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The electrical conductivity is examined throughout the entire range of strongly coupled states
of matter: in gases, liquids, and strongly ionized high-density plasmas. These states are
classified and the phase diagram is broken up into regions, depending on the nature of the
strongly coupled behavior and its occurrence. After a brief discussion of the electrical
conductivity of an ideal plasma, the clearest and most thoroughly developed theoretical models
are presented. The available experimental data are described and compared with theory.
The variations in the electrical conductivity with density and temperature over many orders of
magnitude are described.

1. INTRODUCTION

The electrical conductivity is the most indicative and
easily observed property of a plasma. It determines the
dissipative heating of the plasma and its interaction with an
external field. The strongly coupled plasma states de-
scribed below occupy a region in the phase diagram that
extends over gaseous, liquid, and specifically plasma mate-
rials, i.e., heated states. In this space, specified in terms of
temperature (from normal to atomic) and density (from
very low-density plasma to highly compressed liquid), the
electron states, i.e., the ionization level and its mobility
change drastically. The electrical conductivity is very sen-
sitive to the electron state. In the transition of a metal from
a liquid to a weakly conducting gas phase it varies from a
state of almost free electrons in a liquid metal to electrons
strongly bound to atoms. Then the electrical conductivity
varies by many orders of magnitude. The problem is to
describe it under conditions such that the volume of exist-
ing experimental data is still very restricted.

Only in a low-density plasma and in a liquid metal
near the melting point can the electrons be regarded as free
or almost free, so that we can we use the results of gas
kinetic theory. Throughout most of the phase space we are
dealing with highly correlated systems due to the signifi-
cant interparticle interaction. The latter can take various
forms—Coulombic, polarization, and more complicated—
and manifests itself differently in regions as partial or mul-
tiple ionization. We should not suppose that a single pre-
scriptive theory can be derived here. However, models can
be proposed of the phenomena which are largely based on
ideas in related areas of physics, and also on the experi-
mental data.

This review summarizes the results of investigations
carried out in the last decade, which enable us to present a
picture of the variation in the electrical conductivity over
the whole range of parameters. The review is constructed
as follows.

We start by giving a classification of the states of
strong coupled plasmas. The "density-temperature" phase
diagram is broken up into regions depending on the behav-
ior of the interparticle interaction and how it arises. Next

we briefly discuss the electrical conductivity of an ideal
plasma. Then we arrive at the main material of the present
review, in which we treat the physically clearest and at the
same time most prescriptive theoretical approaches de-
scribing electrical conductivity in the various regions. The
agreement between the calculated values of the electrical
conductivity and the experimental results is discussed. In
the last section some results are presented from calcula-
tions of the electrical conductivity over a broad range of
parameters necessary for solving applied problems. The
thermal emf is briefly considered in an appendix; this is
closely related to the electrical conductivity.

In this review we restrict ourselves to the time-
independent electrical conductivity. Reference are given
only to the work directly used in this review.

2. DEFINITION OF STRONGLY COUPLED PLASMA AND
CLASSIFICATION OF STATES

A material is strongly coupled if the average interpar-
ticle interaction energy is comparable with or greater than
the average kinetic energy of the interacting particles. The
ratio of these two energies yields the criterion for strong
coupling. In a plasma made up of ions of charge Z (more
precisely, Z is the charge state) and electrons there are
three kinds of interaction: ion-ion, ion-electron, and
electron-electron. Correspondingly there are three strong
coupling parameters. If the electrons are not degenerate
then

rzz=ZV//T,

ree=Z1/3eV/T; (1)

here r=(4T7-JVj/3) 1/3 is the average separation between
ions, which under strong-coupling conditions plays the role
of a shielding length; the quantity r is Z1/3 times larger
than the interelectron separation rs= (4irN,/3) —1/3; 7Ve

and NI are the electron and ion densities, ZN{=Ne.
In weakly coupled plasmas the charges are shielded

from one another at distances of order the Debye radius rD

rather than at the interparticle separation as in the limit
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rZe > 1. Weak coupling is consequently measured in terms
of the Debye coupling parameter. If the plasma is nonde-
generate,

It is equal to the ratio of the Coulomb interaction energy
calculated in the self-consistent field approximation to the
thermal energy. However, since Г^ ~ FD

2/3 holds, both of
these (the Madelung and Debye parameters) are equiva-
lent.

If the Fermi energy Ef= (3ire2Ne)
2/3*/2m exceeds the

temperature, the electron subsystem is degenerate. Then

rzz=zV//T, rZe=Z2/3rs/aQ, (2)

Note that if we replace Т with E in Eq. (1) for Г then we
have Fee=2rs/a0. In the literature, however, it is custom-
ary to take Гее=г/а0.

It turns out to be important that at large values Z> 1 of
the ion charge we have the inequalities

^ZZ^^Ze^^ee- (3)

These conditions are conducive to theoretical analysis,
since they enable us to concentrate mainly on the ion-ion
interaction, which can be very large, Fzz> 1 and treat the
electron-ion interaction approximately, FZe s 1, while the
electron-electron interaction is found to be weak, Гее<1.
These conditions hold, e.g., in the experiments of Kormer
(see, e.g., Ref. 1). Specimens of porous copper were com-
pressed by powerful shock waves. This permitted high en-
ergy densities to be achieved with copper densities close to
10 g/cm3 and a temperature of 20 eV. It was found that

A strongly coupled singly ionized plasma is the most
complicated object for theory, since for Z= 1 all three cou-
pling parameters are the same. Consequently, for Г > 1 all
three Coulomb interactions become equally strong. How-
ever, this region has already been studied in a considerable
number of laboratories. The available experimental data
can be employed to derive a dimensionless Coulomb elec-
trical conductivity which is a universal property of the
Coulomb plasma.

At low temperatures and densities the Coulomb inter-
action results in the formation of bound states, i.e., atoms
and complex ions. The former are described by the Saha
equations. For I>T the plasma is partially ionized, where
/ is the ionization potential of the atom. Cold ionization
results from strong compression. The ion radius Л, de-
pends on its charge Z and the nuclear charge Zn,
Ri=R[(Zn,Z). It cannot be larger than the average inter-
particle separation. Setting them equal yields an equation
for the value of the charge Z that occurs in compressed
material:

The Coulomb interaction is not the only type of inter-
action possible. The interaction between a complex ion and
an electron at distances comparable with the ion radius is
enhanced, since the nucleus is not completely screened by
the bound electrons. The ion radius is equal to the
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FIG. 1. Isobars of the electrical conductivity of cesium, obtained by
various authors (see bibliography in Ref. 1). The broken curve is the
electrical conductivity on the gas-liquid transition line.

Thomas-Fermi radius in order of magnitude,
-Ri~a0(Zn-Z)1/3, where Zn is the charged state of the
nucleus.

