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The theoretical concepts of Raman scattering by free current carriers in semiconductors and
metals are reviewed. Various elementary excitations are discussed as the sources of the
light-scattering fluctuations: one-particle charge-density fluctuations and plasmons, spin-
density fluctuations, and fluctuations of the density of electron energy and momentum.
These elementary excitations are common to different solids: metals, semimetals,
semiconductors, and superconductors. As an adequate mathematical apparatus that reflects
the unitary nature of the Raman spectra of these elementary excitations in various
solids, a macroscopic approach to describing their relaxation is proposed. In this approach
one distinguishes two mechanisms of relaxation: the diffusion mechanism, in which
relaxation occurs via diffusional fluxes of varying nature, and the MandePshtam-Leontovich
mechanism, in which adiabatic relaxation of the light-scattering fluctuations occurs. In
multivalley semiconductors these mechanisms coexist, giving an additive contribution to the
reciprocal relaxation time of the fluctuations: in single-valley semiconductors, metals,
and superconductors, one of these mechanisms is realized, depending on the details of the
electron band structure. Here the correlation function that determines the Raman
cross section satisfies the same kinetic or diffusional equation as the fluctuating quantity
itself. As technical applications, the possibility is pointed out of contact-free determination of
the parameters of the electronic spectrum of semiconductors, metals, semiconductor
superlattices, and superconductors.

1. INTRODUCTION

Raman scattering by charge carriers in solids is one of
the best developed branches of spectroscopy. There are a
multitude of electronic excitations that are manifested in
Raman scattering. They include fluctuations of charge den-
sity, fluctuations of electron energy and momentum, fluc-
tuations of spin density, etc. A large number of parameters
of the electronic spectrum of semiconductors and metals
and their kinetic coefficients can be determined from scat-
tering spectra.

The conservation laws for the elementary scattering
event have the form

p'— p=#q, £ ,— e0=fua;

here

a>=col—a>s, q=k'-ks

(1.1)

(1.2)

are the frequency and wave vector transmitted upon scat-
tering, со1 and k1 in (1.2) are the frequency and wave vec-
tor of the incident light, while a>s and ks are the same
parameters of the scattered light, and ep is the energy of the
elementary excitation having the quasimomentum p. De-
spite the considerable difference of electronic properties of
different solids: metals, semimetals, semiconductors, and
superconductors, deep relationships exist among their Ra-
man spectra, since the one-particle excitations in them are
controlled by the very same laws. The conservation laws in
(1.1) give a good example of such laws.

For a degenerate electron gas at zero temperature
T=0, Eqs. (1.1) and (1.2) imply that only the electrons
that lie in a layer of depth fuo/vf contribute to scattering,
where v¥ is the Fermi velocity below the Fermi surface.
The number of such electrons depends on the geometry of
the Fermi surface. For a spherical surface the scattering
cross section increases linearly with increase of со up to
a>=qvy, and then declines to zero at o)=qvv+(fiqi/2m)
(Fig. 1, curve 1). At a finite temperature Т an additional
rounding-off will occur near ca=quF (curve 2). Fluctua-
tions of the bottom of the conduction band caused by fluc-
tuations of the density of ionized donors lead to the same
effect (curve 3). Curve 4 shows the experimental data
(from the review, Ref. 3). Thus, for Raman scattering by
current carriers, it is essential in principle to take account
of spatial dispersion. Usually the Raman cross section is
determined by the square of the classical electron radius

r =_j=2.82-Ю-13 cmrrur (1.3)

(see Ref. 1, Sec. 78). However, near resonance it can be
enhanced by a factor of up to 1010.2 This very substantial
enhancement factor, being a resonance effect, depends very
strongly on the details of the electronic band structure and
on the scattering mechanism.

In line with this, the present review begins with deriv-
ing the Raman cross section (Sec. 2) for a model of a band
structure applicable to semiconductors and semimetals.
Only several energy bands are considered. They allow one
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FIG. 1. Frequency dependence of the scattering cross section of one-
particle excitations illustrating the law of conservation of energy. Curves
1-3—calculation for GaAs with /i = 6.4Xl018 cm"3, ?uF=280 cm'1,
curve 4—experiment from Ref. 3.

to take account of the major contribution to the Raman
cross section. The degeneracy of the bands is taken into
account both in the virtual states and in the initial and final
electronic states. In the special case of semiconductors with
a simple conduction band, such as n-InP and GaAs, the
Raman cross section reduces to (1.3). However, at high
concentrations of charge carriers easily attainable in the
plasma of a solid, this very simple scattering mechanism,
which is associated with charge fluctuations, is suppressed
by screening. In this case, to explain the observed spectra
requires other mechanisms of Raman scattering, which
arise from features of the band structure of the materials.3'4

These scattering mechanisms are discussed in Sees. 3.2-
3.7. The electronic energy bands in typical semiconductors
are classified according to the quantum numbers of the
angular momentum. The corresponding transitions lead to
scattering with spin reversal, which in the absence of spin
splittings degenerates into the ordinary Thompson scatter-
ing with the cross section of (1.3). In this case the spin
subbands can be treated as two valleys of a multivalley
semiconductor, with which light interacts in different
ways. This is the so-called scattering by spin-density fluc-
tuations. In the case of a real multivalley semiconductor
(containing several valleys), singularities of scattering that
occurs in an anisotropic multicomponent plasma of a solid
are manifested.5 As more complex multicomponent sys-
tems, one can treat the electrons of metals having an arbi-
trary anisotropy of the Fermi surface.6 In the collision-free
case the singularities of the Raman spectra are directly
associated with the topology of the Fermi surface.6 Here
the multicomponent character of the plasma is attained by
the differing interaction of the light with different regions
of the Fermi surface. In nonparabolic semiconductors the
role of different plasma components is played by the car-
riers that do not lie at the Fermi surface.7 Under a number
of conditions, the scattering by energy fluctuations that
occurs in this case allows a macroscopic description. A
special scattering mechanism, whose contribution predom-
inates in the isotropic spectrum of the scattering particles,

exists in semiconductors with degenerate bands.8

Section 4 is devoted to calculating the form of the
spectrum for each of the cited scattering mechanisms. To
do this, it proved necessary to discuss the kinetics of the
fluctuations that scatter light. The existing experiments on
Raman scattering are also analyzed in this section.

Within the framework of the effective-mass approxi-
mation, the mechanisms of scattering in semiconductors
having superlattices and quantum wells are the same as in
volume materials. It is shown in Sec. 5 how to apply all of
the material discussed in the review for the case of elec-
trons trapped in superlattices and wells; Sec. 6 is devoted to
metals and superconductors.

In all places where it seems convenient in this article,
we discuss the theoretical and experimental results ob-
tained in our research group.

2. THE SCATTERING CROSS SECTION

One can derive the most general expression for the
light-scattering cross section of free current carriers on the
basis of a quantum-mechanical description of both the elec-
tronic system and the radiation. If the energy spectrum of
a semiconductor contains degenerate or closely spaced
bands, then, in the absence of external agents, the Hamil-
tonian of the free carriers Щ of any crystal can be written
in the form of a matrix in the indices of the degenerate or
closely spaced bands.9'10 To find the matrix Hamiltonian of
the interaction Д nt of such free carriers with the field of an
electromagnetic wave, we must replace in H0 the kinematic
momentum p with the generalized p+ (e/c)A(r,t~), where
A is the vector potential of the electromagnetic wave, and
must separate out the terms containing A. As a result the
sought interaction Hamiltonian equals

e С з /•?
2тс"л

Here the operator for the carrier current equals

j(r)=

(2.1)

(2.2)

where the summation over a is taken over all particles,
while the velocity operator has the form

The tensor

5(r-re)

(2.3)

(2.4)

is defined as the operator for the reciprocal effective mass.
The vector potential A(r) can be written in terms of the
operators for creation and annihilation of photons c+ and
с in the form

(2.5)
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Here the summation over л is performed over the states of
the electromagnetic field, and the An are the wave func-
tions of the electromagnetic field. We note that the inter-
action in (2.1) contains effects of spatial dispersion and is
suitable for describing scattering in inhomogeneous media
for bounded crystals, their surfaces, superlattices, and
quantum wells.

Inelastic scattering of light is a process in which the
absorption of an incident electromagnetic wave with fre-
quency of, wave vector Л1 and polarization el is accompa-
nied by simultaneous emission of a wave with the param-
eters <»s, fc8, and es. The probability of the corresponding
quantum-mechanical transition has the form

(2.6)

where

(2.7)

is the total matrix element of the transition calculated in
first- and second-order perturbation theory in Дп1 from
(2.1) (seeRef. 11). In (2.6) Vis a normalizing volume for
photons. The probability of the transition (2.6) describes
all the secondary emission of the crystal12 and contains the
contribution of luminescence and inelastic light scattering.
If the light scattering occurs with a small frequency change
(the so-called quasielastic scattering):

«'-ttW, (2.8)

then in this case it proves possible to write the Raman cross
section in terms of the electronic contribution to the po-
larizability of the crystal 8x(r,f). To do this it suffices to
reverse the rule of passing around the pole in the second
term within the summation sign in (2.7). If the scattering
system exists in the quantum-mechanical ground state,
then only "upward" quantum transitions in which
Е1—Е„<0 are possible. Therefore the denominator in the
second term does not vanish, which makes the replacement
identical.11 If (at T^=0) the crystal does not exist in the
ground state, then, if we assume the frequency of the light
«a1 to be large enough, in view of (2.8) we can write

This implies that the second denominator in (2.7) still
does not vanish. As a result, using the relationship

E+iO

we obtain

l-=_L p
f JO Я Jo

dteiEt/*, (2.9)

M21 = - P-j J d3r,dVJ(r,)^(r2);$(r,,r2),

(2.10)

-- I df1e'ft)I'i(/,-(ri^)//t(r2,i" Jo

(2.11)

is the operator for the dielectric polarizability of the elec-
trons.

Upon substituting (2.10) into (2.6) and using the re-
lationship

8(E)=-^-= Ate-iEt/f, (2.12)

as well as the normalization condition for photons (one
photon in the volume V), we can derive the following
expression for the scattering cross section:

a>l(cosy 1 Г

(2.13)

Here the angle brackets (...) denote statistical averaging
over the initial states of the crystal, and A\ and AQ are the
amplitudes of the waves outside the crystal. Equation
(2.13) is valid for absorbing crystals, and also for films
under the condition of no interference of the incident wave
in the scattering volume. However, Eq. (2.13) is inappli-
cable for substantially inelastic, e.g., multiphonon,
scattering13 in which the condition (2.8) fails, and one
must not change the rule for passing around the poles in
the denominators of (2.7). In this case the scattering cross
section is not expressed in terms of the operator for the
electronic polarizability.12 The absorption length in typical
semiconductors is rather large (6'~10~5 cm) even under
conditions of resonance enhancement of the Raman cross
section. This allows us to neglect the spatial dispersion of
the dielectric susceptibility x/k fr°m (2.11) and write the
following expression to an accuracy up to q<l, where a is
the lattice constant:

(2.14)

Here we have г= (г!+г2)/2, while the quantity б^,л(г) is
defined as the fluctuation of the dielectric susceptibility of
the system of electrons. Substituting (2.14) into (2.13), we
obtain

dcodfl

where the spectral correlation function equals

(2.15)
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dte^(8Xik(r,t)8Xmn(r',0)). (2.16)

We note that the Raman cross section in the subsur-
face layer of a nontransparent medium was treated in Ref.
14 by constructing the Green's function of the wave equa-
tion outside the medium. The dependence of the correlator
(2.16) on the boundary conditions at the surface of the
crystal enables one to study various scattering processes
that occur with participation of surface excitations of the
crystal.15 For transparent media one can calculate the in-
tegrals over the volume in (2.15):

dcodfl
(2. 17)

here (8Xij8Xkn) \ш is the completely Fourier-transformed
correlation function (see Ref. 16). The substitution of the
current operator of (2.2) and the effective-mass operator
of (2.4) intoEq. (2.11) yields

л «. чai',p- rfl (P).
(2.18)

Here <zi and are the operators for creation and anni-
hilation of an electron in the band £ with the quasimomen-
tum p, while the matrix yik equals

PHo >.|'P

(2.19)

The diagonal components of the matrix fik describe intra-
band scattering. The corresponding contribution to Eq.
(2.18) describes the thermodynamic fluctuations of the di-
electric susceptibility associated with the fluctuations of the
electron distribution function:

(2.20)

All the information on the mechanism of interaction of the
carriers with light is concentrated in the matrix yik. In the
nonresonance situation we have fuol<%Eg, where Et is the
width of the forbidden band of the crystal. As Abrikosov
and FaFkovskii showed,17 the first term in the Hamiltonian
of the interaction (2.1), which is linear in the field of the
electromagnetic wave, yields a contribution to the cross
section that is small (~i>/c) in comparison with the qua-
dratic term. Correspondingly, the contribution of the sec-
ond and third terms in (2.19) is small5 in comparison with
the first term, and we should neglect them. Here, for a
simple nondegenerate band, the first term in (2.19) re-
duces to the reciprocal effective mass (те*)"1. Therefore,
also in (1.4) the mass of a free electron should be replaced
by its effective mass. However, if the resonance condition
\Eg—fud1 \4fuD is satisfied, the second and third terms
make the fundamental contribution to the scattering. In

the case of complex bands all the terms yik amount to
matrices in the symbols of the subbands. The existence of
nonscalar components in all of them that do not reduce to
an effective mass leads to new scattering mechanisms,
which are discussed in Sec. 3.7.

We can represent the fluctuation of the dielectric sus-
ceptibility in (2.18) in the form of a series in the small
deviations of statistically independent fluctuating quanti-
ties from their equilibrium values. Both the magnitude of
the cross section and the form of the scattering spectrum
substantially depend on whether purely classical fluctua-
tions of these quantities occur, as determined by the tem-
perature, or quantum "zero-point oscillations" of the fluc-
tuating quantities occur. The transition from the one
scattering cross section to the other is carried out with the
coefficient

•fcj

1-е-fiio/T • (2.21)

This coefficient gives rise to the well known16 ratio of the
cross sections of Stokes and anti-Stokes processes

d2Stoke!

1 -v anti-Stokes= ejfua/T (2.22)

At low temperatures 74fe the elementary excitations of
the crystal from which scattering occurs are mainly created
by the light. Therefore there are no anti-Stokes processes.
In the converse case !Г>/йа, scattering occurs from already
existing thermal fluctuations. Therefore the cross sections
of the two processes are the same.

The immediate information on the mechanisms of Ra-
man scattering is contained in the so-called integral scat-
tering cross section, which is obtained by integrating
(2.17) over the transmitted frequency со. The integral is
calculated by using a representation in 6-functions of the
type of (2.12). As a result the nonsimultaneous correlator
(SxffSgff) from (2.16) becomes simultaneous, and the
integral cross-section acquires the form

(2.23)
d

This expression is simplified at high temperatures
for which the fluctuations are classical.19 Apart from
charge-density fluctuations, the classical simultaneous fluc-
tuations are uncorrelated. Therefore we can set ^=0 in
(2.23). Then the scattering cross section in (2.23) breaks
down into the sum of the mean-square fluctuations of fun-
damental thermodynamic quantities. The values of the in-
tegral cross sections for the fundamental scattering mech-
anisms are derived in Sec. 3.

The scattering cross section of the charge-density fluc-
tuations substantially depends on q owing to screening ef-
fects. Another example of dependence on q of the simulta-
neous correlator of fluctuations 8% is given by spin-density
fluctuations at low temperatures;3 see also Ref. 20.
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3. SCATTERING MECHANISMS

3.1. Scattering of light by charge-density fluctuations

This type of scattering is caused by charge carriers
created either by ionization of dopant admixtures21 or by
optical pumping;22'23 see also Refs. 69 and 70. The essential
question in treating light scattering by charged current car-
riers is the screening of the fluctuations that scatter light.
At low carrier concentrations the screening radius rs is so
large that any excitation having the light wave vector q is
not screened. Here we have

qrt>l. (3.1)

In this case the most essential fluctuations in the Raman
spectra are the charge-density fluctuations. The corre-
sponding contribution to the fluctuation of the dielectric-
susceptibility tensor has the form16'17

(3.2)

Here the tensor for the reciprocal effective mass /^,=my*f
equals the diagonal matrix element of the matrix yy from
(2.19). This type of scattering has been studied in a gas
plasma24'28 and in semiconductors.21 The spatial Fourier
component of the correlator of the susceptibility fluctua-
tions from (2.17) is reduced for (3.2) to the correlator of
the density fluctuations:

f , V^ in т /1 1 \

onq=Le "• (3-3)
a

The main contribution to the Fourier integral comes from
distances of the order of r~q~l^rs. Thus we can neglect
the interference of the waves scattered from different De-
bye spheres of radius rs. Yet within the limits of one sphere
the motion of carriers is uncorrelated. As a result the dif-
ferential Raman cross section acquires the form25

dwdft
* 2 Re - Г °

f Jo
dre/fi) VQAr(T) ) .

Here the displacement Дг(т) =r(t+r) —t(t) is associated
with the classical trajectory and is determined kinemati-
cally. This formula, derived under the assumption of ab-
sence of screening, is also valid for scattering by spin-
density fluctuations. In this case the role of the tensor \1ц
from (3.2) is played by the corresponding "Raman
tensor,"3 which determines the polarization dependence of
the spectrum.

To trace in detail the transition from the differential
cross section of (2.17) to the integral cross section of
(2.23), let us integrate (3.4) over о with the aid of (2.12):

(3.5)

Equation (3.5) differs from the standard formula [(78.5)
from Ref. 1] in that it takes account of the anisotropy of
the scattering medium. Here the different scattering mech-
anisms are manifested in different forms of /iy; see Sees.

3.3-3.9. Moreover, the coefficient eJe)V// = «ФуУу ac-
cording to (2.19) reflects the possibility of resonance en-
hancement of the scattering cross section.

Quite high concentrations of the current carriers, a
condition, reverse to that of (3.1), is fulfilled. In the iso-
tropic case it is the following

gr,^l. (3.6)

At high enough concentrations Eqs. (3.4) and (3.5) lose
validity, since the interference of waves scattered by vari-
ous particles becomes substantial. This implies that one-
particle quasielastic scattering by charge-density fluctua-
tions is transformed into substantially inelastic Raman
scattering by plasmons. The general formula describing
these changes in the scattering spectrum has the following
form for an anisotropic medium:

(3.7,

Here eik= (0,q) is the dielectric permittivity tensor at zero
frequency. In general, the cross section cannot be ex-
pressed in terms of the number of scattering particles and
the screening radius, since the problem of screening in an
anisotropic medium requires special treatment. If the me-
dium is isotropic, then, using the known expression for
e(0,q), we obtain

where £ is the chemical potential of the carriers. Thus a
comparison of Eqs. (3.7) and (3.5) shows that, in view of
the parameter (3.6), the scattering spectrum of plasmons
is smaller by a factor of (grs)~

2 in intensity than the one-
particle spectrum. In Eq. (3.7), instead of the total con-
centration n, the coefficient Т(дп/д£)т enters, reflecting
the Pauli principle and giving the fraction of the carriers in
a layer of thickness Т near the Fermi surface that partic-
ipate in scattering. Crystals of high-temperature supercon-
ductors are anisotropic conductive media27 (see Sec. 6), as

(3.4) well as doped superlattices; see Sec. 5.26

3.2. Unscreened scattering mechanisms from the
standpoint of symmetry

A distinguishing feature of plasmas of solids is that
they are multicomponent plasmas. This leads to a number
of unscreened mechanisms of light scattering that differ
from the mechanism described in Sec. 3.1 of Raman scat-
tering by charge-density fluctuations. The main difference
consists in the fact that the corresponding contributions to
the fluctuation of the susceptibility in (2.18) are nonscalar.
Therefore they are not screened.

Generally speaking, the symmetry analysis of the
quasielastic Raman cross section must be conducted with
respect to the group of the wave vector q transmitted in
scattering, i.e., to Gq. The expansion of the tensor yik from
(2.19) or &Xik from (2.18) into irreducible tensors must
also be performed with respect to this group. The symme-
try analysis of the integral cross section is often simplified

396 Physics - Uspekhi 36 (5), May 1993 Bairamov et al. 396



by the fact that it is determined by the simultaneous cor-
relation function, in which we may neglect spatial disper-
sion, assuming that q=0. This allows us to use the point-
group symmetry. For example, for the cubic groups Td , O,
and Oh there are four irreducible representations that are
contained in the representation formed by the arbitrary
second-order tensor jik . Correspondingly, 8xik can be rep-
resented in the form

(3.8)

Here 8Х

(Г>} is the scalar contribution containing the trace
of the tensor 8Xik. It contains the charge fluctuations from
(3.2). The rest of the terms have higher symmetry and are
described by traceless matrices. After substituting 8Xik

from (3.8) into (2.23) and averaging over the symmetry
directions the separate terms prove to be statistically inde-
pendent. Therefore only the first term of scalar symmetry,
which contains the charge fluctuation, is screened, while
the remaining terms of higher symmetry are not screened.
For less symmetrical crystals several terms having the
same symmetry appear in the expansion (3.8). Here the
cross term remains after statistical averaging. This is the
situation, e.g., in crystals of classes Т and Th , where there
are seven independent types of scattering instead of the
four types following (3.8). The cross term can also appear
in transforming to the group of the wave vector Gq , which
is lower than the point group symmetry of the crystal. In
all these cases the selection rules in Raman scattering can-
not be derived by analyzing the second-order tensors jik or
8%ik- The cross terms describe the overlap of wave func-
tions having the same symmetry but differing energy. The
theory based on the second-order Raman tensor is appli-
cable only for narrow lines when the overlap integrals be-
tween them are insignificant. In describing deformation ef-
fects in Raman scattering in n-Si (see Sec. 3.8) and in
calculating the differential section for Raman scattering by
holes (see Sec. 3.6), we encounter broad lines, for which
one must use a fourth-order tensor.32

3.3. Light scattering by intervalley fluctuations
in multivalley semiconductors

In a multivalley semiconductor the current carriers oc-
cupy several energy minima (valleys) in the Brillouin
zone. The dependence of the energy on the quasimomen-
tum for an electron lying in the ath minimum is described
by the formula

1
(3.9)

Here fj.(

ik' is the tensor for the reciprocal effective mass in
valley a. In the semiconductors n-Si and n-Ge, the appli-
cation of the symmetry operations transforms the valleys
into one another (Figs. 2 and 3). Therefore the valleys are
equivalent. In deformed crystals the valleys cease to be
equivalent. For example, upon hydrostatic compression of
GaAs its side valleys drop lower in energy, approaching
the Г-valley, so that a system arises of several nonequiva-
lent valleys. An analogous situation is realized in hydro-

FIG. 2. Orientation of the valleys in n-Si. The arrows indicate the direc-
tions of the vectors e1, es, and q, which correspond to the Г]2 scattering
geometry used in the study.

static compression of n-Ge, with the difference that here
the side valleys are initially lower. Raman scattering in
hydrostatically3 and also in uniaxially compressed29 crys-
tals is being intensively studied.

