obtained from (9) in the case that the minus sign appears
in its right-hand side, can turn out to be equal. Then in the
case when the inequality (1) is satisfied the quantity p\f

turns out to be positive and, consequently, is real. There-
fore in the case of such a positive energy, for which both
/>1;Z and />2?z are real, a transition from region 1 to region 2
is possible.

We now examine the average value of the projection of
the velocity on the z axis in region 1 and in region 2. If the
flux of the particles is directed from region 1 into region 2,
then in the region 1 the inequality vl<z > 0 should hold. In
the same region 1, where the electron moves freely, the
equality vltZ=c2p^z/E should hold in accordance with (5).
In the case of a positive energy E according to this equal-
ity, and also if the inequality for the average velocity just
stated above, holds, the inequality p^;Z > 0 should also hold.
Thus in region 1 the momentum is parallel to the average
velocity of the particle and, just as the average velocity, is
directed from region 1 into region 2.

It follows from (8) and (9) that in region 2
u2jZ= ±c2p2tZ(m2£4 + cip\tZ) ~1/2. Since under the conditions
of the Klein paradox positive energy levels are considered
which arose from negative ones (for U=0), due to the
sufficiently great value of U0, one should in accordance
with (9) retain the minus sign in the right-hand side of the
expression for t72jZ given above. If we now assume that in
going from region 1 into region 2 the direction of the mo-
mentum is preserved, i.e., p2<z > 0, then we obtain U2iZ < 0.
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This means that in region 2 the flux of particles is directed
not from region 1 into region 2, but conversely from region
2 into region 1 which is what leads to the Klein paradox
(cf., Ref. 2).

It seems to us that it is possible to resolve the Klein
paradox if we do not from the outset assume that the di-
rection of the momentum />2>z coincides with the direction
of the momentum plr. Such an assumption, which is com-
monly used, corresponds to nonrelativistic quantum me-
chanics according to which in the case of a plane wave with
the propagation vector k and the momentum p=fik the
direction of the flux density of the particles coincides with
the direction of the momentum. Therefore in nonrelativis-
tic quantum mechanics the flux of the particles from region
1 into region 2 corresponds to the same sign of the com-
ponents plz and />2,r But m tne Dirac relativistic theory
(cf., formulas (2), (5) and (9)) there is no analogous
connection between the flux densities and the momentum.
In this theory, as can be seen for example from (5), for a
negative energy E<0 the signs of the quantities vz and pz

turn out to be opposite. Therefore at the potential step
there can occur a change not only of the magnitude but
also of the direction of the momentum vector. Therefore if
when the inequality p, z > 0 holds one assumes p2>z < ° tnen

from the equality given above in the text for the average
velocity in region 2 it follows that v2tZ>0. In this case the
particle fluxes in region 1 and region 2 turn out to be
parallel and the Klein paradox does not arise. It is also not
difficult to convince oneself that the requirement of the
continuity of the solutions of the Dirac equations at the
boundary of the potential step leads to the equations

1 1
BKU = ^(\-r)DtI,

where /4Ьс , Bte& and Dtr are the amplitudes of the plane
waves incident on the step, reflected from it and transmit-
ted through it, while the quantity r is given by

0+

Correspondingly the equation uz inc = | i>Zjrefl | -f yz tr holds
from which for uz>tr > 0 it follows that |uZ;refl| < vz<inc.
Thus, the picture is reestablished which corresponds to the
usual concepts concerning processes of reflection of a flux
of particles from the boundaries of a potential step and
transmission through it.

4. CONCLUSIONS AND DISCUSSION

In the present paper results are generalized of the in-
vestigation of Ref. 10 to the case of a particle in a field with
a constant nonzero scalar potential. The discussion that
has been presented enabled us to resolve in a natural man-
ner the Klein paradox. In this connection it is useful to
make the following remark. Until now in the physics liter-
ature, as a rule, an opinion has been stated that the con-
clusion following from the Dirac theory concerning the
equality of the eigenvalues of the velocity of the operator of
an electron corresponding to values ±c, i.e., equal in mag-

nitude to the velocity of light is devoid of physical sense.
However it seems that the results, obtained by us both in
section 4 of Ref. 10 and also in the present article, indicate
the deep physical sense of this conclusion of the Dirac
theory. Also one should note that the conclusions made in
Ref. 10 and here refer not only to the truly relativistic
rapidly moving particles, but also to particles with average
velocities small compared with the velocity of light (this
case can be realized by going over into an appropriate
inertial reference system). For such "nonrelativistic" par-
ticles the special theory of relativity also leads to conclu-
sions essentially different from the classical Newtonian me-
chanics, in particular to a conclusion concerning the
existence of a rest energy. In this connection we note that
we in Refs. 11, 12, and also other authors (Refs. 13-15),
have established within the framework of the band theory
of solids the existence of zitterbewegung also for an essen-
tially nonrelativistic electron.

In the case of free motion the role of the rest energy
manifests itself in the fact that, as we have shown in for-
mula (12) of Ref. 10, the root-mean square indefiniteness
of the projection of the electron velocity along the momen-
tum is equal to (т&?)с/Е. Correspondingly this indefi-
niteness is maximum and equal to с in the rest system
where E=m(yc1. In a reference system where the electron
energy significantly exceeds its rest energy this indefinite-
ness tends to zero, while the electron velocity tends to the
velocity of light.

According to (2), (8) and (9) in a field with a con-
stant scalar potential the indefiniteness of the component of
the velocity along the momentum is determined by the
equation

ГПг,

\E-U0

•с.

Thus also in this case the role of the rest energy is made
apparent. For U0=0 this expression goes over into formula
(12) of Ref. 10 which we have discussed earlier. When the
condition (1) holds the expression for the indefiniteness
under discussion takes on the form just indicated above,
from which it follows that under the conditions examined
in connection with the Klein paradox as f/0 increases the
root-mean-square indefiniteness of the component of the
velocity along the momentum decreases.

In conclusion we note that the concept proposed by us
in Ref. 10 and developed in the present article of a station-
ary state of a particle in the form of a superposition of
eigenstates of the velocity operator with the eigenvalues of
this operator equal to ±c is in complete accord with the
general principle of the superposition of states of quantum
mechanics. This reflects the inner motion of particles with
a nonzero rest mass in accordance with relativistic quan-
tum mechanics, and this enables one to gain a better un-
derstanding of the nature of particles the motion of which
obeys both the laws of quantum mechanics and the laws of
the special theory of relativity.
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