In a weakly ionized plasma the interactions between
charges and neutral atoms and molecules is significant. The
polarization forces are the most important. The total po-
tential produced at the location of the ion by the atoms
surrounding it, divided by the temperature, serves as the
coupling parameter:

here a is the atomic polarizability and Ra is the atomic
radius. The quantities Ла are of order e2//, where / is the
atomic ionization energy. While it is naturally weaker than
the Coulomb interaction, this interaction can also form
bound states. In metal vapors the occurrence of molecular
and cluster ions, which shift the ionization equilibrium,
changes the electrical conductivity.

Consider the way in which the interparticle interac-
tions are manifested in the magnitudes of the electrical
conductivity for the case of cesium. Figure 1 was plotted
from the results of a large number of experimental and
theoretical treatments. Shown are the curves of constant
electrical conductivity on the gas-liquid transition curve.
In Fig. 2 the density-temperature plane is divided up into
a number of characteristic regions.

In the vapor phase (region VI) the electrical conduc-
tivity increases with heating due to thermal ionization and
as a function of pressure decreases in proportion to p~1/2,
which agrees with the formulas of gas kinetics. But in
dense vapor these simple formulas become more compli-
cated. Near the 1-atm (or 10-atm) isobar the strong cou-
pling causes the sign of (dcr/dp)T to change, and the iso-
bars become nonmonotonic. These effects (region IV) are
due to the interaction of the ions and electrons with atoms
and to the formation of cluster ions.

In liquid the electrical conductivity decreases in re-
sponse to heating and increases as a function of pressure.
The decrease in conductivity associated with heating is
particularly abrupt on isobars with pressures close to the
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In a highly ionized plasma collisions with ions domi-
nate. If the plasma is not degenerate, its electrical conduc-
tivity is given by the Spitzer formula

FIG. 2. Phase diagram in p— Т space for cesium.2 The regions are la-
beled according to /) liquid metal, //) metal-insulator transition, III)
strongly coupled completely ionized plasma, IV) strongly coupled metal-
vapor plasma (weakly ionized plasma), V) weakly coupled strongly ion-
ized plasma, VI) weakly coupled plasma of metal vapor, VII) ideal
highly ionized plasma.

critical value. Here in region // the Mott metal-insulator
transition occurs, since the electrons are bound in the at-
oms. The electrical conductivity passes through a mini-
mum on the isobar. With further heating, which gives rise
to an increase in the degree of ionization, the isobars of a
pass to the region of strong coupling in a highly ionized
plasma, region ///. Sooner or later at high temperatures all
the isobars go over to their Spitzer values, corresponding to
an ionized plasma with intermediate values of the coupling.
These values depend only logarithmically on the pressure.
Consequently, in Fig. 1 all the isobars gradually converge.

Material densities corresponding to number densities
of 1022 particles per cm3 and higher in cesium are attained
when larger values of the pulsed energy are deposited in
condensed material. This is the multiply ionized region,
reached by high compression. The first experimental re-
sults have already been obtained in this interesting region.

3. ELECTRICAL CONDUCTIVITY OF A WEAKLY COUPLED
PLASMA

In a weakly ionized plasma we can disregard the inter-
action with the ions and the electron-electron interaction,
and include only the interactions of the electrons with the
gas atoms (or molecules). If this gas can be treated as
weakly coupled, and the interaction between the electron
and its atoms can be regarded as independent two-particle
collisions, then the Lorentz gas approximation is applica-
ble.

For a nondegenerate plasma this approximation yields
(see, e.g., Ref. 3)

Jo

Xexp(-E/T)dE, (5)

where v(E) =Naq(E) (2E/m)l/2 is the collision frequency,
7Va is the atomic (molecular density), and q(E) is the
momentum-transfer cross section.

a=y£(Z) • 2(2D3/2(i73/2Ze2m1/2 In Л)-1,

А=1п(3/Гв), (6)

where Z is the charge number of the ion. The effect of the
long-range Coulomb interaction consists of multiple scat-
tering through small angles, taken into account by the
Coulomb logarithm In Л. The magnitude of Л in a classical
plasma is determined by the ratio of the maximum impact
parameter (the screening length, i.e., the Debye length) to
the minimum impact parameter, the Landau length. This
ratio is the same as the plasma coupling parameter Го.

At high temperatures, when the Landau length is
smaller than the thermal wavelength of an electron, the
latter assumes the role of the minimum impact parameter
and goes into the expression for Л.

The Spitzer factor yE(Z) distinguishes Eq. (6) from
that which would arise if we were to calculate the electrical
conductivity of a strongly ionized plasma by using the Lor-
entz approximation (5). The factor f^(Z} takes into ac-
count the role of electron-electron collisions. For charge
state Z equal to 1, 2, 4, 16, and oo the factor yE(Z) is equal
to 0.582, 0.683, 0.785, 0.923, and 1.000, respectively. The
electron-electron interactions reduce the electrical conduc-
tivity. The way this works is that in an external electrical
field the electron distribution function is stretched out par-
allel to the field. The electron-electron interactions, which
are opposed to this, only symmetrize the electron distribu-
tion and result in a decrease in the transport coefficients. In
the high-Z limit the factor YE approaches unity, since the
role of the electron-electron collisions is less important in
comparison with that of electron-ion collisions.

Equation (6) is asymptotically exact in the limit In
Л>1. A number of investigators have calculated the next
terms in the a expansion, i.e., the nonlogarithmic terms.
These, however, do not significantly extend the region of
applicability of Eq. (6).

If the temperature are high but the ions are not com-
pletely stripped, then the Coulomb scattering amplitude
Ze2/T becomes comparable with the characteristic radius
/?i of a complex ion. Then non-Coulomb scattering from
the ions becomes important.

The plasma may be regarded as strongly ionized if the
electrons collide more often with the ions than with the
atoms. Equating these collision frequencies we find

qNa=(-n-e4/T2)Ne\nA. (7)

Equation (7) yields an equation for the curve which di-
vides regions VI and VII in Fig. 2, the regions of weakly
ionized and strongly ionized plasma.

The electrical conductivity of plasma in the region of
intermediate degrees of ionization is calculated by the
Chapman-Enskog method of successive approximations.
This method converges poorly. As a result, a number of
interpolation formulas have been suggested, such as that of
Frost:
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FIG. 3. Isobars of the electrical conductivity for a cesium plasma.4

= (4/3 f "
Jo

(8)

where v{(E) is the electron-ion collision frequency,

v-t(E) =2тг22е4Е-3/2Щ2т)~ш In Л.

Figure 3 displays the calculated electrical conductivity of
cesium as a function of temperature. At high temperatures
all the a{ T) curves approach the Spitzer values. They re-
main close together up to those temperatures at which the
second ionization begins. At low temperatures, when the
plasma is weakly ionized, the parameter 1/2 Т has the most
effect on a; it determines the electron density.

The range of pressures and temperatures in Fig. 3 is
bounded by the conditions of weak coupling with respect
to the Coulomb interaction, In Л>3, and with respect to
ion-atomic interactions, Га1<1.