The contribution of the current carriers of a multival-
ley semiconductor to the dielectric susceptibility is deter-
mined by a generalized formula of the type of (3.2):

(3.10)

Here Ru is a resonance factor having the standard form30

(3.11)

If the ath valley has axial symmetry with respect to the
direction v(a), then the tensor ц\^ сап be written in the
form

(3.12)
where //ц and fj.L are the principal values of the tensor
nlk\ This representation according to Sec. 3.2 is conve-
nient, since the terms of differing symmetry are separated
in it. The corresponding expression for 8Xik has the form

FIG. 3. Orientation of the valleys in n-Ge and the unit vectors used in the
present article. The directions of all the unit vectors pass through the
coordinate origin—the center of the cube.
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1
—

«,/3

(3.13)

Here S is the number of valleys, 8na is the fluctuation of
the concentration of electrons in the valley a, and

is the fluctuation of the total concentration. Substituting
(3.13) into (2.23) leads to the cross section for scattering
by neutral fluctuations. The correlation function for neu-
tral fluctuations is well known:19

(3.14)

The final answer depends on the number and orientation of
the valleys in the Brillouin zone. For the six valleys of n-Si
the unit vectors v(a) are oriented along the fundamental
fourfold crystallographic axes. The integral scattering
cross section equals

dn

x X
/

2
k

(3.15)

The combination of polarization vectors obtained in (3.15)
corresponds to the so-called Г12 scattering geometry. In
pure form it exists, e.g., for eI=<110>/vl, es=<lIO)/Vl
An analogous result was obtained in Ref. 30. For n-Ge,
where the valleys are oriented along the threefold axes (see
Fig. 3), an analogous procedure yields the following result
for the integral cross-section:33

dn

(3.16)x 2
i>k

As is known,33 this Г^ geometry is realized, e.g., when
es=(100>, eI=<010>. Thus one can determine the orien-
tation of the valleys from the electronic Raman scattering
in multivalley semiconductors. On the whole, multivalley
semiconductors give a graphic example of how a complex
structure of the spectrum of carriers creates conditions for
the appearance of excitations active in light scattering.

3.4. Light scattering in metals

Light scattering in metals occurs in the subsurface
layer (the skin layer), whose thickness б is determined by
the depth of penetration into the crystal of the field of the
incident light. In (2.15) one must use the Fresnel formulas
for the coupling of the incident and scattered electromag-
netic waves inside and outside the crystal.16

The unscreened scattering of light in a metal is caused
by the fluctuations of the electron density distribution

along the complex Fermi surface. Upon taking account of
the strong degeneracy of the statistics, the fluctuation of
the electronic polarizability can be represented in the
form34'35

(3.17)

Here <pv is the fluctuation of the electron distribution func-
tion at the Fermi surface, which is associated with the total
distribution function 6/p according to

(3.18)

Here /o is the Fermi distribution function of the electrons.
The role of the reciprocal effective mass is played in (3.17)
by the curvature of the Fermi surface cP-e/dpf)pk, which
depends on the quasimomentum of the electron. Since the
wave vector of the light in the metal has the considerable
uncertainty Д^~ l/g>q, the role of the condition of strong
screening in (3.6) is played by the stricter condition

r,<8. (3.19)

Instead of the summation over the valleys, an integral over
all the Fermi surface figures in the condition of neutrality
for a metal:

2dS'F

This condition implies that the fluctuations of the electron
distribution function are not accompanied by charge fluc-
tuations. It replaces the Poisson equation in the case of
(3.19) (see Ref. 36). Since metals are opaque materials,
one employs the "backscattering geometry" in them (see
Ref. 3). Upon substituting (3.17) into (2.15) and integrat-
ing over the frequency with the aid of (2.12), we obtain

16

(И \dpfok

-^2. ГП

>*'}• (3.21)

Here the first factor corresponds to the square of the trans-
parency coefficient Т at normal incidence of the electro-
magnetic wave on the boundary of the metal:

T= (3.22)

Here N and a are the refractive and absorption coefficients
of the metal, S the area of the scattering surface, and the
angle brackets denote averaging over the Fermi surface.
The second-order tensor

dp/dp,, dpidpk

(3.23)

in (3.21) vanishes for a parabolic dependence of the energy
of the electron on the quasimomentum, when the fluctua-
tions 8n are fully screened (see Sec. 3.1). Thus the sepa-
ration of the trace of the tensor die/dp^pk effected by av-
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eraging implies taking account of screening.31 On the other
hand, this operation leads to numerical smallness of the
cross section of (3.21).

3.5. Mechanisms of light scattering in semiconductors
with a nonparabolic dispersion law

An important group of semiconductors is the A3B5

compounds. The band structure of these materials is well
described by the Kane model,37 in which the dependence of
the energy of the electrons on the quasimomentum proves
to be isotropic, but substantially nonparabolic. As in the
case of metals, nonparabolicity of the electron spectrum of
A B5 compounds implies a dependence of the curvature of
the isoenergy surface on the quasimomentum. Therefore
the principal features of unscreened mechanisms of light
scattering that we discussed in Sec. 3.4 for metals are main-
tained also in these semiconductors. The difference consists
in the fact that a nondegenerate statistics can be realized in
semiconductors, in which all free carriers are essential,
rather than only those lying at the Fermi surface, as in
metals. In this regard the fluctuation of the electronic po-
larizability is determined by the total fluctuation of the
distribution function <5/p:

2d3/>
(3.24)

One can obtain the integral cross-section by substituting
(3.24) into (2.23). The symmetry considerations pre-
sented in Sec. 3.2 enable us to separate this cross section
into two contributions corresponding to the separation of
the tensor 8x/k into the scalar <5^//3 and traceless symmet-
rical components. The latter equals

(3.25)

The correlation function (bxifiXkn)* fr°m (2.23) is re-
duced for the case of an isotropic medium to the following
equation [see Eq. (117.13 in the book, Ref. 16)]:

X (3-26)

The two terms in (3.26) correspond to the two indepen-
dent mechanisms of light scattering by energy fluctuations
and momentum fluctuations of electrons. The physical dif-
ferences between these mechanisms of Raman scattering
are manifested most sharply for weak nonparabolicity,
when the dependence of the energy on the quasimomentum
can be represented in the form7

_
2m* Eg 2m*

(3.27)

Here m* is the value of the effective mass at the bottom of
the conduction band. In this case the curvature of the
isoenergy surface that enters into (3.24) proves to be a
linear function of the energy e. Then the scalar contribu-
tion to (3.26) has the form

(3.28)

Here the first term does not contribute to the integral ow-
ing to (3.20), while the second term differs from zero only
for spherically symmetric fluctuations of the electronic dis-
tribution function 6/^" and reduces to the energy fluctu-
ation

-(2тНг)32т*
(3.29)

Raman scattering from energy fluctuations was first stud-
ied by Wolf,7 observed by Mooradian,21 and identified in
Ref. 38 at T—10 К from the strong resonance dependence
of the scattering cross section, which in this review is con-
tained in yff from (2.19). However, for simplicity we as-
sume here that y= l/m*(e). Below we identify the energy
fluctuations from the temperature dependence of the inte-
gral scattering cross section. Exact formulas for the reso-
nance factors can be found in the review, Ref. 30. The cross
section for scattering by energy fluctuations is derived by
substituting (3.28) into (2.23) and has the form

da
i *s*I2C _

6 e I 0"М F
£g

(3.30)

Here Cv is the electronic heat capacity at constant
volume.19 We see from (3.30) that the integral scattering
cross section of energy fluctuations has a strong tempera-
ture dependence. For nondegenerate statistics we have
С„=ЗпУ/2, and the cross section is proportional to T2.1'30

When degenerate statistics sets in we have Cv~nT/£, so
that the cross section is proportional to the cube of the
temperature. This gives rise to a considerable decrease in
the cross section. When we take account of the higher
powers in the expansion of the energy in (3.27), the tem-
perature dependence of the cross section varies. In partic-
ular, in going to degenerate statistics, according to Ref. 30,
a factor fiq/mvF arises, rather than С„; see Eq. (4.100)
from Ref. 30. On the whole, for strong nonparabolicity the
role of the discussed mechanism of Raman scattering is
more significant.

The second term in (3.26) arises from the symmetric
contribution to dxik from (3.24), which we can represent
with the aid of (3.27) in the form

8xlk} = —,
16

X J
2d3p

2m*
(3.31)

We see from (3.31) that 6^-jf' differs from zero only for
those fluctuations of the electron distribution function
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p2) that have the symmetry of the second spherical har-
monic. The corresponding integral cross section has the
form

x f i + (3.32)

Here the angle brackets denote an averaging performed
while taking account of the Pauli principle, i.e., with the
distribution function (dfo/dn)T. At Г=0 this is an aver-
aging over the Fermi surface as in a metal [see (3.21)].
Wolf7 also predicted theoretically the unscreened scatter-
ing of (3.32). Despite the relative smallness of the cross
section that was obtained, caused by the numerical factors
8/15 in (3.32) and 64/9 in (3.30), its contribution must be
taken into account at low temperatures in the scalar geom-
etry e^je8 The calculation performed in Ref. 39 with ac-
count taken of the resonance enhancement of both mech-
anisms yields the following for the frequency of an
Nd:YAG laser with fa)1=1.11 eV:

(3.33)

Equation (3.33) implies a possibility of observing scatter-
ing by momentum fluctuations of (3.32) in materials with
degenerate statistics. For example, for the semiconductors
n-InP and GaAs at Т=300 К, a change of Raman scat-
tering mechanisms from (3.30) to (3.32) must occur at

3.6. Light scattering by spin-density fluctuations

The interaction of charge carriers with electromagnetic
radiation also can serve as a source of scattering. The most
effective mechanism arises from the spin-orbital
interaction.4 Scattering by spin-density fluctuations was the
first one-particle scattering by a solid-state plasma that
could be observed experimentally.3'21 In the nonrelativistic
theory40 the spin arises as a result of taking account of the
quantum-mechanical degeneracy of states. In the tensor yik

from (2.19), nondiagonal matrix elements appear here
among the states of the spin subbands described by the
values 5= 1/2 for electrons and 7=3/2 for holes.

In the zero order of perturbation theory the spin-
orbital interaction is taken into account by a "choice" of
the "correct" linear combinations of spinor wave
functions.40 Here the axis of quantization of the angular
momentum is associated with the direction of the
quasimomentum.10

The electronic Hamiltonian of the spin-orbital interac-
tion has the form

iff
(3.34)

Here a is a vector composed of Pauli matrices as projec-
tions. When we take account of the Hamiltonian of (3.34),

the light is scattered by the fluctuations 6nt and 8nl asso-
ciated with the individual spin subbands. Here the condi-
tion of neutrality can be fulfilled:

5и=5и,+6и4=0. (3.35)

The cross section for Raman scattering by spin-density
fluctuations was calculated by Hamilton and
McWhorter.4'30 It proved to be antisymmetric in e1 and es

Therefore we should represent the susceptibility 5 ,̂л in the
form of a sum of scalar, traceless symmetric, and antisym-
metric contributions by analogy with Eq. (117.11) from
Ref. 16:

в;Ы- (3-36)
The scalar term in SXM makes no contribution to the Ra-
man cross section, since this contribution is screened. The
expressions for the second and third terms in (3.36) can be
written by associating the matrix jik from (2.19) with the
operators for the angular momentum of the carriers.

3.6.1. Electrons In A3B5 semiconductors

Let us examine first the conduction band of symmetry
Г6. Here the role of the angular momentum is played by
the spin s= 1/2. Therefore the matrix fit fr°m (2.19) de-
pends on the Pauli matrices ст,. It was shown in Ref. 40, p.
250, that an arbitrary function of Pauli matrices is reduced
to a linear function. The most general form of a nonscalar
linear function of Pauli matrices is reduced to the follow-
ing:

bj=BJbtl£k, (3.37)

where 8^ is a unitary antisymmetric tensor, and Ba is a
phenomenological coefficient. Substituting (3.37) into
(2.18), we obtain the following expression for the spin
contribution to the susceptibility fluctuations:

Here

т(о)1У

is the spin-density operator:

(3.38)

<**(*) =11 «tp+y °V,P- у °ir - (3-39)
p K'

where |= ± 1/2 is the index that numbers the degenerate
spin subbands, and o$' is the corresponding element of the
Ath Pauli matrix. The microscopical expression for Ba

when^=0 has the form4

_ _,

" 3m [ -
(3.40)

Here P=ti(S\Vx\x) and Д are the parameters of the Kane
modulus.37 The resonance dependence of B0 on <or can be
used to amplify the spectrum by choosing со1 close to
£g+A; see the reviews, Refs. 3, 30, and 31.

The convolution of the tensor Sxtk with the polariza-
tion vectors of the incident and scattered light
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FIG. 4. Temperature dependences of the integral scattering cross section.
Solid and dashed curves—contribution of fluctuations of density of energy
and momentum, dot-dash curve—contribution of spin-density fluctua-
tions. The corresponding selection rules are indicated in brackets. The
experimental points were obtained at the frequency 0'= 1.17 eV.

enters into the cross sections of (2.15), (2.17), and (2.23).
In it the antisymmetric Kronecker symbol 6/д converts the
polarization vectors into a vector product. This yields

(3.41)
2

Although in semiconductors described by the Kane model
the nonparabolicity can be substantial, at small electron
concentrations we can neglect it and use the expression
(3.40) for Ba. Under these conditions the axis of quanti-
zation of the spin can be chosen arbitrarily.41 It is conve-
nient to make use of this arbitrariness by choosing the axis
of quantization of the spin parallel to the vector product
[e*es], i.e., having oriented the axis Oz in this direction.
Then only the Pauli matrix az remains in (3.41), reducing
the convolution e^Sxn^ to the difference of populations of
the spin subbands:

(3.42)

Upon substituting (3.42) into (2.23), we obtain the inte-
gral cross section for scattering by spin-density fluctuations

|[e'es*]|2. (3.43)

The temperature dependences of the integral intensities of
scattering by fluctuations of energy or momentum Iep and
by spin-density fluctuations Ia obtained by Eqs. (3.30),
(3.32), and (3.43) are shown in Fig. 4. The solid and the
dashed lines give the cross sections /£/, calculated with and
without account taken of the temperature dependence of
the electronic heat capacity CV(T). The solid dots show
the corresponding experimental results obtained by
Baframov and Toporov for a specimen of n-InP with
и = 1.1хЮ18 cm~3 for parallel polarizations of the inci-

dent and the scattered light e1]] es. The best agreement of
the theory of (3.30)-(3.32) with experiment is attained
upon taking account of the CV(T) relationship. The dot-
dash curve and the open experimental points give the cross
section Ia for crossed polarization e1! es. The nonlinearity
of the theoretical curve (3.43) is due to the increase in и
with increasing temperature, which can be explained by the
linear temperature narrowing of the width of the forbidden
band. By fitting, it was possible to determine the values of
the chemical potential £ and the temperature coefficient of
narrowing a:

dE,\ eV
-=f] =3.45—,дТ)р К

="MeV-

3.6.2. Multlvalley semiconductor

In a multivalley semiconductor there is no possibility
of free choice of the axis of quantization of the spin, since
the valleys have the defined axis v(a). Here the carriers of
one valley are characterized by a common axis of quanti-
zation of the spin parallel to v(a), while the different valleys
correspond to different axes of quantization. The contribu-
tion of the fluctuations of spin density of the separate val-
leys corresponds to Eq. (3.42), while the final formula for
8xik is represented in the form of the summation

. (3.44)

The expression for the coefficient B(^ that enters here is
obtained from the corresponding expression for Ba (3.40)
by replacing E& and A taken at the point Г (p=0) with the
corresponding values Egl and Л} pertaining to the edge of
the Brillouin zone where the valleys lie. The integral scat-
tering cross section also differs from the expression (3.43)
obtained above in an inessential numerical factor. To ana-
lyze the resonance dependence of the cross section of
(3.44) on о1, it is important that the relative spin-orbital
splitting at the edge of the Brillouin zone be considerably
smaller than at the center. The expansion (3.40) in the
small parameter Д/£„<1 yields

(3.45)
m

Comparison of B(^ from (3.45) with the resonance en-
hancement factor R 12 from (3.11) shows that the reso-
nance dependence of the cross section on со1 in the case of
scattering by spin-density fluctuations is sharper than in
the case of intervalley fluctuations.

Mestres et a/.42 studied light scattering by spin-density
fluctuations in n-Ge. The scattering mechanism was iden-
tified by using polarization measurements with the symme-
try Г 12, for which the scattering by intervalley fluctuations
is forbidden by symmetry; see Eq. (3.16). The resonance
dependence of B^ was well described by Eq. (3.45).

Contreras et a/.43 studied scattering by intervalley fluc-
tuations in n-Ge, while using the application of pressure to
the specimen to identify it. It is assumed rather often that
Raman scattering by spin-density fluctuations is not sensi-
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tive to the presence of uniaxial deformation. However, the
selection rules for Raman scattering that follow from
(3.44) prove sensitive to deformations. If one applies to an
n-Ge specimen pressure along the < 1 1 1 ) axis, then a singlet
valley is formed in this direction that lies lower in energy
than the triplet valleys. Here, for the "backscattering" ge-
ometry used in Ref. 43 with q parallel to <1Ю), the con-
volution

(3.46)

vanishes. Actually we have 8n(

r

a)— 8n(
Y

a)=£Q only for the
single filled singlet valley oriented along (Ш)- At the
same time the vector product [e'es] is directed along the
perpendicular direction <110). Therefore the scalar prod-
uct in (3.46) equals zero: v(a) [eIes]=0. Thus, by separat-
ing out the singlet valley with the aid of external pressure,
one can quench the scattering by spin-density fluctuations.
The situation on the whole recalls the quenching of scat-
tering by fluctuations of electron density in the presence of
external pressure.43 The resonance properties of the cross
section from Ref. 43 also rather correspond to (3.45) than
to Eq. (3.11) for intervalley fluctuations. On this basis we
can conclude that in the spectra of n-Ge from Ref. 43 a
more significant contribution of spin-density fluctuations
exists than of intervalley fluctuations.

For completeness we should mention the study by
Aronov and Ivchenko,44 which took account of the small
spin splitting of the electronic band that arises upon taking
account of the spin-orbital interaction. This splitting exists
only in semiconductors having no center of inversion. For
the case of A3B5 semiconductors this splitting, as well as
the spin relaxation arising from it, were described in the
review, Ref. 41. The Hamiltonian of the spin-orbital split-
ting used in Ref. 41 has the form

Hso=a[axpx(p2

y-pl) +&&<&-&) + #A(?x-P2y)]-

(3.47)

Here a is a phenomenological constant. The substitution
into (3.47) of p-*p+(e/c)A and the separation of the
terms quadratic in A allows one to obtain a Hamiltonian of
the interaction Hmt of electrons with photons equivalent to
the first term in (2-19). The intersubband transitions de-
scribed by this Hamiltonian determine by Eq. (2.6) the
electronic scattering cross section. However, this cross sec-
tion should be compared with the Raman cross section for
spin-density fluctuations that was discussed above. This
comparison shows that the former Raman scattering can
be observed at low temperatures, small «a1, and high con-
centrations n of electrons, at which the effects of nonpar-
abolicity described by the Hamiltonian of (3.47) become
substantial. The fundamental difference of the Aronov-
Ivchenko scattering mechanism from the scattering by
spin-density fluctuations discussed above consists in the
fact that the former can be observed both when e1! es and
when e'|| es. Finally, we should note the recent observa-
tion of Raman scattering with spin reversal in a binary
heterostructure.45

12,5 7,5
[ПО] -*

7,5 12,5
>- [ТОО]

FIG. 5. Structure of the subbands of the valence band of p-Si.46 The
intersubband transitions corresponding to the boundaries of the Raman
spectrum are indicated by arrows. Cross-hatched region—quantity of
transitions near the threshold.

3.7. Mechanisms of light scattering in semiconductors
having a degenerate energy spectrum

The hole bands in cubic (Ge,Si) and tetrahedral semi-
conductors (InP.GaAs) prove to be degenerate at the
point Г of the Brillouin zone and are described by the
spinor representation Г8 of the cubic or tetrahedral groups.
These zones at the point Г have fourfold degeneracy,
which is characterized by the four projections of the total
angular momentum of a hole J= 3/2. A displacement to
p=£Q leads to splitting into bands of light (Jz= ± 1/2) and
heavy (/z= ±3/2) holes. Thus the hole plasma of semi-
conductors proves to be of multicomponent type, which
leads to a number of light-scattering mechanisms that do
not exist for electrons. The earliest study on light scattering
by holes in semiconductors is the already discussed study
by Aronov and Ivchenko,44 who discussed scattering asso-
ciated with transitions between the subbands of light and
heavy holes. The corrugation of the hole isoenergy surfaces
is not taken into account in this study. The actual band
structure of the hole subbands e\(p) and eh(p) for p-Si
is shown in Fig. S.46 The arrows in Fig. 5 show the bound-
aries «min and u)max of the possible intersubband transi-
tions. At frequencies smaller than u>min intersubband scat-
tering is absent, while between ft)min and u>max the
cross section reaches a maximum. The study of
Balkanskii et a/.47 performed a numerical calculation of the
cross section of the intersubband electronic scattering in
p-Si that took account of the corrugation of the subbands
and the nonparabolicity of the hole spectrum. This calcu-
lation showed that the presence of corrugation appreciably
blurs the boundaries of the spectrum. The experimental
study of scattering in p-Si,48 which was performed at room
temperature, which also enhances the blurring, did not al-
low detecting either boundaries or a maximum. Lowering
the temperature to Т=2 К also did not lead to detecting
them.47 A maximum could be detected only in uniaxially
deformed crystals of p-Si48 in which the bands of light and
heavy holes are split at p=0. However, even here a tail is
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preserved in the low-frequency region u)<wmin, whose
form recalls the analogous spectrum of n-Si.48

All of this involves the fact that another unscreened
scattering mechanism operates in the low-frequency re-
gion, associated with intraband fluctuations of the total
angular momentum of the holes. To clarify the essence of
this mechanism, we can take a simplified isotropic descrip-
tion of the hole bands within the framework of the isotro-
pic Hamiltonian of Luttinger10

(3.48)

Here

1 /1 1
y,=-m — + —

2 m, mh

and

1 /1 1
Y=-m\ — — —

4 \m} mh

are the parameters of the Hamiltonian of Luttinger asso-
ciated with the masses of the light and heavy holes m} and
mh. The wave functions of the Hamiltonian in (3.48) are
four-component columns owing to the fourfold degeneracy
of the hole bands at the point Г of the Brillouin zone.
Correspondingly the magnitudes of / here are four-row
matrices in the quantum numbers of the hole bands. These
matrices are four-component analogs of the Pauli matrices
used above for the total angular momentum /= 3/2. One
can find them in explicit form, e.g., in the book, Ref. 9.

The interaction of the holes with the field of the elec-
tromagnetic wave is obtained by the standard substitution
p->p+(e/c)A in the Luttinger Hamiltonian with subse-
quent separation of the terms linear and quadratic in A.
The matrix yff obtained as a result is associated in the
standard way (see Sec. 3.1) with the projections /, of the
total angular momentum:

(3.49)

The first term in yff is a scalar. It does not contribute to
the scattering because of screening. The second term,
which has the symmetry of a traceless second-order tensor,
in contrast to the case with spin 5=1/2 (see Sec. 3.6), does
not vanish, and contributes to the scattering cross section.
The third term is the antisymmetric contribution to yff,
which is analogous to the spin term from (3.37). The mi-
croscopical expressions for the coefficients y\> Y> and Bj
can be obtained from (2.19). In particular, the expression
for the coefficient Bj is obtained by separating out the
antisymmetric term in the square brackets in (2.19) (see
Ref. 11). Since the denominators in (2.19) contain a>1 with
opposite signs, in forming the antisymmetric contribution a
factor arises of the order of c^/E%. When col^EB, the co-
efficient Bj becomes small, since it contains the small fac-
tor af/Eg^l. In this sense Bj proves to be analogous to Ba

from Sec. 3.6. Since scattering by spin-density fluctuations
has been treated in detail in Sec. 3.6, we shall focus atten-
tion below on the second, symmetric contribution, which is
absent in the case of spin fluctuations. The symmetric
traceless contribution to yff has the form

- J(J+

(3.50)

We recall that £ takes on the values ±1/2 and ±3/2.
Equation (3.50) contains both diagonal and off-diagonal
matrix elements in the stated indices of the hole subbands.
The nondiagonal matrix elements of gf| describe the inter-
subband scattering in light-to-heavy-hole transitions dis-
cussed in Refs. 44, 47, and 48. The corresponding diagonal
matrix elements describe the quasielastic intrasubband
scattering by fluctuations of the total angular momentum
density. We can obtain its contribution to 8%ik by restrict-
ing the summation in (2.19) only to the terms diagonal in
the symbols £. Here we obtain

(3.51)

Here 6/jj, is the fluctuation of the distribution function in
the subband with the projection of the angular momentum
£. Substituting (3.51) into (2.23), we find the correspond-
ing integral scattering cross section:

x(i-/„(&>)). (3.52)

We see from (3.52) that the Raman cross section equals
the sum of the additive contributions from the light (£
= 1/2) and heavy (£=3/2) holes. They are related as the
densities of the corresponding states: (mi/mh)3/2<l.
Therefore in the summation over £ in (3.52) only the one
term with £=3/2 is essential. We find terms of two types
under the sign of the squared modulus in (3.52). First are
the terms of the form J/Jk with i^k, which have no diag-
onal matrix elements and hence do not contribute to the
cross section of (3.52). Second are the perfect squares
(J2

x) = (J2y) and (J2
2), which reduce simply to half-integral

numbers. The dependence of the matrix element being dis-
cussed on the direction of p arises from the fact that the
axis of quantization of the total angular momentum of the
holes coincides with the direction of p. This dependence
has the form

(3.53)

Substituting (3.53) into (3.52) and calculating the angular
integral, we obtain the polarization dependence character-
istic of symmetric scattering:
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FIG. 6. Structure of the conduction band of n-Si. The intersubband tran-
sitions corresponding to the boundaries of the Raman spectrum are indi-
cated by arrows.

4Z 1 + eV5*

(3.54)
Equation (3.54) implies that the Thompson cross section
of the scattering that we have discussed is determined by
the effective mass of the light holes m/Yix4m\, while the
number of scattering particles coincides with the number
of heavy holes, which depends on the statistics of the car-
riers. This situation favorable to experiment is explained by
the fact that scattering occurs by virtual transitions of
holes between the heavy and light subbands, which are
taken into account exactly by the matrix of (3.50)

The discussed mechanism of Raman scattering is the
sole cause of scattering at low frequencies со at low tem-
peratures in semiconductors having a parabolic and isotro-
pic spectrum hi the presence of quantum-mechanical de-
generacy of the bands. The best material satisfying these
requirements is p-Ge.50

3.8. Features of Raman scattering by electrons lying near
the x-polnt of the conduction band of n-Si

The theory developed in the previous section is also
applicable to n-type silicon, whose six valleys lie at a dis-
tance of 0.19 KQ from the x-point of the Brillouin zone,
where quantum-mechanical degeneracy51 of the bands of
symmetry A j and A£ exists (Fig. 6). Here K0 is the bound-
ary wave vector of the Brillouin zone at the x-point. This
degeneracy is substantial at a concentration и so high that
the Fermi energy EF is comparable to the intersubband
spacing £д at the point of the minimum of the valleys. The
Hamiltonian H0 describing the electronic spectrum of sili-
con near the x-point has the form9'51

+fyl\\ ),

Here P=H(xl\Vz\xl), and
mass, which equals

(3.55)

is the reciprocal effective

(3.56)

where the summation is performed over the bands of sym-
metry A5.

9'51 The width of the optical forbidden band
.Eg=4.3 eV for n-Si substantially exceeds fe1 for the
visible-light lasers used for Raman scattering. Therefore we
can neglect the first term in (2.1).5 Substituting p^>p
+ (e/c)A and separating out the terms quadratic in A, we
obtain the Hamiltonian of the interaction

).
(3.57)

The diagonal matrix elements of Hint describe the Raman
scattering by intervalley fluctuations discussed in Sec. 3.3.
The nondiagnoal part of Hint from (3.57), which has the
symmetry Г'25, also yields an unscreened scattering mech-
anism to which the theory from Sec. 3.7 is applicable. We
can obtain the corresponding Raman cross section by tak-
ing the diagonal matrix element of Hint over the state cor-
responding to the A! subband and averaging the result
while allowing for the Pauli principle. In the linear approx-
imation in (£р/£д)

2 we obtain

—=—
da 4ir *i]k\ 0S*

(3.58)

Here p± is the component of the quasimomentum perpen-
dicular to the axis of the valley; the averaging is performed
with the distribution function (df0a/dna)T, where f0a is
the Fermi function of the ath valley. According to (3.58),
in order that the ath valley contribute to the cross section,
the polarization vectors e1 and es must have nonzero pro-
jections on the plane perpendicular to the axis of the valley.
This property is reflected by the symbol 18i j k \.

Equation (3.58) enables us to explain certain deforma-
tion effects in Raman scattering in uniaxially compressed
n-Si from Ref. 49. Table I enumerates the contributions to
the cross section of (3.58) from the different valleys with
different scattering geometries. The nonzero contributions
are denoted with the word "Yes" in the fourth column.

If external uniaxial pressure shifts any of the valleys
downward in energy, then the corresponding concentration
increases and the scattering cross section of (3.58) also
increases. This increase in the intensity of Raman scatter-
ing in n-Si under uniaxial deformations has been observed
in Ref. 49.

A better geometry for detecting the deformational
flare-up of Raman scattering might be the Z( Y',Z)X ge-
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TABLE I. Г^ component of the spectrum of one-particle quasielastic light scattering in n-Si.

Polarization of spectrum

( Y',Z)

(Г,Г)

(£.£)

(£,f)

(f,ff)

Valley

100
010
001
100
010
001
100
010
001
100
010
001

All valleys

Polarization factor Af£ contributions of

\ Jtfj + ef ef \ 2 valleys present?

(efef+4e*)2=l/2 Yes
(4ef+e#i)2=l/2 Yes
(4<^!+еЙ)2=0 No

2<?X=0 No
2e^=0 No

(24^)2=0 Yes
(ejef + 4e?)2=l/18 Yes
(4^ + «Й)2=1/18 Yes

(4es + eJ^)2=2/9 Yes
(26^^=2/3 Yes
(24ef)2=l/3 Yes
(2еУ|)2=1/3 Yes
(2^)2=4/9 Yes

Relative value of
cross section

1

1

1/3

5/3

4/3

ometry with compression along (010). As we see from
(3.15), in this geometry the scattering by intervalley fluc-
tuations is forbidden. Therefore the cross section is com-
pletely determined by the second row of Table I.

There is a sole experimental geometry, the (£,£) ge-
ometry, in which the deformational effect is absent. It is
shown below that in this geometry the different deforma-
tional effects have opposite signs and therefore compensate
one another. Let us examine the Raman scattering by in-
tervalley fluctuations in n-Si upon deformation along
OH), which leaves the valleys of the semiconductor
equivalent. In this case a deformation-induced anisotropy
of the transverse mass of the valleys appears in the spectra.
This is accompanied by complication of the polarization
dependence of the cross section as compared with (3.15).
This dependence is determined by the direct product of the
symmetric tensors composed of the polarization vectors e1

and es (see Ref. 32). To find its most general form in a
deformed crystal, let us expand the representation of the

group Ga of the deformed crystal performed with the ten-
sor e}e% + e\ef into irreducible representations, and con-
struct the corresponding basis functions q>*s. They are
given in Table II. In agreement with the general method of

Q V> 1invariants ' we have

(3.59)

Here x gives the numbers of the different irreducible rep-
resentations, and s and s' are representations of the same
type. For generality we have presented in Table II the
functions that allow one to calculate not only the Raman
cross section in n-Si upon deformation along ( I I I ) (left-
hand side of the table), but also in n-Ge under deformation
along <100). However, we present the results of calcula-
tion only for n-Si, since a corresponding experiment

TABLE II. Basis functions of irreducible representations formed by the tensor ejef + e'.ef.
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The uni t vectors of the coordinate systems QXYZ and O^ are indicated in Fig. 3. Of = < 112>/Л/6,
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exists.49 The functions a^=a^=0 pertaining to the
scalar representation Л] equal zero owing to screening.

Since the correspondence rules shown in Table II with
arrows associate the nonscalar unitary representation At

with the representation Г25 of the original cubic crystal,
the corresponding function is proportional to the square of
the deformation tensor. Consequently, to take full account
of the lowering of symmetry upon deformation, we must
write also the remaining functions c ,̂ to the same accu-
racy. They have the form

16 dn

1 1дп\

\ Э / j

(3.60)

(3.61)

(3.62)

\-t
=-

C'aS.44

Х т

(3.63)

Here С is the intersubband matrix element of the operator
for the deformation potential, £44 is the component of the
deformation tensor, a is the stress, and

L(o) =
6/r

<a2+(6/r)2 (3.64)

is the Lorentzian factor determining the frequency depen-
dence of the differential cross section (see Sec. 4.2.2). Sub-
stituting the polarization functions from Table II into
(3.62) and neglecting the terms quadratic in the deforma-
tion, we can find the linear deformational increment to the
cross section:

£д

(3.65)

where the polarization factor I(el,es) equals

1

"3 (4*f+eH>

•fcomplex conjugate. (3.66)

As Table II and Eq. (3.60) imply, in the (£,£) geometry
the cross section is proportional to a^. According to
(3.60) the function sa^f decreases with increasing pres-
sure, and therefore the intensity of the spectrum must de-
cline. However, this does not happen, and up to pressures

a =16 kbar the spectrum remains unchanged. The most
probable reason for this is that the corrections (3.65) and
(3.58) compensate one another. Upon equating these two
cross sections in order of magnitude, we can obtain

~ с \2

? . (3.67)«A/
Using the known parameters: ед=0.5 eV, £fzzEx=Q.l eV,
С7ед=;8.3, 544=1.47XlO~u M2/H, and a=16 kbar,51

we can obtain from (3.67) the magnitude of the reciprocal
effective mass ц', which is determined according to (3.56)
as: /z'=0.20. The obtained value is smaller than the corre-
sponding theoretical value n'zz(J.i found in Ref. 51. This
disagreement involves the sharp elevation of the Fermi
level, which is expelled into the gap between the AJ and
A2 subbands that is formed upon deformation.

The deformation effects in light scattering in n-Si in the
(££)- and (^l)-geometries were calculated in Ref. 49,
where results were obtained that coincide with (3.62) and
(3.63), respectively. In the (|£) geometry in Ref. 49 an
increase in the cross section resulting from an applied de-
formation was experimentally detected, which was espe-
cially sharp at n = 1020 cm~3. Such an increase is explained
by the fact that in this geometry the different deforma-
tional increments to the cross section add up. The large
value of the cross section in deformed n-Si enables one to
recommend the (££) -geometry and uniaxial compression
in the (111) direction as means for detecting the signals of
single-particle Raman scattering in specimens strongly
doped by the ion-implantation method.52

Up to now the function a]2
3 has not been studied ex-

perimentally, as is explained, apparently, by the fact that
this function does not fit within the framework of the stan-
dard analysis using second-order scattering tensors.14

3.9. Taking account of corrugation of the hole subbands
in the integral scattering cross section

In the presence of corrugation of the hole isoenergy
surfaces, the symmetry of the Hamiltonian of (3.48) is
lowered to cubic. The representation formed by the tensor
Qik from (3.50) becomes reducible. In agreement with
(3.8) the tensor of (3.50) breaks down into two indepen-
dent tensors of Г12 and Г'25 symmetry. The tensor basis
functions of the cited irreducible representations are found,
e.g., in Ref. 9. Using them, we obtain the following expres-
sion for the diagonal part of the tensor $f, which has the
symmetry Г12:

(3-68)

The nondiagonal part having symmetry Г25 equals

(3-69)

As was shown in Sec. 3.7, to calculate the integral cross
section one must take the diagonal matrix elements from
(3.68) and (3.69) over the states £ and £' in the subbands
of light and heavy holes, then calculate their convolutions
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and average the square of the convolutions over the corre-
sponding distribution functions (dfo/dn)T of the light and
heavy holes. These calculations are more complicated than
the calculation of (3.53), which leads from (3.52) to
(3.54). The columns of the hole wave functions, which
depend on the direction of p, can be found in Refs. 9 and
10. Retaining only the one contribution of the heavy holes,
which is most essential according to the parameter
m[//7ih<l, we obtain

+Гз'г<, (3.70)
, (£ l (p)-£ h(p))2/

In (3.70) Ir and Ir, denote the polarization factors
from (3.15) and (3.16), respectively. They equal

~> 2
** v-* ^ - 4 . 1 GJ. f GJ.. /"3 *71 Ч

Summing the expressions (3.71), we can obtain a linear
combination of the squares entering into (3.32) and (3.54)
for the polarization dependence of the cross section of sym-
metrical scattering:

(3.72)

The cross section of (3.70) in the case of an isotropic hole
spectrum goes over into (3.54). Therefore Eq. (3.72) im-
plies that the averages entering into (3.70) must coincide
for weak corrugation. The standard method (see, e.g., Ref.
53) of finding the corrections, which is applicable partic-
ularly to the integral cross section, is based on the approx-
imate expansion of the radical in the parabolic dispersion
law of holes

ч / Г » , „ 2 i „2„2

X (PJ>y +PJ>2

as a series in the parameter

(3.73)

(3.74)

Here y2

 an(i Уз аге the parameters of the cubic Hamil-
tonian of Luttinger.9 The concrete values of the given pa-
rameter are 77=0.284 for Ge and 77=0.863 for Si. Restrict-
ing the treatment to the linear terms of the expansion
(3.73), we shall write the averages entering into (3.70) in
the form

/ (P2

x-P2

y)
2 \ m2

\(£h(/J)-£l^))2/=157
5\1'

(3.75)

(3.76)

where 7=(r
2+yi)1/2. Since in (3.75) and (3.76) the

small parameter 77 of (3.74) is multiplied further by the
small numerical coefficient 1/7, the averages entering into
(3.70) practically always coincide. Therefore, in the zero-
order approximation in the parameter of (3.74), taking
account of corrugation is reduced to introducing the coef-
ficients 72 and 7з f°r tne polarization factors Ir and

in Eq. (3.70). The ratio of the Raman cross sections2

in the Г'25 and Г12 geometries equals

(3.77)

For p-Si, in particular, the ratio y3/y2 is close to 10, while
the parameter of (3.77) is as much as 104. This means that
the practically observable Raman spectrum has the sym-
metry of the selection rules of Г'25. In the polarization
corresponding to Г]2 symmetry scattering is absent. This
result enables explaining the selection rules found in the
spectra of bulk p-Si48 and in superlattices (see Sec. 5.3).

It is of interest to compare the cross section of (3.70)
with the cross section obtained in Ref. 48 after substituting
the hole dispersion law (3.73) into (3.24) and (2.23).
From this substitution we obtain a formula that is a special
case of Eq. (3.21). Calculation of the ratio d2r/2Vd2ri2 by
the described method yields

(3.78)

We note that one must not use Eq. (3.78) in the case of
weak anisotropy of the hole spectrum. For strong anisot-
ropy Eqs. (3.77) and (3.78) practically coincide.

Corrugation was not taken into account in the cross
section for intersubband scattering from the study of
Aronov and Ivchenko.44 When it is taken into account the
cross section is determined by the sum of the squares of the
moduli of the convolutions of the nondiagonal matrix ele-
ments of (3.68) and (3.69) between states in the subbands
of light and heavy holes. After statistical averaging with
allowance for the Pauli principle we obtain

d2 , f
HfT^J

X

2Vd*p

1-
m2(£,(p)-£h(p)):

1-
m2(£l(p)-£h(p)):

25

407 Physics - Uspekhi 36 (5), May 1993

(3.79)

The expressions entering into (3.79) in square brackets
prove after integration to be of the same order of magni-
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tude. Therefore we can estimate from (3.79) the ratio of
the cross sections Г£5 and Г12 for intersubband scattering
in the following way:

(3.80)

The numerical calculation of the spectrum of intersubband
scattering in p-Si from Ref. 47 gives a ratio of cross sec-
tions close to (3.80) in order of magnitude.

Thus the corrugation of the isoenergy surfaces of holes
leads to the appearance of a substantial difference in the
spectra of Г'25 and Г12 scattering. The ratio of these cross
sections for intrasubband scattering is two orders of mag-
nitude larger than for intersubband scattering. Both types
of intersubband scattering are observed in superlattices.
Comparison of the temperature dependences of the cross
sections of intra- and intersubband Raman scattering in
(3.70) and (3.79) shows that decreasing temperature fa-
vors the observation of the latter. Within the framework of
the isotropic model of the valence band, the ratio of cross
sections is estimated to be

d2inter

d2intra>8>

where the equality sign corresponds to Maxwellian statis-
tics.

4. FLUCTUATIONAL AND KINETIC PARAMETERS OF
SEMICONDUCTORS MANIFESTED IN RAMAN SPECTRA

4.1. Form of the spectrum of scattering by charge-density
fluctuations at low electron concentrations

The frequency dependence of the differential scattering
cross section contains information on the relaxation kinet-
ics of the fluctuations that scatter light. Naturally the form
of the spectrum here depends on the type of fluctuations at
which scattering occurs.

At low concentrations the condition (3.1) is satisfied,
which means that screening effects are absent in the spec-
tra. Here the scattering occurs at one-particle
excitations,30'31 while collective plasma excitations are ab-
sent.

On the other hand, the spectra are usually taken at
room temperature, at which there is a sufficient number л
of electrons in the conduction band to fulfill the condition
of strong screening of ionized impurities:

«/?>!. (4.1)

The region of electron concentrations and temperatures in
which the conditions (3.1) and (4.1) are compatible is
discussed below (see below, Fig. 10). Shklovskii and
Efros54 showed that, when the condition (4.1) is fulfilled in
crystals, only the large-scale impurity potential remains,
having a characteristic dimension of the order of rs and the
rms value

y=£7(rs)(A^)I/2. (4.2)

Here U(r)=^^/er is the potential of an isolated impurity,
and N is the concentration of impurities. The one-particle

electronic excitations created upon light scattering are
scattered by the large-scale potential. Since the thermal
momentum of the carriers pt=(2mT)l/2 far exceeds the
light momentum fig at room temperature, we have

л\т? (4.3)

The parameter of (4.3) implies that the potential of the
impurities deflects the carriers mainly at small angles
0~#/prs<l. In view of the condition (4.3), the de Broglie
wavelength of an electron AdB=/?t/^<rs is far smaller than
the characteristic scale of the impurity potential wells rs.
Therefore we can consider the impurity potential to be
quasiclassical. The motion in this potential occurs under
the action of a constant random force,55 and the classical
displacement of an electron Дг(т) in the time r has the
form

Fr2

Дг(т)=ут+_> (4.4)

where F is the force acting on the electron. The presence of
impurities in the crystal also slightly alters the chemical
potential of the electron £. Thus, in the expression for the
scattering cross section (3.4) we should average over the
set of three random quantities: £, F, and the electron ve-
locity i;. For a degenerate statistics, the fluctuations of the
chemical potential are the most substantial. Their contri-
bution is shown by curve 3 in Fig. 1. For nondegenerate
statistics, the overall averaging is performed by using the
following formula:

<e.?Mr)>=

Xexp
.
iq 2m*

(4.5)

Here

is the Maxwell-Boltzmann distribution function, and
Ф(£,.Р) is the distribution function of the random quanti-
ties £ and F. Under the condition (4.1) the fluctuations of
£ and F are small. Therefore they are described by the
Gaussian distribution function

1 1 \{?
where y2 and

T- , (4-6)

(4.7)

are the corresponding rms fluctuations. Substitution of Ф
from (4.6) into (4.5) leads, after integration and calcula-
tion of the imaginary component of (3.4) to a spectrum
with the form

dcodfl
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3 ш/qrvr

FIG. 7. Theoretical spectra of one-particle scattering by charge-density
fluctuations obtained by numerical integration of Eq. (4.8). The numbers
on the curves indicate the values of the dimensionless concentration of
impurities a from (4.10).