Figure 4 displays isotherms of the electrical conductiv-
ity of partially ionized argon plasma, calculated in various
approximations.5 The values given by Eq. (8) and obtained
by solving the kinetic equation using the Chapman-Enskog
method are very similar. The "additive" approximation, in
which the separate resistances due to scattering by ions and
atoms are added together, is quite crude.

The above formulas satisfactorily describe the experi-
mental data. Figure 5 presents a comparison with recent
results.7 These experimental data apply to regions VI and
VII in Fig. 2.

4. THE LIQUID METAL STATE

Another region in which the electrons can be regarded
as almost free is that corresponding to liquid metals. Al-
though the electron-electron coupling parameter Fee=rs is
close to unity and in some cases larger, as is well known,
the approximation in which the electrons are regarded as

FIG. 4. Isotherms of the electrical conductivity for a partially ionized
argon plasma.51) Frost formula; 2) Chapman-Enskog method; 3) addi-
tive approximation.

almost free is quite satisfactory. However, the range of
liquid metal states of interest to us includes the poorly
studied vicinity of the melting point and the region of the
so-called expanded liquid-metal states. The experimental
data obtained in a number of laboratories indicate that the
electrical conductivity decreases as the density decreases,
with this behavior becoming quite marked as one ap-
proaches the critical point (Fig. 6).

This change in the electrical conductivity reflects the
change of state in the electron subsystem, from almost free
electrons to strongly interacting electrons (since rs in-
creases sharply) and to partially localized electrons. To
what extent does the conventional theory of electrical con-
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FIG. 5. Electrical conductivity of a weakly ionized argon plasma.6 Cal-
culated values are: /) Chapman-Enskog method; 2) the points corre-
spond to experiment.7
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FIG. 7. Structure factor for cesium.9
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FIG. 6. Isotherms of the electrical conductivity for cesium in the liquid
region and near the metal-insulator transition.8

ductivity in liquid metals remain valid for the broadened
states?

This theory is based on the fact that almost free elec-
trons experience excessive scattering events with highly
correlated ions. The ions, even very far from degeneracy,
interact strongly, Fzz> 1. This allows us to use the Lorentz
gas approximation, but in averaging over the spatial distri-
bution of the scatterers we must necessarily take into ac-
count their correlations. Consequently, the formula for a
contains an ion structure factor S(q):

<r=4/2(21/2irZe2mI/2)-1

In Л

X f°° E3(lnA)'l(
Jo

= P* (y(q)/4jrZe2)2S(q)q3dq;
Jo

(9)

here /={1 + exp[£—/х)/Г]} ' is the electron energy dis-
tribution function, and /u is the electron chemical potential,
which is related to the electron density by

4/2=(2/3) Г El/2f(E)UE,

where EF is the Fermi energy, qm=2(2mE)V2fi ' is the
maximum momentum transferred, and V(q) is the Fourier
component of the scattering potential. This last can be
taken in various approximations: the Fourier component of
the Coulomb potential or a pseudopotential, or it can be
divided by the electron dielectric constant in order to take
into account the coupling of the electron subsystem.

If the electrons are highly degenerate, the result is just
the Ziman formula for the electrical conductivity of a liq-
uid metal:

a=E3

f

/2(V2irZe1ml/2 In ЛГ1,

In Л= Г"" ( y(qV4irZe2)2S(q)q*dq,
Jo

(Ю)

where fcF is the Fermi momentum. This formula and more
elaborate versions of it have been applied successfully to
describe the electrical conductivity of liquid metals; see,
e.g., Ref. Ю.

The structure factor is the most important property of
a dense medium. It is directly related to the binary corre-
lation function g(r) of the ions:

S(q) =
J

exp( -iqr) (g(r) - 1 )dV. (11)

Exhaustive information about the structure factor of clas-
sical Coulomb systems has been obtained by modeling the
thermodynamics of a one-component plasma (see, e.g.,
Ref. 1). The structure factor can be found in experiments
on the scattering of neutrons or у radiation. For expanded
rubidium and cesium this has been done by Winter and
Hensel.9 Figure 7 displays the results of measurements of
S(q) carried out in liquid cesium from the melting point to
the critical point. We see how gradually the close ordering
disappears, which is clearly evident in the neighborhood of
the melting point where rzz=183. Close to the critical
point the medium is highly ordered. There the average
coordination number drops from 8.5 to 2.7.

Redmer et al. n have compared the results calculated
from the Ziman formula with experimental data obtained
for highly expanded cesium (Fig. 8). Somewhere in the
range of densities close to twice the critical values the the-
ory systematically exaggerates a. This is because the con-
cept of free electrons is no longer applicable. This is plau-
sible if we recall that near the critical point the metal-
insulator transition occurs.

Note that Eq. (10) has another region where it cannot
be applied. It is applicable for weakly coupled plasmas, i.e.,
those heated to the point where Tzz < 1 holds but with the
electrons still degenerate. A formula for the electrical con-
ductivity can be obtained with logarithmic accuracy by
neglecting the ion-ion correlation in (10) and integrating
from qmin to 9max . The result agrees in structure with the
Spitzer formula if we replace the temperature there with
the Fermi energy and the Debye screening radius with the
Fermi radius.
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FIG. 8. Discrepancy between the measured values of the electrical con-
ductivity of cesium near the critical point (points) and the results calcu-
lated from the Ziman formula (trace 7)."

In a degenerate plasma no problem arises with
electron-electron collisions. Their effect is suppressed by
the Pauli principle.

5. ELECTRICAL CONDUCTIVITY NEAR THE CRITICAL
POINT OF METALS

When the density is continuously reduced to the crit-
ical point and below a transition to the nonmetallic state
and a sharp reduction in a results (Fig. 9; region // in Fig.
2). This is the Mott transition. In systems that have been
heated up it does not occur abruptly, but over a relatively
broad range of densities. As is well known, the microscopic
description of this transition is very complicated. A phe-
nomenological theory is given below.12'13 According to
LikaFner,12 it is necessary to begin by noting that interme-
diate states exist between the metal state and the weakly
ionized gas. In these the electrons cannot be regarded as
either free or bound. One can take as the basic picture that
of a gas of atoms in which the electron shells partly overlap
in the ground state. We determine the radius of the shell as
the radius of that of the classically allowed region of mo-
tion of the valence electrons; it is equal to e1/!, where / is

10*

103-

10*

10

в S~ 10 11 12

the ionization energy of an atom. If these regions overlap,
classical exchange by the electrons becomes possible.