(4.8)Хехр -

where v\-. If in (4.8) we neglect the term containing p0 in
the exponential, then the integral over t is taken in analytic
form and yields a Gaussian form of the scattering spectrum
with the half-width TG=qvT:

e2d22
1—177dtadft

1
—qvT

со

This Raman cross section is known for a classical atomic
plasma.56 Its broadening reflects the velocity distribution of
the atoms of the gas. The spectra obtained by numerical
integration of Eq. (4.8) by the formula of Ermitt57 are
shown in Fig. 7. We see that the half- width Г of the spectra
increases with increase in the dimensionless concentration

a=N-
24(T2q)

(4.10)

Using a Gaussian approximation of the spectra in Fig. 7,
we obtained the Г(ЛО relationship shown in Fig. 8a by the
line of points. The crosses show the experimental values of
the half-widths determined from the spectra shown in Fig.
9, taken from Ref. 58. The more detailed studies58 showed
that the experimental points better fit a logarithmic T(N)
dependence than a linear one. This is reflected by the dots
in Fig. 8b.

If we extrapolate in Figs. 8a, b to small concentrations,
then the straight line cuts off on the axis of ordinates a
constant contribution to Г, which, according to (4.9)
should coincide with the broadening of the Gaussian curve

Г, crrr

45

43

*7

39

37

35 - +.*

.."*

5 6 6 9 W

Г, cm"
н, io'scm~3

+5

42

39

36

33

30

27

IS 16 log n

FIG. 8. a—The theoretical concentration dependence of the half-width
Го of the spectra in Fig. 7 at the l/e level obtained by Gaussian approx-
imation of Eq. (4.8). The experimental points are indicated by crosses.
(From Ref. 25). b—The experimental concentration dependence of the
half-widths Го determined in the same way as in Fig. 7.

,arbitrary units

1,0-

ш,ст~

FIG. 9. Experimental spectra of n-InP for the range of low electron
concentrations, illustrating the dependence of the form of the spectral line
on the electron concentration nz;N (solid lines). The lines of dots ob-
tained by subtracting the difference overtone of two-phonon scattering
represent the pure electronic spectra.
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FIG. 10. Region of electron concentrations and temperatures (cross-
hatched) in which a Gaussian contour of a collision-free plasma in
strongly doped semiconductors is realized.

for free electrons T=gvT. However, the numerical esti-
mates of T=qvT for InP show that the experimental value
Г = 30 cm"1 differs from the theoretical value Г=50
cm""1. This difference can be associated with the increase in
the mass of an electron owing to nonparabolicity up to 0.1
m. Usually in InP one uses the value /n*=0.07 m. The
graphs in Figs. 8a, b can serve for determining N (from the
slope angle of the straight line). This method of measuring
the concentration of impurities N is necessary in cases in
which this concentration does not coincide with the con-
centration n of electrons. This is the situation in commer-
cial specimens in which a low concentration of conduction
electrons is attained by introducing compensating impuri-
ties.

We note that, although isotropy of the electronic spec-
trum was assumed above, the obtained results can be gen-
eralized to the case of ellipsoidal isoenergy surfaces. To do
this we should make the following substitutions in Eqs.
(4.5) and (4.6):

. 1/3 1/2

(4.11)

Now let us discuss the boundaries of applicability of
the obtained results. The regime that we have studied of
one-particle scattering is realized in the cross-hatched re-
gion of concentrations and temperatures in Fig. 10. The
bound on the side of low concentrations is set by the ine-
quality (4.1). In InP, e.g., at Г=300 К and n = 1014 cm~3,
the parameter of (4.1) equals nr%=7. On the high-
concentration side the bound is determined by the inequal-
ity (3.1). According to Sec. 3.1, breakdown of the condi-
tion (3.1) is accompanied by the appearance in the
polarized scattering spectra of a plasmon peak. This pro-
cess is discussed in Sec. 4.5. At the limiting concentration
/j = 1016 cm~3 in n-InP the experimental scattering spec-
trum for parallel polarizations of the incident and scattered
light contains a broad plateau that extends from <o=0 to
the plasma frequency cov (see below, Fig. 18). The exper-
imental points in Figs. 8a, b corresponding to the highest
concentrations и = 1016 cm~3 were taken with crossed po-
larization e1! es, in which plasmons are forbidden by the
selection rules (3.7).

The lower temperature bound in Fig. 10 is determined
by the effect of freezing-out of carriers Tt, while the upper
bound &D is determined by the influence of electron-
phonon interaction. Interaction with acoustic phonons
leads only to small-angle scattering of carriers; therefore
taking account of them in Eqs. (4.6)-(4.9) is reduced to
renormalizing the constants у and pQ, as in the case of
impurities.

Light scattering at temperatures above QD is governed
by diflfusional processes of relaxation of electron-density
fluctuations. The condition for realizing this regime is

ql<\, (4.12)

where / is the mean free path of an electron with respect to
interaction with optical phonons. In this case the mean of
(4.5) equals

<exp(/qAr)) = (4.13)

where Дх2(т) =2Dr, and D is the electron diffusion coef-
ficient. Substituting (4.13) into (3.4), we obtain the scat-
tering cross section in the form of a Lorentzian contour

. (4.14)

Broadening of spectral lines of Lorentzian type, which re-
flects the diffusional behavior of the carriers, was first ob-
tained by Sobel'man (see, e.g., Ref. 59) for a classical
atomic plasma. The reason for conversion of the Gaussian
contour of Raman scattering of (4.9) into the Lorentzian
contour of (4.14) is the frequent collisions of electrons
with optical phonons, which realize the condition (4.12).

Quasielastic scattering was recently observed in the su-
perionic glasses (AgI)x(AgPO3)!_x. The scattering spec-
trum recalled in its behavior the spectrum of electronic
Raman scattering. A considerable increase was observed in
its intensity and a broadening with increased concentration
x of the superionic component.60

4.2. The form of the light-scattering spectrum of one-
particle excitations in a multlcomponent system of current
carriers.

4.2.1. A photoexcited electron-hole plasma

We noted above that the cross section for electronic
excitation is rather small; therefore most experiments have
been performed at high concentrations of current carriers;
see the reviews.3'30 Under the conditions of strong screen-
ing of (3.6), scattering can occur only from fluctuations
that satisfy the condition of neutrality (3.20). In a number
of cases the satisfaction of condition (3.20) involves the
existence of a multicomponent system of current carriers.

A very simple system of electrons and holes with an
isotropic spectrum is the good model of a photoexcited
plasma in semiconductors.22'23'69'70 The fluctuation of the
dielectric susceptibility from (3.2) includes the contribu-
tions of electrons and holes:

(4.15)
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Since in photoexcitation the current carriers are created in
pairs, the local neutrality condition holds that

8пе=8пъ=8п. (4.16)

The condition (3,6) implies that a multitude of impurity
potential wells is packed within the wavelength of the elec-
tronic excitation q~l. This means that, to calculate the
spectrum, one must take account of the scattering of car-
riers at arbitrary angles. Here the condition (4.12) is usu-
ally satisfied, under which the regime of motion of the
carriers is diffusional. Therefore, to describe the relaxation
of the light-scattering fluctuations, one can use the macro-
scopic transport equations. In a multicomponent system,
as is known (Ref. 61, Sec. 25), the diffusion of the two
types of charged particles—electrons and holes—occurs
under the action of the electric field E that arises in the
diffusion process itself. Therefore the system of equations
of continuity and diffusion has the following form [see Ref.
61, p. 135, Eqs. (25.1) and (25.2)]:

д 1 д
-/<5/ze+-div<5je=0, —i

6je= -aeE—eDe grad 6л(

1

(4.17)

Here 6je and 6jh are the fluctuational currents created by
the fluctuations of the concentrations of electrons and
holes. The initial conditions for the equations that we have
written are the values of the simultaneous correlators de-
termined by the external conditions under which the semi-
conductor exists. These simultaneous correlators are cal-
culated in a purely thermodynamic way. It is precisely they
which we discussed in Sec. 3 in calculating the integral
scattering cross sections. In the case of electrons and holes
forming two equilibrium subsystems, the simultaneous cor-
relator has the following known value19 [Sec. 113, Eq.
(113.2)]:

dn

(4.18)

Here ne=nh=n is the common value of the concentrations
of electrons and holes. Upon performing a one-sided Fou-
rier transform in time and a complete Fourier transform in
the coordinates in (4.17) and taking account of the initial
condition (4.18) as well as the condition of neutrality
(4.16), we obtain

n+ )+„-aeq(E5n)+fi)=
7"

(4.19)

^«2)q,a+- ahq(E6n) +„= T .
дп

т
(4.20)

Here the symbol (6л2)+ш denotes the one-sided time Fou-
rier transform of the correlator of the density fluctuations.
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Solving the system (4.19), (4.20) for this correlator and
calculating its real component Re (8п2)£ш, we obtain for
the scattering cross section

н2т в4 i \
= (eIes)2A(-

2тгс4 \medvdfl

1 dn
(4.21)

Here Da is the ambipolar diffusion coefficient, which equals
(see Ref. 51, Chap. 5, Sec. 2)

(4.22)

where

is the mobility of electrons (or holes). In Ref. 69 (Fig. 2)
a result equivalent to (4.21) and (4.22) was obtained by a
complicated numerical integration.

4.2.2. Electrons in multivalley semiconductors

Another example of a multicomponent plasma is the
carriers in multivalley semiconductors. The mechanisms of
the observable scattering are identified by applying external
pressure (see Sees. 3.6.2 and 3.8). Therefore we must take
account here of the nonequivalence of the valleys. On the
other hand, with the model of nonequivalent valleys we
can describe "pockets" on the Fermi surface of certain
semimetals such as Bi, Sb, and As. In describing the Ra-
man spectrum of electrons in the cited semimetals and
multivalley semiconductors we should write the diffusion
equations with account taken of intervalley transitions of
electrons that occur between nonequivalent anisotropic
valleys.62 These transitions are described by the matrix of
the intervalley collisions /a;8. Otherwise the equations of
continuity and diffusion correspond to the system of
(4.17):

д 1
— 8na+- div 8j a=at e

8fia= -eDJ? grad ^n

(4.23)

(4.24)

Here 0}%' and oj"; are the tensors of the diffusion and
conductivity coefficients of the electrons of valley a. Some-
times it is convenient to transform the column of variables
{8na}

s

a=l in the system (4.23) and (4.24) by separating
out the density of states at the Fermi level by analogy with
(3.18):

8п„=
дп

*
(4.25)

The system (4.23) and (4.24), which is written with re-
spect to Фа, contains the collision matrix Гар, which is
symmetric with respect to a and /?. In scattering by impu-
rities this matrix has the form
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/f _ 112
•'inter _ ' •««. I

Tinter
(4.26)

where r-mier is the characteristic time of intervalley transi-
tions. We note that this matrix has the form of the differ-
ence of departure and arrival terms and satisfies the law of
conservation of the number of particles in intervalley tran-
sitions:

The equilibrium concentration of electrons na is deter-
mined in the standard way (see, e.g., Ref. 43) by their
chemical potential £. The equations that we have written
must be supplemented by the initial condition for the si-
multaneous correlator (5«a$n0)q_0> which, upon taking
account of the condition of neutrality

acquires the form

(4.27)

(4.28)

We note that the transition from Eq. (3.14) to (4.28) is
discussed in the book, Ref. 61 (Sec. 20, p. 115).

4.2.2-1. The differential Raman cross section in semi-
conductors with equivalent valleys. In the semiconductors
n-Si and n-Ge under deformations along the directions
<111) and (100), respectively, the valleys remain equiva-
lent (see Sec. 3.8). They are the same also in the absence of
deformation. In this case the collision integral (4.26) in the
system (4.23), (4.24), and (4.27) acquires the form of an
approximation of the relaxation time, while we can replace
the initial condition with a simpler one, reverting from
(4.28) to (3.14). To calculate the differential section it is
convenient to introduce the function

(4.29)

where д(а) = е}ц^е%. Performing a one-sided Fourier
transformation of (4.23) and (4.24) over the time, with
account taken of (4.27) and (4.28), we find

,(«)

'-/«+?2Z)a+(5/Tinter)

V, ^

x- (4.30)

Here q2Da=q,D(i^qk and ffa=q,o^gk/^ *K tfae longitu-
dinal components of the diffusion and conductivity tensors,

and the summation is performed over the ellipsoids occu-
pied by carriers. Multiplying (4.30) by ц(а} from (3.12)
and summing over the valleys, we obtain the following
expression for the scattering cross section in the unde-
formed crystal:

d22 V

or

rj Зи>

XRe
[(eIv(g))(esv(a))-(eIes/3)]2

-ico+gzDa+(S/riata)

(eIv(a))(eSIvfa>)-(eIes/3) 2

x-

-io)+q2Da+(S/Tinter)

-io)+(S/Tintet)

S^£ -ш+^/)а+(5/т1п1ег)

(4.31)

We note that the dependence of the scattering cross section
in (4.31) on the intervalley relaxation time Tinter is reduced
to a displacement of the diffusion pole from the imaginary
axis into the complex plane. To ensure convergence of the
integral cross section from (4.31) at Г=0, the diffusion
coefficient should be treated as a high-frequency coefficient,
i.e., with account taken of frequency dispersion. The first
term in (4.31) describes scattering by opposite-phase fluc-
tuations of the concentration of electrons in different val-
leys. The second term arises from the inhomogeneous self-
consistent electric field E that arises in the diffusion process
(see Ref. 61, Sec. 25), which splits apart equivalent valleys.
The existence of this scattering mechanism, which is asso-
ciated with fluctuations of the self-consistent electric field,
was noted in Ref. 6—for the case of metals with complex
Fermi surfaces, and in Ref. 8—for semiconductors with a
complex valence band. In Eq. (4.31) this scattering mech-
anism is manifested for a diffusional, but not a free type of
the motion of carriers, as in Refs. 6 and 8. When 7>fc, in
line with Sees. 4.1 and 4.2.1, the scattering spectrum has
the form of a Lorentzian contour determined by the diffu-
sion coefficient D. To calculate the corresponding coeffi-
cients of the tensor of diffusion coefficients, we must sepa-
rate Eq. (4.31) into simple parts. The form of this
decomposition depends on the chosen directions of q and
of the polarizations e1 and es. Experiments on Raman scat-
tering are usually designed so that q is directed along one
of the three different symmetry axes of a cubic
semiconductor.42'43'49'63 The parameters of the Lorentzians
Г and the diffusion coefficients measured from the spectra
of n-Ge and n-Si for these directions of q and the corre-
sponding experimental geometry are given in Table III.
Only a few experiments (noted in Table III in a footnote)
have been set up thus far. Nevertheless, in Ref. 63, with the
aid of the temperature, concentration, and frequency (on
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TABLE III. Independent experiments on Raman scattering in multivalley semiconductors.

Direction of «i (group Gq)

Germanium

", = <001)

%-7Т<|Тч>

W

%-7T<ul>

<С*>

Silicon

vq = (001)

(CJ

V,-^<IH»

(°2)

", = 7T<m>

C0h)

Scattering geometry

Z(A'.y)Z')

X'(Z,Y)X' "I

X'£,*)X''-lx(Y,X)Y

| [X(YX)Y + X(YZ)Y] - X'(U)X '

X(Y,X)Y 1

x'(:',s)A-'~|x'(z,r)x

£(*'.*')? -£(*'.£)£

t(X'.0?

Z(A",r)Z»)

Z(}",r)Z*)

*'(U)*' *>

Г(г,гх"

£(£,A")?«>

Half-width of Lorentzians

r = 9'D + _J_
inter

Г - t?D + S

1 1 * ̂  + тinter

г,-«'£Ц^Л
" inter

T _:^(Z>1 + 2^ 5
3 3fl D

т. iDl№ + D$ . S
Г' '< 9Д

jU^-D. 5

Ч q 9 ' т.inter

Г — Л2Л -1 ^i 1 - 9 -Oj. ' T
inter

Г, = 92

JD,D,,/ZJ"' + ST-1

* -1- II inter

1 j^^ + r,,) 5
' = 2 * /3 т* inter

r,4M + ̂  + ̂
r-o 2 Di 5j = в i> -t "

inter

*' Experiments set up in Refs. 43. 49. and 63.

The symbols of the scattering geometry are given to agree with Ref. 30. The unit vectors are indicated in Fig. 3, £ = ( 1/ л/б)
( 112). £' = 1/Л/6О12). The brackets in the second column indicate the alternative geometries.

«a1) dependences of the widths of the Lorentzian contours,
it was possible to separate the diffusional and relaxational
(associated with Tinter) contributions to the width of the
Lorentzians. In n-Si precisely the latter contribution
proved to be fundamental. Figure 11 shows the spectra of
several specimens of n-Si from Ref. 63, where the curves
marked with the numbers 1-3 correspond to close-lying
values of the concentration и of electrons, denoted in Fig.
11 in standard format. The impurity contribution to the
frequency r~*ei for specimens 1 and 3, which were doped
with phosphorus, is approximately half as large as for spec-
imen 2, which was doped with arsenic. The scattering of an
electron by an impurity that leads to an intervalley transi-
tion can be treated as resulting from the mismatch of the
pseudopotentials of the impurity and the main material.
The pseudopotential for arsenic is closer to the pseudopo-
tential of silicon than that of phosphorus, while the fre-
quency Tj~ter for the crystal doped with arsenic is larger
than for that doped with phosphorus. We can explain this

contradiction by assuming that the magnitude of Tinter is
controlled by processes of capture of electrons by an inter-
mediate state bound to the impurity. The radius of the
wave function of this state, and hence also the capture
cross section, are inversely proportional to the binding
energy64 determined by the pseudopotential. Consequently
for arsenic the frequency l/Tinter must be larger than for
phosphorus, in agreement with experiment.63 Thus the
spectra of one-particle electronic scattering can be used to
identify the chemical nature of an impurity in multivalley
semiconductors.

The second, diffusional, contribution to the width Г
contains (see Table III) longitudinal and transverse diffu-
sion coefficients />ц and D± with respect to the axis of the
valley. They are expressed in terms of the corresponding
intravalley relaxation times тц and rx (see Refs. 10 and
53). For example, we have the following expression for the
longitudinal coefficient DM for a Fermi statistics:
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600

FIG. 11. Raman spectra of several specimens of n-Si obtained'3 at Г=80
К. Curves 1-3, which illustrate the dependence of l/Ttater on the type of
doping impurity, are discussed in the text.

£||=3w^llTH (4-32)

and analogously for DL , with тц фт± . It is evident from
Table III and (4.32) that Raman spectra enable one to
determine an ill-studied parameter of multivalley
semiconductors—the coefficient of anisotropy of relaxation
times KT=rL /тц . Usually this parameter is determined
by using deformation effects in the conductivity of
specimens.9'53'65 To illustrate this we shall make use of the
fact that the coefficient KT enters into the Einstein relation-
ship that associates the transverse diffusion coefficient D±
measured in Ref. 63 with the mobility b obtained from
electrical measurements in Ref. 66:

ЗА" Г din л
DL =2K+lb~e~d(£/T)'

(4.33)

where К=К^К^, AT/i=/i1 //*ц . Figure 12 gives the exper-
imental values of the ratio D/b as functions of the electron
concentration n. The crosses, curve 4, show the values in a
crystal in which collisions of electrons with acoustic pho-

1D л, cm

FIG. 12. Comparison of the values of the mobility b obtained from the
electronic Raman spectra in Refs. 43 and 63 with the results of electrical
measurements in Ref. 66. Values of the points: /—n-Ge; 2-4 correspond
to n-Si; 4—acoustic scattering; 3—impurity scattering; the points with
number 2 were obtained by using the fitting value of the parameter
т,, /Ti =20. (From Ref. 62.)

nons predominate, the solid squares, curve 3, are for col-
lisions of electrons with impurities; the lower solid curve is
drawn according to (4.33) for n-Si with the fitted value of
тц /TL , while the upper solid curve is drawn for n-Ge by
the ordinary Einstein relationship. We see from Fig. 12
that the experimental points for both types of scattering
correspond to the theoretical curve. Indeed, there is a sys-
tematic shift of the experimental points for n-Si, which can
be associated with the influence of the contacts and inho-
mogeneities in the electrical measurements in Ref. 66.