The fraction of the plasma volume allowed for the va-
lence electrons is consequently given by the expression

£o=i/K'(4ir/3)(e2//)3JVi, (12)

where Nt=p/M, and p is the material density. The frac-
tion of allowed volume has two characteristic values. The
value £o=0.29 characterizes the so-called flow threshold.
Only at £o=0.29 does the "infinite cluster" develop. This is
a connected allowed region penetrating the volume of the
entire plasma. Electrons can propagate through this re-
gion, although they do not act completely free. The other
characteristic value corresponds to dense packing of al-
lowed regions of radius e2//, specifically £0=0.74. For
£o=0.74 the whole plasma volume becomes classically ac-
cessible. Hence the electrons move as though they were
free. The interval between 0.29 and 0.74 corresponds to the
range of densities over which the Mott transition occurs.
For the alkali metals this is the range of densities from half
to twice the critical density. The electrical conductivity is
determined by the formula

a=eNe(fj,p), (13)

where (fj,p) is the mobility of an electron with momentum
p, averaged over the momenta. An electron with energy
p2/2m has an allowed region somewhat broader than £0,
specifically,

£p=£o[l — (p2/2ml)3]. (14)

Below the flow threshold £0<0.29 this mobility vanishes.
For £p> 0.74 the mobility is equal to that of a free electron,
Hp. In Ref. 12 it was suggested that цр depends only on £p

and this dependence was approximated linearly within the
specified interval of gp.

After averaging the following approximate formulas
are obtained. In the range £р<0.29 the mobility falls off*
exponentially as the material is cooled,

Х(7УД}ехр(-Д,/:Г),

For 0.29 < £0 < 0.74 we find

FIG. 9. Electrical conductivity of mercury as a function of density for
Г=1800 К. 1) Theory (Ref. 12); 2) experiment.14

here the energies A j and A2 determine the flow energy level
and the free propagation energy level for a given density:

Д1=/[1-(£о/0.29)1/3],

Д2=/[1-(£о/0.74)1/3].

On the high-density side the region where these expres-
sions are applicable is bounded by the applicability of Bolt-
zmann statistics. But in fact this is almost the entire region.

The theory provides a good description of the electron
coefficients near the metal-insulator transition. Figure 9
displays a comparison for the electrical conductivity of
mercury.
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FIG. 10. Dimensionless electrical conductivity a* of a plasma as a func-
tion of the coupling parameter.16 Theory: 1) o£p; 2) f-matrix approxima-
tion; 3) Eq. (14); 4) Eq. (15). Experiment: points correspond to the
results of various authors (bibliography given in Ref. 16); the large
straight cross shows the data of Ref. 17.

6. ELECTRICAL CONDUCTIVITY OF A STRONGLY COUPLED
HIGHLY IONIZED PLASMA

The electrical conductivity of a strongly coupled
highly ionized plasma has been measured in a considerable
number of laboratories. Adequately uniform plasma re-
gions were produced by heating and compressing material
in shock waves, and also by pulsed ohmic heating. In the
shock-wave experiments the strongest coupling, corre-
sponding to FD=4, was achieved by compressing xenon
near the critical point behind a reflected shock wave.15 This
value of TD corresponds to the Madelung strong coupling
parameter Гге = 1-75.

Figure 10 shows values of the dimensionless electrical
conductivity as a function of the parameter TZe

The reduced conductivity a* is a universal property of the
classical Coulomb system. In a strongly coupled plasma it
is precisely this parameter Т& that characterizes the inten-
sity of the electron-ion interaction, since the correlation
radius becomes close to the average separation between
ions. As for the Debye radius, it falls off and becomes
smaller than r, and so no longer characterizes the screen-
ing.

Large values of the coupling have been achieved by
passing powerful current pulses through capillaries.17'18 In
Ref. 17 the electrical conductivity of a copper plasma was
measured at densities 1-2 g/cm3 and temperatures
(6-10) • 103 K. Figure 10 shows how these results are re-
lated to the others for PZe s 5. To reliably relate these val-
ues of the electrical conductivity to the thermodynamic
parameters requires exercising a special hydrodynamic
code in order to describe the plasma expansion and its
reflection from the capillary walls.

Note that the plasma that arises in these experiments,17

is already at the edge of degeneracy, since the temperature
is close to the Fermi energy. The electron-ion interaction

in a degenerate plasma is characterized by the parameter
rs . In the experiment of Ref. 17 this parameter has the very
same value, close to 5.

These experimental data definitely imply that the val-
ues of the electrical conductivity are reduced in compari-
son with those given by the Spitzer formula. Asymptotic
expressions which improve on the Spitzer formula by re-
taining the nonlogarithmic terms in the expansion of a
only increase this discrepancy. It is understandable that the
Spitzer formula does not work here, since the basic as-
sumptions of the kinetic theory are violated. What is more
surprising is that it yields reasonable values up until Г& is
close to unity.

The problem is how to derive new expressions for a
which go over to the correct limiting formulas and accu-
rately describe the experimental data.

For this purpose Gryznov et al. 19 has suggested a
model which approximately includes the increasing inter-
particle correlation. The starting point is expression (9),
which treats the time-independent Debye shielding of the
electron-ion potential and in the same approximation uses
the structure factor

V(q)/*TrZe2=(q2+q2v), S(q)=q2(q2+q2

D)-\

where qD=r^ l • To reach the asymptotic Spitzer form for
a to within the electron-electron scattering terms, we must
take the value of the maximum momentum that can be
transferred equal to 2E/Ze2. This should not arouse any
objections, since it is close to the inverse value of the Cou-
lomb scattering amplitude.

For a nondegenerate plasma we find an expression for
о in which the place of the Coulomb logarithm is taken by
a more complicated expression

lnA=|[ln(l+a2)-a2(l+a2)-1-Vd+a2)2],

where a = qmro. In the weak-coupling limit In Л= 1, this
expression goes over to the usual Coulomb logarithm In Л
= In (a/2). In a strongly coupled plasma the expression for
a, in contrast to that of Spitzer, does not contain an un-
physical divergence. In Fig. 10 trace 3 corresponds to

The logarithm In Л is calculated according to (14).
Another simple model,6 which also solves this prob-

lem, is related to the use of the so-called muffin-tin (MT)
potential V(r) = —Ze2/r for r<r and V(r) =0 for r > r as
the electron-ion potential.

The radius of the MT sphere is chosen equal to the
average ion-ion separation. This choice correctly reflects
the fact that in the strong coupling region it is r that be-
comes the screening radius. The electron-ion momentum-
transfer cross section for scattering by the MT potential
takes the form

In Ref. 6 we used this cross section to solve the kinetic
equation by the Chapman-Enskog method. As a result of
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FIG. 11. Electrical conductivity of a strongly coupled plasma made up of
argon and xenon. Experiment: /) argon;21 2) xenon;21 3) xenon." Cal-
culated values:20 4) argon; 5) xenon for conditions corresponding to Ref.
21; 6) xenon under conditions corresponding to Ref. 15.

the calculations carried out for 0.5 < FD < 10, a simple ap-
proximation was proposed for the electrical conductivity of
such a plasma:

where 6=0.155, ^=3.6. This is shown in Fig. 10. In
particular, it was found that for a plasma with singly
charged ions the factor that takes into account the
electron-electron collision effects is yE(l)=0.71.

A direct comparison with the values of a for a partially
ionized plasma, measured by Ivanov et al.21 which was
carried out in Refs. 6 and 20, showed that the calculated
values are substantially smaller than the measured ones
(Fig. 11). It is unclear whether this represents shortcom-
ings in the theory or errors in processing the directly mea-
sured quantities.

Let us now turn to work carried out using generalized
kinetic equations. Ropke and Redmer22 found an interpo-
lation formula for the electrical conductivity of a nonde-
generate plasma. It is valid provided that the parameters
F ĵ. and T/Ep have values of order unity. Ichimaru and
Tanaka23 obtained approximations which are valid for any
degree of degeneracy.

Nevertheless, at large values of the coupling parame-
ters the fundamental underlying assumptions of the kinetic
theory become invalid. When we eliminate the problems
with long-range collisions (using the Coulomb logarithm)
we must keep in mind that even close encounters involve
more than two particles at a time. The electron mean free
path [(Ze*/T)2N3~l becomes comparable with the scat-
tering length Ze2/T and with the average distance between
scatterers N^~ 1/3 . Under these conditions we need an alter-
native to the gas kinetic approximation. This may be sup-
plied by the cellular model of a plasma.

7. ELECTRICAL CONDUCTIVITY OF A CELLULAR PLASMA

As the density increases the ion-ion interaction param-
eter rzz=Z2e2/rT becomes large. The ions tend to move

as far as possible from one another. Under these conditions
the cellular approximation becomes applicable. The entire
material is divided up into spherical cells of radius r, each
of which contains an ion screened by Z electrons. This
physical picture is in complete agreement with the results
of numerical simulation of the structure which have been
carried out using the one-component model of a plasma by
Hansen and his collaborators (see, e.g., Ref. 1). The sim-
plest form of this model is that in which the electron-
electron interaction can be ignored in a multiply ionized
plasma, while the electron-ion interactions can be treated
as weak, i.e., when the inequality (3) is satisfied. Then we
can assume that the distribution of the free electrons in a
cell is completely uniform. The electron-ion cellular po-
tential is given by the solution of the Poisson-Boltzmann
equation with the boundary conditions

У=-(2е2/г)Ф(г/Г),
(16)

This approximation turns out not to be too bad even for
FZe ss 1. In fact, even for FZe > 1 the equilibrium distribu-
tion of free electrons (those with total energy greater than
zero) in this potential contains no large parameters:

,-зГ
Jo

Ф1/2х2сЬс.

In the main part of the cellular volume the electrons are
distributed almost uniformly.

The potential V(r) has a short range, and the effective
potential has a centrifugal barrier. The free electrons en-
tering the cell with large impact parameters are reflected
from the barrier without getting very far into the cell.
However, for large values of F^ they represent a small
fraction, corresponding to an impact parameter b such that

here FZ,, = 2Ze2/Fmi>2 is the interaction parameter for an
electron with velocity v on entrance to the cell. The ma-
jority of the electrons are drawn into the cell and in cir-
cumventing the ion along a half circle with small radius
they traverse a total path of length 27. If we divide this by
the average velocity uav , we find that the time required to
cross the cell is 2r/vav .

We can write the average electron velocity approxi-
mately in the form uav = UT(F) ( 1 + F^2), where UT(F) is the
electron thermal (or Fermi) velocity. Then we find for the
electrical conductivity

<T=Nj?T/m=(Njt/m')-2fvjb}(l + rl£rl. (17)

For large F^ we find ст~й)ре, i.e., it is proportional to the
electron plasma frequency o>pe=(4ire2Ne/m)}/2. In the
limit of large TZe the electrical conductivity must be pro-
portional to Wpe from dimensional considerations.

The assumption that the electrical conductivity is pro-
portional to the plasma frequency was made by Kurilenkov
and Valuev,24 who argued from different physical consid-
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erations. According to them the electron dynamics is de-
termined by scattering from thermal plasma oscillations.
They assumed24 that this mechanism is important even
under conditions of moderate coupling, corresponding to
those in the experiments of Fig. 10. Since that time the
question about the role of scattering by plasma oscillations
has remained unclear, although it has been discussed in the
literature.

Equation (17) is a special case of the loffe-RegeP for-
mula. In the gas kinetic approximation the electrical con-
ductivity is proportional to the mean free path. It falls off
as a function of the density. loffe and RegeP argued that
there is a natural limit to the decrease in the mean free
path. It cannot become smaller than the separation be-
tween the scatterers. But if the separation becomes smaller
than the electron de Broglie wavelength A, then the mean
free path cannot be less than A. The loffe-RegeP formula
takes the form

o = G/r2/m)/min/i;av, (18)

where /min is the shortest mean free path in the medium
and uav is its average velocity. The loffe-RegeP formula is
said to determine the minimum electrical conductivity of a
dense medium in which the density of the free electrons is
given.

Let us pause briefly to discuss an important point. The
domain of applicability of the cellular approximation al-
lows high densities and temperatures to be treated. This is
very important for the area of applications. These states
occur when high-power energy pulses act on structural
materials. At high temperatures an electron interacting
with an ion which is not completely stripped can penetrate
into its electron shells. The cellular potential now is char-
acterized by at least three parameters Zn, Z, and 7, where
Zn is the charge of the nucleus. A number of different
approximations to V(r) are possible. For example, in anal-
ogy with zinc25 we can assume

X (1 -r/7) -1) +Ze2F-1<D(r/f);

here Rc=a0(l.66Zl/3)~l is the Thomas-Fermi radius of
the ionic core and Ф(г/г) is given by the earlier expression
(16). Including the ionic core enhances the interaction,
effectively increasing the interaction parameter FZe.

8. WEAKLY COUPLED METAL VAPOR PLASMA; CLUSTER
IONS

In a weakly ionized plasma the electrical conductivity
is determined not so much by the electron mobility as by
the degree of ionization. The latter in turn is determined by
the parameter 1/2Т (where / is the ionization energy),
which appears in the argument of the exponential in the
Saha equation which determines the degree of ionization.
Hence the discussion of the ioni/ation equilibrium becomes
of primary importance. It is influenced mainly by the in-
teraction between charged and neutral particles. In metal
vapors this interaction, which is characterized by the pa-
rameter Fai given by Eq. (4) becomes strong even for mod-
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FIG. 12. Charged-particle density in a cesium vapor plasma on the/>=20
atm isobar.27

erate densities due to the large values of the polarizability
of metal atoms. It is manifested in the appearance and
composition of the cluster ion plasma and as it turns out, at
least in lowering the ionization potential.1

At the present time quite a large volume of informa-
tion has been gathered about heavy ion clusters.26 In order
to determine the composition of a plasma made up of elec-
trons (e), atoms (A), diatomic molecules (A2), di- and
triatomic positively charged ions (A^, A^ ), and diatomic
negatively charged ions (A2~) we consider the following
equilibria:

(19)

e + A+ ft

e + A ^

A + A ft

A+A+ f t

A2 + A+ *

e + A2 ft

A,

A-,

A2,

A2

+,

A3

+,

A2-,

N,N+/N=Kb

NcN/N-=K2,

NN/N2=K3,

NN+/N?=K4,

N2N
+/Nt=K,

Н^2/М2=КЬ;

here K{ are the chemical equilibrium constants. Equation
(19) together with the conditions for conservation of en-
ergy and total particle number yields

(N/K4)

'. (20)

It is easy to see that the largest fraction in (20) reflects the
effect of molecular modes on Ne. The individual terms in
the numerator (denominator) of the fraction correspond
to the composition of the various positive (negative) ions.
It is obvious that including A^ cluster ions would intro-
duce another term in the denominator, etc.