4.2.2-2. The influence of external pressure on light scat-
tering in multivalley semiconductors. The method devel-
oped in the previous section for solving the diffusion-
kinetic equations (4.23) and (4.24) allows one in a
number of cases to find analytically the differential Raman
cross section in a deformed crystal. In their original form,
these equations describe the relaxation of the electronic
system of a multivalley semiconductor toward local equi-
librium, the parameters of which vary from point to point
in space.61 Let us write Eqs. (4.23) and (4.24) in such a
way that they describe relaxation to complete equilibrium.
To do this, after a one-sided Fourier transformation and
elimination of the fluctuation of the electric current 67 in
them, we must introduce the following new unknown func-
tion instead of G£ (q,ca):

(4.32')

which differs from the old function G+ in an increment
associated with the fluctuations from point to point of the
local equilibrium value of the chemical potential. In (4.32)
(fj.) is defined as an average that takes account of the Pauli
principle (see Sees. 3.5, 3.7, and 3.8):
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(4.33')

We note that the function Fa describes the response of the
system of electrons to a harmonic external perturbation:

u(r,t) = Ha(q,<a)exp[/(qr—cot) ]. (4.33")

In the case q=Q the equation for this response was derived
in Ref. 67. Generalization to the case q=£0 yields the fol-
lowing equation:

— , (4.34)

where we have used the substitution Fa=
analogous to (4.25). We recall that the intensity of the
self-consistent electric field E in a crystal with equivalent
valleys was found in the previous section from the neutral-
ity condition (4.27). In the case of nonequivalent valleys of
a deformed crystal, the neutrality condition for certain val-
leys depleted of carriers may not be fulfilled. Therefore, in
the given case, we should find the electric field from the
Poisson equation

(4.35)

where D is the electrostatic induction vector.
Equations (4.32) and (4.33) imply that both the Pois-

son equation (4.35) and the condition of neutrality (4.27)
are equally applicable both for the fluctuations with respect
to local equilibrium, as described by the correlator
Ga (q,(o), and for the fluctuations with respect to complete
equilibrium described by the response function Fa(q,co). In
view of this circumstance, not the relative value уи(а) — ц,
but the absolute value of the "perturbing force" /x(a) enters
into (4.34). A more detailed discussion of the kinetics of
the fluctuations of a multicomponent plasma can be found
in Ref. 61 (Sec. 51). Expressing фа from (4.34) and cal-
culating E from (4.35), we obtain

eE=iq- aB (4.36)

Here Ф?=4тге2/£(#
2, £0=D/E is the lattice dielectric per-

mittivity, and B~p is the matrix reciprocal to

(4.37)

To find the cross section we must substitute (4.36) into
(4.34) and solve the equation that is obtained for фа. The
scattering cross section is expressed in terms of Fa(q,co)
according to

^o
Vfi

FIG. 13. Graphs for the polarization operator II(q,u>).

where the electronic polarization operator of the multival-
ley semiconductor

is represented by the diagram series in Fig. 13. It equals

X

(4.38)

(4.39)

The expressions (4.38) and (4.39) generalize Eq. (4.31) to
the case of a deformed crystal with nonequivalent valleys.
They are applicable for any value of the parameter qr& and
any frequencies. In particular, they can be used to analyze
Raman spectra of plasmons in deformed materials.29 We
shall apply Eq. (4.39) to the case of n-Ge, Si, or GaAs
subjected to strong hydrostatic pressure. Such a pressure
shifts the central Г-valley downward or upward in energy
so that it reaches the energy of the side valleys. For scalar
scattering with the wave vector q directed along axes of
high symmetry as defined in Sec. 3.8, the side valleys are
equivalent and can be combined into one isotropic valley.
For simplicity we shall assume that the combined side val-
ley and the central valley are described by the same coef-
ficient of intravalley diffusion DL=Dr = D. Then the ma-
trix that enters into (4.39)

дп

acquires the form
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\ ''"mter/

X

(4.40)

Here the matrix 7е was taken from (4.26), while the quan-
tities Г, Vl _2, and ft equal

(4.41)
П=й)+/Г.

Equation (4.40) implies that the process of formation of
the plasma oscillations and the electronic screening are not
altered in the presence of intervalley transitions, since,
upon substituting (4.41) into (4.40) in the polarization
operator П from (4.39), the intervalley time drops out of
the high-frequency dielectric function:

fdn
<4'42)

In rare intervalley transitions with ̂ 2Z)rintei.> I, the scatter-
ing cross section of (4.38) and (4.39) with £(q,co) from
(4.42) describes the plasmon peak in the scattering spec-
tra. It is distinctly observed in n-Ge.29 In n-Si the opposite
limiting case is realized of frequent intervalley transitions
with q2Drintet^l.63 Owing to the vanishing of the numer-
ator of the second term in (4.39), scattering by plasmons is
absent here. Instead of it, (4.39) yields one-particle scat-
tering by intervalley fluctuations having the cross section

d<udft 2ir=-=- (Mr- /*L)Z

Х/Чй>)-7
S/T;inter

(4.43)

An indirect confirmation of these ideas is the absence of
plasmon peaks in the allowed geometry in n-Si,68 where
plasmons are observed only in the forbidden geometry.

The cross section for one-particle scattering of (4.43),
which has not been experimentally detected up to now, is
governed by a Lorentzian with a half-width equal to the
frequency of the intervalley transitions between the side
and central valleys. This frequency is an important param-
eter of devices having intervalley transport of electrons.
The intensity of the scattering being discussed is deter-
mined by the square of the difference of the mean recipro-
cal masses of the valleys ̂ G and/iL=( 1/3) X (2^ +/*n ).
The reduced density of states at the Fermi level that enters
into the integral intensity in (4.43) is very sensitive to the
presence of external pressure.

4.3. Form of the spectrum In scattering by spin-density
fluctuations

The physical cause of appearance of light scattering by
spin-density fluctuations involves the presence in the crys-
tals of spin-orbital interaction. It was shown in Sec. 3.6
that the nature of this interaction is the same for a large
class of substances. This is reflected in the similarity of the
corresponding formulas for the integral cross section of
light scattering. Thus the cross section of (3.43) pertains
both to multivalley semiconductors and to direct-band
A3B5 semiconductors.

Conversely, the differential scattering cross section of
spin-density fluctuations depends on the details of the band
structure, which dictate a certain choice of directions of
the quantization axis of the spin. Thus, upon taking ac-
count of the Hamiltonian of spin-orbital interaction
(3.47), which is cubic in the quasimomentum, the quanti-
zation axis of the spin must be directed along the axial
vector к whose projection

(4.44)

enters into the Hamiltonian of (3.47).
In p-type semiconductors, as is implied by the Lut-

tinger Hamiltonian (3.48), the quantization axis of the
spin proves to be rigidly bound to the direction of the
momentum p even in the parabolic approximation.

We recall that in multivalley semiconductors the quan-
tization axis of the spin is codirected with the axis of the
valley v(a), as we see from (3.44).

The quantization axis of the spin can be fixed in ex-
plicit form in the Hamiltonian of interaction of the carriers
with Ught, as was done in the review, Ref. 3 [Sec. 2.3.1,
Eqs. (2.88) and (2.91)]. For the case in which the quan-
tization axis is correlated with the quasimomentum, Eq.
(2.88) from Ref. 3 can be generalized as follows:

(4-45)

where the tensor coefficient Bik(p) depends on the scatter-
ing mechanism. It equals

(4.46)

respectively, for n- and p-type A3B5 semiconductors and
multivalley semiconductors, while 5/, p is the fluctuation of
the distribution function of electrons having a certain spin.
Depending on the type of material, the relative population
of the spin subbands 8f1p—8fip pertains in the Hamil-
tonian of (4.45) either to one point of the Brillouin zone,
or to one valley. The fluctuation corresponding to (4.45)
of the dielectric susceptibility 8%ц equals

(4.47)
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Substituting (4.47) into (2.18), we obtain the differential
scattering cross section in the form

daidfl 2irT P,P

.'-5/iP')>q,«J?p'; (4.48)

Here we have Rf = e}Bik(f)e%, and the function f(a>) is
defined in (2.21). To calculate the correlator of the relative
populations of the spin subbands from (4.48), we shall use
the kinetic equation (Ref. 61, p. 126). By analogy with
(4.29), we shall define the function

= I <(6/,p-5/lp)(5/tp,-6/lp,))q,u).

"' (4.49)

It was shown in Ref. 61, p. 126 that G+ satisfies the same
kinetic equation as 5/Tp— 6/ip. This equation, with ac-
count taken of the initial condition for the simultaneous
correlator (see, e.g., Ref. 19, Sec. 117),

Wtp-S/lp)(6/tp,-6/tp,)>q.0=/o(l-/o)V
(4.50)

acquires the form

/(u>-qv)G+ Rf+

(4.51)

A solution of an equation of this type, which describes the
relaxation to local equilibrium, was obtained in Ref. 71

.(Sec. 12.1, Eq. 12.6). We shall also solve Eq. (4.51) for the
case of elastic collisions of carriers, to which the collisions
with acoustic phonons and impurities are reduced. The
kernel of the collision integral equals

where

2

(4.52)

(4.53)

is the probability of electronic transition per unit time from
the state pa to the state р'ст' when acted on by the Hamil-
tonian V associated with impurities or phonons.

For n-type A3B5 semiconductors, owing to the simple
band structure, at low temperatures Г< ,̂ the collision in-
tegral with the kernel (4.52) is brought to the form (see,
e.g., Refs. 59, 72)

(4.54)

where т is the intravalley relaxation time. In the case of
quantum-mechanical degeneracy of the bands in (4.53), an
additional angular dependence of the following form arises:

(4.55)

where | V\2 is a coefficient having no angular dependence.
Even in the case of elastic scattering, this dependence does
not allow us to use the approximation of the relaxation
time of (4.54).

After substituting (4.54) into (4.51), we obtain

1/T

dn

X | т ^\дп I -i(fi>-«

+ T[-£ (4.56)

The scattering cross section is expressed in terms of the
function of (4.56) by analogy with (4.31):

(4.57)A ,indtudli

Substituting (4.56) into (4.57), we obtain

dcodfl 2ir

XRe

Я„
-'•<*>-<!*)+ U/T)

X (4.58)

The scattering cross section of (4.58) is a generalization of
Eqs. (2.35) and (2.92) from Ref. 3, based on the study of
Mermin.72 The generalization allows the possibility of a
fixed axis of quantization of the spin, as, e.g., in the case of
electrons in semiconductors described by the Hamiltonian
of (3.47). We note that the cross section of (4.58) that is
found, in contrast to the result of Mermin from Ref. 3, is
not expressed in terms of the dielectric susceptibility of the
carriers, although it transforms into the result of Ref. 3 for
the case of a free quantization axis of the spin. Although
the conclusion (4.58) directly pertains only to n-type A3B5

semiconductors, it can be used in the case of rare collisions
also for p-materials.

There is also a possibility of applying (4.58) to the case
of multivalley semiconductors under conditions of fast in-
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tra valley relaxation. In this case the kinetic equation
(4.51 ) is reduced by the method developed in Ref. 61 (Sec.
6) to a system of hydrodynamic equations of the type of
(4.23) and (4.24). In calculating the relative population of
the electronic spin subbands

1,0-

the self-consistent electric field E, which generally leads to
screening effects, drops out of the treatment. The mixed
diffusion-kinetic equation has the form (4.34) with E=0.
Comparison of (3.34) and (4.51) shows that the role of
the term with qv is played by the term containing the
diffusion coefficient (?Da , while the role of the collision
integral is played by the matrix of intervalley transitions.
The corresponding scattering cross section is obtained
from (4.58) by the replacement of qv by q*D, and of the
intravalley time т by the intervalley time rinter .

4.4. Scattering spectra of spin-density fluctuations
in certain materials

4.4.1. n-Type AyBg semiconductors

In n-type A3B5 semiconductors in the parabolic ap-
proximation for the electronic dispersion law, the quanti-
zation axis of the spin is not fixed (see Sec. 3.6.1). There-
fore the coefficient Rf from (4.58) does not depend on p,
and to analyze the scattering spectra one can use the ex-
pression for the Raman cross section from Ref. 3 (Sec.
2.2.5). Neglecting the dependence of /?„ on p in (4.58), we
obtain

d<udft

Xlm d3p

X J-

(о — qv+O'/т)

Vf-Q) /d/o\
>-qv+(//T) (дп)т

(4.59)

A relationship equivalent to (4.59) from the review, Ref.
3, is widely employed69"70 to determine the electron con-
centration и and т by a contact-free method. When T=0,
the cross section in (4.59) is reduced to that obtained by
Fal'kovskii73 for the case of normal metals.

Recently two groups of authors—Bairamov
et a/.58-74"76 and Tsen et a/.77'78—have performed measure-
ments of scattering spectra in n-type A3B5 semiconductors
with controlled introduction of doping impurities. In these
studies the concentration of electrons was varied over a
broad range—from 1012 to n~1019 cm~3. Correspond-
ingly, also the kinetics of the fluctuations scattering light
varied over a broad range. The case of low concentrations
was discussed in Sec. 4.1.

Figure 14 shows the spectra of electronic scattering by
spin-density fluctuations (e1! es) in n-InP at three elec-
tron concentrations, и=1хЮ 1 6 cm'3, и=1.1хЮ1 7

cm~3, and n = 5 XlO 1 7 cm~3, from Refs. 74 and 75. The

200 ш, СГТГ

FIG. 14. Spectra of electronic scattering by fluctuations of spin density
(e'l es) in n-InP for the region of electron concentrations from 1X1016

to 5XlO1 7 cm~3 illustrating the narrowing of the line with increasing
concentration N of impurities. (From Refs. 74 and 75.)

width of the spectra successively decreases with increasing
impurity concentration Nzzn. In form the first spectrum is
close to Gaussian, while the second and third are Lorent-
zian. The earlier results of Bray78 for GaAs are shown by
dots in Fig. 15 for two electron concentrations n=7x Ю16

cm~3 and n=7x!017 cm~3. Both spectra are well de-
scribed by Eq. (4.59) (solid line). The corresponding т
from (4.59) equals r=2xlO~1 3 s. Comparison of the
spectra in Figs. 14 and 15 shows that the range of concen-
trations л in which the described transformation of the
spectra from Gaussian to Lorentzian occurs amounts to
1016-1017 cm~3. The existence of this qualitative reorgani-
zation of the spectra depending on the value of the con-
centration N of impurities enables one to use the spectra to
estimate the quality of specimens and to determine the
relaxation time r.

To trace the transformation from a Gaussian to a
Lorentzian spectrum, it suffices to take from (4.59) the

- .̂arbitrary units

-120 -BO -40
w, cm

FIG. 15. Spectra of electronic scattering by spin-density fluctuations in
n-GaAs for n = 7x 10" cm-3 and 7x Ю17 cm~3. (From Ref. 78.)
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FIG. 16. Stokes spectra of electronic scattering by spin-density fluctua-
tions in the solid solution n-Ga^In,..,? and the binary semiconductor
n-InP. (FromRef. 76.)

different limiting cases in the parameter of (4.12). When
<7/<l the denominator of (4.59) equals unity, while the
numerator, according to the formula

1

со—qv+(i/r)
= — ir8(co — qv)

yields for nondegenerate statistics the Gaussian contour
discussed above with the half-width

TG=qvT. (4.60)

For a degenerate statistics Eq. (4.59) gives rise to the tri-
angular contour shown in Fig. 1.

When ql-41 the cross section is determined by the dif-
fusion pole that arises in the denominator of (4.59) owing
to its series expansion in the small parameter:79

qv

-fo+d/Tp

Here the cross section acquires the form

<dn
Bt\

277

(4.61)

— ico+q2D(co)

Here, in view of q2Dr^(ql)2-^l, we can replace

D(o>) „, ,
D(to)=-

1 —

(4.62)

(4.63)

where D(co) is the high-frequency diffusion coefficient as-
sociated with the high-frequency conductivity by the Ein-
stein relationship (4.33). Using the Drude value for the
electron conductivity, we can obtain the high-frequency
asymptotics of the cross section

Л 9*4
dadft

TABLE IV. Comparison of the experimental values of the mobility b
obtained from electrical measurements and from Raman spectra.

Material
Optical measurements Electrical Concentration
(from Raman spectra) measurements n

nlnP 1700
1470

2000 I.lxl01 8cm-3

1540 3xl01 7cm-3

For the case of normal metals here we should replace
q-*8~l 73 (see Sec. 3.4). Thus convergence of the integral
cross section, i.e., of the integral over the frequency со from
(4.62), generally occurs only upon taking account of the
frequency dispersion D(<o).

The narrowing of the contour in Fig. 14 from curve /
to curve 2 is explained by the fact that
TL=q2D=qv • #/<Го from (4.60). The further narrowing
(curve 3) involves the decrease in the diffusion coefficient
with increasing concentration of impurities in the speci-
men.

Figure 16 shows the spectra of the solid solution
n-Ga^In^jP and the binary semiconductor InP.76 In the
solid solution the width of the Lorentzian contour is
smaller. Apparently this involves the decrease in the diffu-
sion coefficient described above, caused by the additional
scattering of carriers by fluctuations of the composition of
the solid solution. Table IV compares the data of the elec-
trical measurements of the mobility and the values of the
diffusion coefficient obtained from the spectra of the solid
solution Ga^Inj^P and the binary compound InP. The
agreement is relatively good. However, with further in-
crease in the concentration of electrons (and impurities)
the spectra, while maintaining their Lorentzian form, sub-
stantially broaden. We can see this from Fig. 17, which
shows the experimental results on light scattering by spin-
density fluctuations in InP75 in the concentration range
from 5X Ю17 cm"3 to 1019 cm"3. The magnitude of Г for
the spectrum corresponding to the highest concentration
amounted to Г = 100 cm"1. This behavior of Г is not de-

-200 -100 Ш, cm

FIG. 17. Spectra of electronic scattering by spin-density fluctuations
(e1! es) in n-InP for the region of electron concentrations from 5x Ш17

to 9.44X 1018 cm~3 illustrating the increase in the line width with increas-
ing concentration Л^ of impurities. (From Refs. 74 and 75.)
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scribed by Eq. (4.63), since the diffusion coefficient
D~v?T~N~l/3 does not increase with increasing concen-
tration of impurities.

At high electron concentrations n the nonparabolicity
of the electronic energy band becomes substantial. Accord-
ing to (3.47) nonparabolicity leads to spin-orbital splitting
of the band. The mean value of the Hamiltonian of (3.47)
for the typical values a=20 eV A3 (see Ref. 41) and
и = 1019 cm~3 amounts to </7so}=2 meV. This is compa-
rable to the minimal half-width of the Lorentzian in Figs.
14-16.

The spin splitting manifests itself in the intrasubband
scattering by spin-density fluctuations, which leads to a
dependence of R9 from (4.58) on p. Moreover, it leads to
the separation out of scattering with spin reversal, which
was observed in Ref. 45. The wave functions have a sym-
metry such that scattering by spin-density fluctuations pro-
ceeds via virtual states in the subband of heavy holes. Con-
versely, intersubband scattering occurs only with
participation of the subband of light holes and the spin-
orbital split-off subband. The use of an Nd:YAG laser, the
frequency of which is closest to the fundamental threshold,
implies separation of the Raman scattering by spin-density
fluctuations.

When the condition (4.12) is satisfied, in all parts of
Eq. (4.58) we can neglect the term qv in comparison with
1/T. Here the cross section acquires a relaxational form:80

'2-л-

dn\ F((o)r
(4.64)

The half-width of the Lorentzian contour of (4.64) in-
creases with increasing concentration of impurities, which
agrees with experiment (see Fig. 17).

In contrast to (4.62), Eq. (4.64) does not yield a con-
vergent integral cross section since, when r=const, the
integral over the frequency of (4.64) diverges at high fre-
quencies. According to Ref. 81, when analyzing the spectra
of high-temperature superconductors (HTSCs), one
should use specifically Eq. (4.64) rather than (4.62), as
was done in Ref. 82. Actually the standard vertex coeffi-
cient from the first formula of Ref. 82 corresponds to Rp,
which depends on p, which leads to Eq. (4.64). According
to Ref. 81, this formula contains an explanation of the
giant electronic scattering observed in HTSC compounds,
which stems from the fact that the integral cross section,
first, diverges, and second, is proportional to the large fre-
quency of electron collisions 1 /т, which is large because of
the imperfection of HTSC structures.

4.4.2. Multlvalley semiconductors

For multivalley semiconductors Eq. (4.58) must be
modified in line with what we have said at the end of Sec.
4.3. Its most important difference from its one-valley ana-
log (4.62) is that it contains a dependence on the interval-
ley relaxation time rinter. For example, for backward scat-
tering with q parallel to (lll)/V5, one can obtain for the
case of n-Ge

8

dcodfl 27=_ I reV5*!— 1-r I Iе e J

+Re

<? A + (S7riinter/

+ (35/rinter)

)(-ico+q1Di)+
(4.65)

where D1 = (8D1 +D\\ )/9. We see that the dependence
on rinter, in contrast to the case of Raman scattering of
intervalley fluctuations from Sec. 4.2.2-1, is not reduced
simply to a displacement of the diffusion pole from the
imaginary axis into the complex plane by the amount
S/Tjntef. For directions of q such as (001) in n-Ge with
regard to which all valleys are visible at the same angles,
the denominators of the simple fractions in (4.65) for all
valleys prove to be the same. Owing to this, the time
SV^mter drops out of the Raman cross section, and it ac-
quires the "one-valley" form of (4.62). However, for other
directions of q, as we see from (4.65), the spectrum is
represented as a superposition of two or several Lorent-
zians with width Г depending on rinter, so that the method
adopted in Ref. 42 of describing the spectra is generally

inapplicable. As an example, Table V presents the results80

for Г for one of the directions distinguished by symmetry

An indirect experimental confirmation of the depen-
dence of Г on the intervalley frequency l/rinter may be the
unsuccessful attempts to detect scattering by one-particle
excitations in specimens of n-Ge doped by the ion-
implantation method.52 It was noted in Ref. 61 that the
most probable reason for the absence of one-particle Ra-
man spectra in these specimens, despite the large electron
concentration nsslO21 cm~3, is the large value of l/rinter

arising from defects in these materials.
To observe electronic scattering in ion-implanted spec-

imens of n-Ge, а Г12 experimental geometry is needed, e.g.,
Z(X',Y' )Z in the notation of Fig. 3. This geometry singles
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TABLE V. Irreducible representations of the group of the wave vector q\\ <110>Gq=D2 and its corresponding basis functions, geometries of
independent experiments on Raman scattering by spin-density fluctuations in n-Ge and parameters determined in them.

Irreducible
representations

B,

B2

B,

Basis functions
of group Gq

[е'е\

*'e\,

[e'es]12

Geometry
of experiments

X'(U)X'*'

a —
YfV7\V Y'fE F\Y'X(I4)Y дЛ(£,ул

X(YX)Y

Half-width of Lorentzian

2Д..+ D s
Г — п " -i-9 3 т.inter

Г _ -2n + ^
*Л А Ч,»,

г зЛм s -\ADi~D^t ( s IT*
^-^'^/[M 3 J ' (fcJJ

^Experiments set up in Ref. 43.
For the symbols of the scattering geometry, see, e.g., Ref. 30. The unit vectors of the Cartesian axes used in the Table are defined in Fig. 3.

out the scattering by spin-density fluctuations, which does
not depend on the intervalley relaxation time.

4.5. Light scattering by energy-density fluctuations

Light scattering by energy fluctuations is studied in
semiconductors over a broad range of electron tempera-
tures and concentrations (see Sec. 3.5).21'22'69 When scat-
tering spectra are excited with a visible-light laser, the en-
ergy fluctuations are manifested only under conditions of
exact resonance \Eg+eF—fuol\ ^fko1, including degener-
acy of statistics (see the reviews, Refs. 3 and 30). At room
temperature, to observe scattering by energy fluctuations
requires an infrared laser (see Fig. 4). For a photoexcited
plasma with a high electron temperature,22'69 special mech-
anisms of interaction of the light with the energy fluctua-
tions are possible, e.g., via the dependence of the electronic
relaxation frequency on the electron temperature.83

Often scattering by energy fluctuations is understood
in the broad sense—as any scattering process caused solely
by the nonparabolicity of the electronic spectrum. This is
precisely how the one-particle electronic scattering in A15
compounds of the transition metals with charge-density
waves was treated.84 The advances in the technology of
synthesis of perfect HTSC crystals and the observation in
them of giant electronic scattering have compelled a search
for a new explanation of this phenomenon that would not
involve frequent electron collisions. In Ref. 85 an attempt
was made to explain giant electronic scattering in HTSC
crystals by a specific form of nonparabolicity in which the
Fermi surface has parallel regions.