Figure 12 displays the composition of the charged
components of the plasma of a cesium vapor temperature,
calculated on the p=20 atm isobar. It can be seen that as
the temperature decreases the heavy ions play an increas-
ingly important role. The A+ ion, which dominates among
the positive ions for Т > 2200 К, is replaced by the A^ ion,
which in turn replaces the A3

+ ion. Hence we can expect
that further cooling will cause heavier and heavier positive
ions to form. Among the negatively charged components
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for T < 2000 К the A ion dominates. However, the A2

ion remains insignificant and there is no reason to expect
that significant concentrations of the A J" ion will appear as
a result of further cooling. This behavior becomes more
prominent as the coupling constant is made stronger.

Its symmetry is quite typical. It reflects the general
pattern: the ion-atom or ion-molecule interaction is stron-
ger than the electron-atom (or electron-molecule) inter-
action. The quantum nature of the electron is manifested in
the fact that the binding energy of the negative complexes
is smaller than the binding energy of the positive com-
plexes. For example, the binding energy of Na^ is equal to
1.02 eV, although the binding energy of Na~ is only 0.548
eV. At subcritical temperatures this difference is impor-
tant. The dominance of the ion-atom interaction raises the
electrical conductivity. This parameter region is labeled
with VI in Fig. 2.

If we substitute the expression (20) for Ne obtained by
including cluster ions in the expression for a, then we can
observe how the appearance of cluster ions alters the den-
sity dependence of a. At large values of Т and small values
of Na the relation Ne~Nl

a

/2 holds in accordance with the
Saha formula; the electrical conductivity decreases with
density, cr~N~l/2. When Т decreases and Л а̂ increases,
cluster ions appear. If АЗ" dominates among the positive
ions and A ~ dominates among the negative ones, then it is
found that a is independent of Л^. If the A/ ion domi-
nated, then a would increase as a function of density,
a~N\/2. In this section we restrict ourselves to the condi-
tions such that the coupling parameter due to the ion-atom
interaction satisfies Fai< 1.

Since this interaction can give rise to strong atom-ion
correlations, as we see, then in contrast to the definition
(4) the ion-atom interaction parameter in region VI is
more correctly introduced as follows:

Г = N f / N f = NKi/K^Ks.

The condition 1^=1 determines the boundary between
regions IV and VI in Fig. 2. If Г^ > 1 holds then N} > N}.
This implies that we can anticipate that heavier ions will
appear. Hence the range of parameters included by the
calculations for the alkali metals,4 is bounded by Г^ < 1
(see Fig. 3). The results of these calculations agree fairly
well with the available experimental data. In cesium vapor
this region corresponds top< 1 atm and to temperatures of
up to 2000 K.

The introduction of cluster ions determines the contri-
bution of the interaction to the discrete spectrum. After the
cluster ions form a residual interaction occurs in the con-
tinuous spectrum. Its result may be interpreted as a low-
ering of the ionization potential by Д/, calculated by
Likal'ter:

A/= 1.61 • 4nNSLT(ae2/2T)3/4.

In moderately dense vapors Д/ is small and only at high
densities does it begin to exceed the temperature.

The electron mobility in a medium of heavy uncorre-
lated scatterers is given by the Lorentz formula, which is
valid when the interaction radius is much smaller than the

electron mean free path. For this to hold the interaction
sphere must contain less than two electrons, i.e., the ine-
quality

must hold. At densities 7Va=1020 cm~3 the quantity
(4тг/3)УУа0

3/2 in a cesium plasma reaches a value close to
unity, since we have qszAQQiraQ. This does not mean, how-
ever, that as the density increases the electron mobility ц
becomes less than the mobility ц0 calculated for the same
density using the Lorentz formula. The electron-atom in-
teraction cannot always be described by representing it in
terms of a hard sphere of radius ql/2. The electron-atom
interaction occurs mainly through polarization, but over-
lapping of the "tails" of the interaction potentials can
smear the potential field as a whole. As a result the mobil-
ity increases; this is well known in the physics of electronic
phenomena in a number of liquids. Other density effects
which play a part in the mobility are also well known.28

9. DROPLET MODEL OF A STRONGLY COUPLED
METAL-VAPOR PLASMA

Metal vapors at and near the saturation line assume
the form of a strongly coupled plasma (region IV in Fig.
2). Away from the immediate vicinity of the critical point
this plasma can be regarded as weakly ionized. The main
reason for the strong coupling in this case is the strong
interaction between the charged and neutral particles. This
interaction facilitates the formation of heavy charged clus-
ters in the plasma. Their density increases as one ap-
proaches the saturation line. Then the density of positively
charged clusters is substantially greater than the density of
negative clusters. The electrical neutrality of the plasma
gives rise to a corresponding increase in the electron den-
sity. This leads to an anomalously high conductivity for the
vapor on the saturation line. Thus, the Saha and Lorentz
formulas yield a value a=5 • 10~4 (fl • cm)"1 for the elec-
trical conductivity of cesium at Г=1500 К. The experi-
mental value is a= 1 (ft • cm)""1. On the vapor saturation
curve the electrical conductivity is three orders of magni-
tude greater than the result of this estimate, carried out in
the usual way for an ideal plasma. When the heating takes
place along an isobar the electrical conductivity first falls
to a minimum value somewhat greater than that of an ideal
plasma (see Fig. 1). Then it increases, approaching the
perfect gas values.

In this range of temperatures and pressures uniform
volumes of plasma can be obtained in resistive furnaces and
the parameters can be determined with relatively high pre-
cision. Such measurements were carried out in the 1970s
by Alekseev and Hensel. They demonstrated anomalously
high electrical conductivity for saturated vapor and found
a qualitatively new dependence on the isobars. Recent mea-
surements by Hensel et a/.29 show that the effects found at
that time were exaggerated. The quantities found now
match well with the results of measurements carried out
near saturation at temperatures of about 1200 К (Ref. 30;
see Fig. 13).
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It has been suggested1 that the clusters that form near
the saturation lines be regarded as liquid metal droplets.
This permits the properties of the clusters to be determined
by well known characteristics of metals, the surface tension
and work function for electrons. If a heavy ion consists of
a droplet of radius R, then the work function W(R) for an
electron to escape from it is related to the work function W
from a planar surface by the familiar expression

Here the plus sign applies to positively charged ions and
the minus sign to negatively charged ions. This asymmetry
is the same as that discussed in the previous section. For
cluster dimensions typical of plasmas, the difference in
binding energies between positive and negative clusters is
so large that the negatively charged clusters can be ne-
glected in general. We will assume that the plasma consists
of atoms, positively charged droplets, and electrons. The
particle densities are 7Va, N