As a general approach for describing Raman spectra
involving the nonparabolicity of the electronic spectrum,
one can propose expanding the function y^f from (2.19) in
a series in the eigenfunctions of the collision integral.86

Such an expansion for the carrier-density matrix was per-
formed in Ref. 87. A unified formula for the cross section,
suitable for all variants of the electronic spectrum and val-
ues of the parameter ql^ 1, assumes the calculation of in-
verse kinetic operators similar to the matrix Bap from
(4.37). It was shown in Sec. 3.5 that, in the case of weak
nonparabolicity, the principal term in the expansion of the
matrix yff is the scalar diagonal term, which reduces sim-
ply to the energy £p. Since the collision integral (4.54)
does not generate a corresponding basis function propor-

tional to £p, one must not use the Mermin procedure72

described in Sec. 4.3 to solve the problem being discussed.
We shall develop here an approach based on an itera-

tional solution of the kinetic equation (4.51) in the param-
eter of (4.61).88 This approach, which is a variant of the
Chapman-Enskog method,89 under conditions of non-
steady-state external action, allows one to describe spectra
over a broad range of transmitted frequencies a», including
the frequencies of the plasmon-phonon modes. Here a need
arises in connection with the fact that the fluctuations of
energy and charge density have the same—scalar—
symmetry and therefore are not statistically independent.
Their spectra cannot be separated by using the selection
rules.3'30 The value of the function Лр from (4.51) arises
from the expression for the fluctuation of the dielectric
susceptibility (3.28):

8
R0= l- (eV). (4.66)

In (4.5 1 ) one must take account of the electric field E that
arises for fluctuations of charge density. This field involves
the fluctuations with respect to total equilibrium. At the
same time, the kinetic equation in the form of (4.51) de-
scribes the relaxation of the system only toward local equi-
librium. Therefore, to take account of E in (4.51), this
equation must be transformed in such a way that it de-
scribes relaxation toward total equilibrium. The nonequi-
librium deviation of Fv from the distribution function /0

for total equilibrium as a result of an external force pro-
portional to Rv from (4.66) (Incomplete sentence; please
check.) In view of the fluctuation-dissipation theorem,19'20

Fp is expressed linearly in terms of the correlator G£ by
analogy with (4.32):

(4.67)

After substituting G* from (4.67) into the kinetic equa-
tion (4.51), the inhomogeneous term of this equation,
which is written with respect to Ff(q,a>), acquires the stan-
dard form of a field term.61 This transformation is dis-
cussed in Sec. 4.2.2-2 and in Ref. 71. As is known, the
self-consistent electric field E should be taken into account
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as a corresponding increment to the field term.61 As a re-
sult the equation for Fp(q,co) acquires the form

/r

(4.68)

Here we should seek the electric field E from the Poisson
equation

4тге
/qE= —— (4.69)

To write the Raman cross section in terms of Ff(q,(o), we
must express (7+ from (4.67) and substitute it into (4.57).
As a result we obtain

servation of energy and of number of particles. Therefore
the polarization operator H(qca) from (4.71) also contains
a restricted number of terms. We can obtain them by sub-
stituting (4.74) and (4.73) into (4.71):

II(q,u))= /$П00+2г0г1 Iloj-brjllu. (4.75)

Before we calculate the matrix elements of the polarization
operator П„ ,̂ we must first eliminate from (4.68) the elec-
tric field E by using the Poisson equation (4.69). The re-
sult is expressed in terms of the operator B~f

l, which is

reciprocal to
л л

The polarization operator П^ is associated with the matrix

B& by90

l—
(4.70)

Here n(q,<u) is the electronic polarization operator, which
equals

II(q,a>)= (4.71)

A graphic equation for U(q,a>), which is equivalent to the
system (4.68) and (4.69) and can serve to substantiate it,
is shown in Fig. 13. Instead of the Mermin procedure,72 we
must take account in the collision integral /pp/ of inelastic
processes, for which a single relaxation time cannot be
introduced. Therefore we shall introduce a set of eigenval-
ues va of the collision integral according to86"88

(4.72)

where the ¥a(p) are the corresponding eigenfunctions of
the collision integral. Let us expand the functions of the
momentum p that enter into (4.68), (4.69), and (4.71) in
generalized Fourier series in Фа(р):

(4.73)

(4.74)

Since we already know Rp from (4.66), we can also con-
sider its coefficients in the Fourier series (4.74) to be
known. It was shown in Sec. 4.1 that the collisions of
electrons with phonons exert no substantial influence on
the light-scattering spectrum. Therefore we can assume
that the "inelastic part" of the collision integral /pp» in-
cludes primarily collisions of electrons with one another.
In view of the law of conservation of energy that is satisfied
in these collisions, the function Rf from (4.66) and (4.74)
proves to be one of the eigenfunctions of the collision in-
tegral, corresponding to the eigenvalue of zero, v=0.
Therefore its expansion (4.74) contains only two orthog-
onal contributions that correspond to the two laws of con-

(4.77)

Here the indices a and ft take on two values 0 and 1, with
the index 0 denoting the only eigenfunction 4?0=1, which
arises from the law of conservation of number of particles
in collisions, while the index 1 denotes the function defined
by Eq. (37) from Ref. 88, which arises from the law of
conservation of energy. The procedure of finding the in-

л t

verse operator В , in the first approximation in the pa-
rameter of (4.61) assumes the solution of the kinetic equa-
tion in the hydrodynamic approximation. This solution
was obtained in Ref. 61 in the usual, "coordinate" repre-
sentation and hi Refs. 88 and 90 in the matrix representa-
tion. Following these methods, we shall derive an equation
for the inverse operator B~l in the matrix representation,
which generalizes Eq. (20) of Ref. 86 to the case of energy-
density fluctuations:

1/2

TCV \ dn

X
TCV \ dn

Ir

1/2

-ico+q2 (4.78)

Here D(ca), DT(co), and #(u>) denote the components of
the diffusion, thermodiffusion, and temperature conductiv-
ity tensors longitudinal with respect to q. One can find
their frequency dependences in Ref. 88. Substituting
(4.78) into (4.77) and calculating the summation in
(4.75), we obtain the differential scattering cross section in
a form that also takes account of the contribution of
charge-density fluctuations, i.e., plasmons, and the contri-
bution of energy-density fluctuations:
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(4.79)

The Fourier coefficient rj , which plays simultaneously the
role of the nonparabolicity parameter, can be found by
expanding Eq. (4.66):

2d3/>8 f
=3Zj

'IE.
ГС,

1/2

(4.80)

In calculating this coefficient in the case of resonance en-
hancement of scattering, in (4.80) the quantity Eg is re-
placed by Eg—fuo1. Here the possibility arises of resonance
enhancement of r\. At low frequencies u><«ap, where <up is
the plasma frequency, by dropping the terms in (4.79) that
are small in the parameter of (3.6), we obtain the cross
section for scattering by energy fluctuations in the form

dwdfl

XRe- (4.81)

We repeat that one must take account of the frequency
dispersion of the temperature conductivity coefficient % in
(4.81), since it ensures converegence of the integral cross
section. At the same time, the cross section of (4.81) has a
maximum at o>r<l. In this frequency region we can neglect
the dispersion of %• Therefore, when 7>#/т, the spectrum
of (4.81) acquires the form of a Lorentzian contour with
the half-width Г=^2^0, which is determined by the static
electronic temperature conductivity ^0. With increasing
concentration of impurities, which play in the semiconduc-
tor plasma the role of a second, heavy component, ther-
modiffusion is enhanced. Here, as was shown in Ref. 88, %o
declines. Thus the narrowing of the Raman-scattering con-
tour noted in Sees. 4.3 and 4.1 acquires a macroscopic
treatment for the scattering mechanism being discussed.
We note that the narrowing of spectral lines is known in
atomic physics as the Dicke effect.91

The contribution of the electron-phonon interaction to
the width of the spectrum being discussed can be taken into
account by introducing the energy relaxation time re. The
total width of the Lorentzian of (4.81) has the form

(4.82)

The first term of Eq. (4.79) omitted above proves es-
sential at high frequencies ft)~u)p. It describes the scatter-
ing of light by plasmons. At medium concentrations n, at
which cof~q2xo, we must keep all three terms in (4.79). In
this case, for a complete description of the Raman spec-
trum we must take account of frequency dispersion in all
three kinetic coefficients D, DT, and .̂88 In the case of
elastic collisions of electrons, the calculation of the fre-
quency dispersion is simplified, since the velocity vector v
of an electron proves to be another eigenfunction of the
collision integral that corresponds to an eigenvalue recip-
rocal to the transport relaxation time rtr. Here the fre-
quency dependences of the kinetic coefficients are given by
known relationships obtained in the relaxation-time
approximation:61

1— UOTt,
D(o>) =

1—icoTt,
(4.83)

etc., where CTO is the static conductivity and D0 is the cor-
responding diffusion coefficient. Substituting Eq. (4.83)
into (4.79), we obtain

-^} TF(a)[NA-MB-(2N
rdtadft

4] { [ (ют)4-

+ В]2+(сот)2[А-2(<от)г]2}-1.

(4.84)

Here we have

T=Ttr>

5=Г1Г2т+(й)рт)2Г2т,

М=Г1т+2Г1(Г1Гс)
1/2т+^(Г2+Гс)т,

(4.85)

(4.86)

(4.87)

(4.88)
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FIG. 18. Theoretical spectra of electronic scattering with e'|| es in semi-
conductors with a nonparabolic dispersion law, illustrating the mixing of
fluctuations of energy and charge.

rl=q2D0, Г1= (4.89)

Figure 18 shows the results of an elementary calculation
performed with Eqs. (4.84)-(4.89) for гг=0.2. The pa-
rameters for which the calculation was performed are in-
dicated in Table VI. Curves 1-3 correspond to electron
concentrations from 5X1017 to 1016 cm~3. The values of
the diffusion widths Г,— Гс from (4.89) were taken as
common for all three curves. These values were calculated
from the typical values of the electric conductivity and the
mobility (see Table IV). The results of the calculation
demonstrate an asymmetry of the spectrum characteristic
of a regime of interference of two Raman-scattering mech-
anisms. The suppression of the plasma maximum on curve
3, which is drawn on the larger scale at the right, is due to
interference of plasmons with energy fluctuations, and does
not involve Landau damping.

For the experiments of Refs. 58 and 74-78, which were
performed in a region of transparency of the crystals at
#~105 cm"1, the interference of plasmons with energy
fluctuations discussed here is more essential than Landau
damping. In these experiments the plasmon peak was ob-
served at low temperature T^ 10 К and was not observed

TABLE VI. Values of the electron concentrations n, plasma frequencies
<Up, and relaxation frequencies l/т for the spectra in Fig. 18.

n, cm

l/т, cm~

2X1017

150
100

1ХЮ17

100
62

3.3 XlO16

60
100

at room temperature: see also the book of Platzman and
Wolf.92 This also involves the influence of energy fluctua-
tions.

The generalization of Eq. (4.79) to the case of
plasmon-phonon mixing can be obtained by taking account
of the frequency dispersion of the lattice dielectric
function:3

(От — СО —

This frequency dispersion, which was not taken into ac-
count in Fig. 18, is most essential at high electron concen-
trations л > 5 X1017 cm~3.

4.6. Form of the intrasubband scattering spectrum
in materials with degenerate bands

As was shown in Sec. 3.7, in materials with degenerate
or close-lying bands, two unscreened mechanisms of Ra-
man scattering exist, described by the symmetric and an-
tisymmetric components of the matrix yff from (3.49).
The spectrum corresponding to the antisymmetric contri-
bution associated with fluctuations of spin density was cal-
culated in Sec. 4.3. To calculate the spectrum of the sym-
metric scattering, we must substitute the tensor Qj[j from
(3.50) instead of Bik in the expression for Rp = e]e^Bik.
This yields

Rr=<$*A- (4-90)

The fundamental difference of this spectrum from that cal-
culated in Sec. 4.3 arises from the orbital nature of the
matrix Qff, which vanishes, being composed solely of Pauli
matrices. Owing to this, in the kinetic equation (4.51) with
R9 from (4.90), we must take account of the self-consistent
electric field. This kinetic equation with Rf from (4.90)
looks exactly like Eq. (4.68) with Rf from (4.66). There-
fore the differential Raman cross section for fluctuations of
the total angular momentum is given by solving Eq.
(4.68), i.e., by Eqs. (4.70), (4.75), and (4.77).

4.6.1. The collision-free case

In single heterostructures and superlattices a condition
is often satisfied that is the opposite of (4.12), since the
experiments are performed at low temperature T<£®D.
Such a collision-free regime is characterized by the high
mobility 106 cm2/V • s. Structures with a broad potential
well and free from dimensional quantization were studied
in Refs. 69 and 70. Times were attained of т=0.4х 10~10s
and values of the parameter ql= 10. By analogy with the
case of intervalley fluctuations (see Sec. 4.2.2-1), it is con-
venient in (4.77) to single out two independent contribu-
tions to the scattering cross section. The first of them is
fully determined by fluctuations of the angular momentum,
while the second involves fluctuations of the screening elec-
trostatic potential <p=—iqE. Calculation of the imaginary
component of the polarization operator from (4.77) in this
case yields

v^pf ^ ( 2d3-
dcodfl'
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(4.91)

Here, to an accuracy of qrs4l, the screening potential
equals

(4.92)

A possibility exists of calculating the integrals in (4.91)
and (4.92) in analytic form in the case of an isotropic
approximation for the spectrum of the scattering particles.
There are five independent frequency functions а£, from
(3.60) in this case, which should be obtained for a com-
plete description of the spectra at all scattering angles.
However, in superlattices and monolayers, as a rule, one
uses the geometry "in reflection", which is convenient in
combination with resonance enhancement of scattering.
For this geometry only two frequency coefficients a^, re-
main. They correspond to the two scattering mechanisms
cited above. As a result, with a degenerate statistics of the
carriers, i.e., when n>(mTT)3/2/tf, the scattering cross
section equals

o, 1 0,3 o,f 0,7 0,9 1,0
ш/quf

FIG. 19. Д 2—The function /\(q,u>), 3, 4—the function F2(q,co) for an
isotropic model of p-Ge with n= 1.5 Xl01 9cm~3. 1,3—T=2K,2, 4—Т
= 300 К. (FromRef. 8.)

dwdft

Here we have

(4.93)

27 n

x i- — (4.94)

3n <u

X 2-—In
1 + (c

F

2 -1

(4.95)

We see from (4.93) that, in the case e'i es, the cross
section is determined by the quantity Fi(q,ta). In the case
e'|| es, both F\(q,(o) and F2(q,(o) contribute to the cross
section, while near a)=qvv we have F2^F\. The contribu-
tions of the individual terms in (4.93) are shown in Fig. 19
for an isotropic model of p-Ge with /?=1.5xl019 cm~3

and T = 2K (curves 7 and 3), Г=300 К (curves 2 and 4).
The total scattering cross section for crossed and parallel
polarizations is shown in Fig. 20. We see from Figs. 19 and
20 that the singularity in the cross section that arises from
the conservation laws (1.1) differs from that discussed in
the Introduction. We might say that the singularity proves
to be partially screened by the self-consistent electric field
E. Equation (4.91) implies that only the electrons having a
projection of the velocity v2=(o/q and occupying a belt on
the Fermi surface contribute to the scattering cross section.
In the spherical case being discussed, this belt near the
scattering threshold

(Fig. 1, curve 1) contracts to a point: v2=vF. However, in
contrast to the situation shown in Fig. 1, the contribution
of this single point of the Brillouin zone to the spectrum is
completely screened. This screening of a feature in the
cross section arises whenever the generation of a belt on the
Fermi surface or a change in its topology is supported by a
sole singular point (see Ref. 6).

A real Fermi surface of heavy holes is corrugated. It
contains flat regions along planes of the type {100), and
also indentations along directions perpendicular to them.
The local flat regions enhance the singularities, while the
presence of the indentations has the result that the belt on
the Fermi surface that arises for vz=o)ma]i/q proves to be
multiply connected. That is, it has several points of sup-
port. The different points of support distinguish different

0,1 0,2 0,3 0,Ь O,5 0,6 0,7 0,8 0,9 O)/<fOf

FIG. 20. Theoretical spectra of scattering by free holes at Т=300 К for
the same model of p-Ge as in Fig. 19.
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FIG. 21. Trace of the heavy-hole Fermi surface on a (OlO)-type plane.
The arrows indicate the directions of the polarization vector e's' and the
wave vector q for which the calculation in Fig. 22 was performed. The
numbers show the matching to the spectra. The polarization vector e1 in
both cases is perpendicular to the plane of the diagram.

groups of carriers that are in a state to scatter light without
screening. They recall the valleys of a multivalley semicon-
ductor that were discussed in Sees. 3.3 and 4.2.2. If the
polarization directions e1 and es are chosen such that the
points of support being discussed scatter light in different
ways, then the character of the singularity discussed in the
Introduction is restored. Figure 21 corresponds to one of
these situations.

To offer a numerical illustration of the just discussed
behavior of the spectra, we present a calculation of the
Raman cross section of heavy holes with an orientation of
the wave vector q along the direction of the (100) depres-
sion. In this case the function Rp that enters into (4.91)
and (4.92) is divided into two irreducible contributions
corresponding to Eqs. (3.68) and (3.69). Here the differ-
ential cross section breaks up into several terms, which we
can write with the aid of Table II in the form of (3.60).
Thus, calculating the diagonal matrix elements from
(3.68) and (3.69) along the subband of heavy holes and
substituting them into the expression for Rp from (4.91),
we obtain the following expression for the functions a^,
from (3.60);

(4.96)

f
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-<p(q,a))\28(u)-qvv),

9 t Г 2d3-9 Г 2dJ^ /d/0\

fl2=4^2J (2^Ы

8(co—qvD),

г 2dp (df0\

O 5 = 9^j (WU^

(4.98)

(4.99)

qvp

arbitrary units

0,2 0,4 0,6 0,6 1,0
w/t/t>F

FIG. 22. Differential light-scattering cross section of holes with account
taken of the corrugation of the subbands of heavy holes. 1—spectrum in
the geometry Y(ZX)Y; 2—m the geometry X'(ZX')Y'. The directions
of the polarization vectors and the wave vector are indicated in Fig. 21.

X
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11/2

(4.100)

(4.101)

where n2 =л2+п2. Fortunately, to illustrate what we
need, it suffices to calculate the integrals of (4.96)-(4.100)
in the first approximation in the parameter of (3.74). We
shall present here only those functions a£, from (3.60) that
correspond to Г^ scattering according to Table II:
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(4.103)

where x—a>/qvv, ^="f]y/(.'Y\ — 2y). The spectra of n-Ge
calculated by these formulas are shown in Fig. 22. Curve 1
shows the spectrum in the geometry Y(ZJ[) Y, for which
all the points of support are equivalent. Curve 2 shows the
spectrum in the X'(ZX')Y' geometry, for which non-
equivalent belts arise (see Fig. 21). We see that in the
latter case there is an unscreened singularity in the scatter-
ing cross section near the threshold a>=qvv, which corre-
sponds to the discussion just carried out.
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In closing this section we note that in superlattices and
monolayers both nonparabolicity and corrugation of the
isoenergy surfaces of the holes are considerably enhanced
in comparison with bulk materials (see, e.g., Ref. 93). The
detection of the singularities pointed out above in the cross
section might serve as a guarantee of the quality of a su-
perlattice. Conversely, the absence of such singularities in
the electronic spectra of HTSC crystals27 renders uncon-
vincing the description of the form of these spectra by
using a concrete model of the Fermi surface.85 This ques-
tion is discussed in Sec. 6.

4.6.2. The case of frequent collisions ql<t 1

There are several factors that hinder the observation of
the singularities of scattering spectra associated with the
structure of the Fermi surface. Besides those discussed in
the previous section, temperature and fluctuational blur-
ring of these singularities can occur, as reflected in curves
2 and 3 in Fig. 1. The influence is described in Sec. 4.4 of
electron collisions on scattering by spin-density fluctua-
tions. In principle, collisions of holes exert an analogous
influence on the spectra shown in Figs. 19, 20, and 22.
Under the condition of frequent collisions (4.12) the sec-
ond term of the polarization operator in (4.77) vanishes.
We recall that the same situation arose in going from a
regime of plasma scattering to the single-particle regime of
(4.43) in the expression for the polarization operator of a
multivalley crystal (4.39). As a result the scattering spec-
trum acquires a relaxational Lorentzian form. When we
take account of corrugation, instead of one spherical func-
tion, infinite sets of eigenfunctions of the collision integral
/pp< arise, having a definite and identical symmetry Tn.
Another difference from the case of energy fluctuations
discussed in Sec. 4.5 is that the function (4.90) itself is not
generally an eigenfunction of the collision integral. It is
represented in the form of an infinite series in the functions
*Pa similar to (4.73). As a result the spectra of Г12 and
Г^ scattering will consist of a superposition of Lorentzian
contours of the form

,г; 1 Idn
а'25=- (4.104)

Here the уаГ> are the coefficients of the expansion of the

matrix elements from (3.69) in a generalized Fourier series
in the functions 4fa. If we number the functions Ф„ in
order of increasing eigenvalues va, then the number of
zeros of these functions rapidly increases with increasing a.
Correspondingly, the Fourier coefficients уаГ> and 7ar,2

rapidly decline with increasing a. Their sums are normal-
ized to the corresponding integral scattering cross sections
of (3.70):

X- 2 > (4.105)

X-j

„2 „2
PJ>y

(4.106)

Therefore only the first several terms in Eq. (4.104) are
essential.

In the isotropic approximation Qik, as we see from
(3.53), is reduced to a second spherical harmonic, which is
an eigenfunction of the collision integral. Consequently (in
the notation of Ref. 87), we have

v1(r25)=Vi(r1 2)=Tf'(2), (4.107)

where тг(2) is the relaxation time of the second Legendre
polynomial. Here the cross section of symmetrical scatter-
ing is reduced to a single Lorentzian contour with the
half-width 1/T](2). It was shown in Ref. 87 that the re-
laxation of the irreducible components of the distribution
function with orbital angular momentum /<2 occurs inde-
pendently of the other terms of the expansion. This opens
up the possibility of calculating the half-width of the
Lorentzian from (4.107) outside the limits of the Born
approximation. Insofar as we know, there are as yet no
data on the measurement of the differential Raman cross
section of the type being discussed in gapless semiconduc-
tors. Therefore we have not performed such calculations.
We shall restrict the treatment here to discussing crystals
of p-Ge and p-Si, for which the Born approximation is
applicable. Applying the collision integral of (4.52) to the
second Legendre polynomial, we obtain

1 Зи /4 18

Here we have

W.-ГJo

(4.108)

(4.109)

where the function W(p — p') is defined in (4.55). If we
take account of only the ionized impurities in calculating
the Born amplitude, then in the Brooks-Herring approxi-
mation we obtain

,
(3a2-l)ln --60

a— 1
(4.110)

where a=\ + (lf/2rL

&p\). In Ref. 86 the author errone-
ously omitted the coefficient a in Eq. (35). Figure 23
shows several spectra of light scattering polarized with
e*|| es in n- and p-type InP from Ref. 95. The correspond-
ing half-widths are shown in Fig. 24, in which the left-hand
vertical scale is graduated for electrons, and the right-hand
for holes. The need for a double scale arises from the fact
that the electronic half-widths prove to be severalfold
smaller than the hole half-widths. The experimental spec-
tra of n-InP (see the curves for specimens No. 2 and 5 in
Fig. 23) are narrow Lorentzians whose half-widths are
shown in Fig. 24 by crosses (referred to the left-hand
scale). The narrowing of the electronic half-width is a di-
rect proof of its diffusional nature; see Sec. 4.4.1. The the-
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FIG. 23. Experimental Stokes spectra of electronic scattering in n- and
p-type InP crystals with a high concentration of charge carriers.

oretical curve of the diffusional half-width drawn by Eq.
(4.82) is shown in Fig. 24 by the dashed line. There is a
qualitative agreement between the theoretical and experi-
mental results for electron concentrations n;S1018 cm"3.
The increase of the electronic half-width for concentrations
и 5:1018 cm"3 indicates a change in the scattering mecha-
nism. An attempt to calculate this half-width using a
broadening mechanism of relaxational type (see Ref. 39)
leads to values severalfold larger than the corresponding
experimental values.

The experimental spectrum of a p-InP crystal shown
by the curve for specimen No. 6 in Fig. 23 is a very broad
Lorentzian with a half-width T= 150 cm"1. For compar-
ison this experimental point is marked in Fig. 24 by the
open square referred to the right-hand scale. The theoret-
ical curve for this half-width calculated with Eq. (4.110) is
shown in Fig. 24 by the solid line. The only existing ex-
perimental point agrees not poorly with the theoretical
curve.

5. LIGHT SCATTERING BY CURRENT CARRIERS
IN SUPERLATTICES

5.1. Light scattering by plasmons in superlattices

In superlattices and monolayers one observes in the
Raman spectra various elementary excitations, which are

50
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FIG. 24. Dependence of the half-width Г of the scattering spectrum on
the concentration N'x.n? Right-hand curve—relaxation mechanism of
(4.110), left-hand curve—diffusion mechanism of (4.82). The crosses
and squares show the experimental points for crystals of n- and p-types,
respectively.

described in a special book.94 Many of them involve tran-
sitions between subbands of dimensional quantization,
while more rarely one finds spectra of intrasubband scat-
tering. In particular, intrasubband scattering with spin re-
versal was recently detected in Ref. 45. There is a review
article by Pinczuk and Abstreiter devoted to electronic
scattering in superlattices (see Chap. 4 in the book, Ref.
94).

The macroscopic approach to the description of the
relaxation kinetics of light-scattering fluctuations devel-
oped in Sees. 4.2, 4.5, and 4.7.2 is useful in the analysis of
the known mechanisms of light scattering in superlattices.
We shall start with describing Raman scattering by charge-
density fluctuations.96 The fundamental feature that gives
rise to the difference of superlattices from bulk materials is
the dimensional quantization of the current carriers. Be-
cause of it, dimensionally quantized structures are charac-
terized by a lowered dimensionality. This leads to a strong
dispersion of the plasma frequency u)£2D) , even at small
q — to the so-called directional dispersion (see Ref. 26).
Our formula (4.79) allows a simple generalization in two
limiting cases. If the period d of the superlattice is much
smaller than the reciprocal of the wave vector q~l, i.e.,
qd<\, then the approximation of an effective medium is-
applicable.26 Directional dispersion arises in this case in
finding the zeros of the longitudinal dielectric permittivity
of the effective medium:

(5.1)

Equation (5.1) implies that the plasma frequency equals

cos 9, (5.2)
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where u>£3D) = Hir^n/eo/n*)1'2 is the ordinary three-
dimensional plasma frequency, and в is the angle between
the wave vector q and the plane of the superlattice. Exper-
iments in which a dispersion law of the plasma frequency
in (5.2) was observed have been the object of numerous
publications (see Figs. 2.53 and 2.54 from Ref. 3). In these
studies a method was developed of almost specular Raman
scattering with a fixed projection of the wave vector on the
plane of the superlattice q\\ .

In the opposite limiting case dq\\ > 1 the superlattice is
described by the model of an isolated monolayer. The gen-
eralization of Eq. (4.79) to the case of a superlattice with
a large period is obtained after taking adequate account of
processes of Maxwellian relaxation. To do this, instead of
the frequency of Maxwellian relaxation т^1=4тг<т/£ in Eq.
(4.79), the velocity V=2ira/£ of spread of charge over the
monolayer should enter. With account taken of the fre-
quency dispersion of the conductivity, this means that in
(4.79) we must replace the three-dimensional conductivity
a with the product a(2D)q\\ , where

1
<7 '=•

m* —i
(5.3)

is the two-dimensional high-frequency conductivity, and «s

is the two-dimensional concentration of electrons. In the
case of rare collisions the scattering cross section obtained
in this way has a pole at the two-dimensional plasmon
frequency

»<2D)=
l/2

„1/2 (5.4)

In the case of frequent collisions, when their frequency is
much larger than the two-dimensional plasmon frequency
of (5.4), the first term in (4.79) acquires the form

(5.5)

Several spectra calculated by (5.5) for different values
of <7|| are shown in Fig. 25a. In the inset to Fig. 25a the
dots indicate the experimentally measured98 frequencies of
the plasmon peaks. The spectrum of (5.5) in its acoustic
dispersion law corresponds to the lowest-frequency branch
in the inset to Fig. 25a.

Figure 25b shows the spectra of collective intersub-
band excitations in a photoexcited superlattice of
GaAs-Alo 3Gao 7As obtained in the study of Klein et a/.97

The structures were grown by the method of molecular-
beam epitaxy on a GaAs substrate grown in the 000)
direction. They consisted of 30 periods, each of which con-
tained a quantum well of width 215 A and barriers of
width 100 A. Curves 1-4, which were obtained at the tem-
perature 7* =5 K, differ from one another in the delay time
between the exciting and probe pulses. These times
amounted to 37.5, 162.5, 412.5, and 662.5 ns for spectra
1—4, respectively. The frequency of the incident light was
«a1 =1.9 eV. The decrease in the plasmon frequencies with
increasing delay time was caused by interband recombina-
tion of current carriers. The most interesting feature of the

, arbitrary units

ene , meV

FIG. 25. a—Spectra of scattering by charge-density fluctuations in a
two-dimensional electron plasma calculated by Eq. (5.5). The numbers
on the curves indicate the values of the wave vector in units of 104 cm~'.
The inset shown the experimental dispersion laws measured in Ref. 98
(dots) and the theoretical values (solid lines) calculated by Eq. (5.4).
The vertical cross-hatching shows the region of Landau damping,
b—Raman spectra with time resolution of the intersubband plasmon-
phonon modes I+ and I_ of a GaAs-Al^Ga,_^As superlattice with a
width of quantum wells d=215 A. (From Refs. 97 and 119.)

spectra is the narrowing with time of the high-frequency
plasmon-phonon mode I+, whereas the width of the low-
frequency mode I_ remains practically invariant. One can
explain this unusual behavior of the plasmon-phonon
modes by starting with their dispersion curves. The disper-
sion curves of the collective intersubband excitations cal-
culated in Ref. 100 for a binary heterostructure with the
parameters ns=5x!0u cm~2, d=2QQ A, are shown in
Fig. 26 together with the cross-hatched region of intersub-
band one-particle excitations. The changes in the disper-
sion curves that arise upon decreasing the electron concen-
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FIG. 26. Dispersion curves of collective intersubband excitations calcu-
lated in Ref. 100 for a binary heterostructure with parameters
ns=5xlO" cm-2, d=200 A.

tration ns are shown in Fig. 26 by the dashed lines. We see
from Fig. 26 that the decrease in the intersubband plasma
frequency with time must be accompanied by narrowing of
the region of one-particle excitations in which Landau
damping exists. A corresponding increase in the lifetime
initially occurs for the high-frequency mode I+, and only
then for the low-frequency mode I_. To a certain degree
this pattern explains why only the high-frequency mode I+

succeeds in exiting the region of Landau damping and de-
creases in width in the course of time, while the low-
frequency mode cannot do this and therefore does not
change in width.

5.2. Light scattering by one-particle excitations
in superlattlces

The Lindhard-Mermin scattering cross section of
(4.59) is most often used in describing the Raman spectra
of spin-density fluctuations in superlattices.45'98 From such
measurements one reconstructs the relaxation time т that
gives the best agreement of the experimental and theoreti-
cal curves (see Sec. 4.4.1). The fitted values of the relax-
ation times thus obtained prove, however, to be about three
times smaller than those obtained from electrical measure-
ments of mobility. This means that there is another cause
of spectral broadening in superlattices and monolayers.
The additional cause of broadening might be large-scale
fluctuations of the impurity potential (see Fig. 1 and Refs.
25 and 99).

Light scattering by energy fluctuations has also been
found in superlattices. It has been observed in the polarized
spectra shown in Fig. 4.12 from the book, Ref. 94. It was
shown in Sees. 3.5 and 4.5 of this review that the corre-

sponding scattering cross section is weakly sensitive to the
temperature in the case of strong nonparabolicity. This
explains why in superlattices, where the nonparabolicity is
stronger than in bulk materials (see Ref. 93), one can
detect the one-particle spectrum with parallel polarizations
of the incident and scattered light e!|| es. Another expla-
nation is based on Fig. 25a and (5.5).

Finally we note that the spin splitting of the subbands
of dimensional quantization greatly exceeds the magni-
tudes discussed in Sec. 4.4.1 for bulk materials. In addition
to the Hamiltonian of the spin-orbital interaction of
(3.47), which is cubic in the quasimomentum, also a linear
term is present in dimensionally quantized structures (see
Ref. 101). It has the result that processes that occur with
spin reversal and with spin-density fluctuations become in-
dependent. Since they are practically the same in intensity,
one can easily distinguish them experimentally. In Ref. 98
in Raman spectra of electrons in a well 500-A wide, the
spin splitting was still insignificant, and therefore the pro-
cesses being discussed could not be distinguished. How-
ever, in experiments with a narrower—180-A wide—
quantum well,45 a doublet structure of one-particle
electronic spectra is distinctly manifested. Here the high-
frequency component of the doublet should be ascribed to
scattering with spin reversal, whereas the low-frequency
component involves fluctuations of spin density. We note
that the authors of Ref. 45 attributed both components of
the doublet to processes occurring with spin reversal. This
leads to a number of contradictions between theory and
experiment: the observed spin splitting proves to be two-
fold smaller than the calculated value, while the calculated
intensities of the components of the doublet do not match
those experimentally observed. All these contradictions
can be eliminated if one identifies the low-frequency peak
with the Raman scattering by spin-density fluctuations.

5.3. Light scattering In superlattices with quantum-
mechanical degeneracy of states

Comparison of the light-scattering spectra of n- and
p-type superlattices reveals a gigantic difference between
them. In n-superlattices one observes a substantial fre-
quency difference of the intersubband transitions obtained
in crossed and parallel polarizations of the incident and
scattered light. The frequency difference proves to be ex-
actly equal to the frequency of an intersubband plasmon,
and this effect is known in the literature as the effect of the
"depolarizing field."3 although it is sometimes called an
exciton wave.102 Its explanation arises from the selection
rules discussed in Sees. 3.1 and 3.6, according to which,
with parallel polarizations e!|| es one observes plasmons,
while with e1! es one observes one-particle excitations,
e.g., spin-density fluctuations.

The Raman spectra of free holes obtained by Ab-
streiter et al. (see Chap. 4 in Ref. 94 and Ref. 103) dem-
onstrate almost complete absence of this "effect of the de-
polarizing field." The theoretical ideas developed in Sees.
3.7, 3.9, and 4.6 allow us to give this the following treat-
ment. The point is that, in both the parallel (Y' Y') and the
crossed (Y'Z') experimental geometry, intersubband scat-
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tering actually takes place, which is described by the ma-
trices of (3.69) and (3.68), respectively, and is not accom-
panied by an electric field. Another interesting feature of
the Raman spectra of superlattices is the low-frequency
peak manifested for parallel polarizations (Y'Y'). Accord-
ing to Chap. 4 in Ref. 94, its characteristic features consist
in the following. It lies in energy below all the imaginable
intersubband transitions. The corresponding abbreviation
LEEX in Fig. 4.42 of Ref. 94 simply means "low-energy
excitation". The LEEX peak has rigorous selection
rules—it is observed in (Y' Y') geometry and is absent in
(Y'Z'). Upon lowering the temperature to 2-3 K, this
peak acquires a multiple! structure. In Ref. 94 a definite
identification of the LEEX peak is absent, although in an
earlier study103 it was attributed to intrasubband collective
excitations of holes.

The theory constructed in Sees. 3.7, 3.9, and 4.6 allows
us to give an unequivocal treatment of the LEEX peak that
explains all of its features. We note that, in the spectra in
(Y' Y') geometry in the cited experiments from Refs. 94
and 103, not only the scalar excitations are allowed, but
also the T'25 excitations (those of T'25 symmetry). It was
shown in Sec. 3.9 that precisely the T'25 geometry, accord-
ing to (3.77), is a test for one-particle scattering by free
holes, which involves fluctuations of the density of total
angular momentum. Therefore the absence of a LEEX
peak in the (Y'Z') geometry, which coincides with Г12,
and its presence in Г'25 geometry are evidence in favor of its
one-particle nature. This hypothesis is confirmed by the
temperature dependence of the form of the LEEX peak,
which acquires a multiple! structure with decreasing tem-
perature, while with increasing temperature it is converted
into a Lorentzian bell shape similar to (4.67) or (4.104).
Apparently, with increasing temperature the decisive con-
tribution to the LEEX peak arises from the spin-density
fluctuations of (4.64) or the fluctuations of total angular
momentum of (4.104). The condition corresponding to
(4.12) of frequent collisions, which is necessary for appli-
cability of these formulas, has the following form in a two-
dimensional electron gas:

This condition is milder than the condition (4.12) for bulk
materials, since the component of the wave vector фц is
small in comparison with its modulus q in back-scattering
experiments.3 Therefore the condition (4.6) can be fulfilled
by phonons even at moderately low temperatures. The
multiplet structure of the LEEX peak at Г=2-3 К arises
from intrasubband hole transitions with spin reversal. On
the whole its nature is the same as for the doublet structure
of the one-particle spectrum of Ref. 45, which was dis-
cussed in Sec. 5.2. In particular, at the lowest temperatures
discussed in this connection in Chap. 4 of Ref. 94, the
condition (5.6) ceases to be fulfilled, and the multiplet
structure must acquire a dependence on the wave vector.

6. FREQUENCY DEPENDENCE OF THE ELECTRONIC
RAMAN CROSS SECTION IN METALS AND
SUPERCONDUCTORS

6.1. Normal metals

Electronic Raman scattering in metals proves to be
rather hard to observe because the resonance in y/vt from
(2.19) lies in the region of x-ray frequencies, while the
nonresonance scattering by charge-density fluctuations is
strongly screened owing to the high concentration of elec-
trons. Success in detecting electronic Raman scattering in
metals possibly will be attained after the invention of x-ray
lasers. The fragmentary information existing today is care-
fully collected and analyzed in detail in the review, Ref.
104, where also the results on electronic Raman scattering
in HTSC crystals are presented.

A structureless background of inelastic scattering was
recently measured in certain rare-earth metals: Y, Dy, and
Ег Ю5Д06 On the other hand> certam highly limited infor-

mation on one-particle electronic excitations active in Ra-
man scattering can be obtained by measuring the temper-
ature dependence of the half-widths of the phonon lines.3'90

The contribution to this width associated with anharmonic
decays of phonons increases with increasing temperature.
An anomalous decrease in the width of the phonon lines
that was observed in osmium107 can be interpreted as the
result of suppression of the high-frequency electronic exci-
tations by frequent electron collisions. The corresponding
contribution to the half-width of the phonon lines is deter-
mined by the imaginary component of the electronic po-
larization operator U(q,co) from Fig. 13:

Im H(q,co)~ (6.1)

where w0 is the frequency of the phonon, and
T=q2D+ (l/т) is the half-width of the corresponding line
of one-particle quasielastic scattering. One can obtain a
decrease of ДГ with temperature by assuming that
T~l>Dq2 and that т"1 <со0 at low temperatures, but
T~]zza0 at high temperatures. One can attain a remark-
able agreement between the theory of (6.1) and experi-
ment by calculating т(Т) from dc conductivity data.107

(5.6) 6.2. Electronic Raman scattering in HTSC crystals

The data on the magnitude of the superconductive gap
2Д in high-temperature superconductor compounds dis-
agree very strongly among the various authors at present.
The measurements have been conducted by various
methods,108 and values of 2&/kTc were obtained, where Tc

is the temperature of the superconductive transition, that
lie in the range from 2 to 8. The Bardeen-Cooper-
Schrieffer theory yields a value 2Д//сГс=;3.52, which lies
exactly in the middle of the cited range of experimental
values. In the case of the classical orthorhombic materials
YBa2Cu3O7, or briefly YBCO123, there are phonon lines
that lie in the region of the broad maximum of the one-
particle electronic background. These are phonons of Ag

symmetry, which are observed with polarization vectors
e*|| es lying in the plane of the layers. For example, there
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is a Raman-active phonon of frequency ty0=340 cm ' at
T<TC. These phonon lines are highly sensitive to rear-
rangement of the one-particle electronic excitations, which
occurs at T=TC with opening of the superconductive gap.

The density of states of the one-particle electronic ex-
citations through the superconductive gap within the
framework of the Bardeen-Cooper-Schriefier model
equals

(6.2)

These excitations lead to a rearrangement of the phonon
lines and to one-particle electronic scattering. They are not
screened, since they are accompanied by breakdown of the
two half-filled Cooper pairs (— p\, +pl \ and (—pi,
+p\ | with formation of one completely filled and one
completely empty pair. This process is accompanied by
reversal of the two spins of the components of the Cooper
pairs, and hence can occur in the absence of charge fluc-
tuations, i.e., screening. The theory of this process and its
generalization to the case of finite q, finite Г, and complex
energy bands that allow unscreened scattering in the nor-
mal phase can be found in several studies.17'82'84'109'110

These theoretical studies do not make use of the specifics of
high-temperature superconductors.

A recent study by Abrikosov111 examined electronic
scattering for a model containing the specifics of HTSC
compounds. This model consists of superconductive layers
with pairwise attraction between the electrons and the lay-
ers of the normal phase.111 This model is applicable to
YBCO123 compounds, which contain planes and chains,
and also to compounds based on bismuth (Bi2Sr2CaCu2O8,
or briefly BISCO2212). The interaction between the two
types of layers is taken into account in this model by using
the hopping integral t. The described model predicts a peak
in the scattering cross section at the frequency сил2Д for
e!|| es|| a lying in the plane of the layers, and ш^Д for
e'lj es|| с oriented perpendicular to the layers. This pre-
diction was experimentally confirmed for BISCO2212 in
Ref. 112 (Fig. 27) and for YBCO123 in Ref. 113. The
anisotropy of the superconductive gap108 was also estab-
lished in YBa2Cu4O8 (YBCO124), which compels us to
assume a different magnitude of the gap in the CuO2 planes
(325 cm"1) and in the double CuO chains (113 cm"1).114

In closing we note that the observation of a superconduc-
tive gap in spectra of HTSC compounds was first reported
inRefs. 115 and 116.

As was mentioned in Sec. 4.4.1, an intense, broad, and
almost structureless line extending to 1 eV is present in all
compounds of high-temperature superconductors in the
normal phase. Since no evidence of a plasmon peak was
established, we should assume that this band involves un-
screened scattering that occurs in the absence of charge-
density fluctuations. The most characteristic feature of this
form of scattering is the practically complete independence
of its cross section of the temperature. This behavior of the
cross section disagrees with the coefficient of F(ca) in
(2.21), according to which the cross section should be
proportional to the temperature when T/fuo> 1.
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FIG. 27. Stokes spectra of a crystal of BISC02212 in the superconductive
phase for polarizations of the incident and scattered light parallel to the
a(x) and c(z) axes, illustrating the anisotropy of the superconductive gap
predicted in Ref. 111. (From Refs. 112 and 104.)

The observation of a frequency- and temperature-
independent Raman cross section enabled Varma et a/.117

to propose that the coefficient F(co)/co is compensated by
the inverse dependence of the electronic polarization oper-
ator П((о) (see Fig. 13) on Т and со. Thus they proposed
that the part of П(<о) independent of q equals

1тП(со)~й)/Т for |

—Sgnca for |ty | >Г.
(6.3)

Evidently the first of the equations of (6.3) allows com-
pensation of the influence of the coefficient of F(co) on the
scattering cross section. The equations of (6.3) cannot be
derived within the framework of any microscopical model
of a Fermi liquid. Therefore (6.3) actually postulates that
the electrons in the normal phase of HTSC compounds
form a "magic Fermi liquid." In an ordinary Fermi liquid
the reciprocal lifetime of electrons in states separated by a
from the Fermi surface is proportional to со2. In a "magic"
Fermi liquid according to (6.3) this reciprocal time should
be proportional to | со \.