+, and Nf and the total number
of all particles is N=Na+N+ +Ne. The thermodynamic
potential of this system takes the form

W+ (e1/2R)]

(21)

here <pL and <рл are the thermodynamic potentials of the
liquid and vapor for a single atom, so that the quantity

is the energy of formation of a neutral droplet of radius R,

is the number of particles in a droplet, NL is the particle
density in the liquid, ps is the saturation pressure, and
4iryR2 is the surface energy of a droplet. In the final en-
tropic term in Eq. (21) the summation is carried out over
all species of particles. This simple approach enables us to
get away with using a qualitative description of the effect.
From (21) the following results are obtained. In the satu-
rated vapor the radius of the most probable droplet is equal
to the "electrocapillary" radius Д = (е2/16тгу)1/3. At the
pressure 40.3 atm of saturated cesium vapor, which corre-
sponds to Г=1600 К, such a droplet consists of twenty
cesium atoms. These droplets are of course too small for a
macroscopic description to be completely correct. How-
ever, in the theory of nucleation it is usually assumed that
droplets containing more than ten particles are macro-
scopic. Such droplets are treated in descriptions of the het-
erogeneous nucleation in saturated vapor.

From (21) the ionization equilibrium equation then
follows:

1
2Т

(22)

гвоо

FIG. 13. Electrical conductivity of a dense cesium vapor. Experiment: 1)
on the phase coexistence curve;29 2) on the 65-atm isobar;29 3) in vapor
near saturation.30 The theory for saturated vapor is 4) droplet model,34 5)
ideal gas approximation.

For a number of reasons the coefficient multiplying the
exponential in Eq. (22) is known very poorly. Conse-
quently, we discuss the exponential which is what is re-
sponsible for the main effect. The argument of the expo-
nential contains W, the work function of an electron
escaping from metal, which is well known to decrease as a
function of the metal temperature (as the density de-
creases), vanishing at the critical point. For example,

3e2

where Tc and Tm are the critical temperature and the tem-
perature at the melting point, in which the value of the
work function Wm is taken to be 1.8 eV for cesium.

The results of the calculations show that the electron
densities are very large. The interaction effects lead to en-
hancement of Ne by orders of magnitude relative to the
perfect-gas approximation. However, this simple analysis is
too crude. In a number of treatments the droplet model has
been substantially improved. Figure 13 compares the val-
ues of the electrical conductivity for cesium vapor near
saturation with those calculated using the theory of Ref.
31. The theory describes the anomalous electrical conduc-
tivity and the transition to the normal conductivity which
occurs as the pressure is reduced.

10. CALCULATIONS OF THE ELECTRICAL CONDUCTIVITY
OVER A BROAD RANGE

Applications have made it necessary to carry out cal-
culations over a broad range. An example is the study of
the behavior of structural materials subjected to high-
power pulses of energetic radiation. With high energy in-
puts the material can pass through a considerable range of
states as it heats up and cools down: from gaseous densities
to solid densities, from temperatures on the order of stan-
dard temperature to hundreds of eV. Let us discuss the
formulation and results of some calculations carried out
over wide ranges.
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FIG. 14. Electrical conductivity of a hydrogen plasma as a function of Nc

for various temperatures Т (in units of 104 K) (Ref. 32). The broken line
shows the Mott transition.

One of the most systematic approaches is based on the
Green's function method, used to write down the kinetic
equation in which the collision integral is represented in
the form of a combination of unshielded Mnatrix collision
integrals, an unshielded Born integral, and a Born integral
with dynamic shielding. Furthermore, the electron-atom
collisions must be taken into account (in order to describe
partial ionization) along with electron-electron interac-
tions. The result of such a treatment would go over satis-
factorily to the exact limiting expressions. Results of a
broad range of studies have been presented6 which clarify
the effect of the various physical factors on the electrical
conductivity.

We present some results. Figure 14 shows the electrical
conductivity as a function of electron temperature and den-
sity. The conductivity was calculated in the second Born
approximation with dynamic shielding. The role of the
minimum impact parameter is played by the thermal wave-
length and the Landau length. At low and high densities a
has the Lorentz and Ziman asymptotic forms. The equa-
tion for ionization equilibrium, whose solution yields the
electron density, describes both the thermal ionization and
the ionization associated with high compression. The bro-
ken trace in Fig. 14 corresponds to the Mott transition,
which in this approximation is a discontinuity rather than
continuous. The minimum values of the electrical conduc-
tivity in Fig. 14 are determined by electrons scattering
from atoms. At densities above the Mott transition the
electrical conductivity is given by the Ziman formula.

The role of electron-electron interactions is largest at
low charged-particle densities, when it is given by the
Spitzer factor YE- It decreases with increasing coupling
constant and finally vanishes for highly degenerate mate-
rials under the influence of the Pauli principle33 (Fig. 15).

In Fig. 10 the results of the calculations are compared
with the experimental results discussed in one of the pre-
vious sections of the present review.

In another series of papers (Refs. 23, 34; reviewed in
Ref. 35) the theory of two-particle correlations is reworked
using the dielectric-function formalism in the theory of a
linear response. These results constitute a generalization of

FIG. 15. Electrical conductivity of a hydrogen plasma calculated includ-
ing (1) and excluding (2) for electron-electron interactions.33

the Ziman formula to finite temperatures. The electron-ion
potential is taken to be given by the Born approximation
with dynamic shielding. For a fully ionized hydrogen
plasma the Coulomb logarithm In Л has been tabulated,
using the following expression:

a-'=4- (2i7/3)r2/3u)pe

1ln Л.

Tanaka et al34 has treated the enhancement of exchange
and the correlations, extending the region of applicability
of the theory to the region of the Mott transition. Figure 16
shows In Л for conditions such that EF= T.

One of the most constructive and physically clear ap-
proaches was suggested by Lee and More for a dense hot
plasma.36 It is based on using the solution of the kinetic
equation in the т approximation, matching the expressions
for the Coulomb logarithm that are valid in the various
regions, and imposing additional physical assumptions.
The whole temperature-density plane is broken up into
several regions (Fig. 17). In the region 1, where the plasma
is weakly coupled, the Coulomb logarithm is calculated in
the conventional manner:

1,0

in/i

0,5

0,1 0,2 0,5 1,0 Г

FIG. 16. Coulomb logarithm as a function of the strong coupling param-
eter, T=EF, Trace 1 corresponds to Ref. 23 and trace 2 to Ref. 34.
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FIG. 17. Phase diagram in р— Т space for aluminum for analyzing the
electrical conductivity.36 /) Debye and Thomas-Fermi shielding; 2)
shielding at the average ion-ion separation; 3) In Л = 2; 4) ст=<тт1„; 5)
Ziman region.