The magnitude of the scattering cross section in the
normal phase is determined according to Ref. 82 by the
square of the convolution of the tensor of (3.23) with the
polarization vectors e1 and es. According to Sees. 4.4.1 and
4.7.2, the component of the Raman spectrum independent
of the wave vector should be described by using a relax-
ation contour of the type of (4.64):
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dcodfl
=F(co)B- (6.4)

Here т is the characteristic relaxation time of the light-
scattering fluctuations, and В is a parameter characterizing
the intensity of scattering. Although both parameters т and
В depend on the mechanism of scattering, Eq. (6.4) itself
is universal. It corresponds to the universal macroscopical
mechanism of dissipation of the energy of a nonscalar ex-
ternal field of the type of (4.33') first discovered by Man-
del'shtam and Leontovich.118 This problem was discussed
in detail by one of the authors in Ref. 86.

Equation (6.4) enabled Virosztek and Ruvalds85 to
propose a mechanism that explains the appearance of the
magic properties (6.3) of Fermi fluids. According to Ref.
85, the existence at the Fermi surface of HTSC-compounds
of parallel regions leads to the following expression for 1/т:

~а co (6.5)

where a, a', and /3 are parameters of the order of unity.
The theoretical value of the parameter /? equals 4, whereas
Raman-scattering data yield a~0.5. Upon substituting
r~l from (6.5) into (4.64), we obtain for T>co

d22
A jr.dcodfl

В
~Qap

(6.6)

independently of со and T, in agreement with the experi-
mental observations. In the opposite limiting case T^co,
Eqs. (4.64) and (6.5) yield

(6.7)

which is also independent of со and T, in agreement with
experiment. Nevertheless, in the region

a/3T<co<p'T (6.8)

the frequency of (6.5) behaves like a(3T, so that the fre-
quency dependence of the cross section is determined by
the coefficient F(co) from (2.21):

dcodfl

T
-.
со

(6.9)

The increase of the cross section with decreasing со pre-
dicted by Eq. (6.9) has not been observed experimentally.
This increase might be diminished if we assume that a is
larger than 0.5. Indeed, such an assumption impairs the
agreement in the other regions of the spectrum. This is
reflected in Fig. 28, which shows the electronic scattering
spectrum measured in the normal phase of Bi2Sr2CaCu2Og

and its theoretical approximation by Eq. (6.4) with т"1

from (6.5) from Ref. 85.
On the whole the theoretical description of the giant

electronic scattering in HTSC crystals is still far from per-
fection. The results presented in this review show that a
complete description is impossible without taking detailed
account of the electronic band structure of these com-
pounds. The unit cell of HTSC crystals contains several
molecules. Owing to this, their space-group symmetry in-
cludes nontrivial translations and hence is not syrnmor-

2000 4000 6000 вООО 10000

Frequency shift, cm~1

FIG. 28. Electronic scattering spectrum measured in the normal phase of
Bi2Sr2CaCu2Og and its theoretical approximation by Eq. (6.4) with r~l

from (6.3). (From Refs. 85 and 104.)

phic. As was shown in Ref. 51 with the example of n-Si
(see Sec. 3.8), the presence of nontrivial translations leads
to a specific degeneracy of the band states at certain points
at the edge of the Brillouin zone. In n-Si this degeneracy
occurs at the л-points. In HTSC crystals having a low
enough symmetry group, degeneracy occurs along entire
lines along the boundaries of the Brillouin zone. Therefore
the reduced density of Raman-active interband excitations
in HTSC crystals must be considerably larger than in n-Si,
where electronic Raman scattering is reliably observed
with insignificant resonance enhancement. As we see it,
this circumstance must be taken into account in describing
electronic Raman scattering in HTSC crystals.

1L. D. Landau and E. M. Lifshits, The Classical Theory of Fields, 4th ed.
(in Russian), Nauka, M., 1973 (Engl. transl., Pergamon Press, Oxford,
1975).

2K. Veisbukh and R. Ul'rikh, Light Scattering in Solids (in Russian),
Mir, M., 1985, No. 3, p. 228.

3G. Abstreiter, M. Cardona, and A. Pinczuk, Light Scattering in Solids
(in Russian), Mir, M., 1984, p. 12.

4D. C. Hamilton and A. L. McWhorter, Light Scattering Spectra of
Solids, Springer-Verlag, New York, 1969, p. 309.

5 P. M. Platzman, Phys. Rev. 139A, 379 (1965).
61. P. Ipatova, M. I. Kazanov, and A. V. Subashiev, Zh. Eksp. Teor. Fiz.
84, 1830 (1983) [Sov. Phys. JETP 57, 1066 (1983)].

7P. A. Wolf, Phys. Rev. 171, 503 (1968).
8V. A. Voltenko, I. P. Ipatova, and A. V. Subashiev, Pis'ma Zh. Eksp.
Teor. Fiz. 37, 334 (1983) [JETP Lett. 37, 396 (1983)].

9G. L. Bir and G. E. Pikus, Symmetry and Strain-Induced Effects in
Semiconductors (in Russian), Nauka, M., 1972 (Engl. transl., Israel
Program for Scientific Translations, Jerusalem; Wiley, New York,
1975).

10V. F. Gantmakher and I. B. Levinson, Scattering of Current Carriers in
Metals and Semiconductors (in Russian), Nauka, M., 1984.

"V. B. Berestetskii, E. M. Lifshits, and L. P. Pitaevskii, Quantum Elec-
trodynamics (in Russian), Nauka, M., 1980 (Engl. transl., Pergamon
Press, Oxford, 1982).

12E. L. Ivchenko, I. G. Lang, and S. T. Pavlov, Fiz. Tverd. Tela (Len-
ingrad) 19, 1751 (1977) [sic].

13 A. Alexandrou and M. Cardona, Solid State Commun. 64, 1029
(1987).

14D. L. Mills, A. A. Maradudin, and E. Burstein, Ann. Phys. (N.Y.) 56,
504 (1970).

151. P. Ipatova and V. A. Kosobukin, Problems of Semiconductor Physics
(in Russian), A. F. loffe Physicotechnical Institute, Academy of Sci-
ences of the USSR, Leningrad, 1984, p. 60.

433 Physics - Uspekhi 36 (5), May 1993 BaTramov et a/. 433



16 L. D. Landau and E. M. Lifshits, Electrodynamics of Continuous Media
(in Russian), Nauka, M., 1982 (Engl. transl. of earlier ed., Pergamon
Press, Oxford, 1960).

17 A. A. Abrikosov and L. A. Fal'kovskii, Zh. Eksp. Teor. Fiz. 40, 262
(1961) [Sov. Phys. JETP 13, 179 (1961)].

18 A. A. Abrikosov and I. M. Khalatnikov, Zh. Eksp. Teor. Fiz. 34, 198
(1958) [Sov. Phys. JETP 7, 135 (1958)].

19 L. D. Landau and E. M. Lifshits, Statistical Physics, 3rd Edn., Vol. 1 (in
Russian), Nauka, M., 1976 (Engl. transl., Pergamon Press, Oxford,
1980).

20E. M. Lifshits and E. M. Pitaevskff, Statistical Physics, Vol. 2 (in Rus-
sian), Nauka, M., 1978.

21 A. Mooradian, Phys. Rev. Lett. 20, 1102 (1968).
22Dai-Sik-Kim and P. Y. Yu, Phys. Rev. В 43, 4158 (1991).
23K. T. Tsen and O. F. Sankey, Phys. Rev. В 37, 4321 (1987).
24Du Bois and V. Gilinsky, Phys. Rev. 133A, 1308 (1964).
251. P. Ipatova and V. A. Voitenko, Phys. Rep. 194, 361 (1990).
26 F. G. Bass, A. A. Bulgakov, and A. P. Tetervov, High-Frequency Prop-

erties of Semiconductors with Superlattices (in Russian), Nauka, M.,
1989.

27 K. Tomsen and M. Cardona, Physical Properties of High-Temperature
Superconductors (in Russian), Mir, M., 1990, p. 411.

28M. N. Rostoker and N. Rosenbluth, Phys. Fluids 5, 776 (1962).
29 F. Cerdeira, N. Mestres, and M. Cardona, Phys. Rev. В 29, 3737

(1984).
MM. V. Klein, Light Scattering in Solids (in Russian), Mir, M., 1979, p.

174.
31 A. A. Abrikosov and V. M. Genkin, Zh. Eksp. Teor. Fiz. 65, 842

(1973) [Sov. Phys. JETP 38, 417 (1974)].
32V. A. Voitenko, Fiz. Tverd. Tela (Leningrad) 26, 1002 (1984) [Sov.

Phys. Solid State 26, 611 (1984)].
33J. Doehler, Phys. Rev. В 12, 2917 (1975).
34 E. M. Lifshits, M. Ya. Azbel', and M. I. Kaganov, Electron Theory of

Metals (in Russian), Nauka, M., 1971 (Engl. transl., Consultants Bu-
reau, New York, 1973).

35 P. M. Tomchuk and V. A. Shenderovskil, Zh. Eksp. Teor. Fiz. 62, 1131
(1972) [Sov. Phys. JETP 35, 598 (1972)].

36V. L. Gurevich, I. G. Lang, and S. T. Pavlov, Zh. Eksp. Teor. Fiz. 59,
1679 (1970) [Sov. Phys. JETP 32, 914 (1971)].

37E. O. Kane, J. Phys Chem. Solids 1, 249 (1957).
38 A. Pinczuk, L. Brillson, and E. Burstein, Phys. Rev. Lett. 27, 317

(1971).
39V. A. Voitenko, Fiz. Tverd. Tela (Leningrad) 29, 3177 (1987) [Sov.

Phys. Solid State 29, 1827 (1987)].
""L. D. Landau and E. M. Lifshits, Quantum Mechanics (in Russian),

Nauka, M., 1989.
41 G. E. Pikus, V. A. Marushchak, and A. N. Titkov, Fiz. Tekh. Polu-

provodn. 22, 185 (1988) [Sov. Phys. Semicond. 22, 115 (1988)].
42N. Mestres and M. Cardona, Phys. Rev. Lett. 55, 1132 (1985).
43 G. Contreras, A. K. Sood, and M. Cardona, Phys. Rev. В 32, 930

(1985).
"A. G. Aronov and E. L. Ivchenko, Zh. Eksp. Teor. Fiz. 57, 247 (1969)

[Sov. Phys. JETP 30, 138 (1970].
45 B. Jusserand, D. Richards, H. Peric, and B. Etienne, Phys. Rev. Lett.

69, 848 (1992).
46 F. Cerdeira, T. A. Fjeldly, and M. Cardona, Phys. Rev. В 8, 4734

(1973).
47 M. A. Kanehisa, R. F. Wallis, and M. Balkanski, Phys. Rev. В 25, 7619

(1982).
48 M. Chandrasekhar, U. Rossler, and M. Cardona, Phys. Rev. В 22, 761

(1980).
49 M. Chandrasekhar, M. Cardona, and E. O. Kane, Phys. Rev. В 16,

3579 (1977).
^J. Wagner and M. Cardona, Phys. Rev. В 32, 8071 (1985).
51 J. C. Hensel, H. Nasegawa, and H. Nakayama, Phys. Rev. 138A, 225

(1965).
52 A. Compaan, G. Contreras, M. Cardona, and A. Axmann, J. Phys.

(Paris), Colloq. 44, C5-197 (1983).
53 K. Seeger, Semiconductor Physics, Springer-Verlag, Berlin, 1974 (Russ.

transl., Mir, M., 1977).
54 B. I. Shklovskil and A. L. Efros, Electronic Properties of Doped Semi-

conductors (in Russian), Nauka, M., 1979 (Engl. transl., Springer-
Verlag, New York, 1984).

55S. L. Ginzburg, Zh. Eksp. Teor. Fiz. 63, 2264 (1972) [Sov. Phys. JETP
36, 1198 (1972)].

56S. Ramsden and W. Davies, Phys. Rev. Lett. 16, 303 (1966).
57A. E. Shelest, Microcakulators in Physics (in Russian), Nauka, M.,

1988.
58 B. H. Balramov, V. A. Voitenko, I. P. Ipatova, and V. V. Toporov,

Laser Optics of Condensed Matter, Plenum, New York, 1991, Vol. 2, p.
27.

59L. A. Vainshtem, 1.1. SobePman, and E. S. Yukov, Excitation of Atoms
and Broadening of Spectral Lines (in Russian), Nauka, M., 1979 (Engl.
transl., Springer-Verlag, Berlin, 1981).

60 P. Benassi, A. Fontana, amd P. A. M. Rodrigues, Phys. Rev. В 43, 1756
(1991).

61 E. M. Lifshits and L. P. Pitaevskii, Physical Kinetics (in Russian),
Nauka, M., 1979 (Engl. transl., Pergamon Press, Oxford, 1981).

62V. A. Voitenko. Fiz. Tekh. Poluprovodn. 21, 2183 (1987) [Sov. Phys.
Semicond. 21, 1322 (1987)].

63 G. Contreras, A. K. Sood, and M. Cardona, Phys. Rev. В 32, 924
(1985).

MG. Lukovsky, Solid State Commun. 3, 299 (1965).
65 P. I. Baranskil, V. V. Kolomoets, and A. V. Fedosov, Fiz. Tekh. Polu-

provodn. 13, 815 (1979) [Sov. Phys. Semicond. 13, 481 (1979)].
66 C. Yamanouchi, K. Mizuguchi, and W. Sasaki, Phys. Soc. Jpn. 22, 859

(1967).
671. P. Ipatova, A. V. Subashiev, and V. A. Voitenko, Solid State Com-

mun. 37, 893 (1981).
68 F. Cerdeira, N. Mestres, and M. Cardona, 17th International Confer-

ence on the Physics of Semiconductors, Springer, New York, 1984, p.
1113.

69H. Nather and G. Quagliano, J. Luminescence 30, 50 (1985).
70 A. Pinczuk, Jagdeep Shah, and P. A. Wolf, Phys. Rev. Lett. 47, 1487

(1981).
71 A. A. Abrikosov, Introduction to the Theory of Normal Metals, Suppl.

12 to Solid State Physics, Academic Press, New York, 1972 (Russ.
transl., Nauka, M., 1972).

72N. D. Mermin, Phys. Rev. В 1, 2362 (1970).
73L. A. Fal'kovskii, Zh. Eksp. Teor. Fiz. 95, 1146 (1989) [sic].
74 B. H. Balramov, I. P. Ipatova, V. V. Toporov, and V. A. Voitenko,

Recent Trends in Raman Spectroscopy, World Scientific, Singapore,
1988, p. 386.

75 B. H. Balramov, I. P. Ipatova, V. V. Toporov, G. Irmer, J. Monecke, V.
A. Voitenko, and E. Yane, Appl. Surface Sci. 50, 300 (1991).

76 B. Kh. Balramov, V. A. Voitenko, I. P. Ipatova, A. V. Subashiev, V. V.
Toporov, and E. Yane, Fiz. Tverd. Tela (Leningrad) 28, 754 (1986)
[Sov. Phys. Solid State 28, 420 (1986)].

77 D. A. Abramson, K. T. Tsen, and R. Bray, Phys. Rev. В 26, 6571
(1982).

78 К. Т. Tsen and R. Bray, Solid State Commun. 45, 685 (1983).
791. P. Ipatova, A. V. Subashiev, and V. A. Voitenko, Ind. J. Pure Appl.

Phys. 26, 246 (1988).
80V. A. Voitenko, Fiz. Tverd. Tela (Leningrad) 33, 3064 (1989) [sic].
81 A. Zavadovski and M. Cardona, Phys. Rev. В 42, 10732 (1990).
82 A. A. Maksimov, I. I. Tartakovskil, V. B. Timofeev, and L. A. Fal'k-

ovskii, Zh. Eksp. Teor. Fiz. 97, 1047 (1990) [Sov. Phys. JETP 70, 588
(1990].

83 Sh. M. Kogan and V. D. Shadrin, Fiz. Tekh. Poluprovodn. 5, 222
(1971) [Sov. Phys. Semicond. 5, 190 (1971)].

MM. V. Klein and S. B. Dierker, Phys. Rev. В 29, 4976 (1984).
85 A. Virosztek and J. Ruvalds, Phys. Rev. Lett. 67, 1657 (1991).
86V. A. Voitenko, Fiz. Tverd. Tela (Leningrad) 28, 3091 (1986) [Sov.

Phys. Solid State 28, 1739 (1986)].
87 M. I. D'yakonov and A. V. Khaetskil, Zh. Eksp. Teor. Fiz. 86, 1843

(1984) [Sov. Phys. JETP 59, 1072 (1984)].
881. P. Ipatova and V. A. Voitenko, Zh. Eksp. Teor. Fiz. 97, 224 (1990)

[Sov. Phys. JETP 70, 125 (1990].
89S. Chapman and T. G. Cowling, Mathematical Theory of Nonllniform

Gases, 2nd ed., Cambridge University Press, 1952 (Russ. transl., IL,
M., 1960).

901. P. Ipatova, A. V. Subashiev, and V. A. Shchukin, Fiz. Tverd. Tela
(Leningrad) 24, 3401 (1982) [Sov. Phys. Solid State 24, 1932 (1982)].

"I. R. Dicke, Phys. Rev. 89, 472 (1953).
92 P. M. Platzman and P. A. Wolff, Waves and Interactions in Solid State

Plasma, Suppl. 13 to Solid State Phys., Academic Press, New York,
1973 (Russ. Transl., Mir, M., 1975).

434 Physics- Uspekhi 36 (5), May 1993 Balramov et a/. 434



93U. Ekenberg, Phys. Rev. В 40, 7714 (1989).
94 Light Scattering in Solids. Vol. 5. Superlattices and Other Microstruc-

tures, Springer-Verlag, Berlin, 1989.
95 В. Н. Bairamov and I. P. Ipatova, Laser Optics of Condensed Matter,

Plenum, New York, p. 245.
96 A. O. Govorov and A. V. Chaplik, Zh. Eksp. Teor. Fiz. 95, 1976

(1989); V. I. Fal'ko and D. E. Khmel'nitskii, Zh. Eksp. Teor. Fiz. 95,
1988 (1989) [Sov. Phys. JETP 68, 1143, 1150 (1989)].

97 D. Y. Oberli, D. R. Wake, M. V. Klein, J. Klem, and H. Morkoc,
Multiple Quantum Well Structures. Fifth Topical Meeting on Ultrafast
Phenomena, Snowmass, CO, 1986.

98 G. Fasol, N. Mestres, M. Dobers, A. Fisher, and K. Ploog, Phys. Rev.
В 36, 1565 (1987); Phys. Rev. Lett. 56, 2092 (1986).

99 V. A. Voitenko, I. P. Ipatova, and A. V. Subashiev, Light Scattering in
Solids, Plenum, New York, 1979, p. 83.

100L. Welder and R. Bechstedt, Phys. Rev. В 35, 5887 (1987).
101 Yu. Bychkov and E. I. Rashba, Pis'ma Zh. Eksp. Teor. Fiz. 39, 66

(1984) [JETP Lett. 39, 78 (1984)].
102R. Z. Vitlina and A. V. Chaplik, Zh. Eksp. Teor. Fiz. 81, 1011 (1981)

[Sov. Phys. JETP 54, 536 (1981)].
103 G. Abstreiter, R. Merlin, and A. Pinczuk, IEEE J. Quantum Electron.

QE-22, 1771 (1986).
104 M. Cardona and I. P. Ipatova, Preprint, 1982.
105 R. T. Demers, S. Kong, M. V. Klein, and C. P. Flynn, Phys. Rev. В 38,

11523 (1988).
106 M. V. Klein, S. L. Cooper, A. L. Kotz, Ran Liu, D. Reznik, F. Slakey,

W. C. Lee, and D. M. Cinzberg, M2S-HTSCIII: Proceedings of the
Third International Conference on Materials and Mechanisms of Su-
perconductivity, Physica С 185, 1029 (1991).

107 Yu. S. Ponosov, G. A. Bolotin, G. P. Kovtun, and V. A. Elenskii, Fiz.

Tverd. Tela (Leningrad) 26, 815 (1984) [Sov. Phys. Solid State 26,
491 (1984)].

108 N. V. Zavaritskii, Usp. Fiz. Nauk 160, 177 (1990) [Sov. Phys. Usp. 60,
775 (1990)].

109 S. Klyama and L. A. Fal'kovskii, Zh. Eksp. Teor. Fiz. 100, 625 (1991)
[Sov. Phys. JETP 73, 346 (1991)].

110H. Monien and A. Zavadovski, Phys. Rev. В 41, 8798 (1990).
111 A. A. Abrikosov, Physica С 182, 191 (1991).
112 M. Bockholt, M. Hoffmann, and G. Guntherodt, Physica С 171, 42

(1991).
113 К. F. Mccarty, J. Z. Liu, R. N. Shelton, and H. B. Radousky, Phys.

Rev. В 42, 9973 (1990).
114E. T. Heyen, M. Cardona, J. Karpinski, E. Kaldis, and S. Rusiecki,

Phys. Rev. В 43, 12953 (1991).
115 К. В. Lyons, S. H. Lion, M. Hong, H. S. Chen, J. Kwo, and T. J.

Negran, Phys. Rev. В 36, 5592 (1987).
116 A. V. Bazhenov, A. V. Gorbunov, N. Y. Klassen, S. F. Kodakov, I. V.

Kukushkin, O. V. Kulakovskii, O. V. Mishochko, V. B. Timofeev, and
B. N. Shepel, Novel Superconductivity, Plenum, New York, 1987, p.
893.

117C. M. Varma, P. B. Littlewood, S. Schmitt-Rink, E. Abrahams, and A.
E. Ruckenstein, Phys. Rev. Lett. 63, 1996 (1989).

118L. I. MandePshtam and M. A. Leontovich, Zh. Eksp. Teor. Fiz. 37,
438 (1937).

119B. Kh. Bairamov, V. A. Voitenko, I. P. Ipatova, and V. V. Toporov,
Light Scattering by Free Electrons in Semiconductors (in Russian),
Preprint of the A. F. loffe Physicotechnical Institute, Academy of
Sciences of the USSR No. 1191, Leningrad, 1987.

Translated by M. V. King

435 Physics - Uspekhi 36 (5), May 1993 Bairamov et at. 435