FIG. 18. Aluminum resistivity on the 2.7 g/cm3 isochore. 1) Intensity of
the heating radiation. The region of the points is the experiment of Ref.
38. Calculated:39 J) Eq. (6); 2) recalculation of the data according to a*;
3) Eq. (23); 4) Eq. (18); 5) Eq. (10); 6) Eq. (9); 7) resistivity of liquid
Al.

where £max and bmia are the maximum and minimum im-
pact parameters. As the shielding length 6max we use the
Debye and Thomas-Fermi radii, while the minimum im-
pact parameter is taken to be equal either to the Landau
length or to the thermal wavelength. In the strongly cou-
pled plasma region (region 2), where the average interpar-
ticle separation becomes larger than the Debye length (the
Fermi length), which is what is used for 6max. If In Л is
still found to be less than 2 it is taken equal to 2. This is
region 3 in Fig. 17. In the region of the Mott transition a
is taken equal to the minimum Mott conductivity of the
metal, while in a strongly correlated degenerate system for
the electrical conductivity a Ziman expression is used. In
this way constructive models are used, which enable us to
find a universal estimate for a.

The wide-range approach described in Ref. 37 has
much in common with the model of Ref. 36, but the inter-
polation formulas are organized so that they embrace in a
unified manner the entire range of parameters. In Ref. 37
the electrical conductivity of the metals Al, Fe, Cu, Au,
Pb, Bi, and U was tabulated.

In connection with isochoric heating from the melting
temperature to 100 eV the material passes through a whole
series of strongly coupled plasma states, beginning with
metallic and ending with gaseous. Milchberg and
Freeman38 constructed the 2.7 g/cm3 isochore for the re-
sistivity of aluminum (Fig. 18) by processing the results of
measuring the reflection coefficient for light coming from
the surface of aluminum heated by a high-power laser
pulse. The pulse length was so short (400 fs) that the
medium was unable to expand during this time and re-
tained its initial density. The temperature was measured
simultaneously. On this isochore the ion charge was Z=3
up to 50 eV (the result of cold ionization, characteristic of
the unheated specimen); thermal ionization yielded Z=6
at 105 eV. Yakubov39 compared these values of the resis-
tivity with those calculated over a wide range of conditions
by the above methods.

The resistivity of a nondegenerate plasma (T>Ef) is

not given by the Spitzer formula (trace 1 in Fig. 17) nor by
the dimensionless conductivity a* of a Coulomb plasma,
familiar from experiment (trace 2). In the latter case the
resistivity is calculated as follows:

here we have written p*= (a*) ~l, and the values of a* are
shown in Fig. 10. In describing the observed values of p it
was found to be important to include scattering from the
core of the complex Al+z ion. At high temperatures the
amplitude Ze2/3T for Coulomb scattering is comparable
with the radius Rj of the ion core. A rough estimate, taking
into account the non-Coulomb component of the scatter-
ing, is made in the additive approximation (trace 3):

(23)ll = (N£/m)

here pc and pnc are the Coulomb and non-Coulomb com-
ponents of the resistivity and Ф is the reduced potential of
the ion core,

<&=Ze1/RiT.

It takes into account the effect of curvature of the electron
orbits in the ion field on the Coulomb component. The
value of Rt is taken to be I.la0.

The calculated values must not exceed those given by
the loffe-Regel' formula (18). The latter corresponds to
trace 4. In a degenerate plasma the calculation is per-
formed using the Ziman formula (10), the Ashcroft
pseudopotential, the Lindhardt dielectric function, and the
structure factor for a one-component plasma. Here the
choice of the radius of the pseudopotential is very prob-
lematical. Trace 5 indicates the increasing behavior of the
electrical conductivity associated with heating. However,
the measured temperature is that of the electrons. The ions
are not able to heat up to this temperature. Trace 6 was
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obtained using Eq. (9) under the assumption that the ions
heat up only to Г=0.8 eV. Hence the degree of electron
degeneracy was not restricted.

This comparison underscores the question about scat-
tering from complex ions, although in general it confirms
the validity of the calculation techniques used.

11. CONCLUSION

As is evident, despite significant successes we are still
far from a satisfactory solution of the problem of the elec-
trical conductivity of material over a broad range of den-
sities and temperatures. Naturally, the situation varies de-
pending on which part of the phase diagram we are
considering.

In the regions where the plasma is strongly or moder-
ately coupled we are concerned with errors in the calcu-
lated and experimental values of order tens of percent. The
error in the calculated values is determined by the error in
the initial data: the cross sections and scattering lengths
and the parameters of the cluster ions.

In the strong-coupling region the values of the electri-
cal conductivity can be estimated only in order of magni-
tude. Here the electron scattering mechanisms or mecha-
nisms for ionization itself are sometimes controversial; in
any case, the methods for describing them are. At any
event, I hope that the qualitative picture of the behavior is
correct. This is a big achievement. The quantitative
changes may be wholesale.

This concerns most of all the conditions of very high
compression, up to densities far in excess of normal. In this
region it is especially necessary to obtain experimental
data, although it is readily understood that a superdense
plasma is difficult to produce and diagnose. Both questions
of ionization equilibrium and questions of electron mobil-
ity are far from a satisfactory solution. Here it is worth-
while to point out questions about the ion charge distribu-
tion, how conductivity electrons are distinguished from the
rest, how the mobilities vary with energy, the contribution
of weakly coupled electrons to the electrical conductivity,
scattering from the non-Coulomb potentials of complex
ions, and also a number of other complicated questions.
They have not been addressed in this review, since its pur-
pose was to present those topics which are relatively clear.

APPENDIX: THE THERMOELECTRIC COEFFICIENT

In the presence of a temperature gradient Ohm's law
acquired the form

The left part contains the electric field strength F and the
gradient of the electron chemical potential ц. In the right-
hand side appears the thermoelectric coefficient (the ther-
mal emf) S, which is closely related to the electrical con-
ductivity. In Fig. 19 the isobars of the thermal emf are
shown for cesium.40

For Т > 3000 К the plasma is ideal and can be ob-
tained from the Lorentz gas approximation3

-1,2-

-/,*-

FIG. 19. Isobars of the thermal emf for cesium.42 The calculated isobars
0.1, 1, 9.25, and SO MPa are shown by solid traces. Their asymptotic
limits given by Eq. (A2) and (A3) are shown by dashes and by chain
curves. Results of the measurements41'42 are the 12 and 20 MPa isobars.

S=(eT) 1 Га

**- f
Jo

E2f(E)v(E)-ldE

X Ef(E)v(E)~lc
-i

(Al)

where v(E) is the collision frequency and f ( E ) is the
electron distribution function in energy E. For a highly
ionized nondegenerate plasma (Al) yields

(A2)

which depends weakly on Т (dotted curves in Fig. 19).
For small values of Z we need a factor here analogous to
7E(Z) in (2).

In a weakly ionized plasma when 7> Т holds, the ther-
mal emf is determined primarily from the ionization as a
function of temperature. Since fi^zTVa(N^?), we have

S^-I(2eT)-\ (A3)

It is easy to see that between 5 and cr there is a relation

Sx-(T/e)d]n(7/dT. (A4)

This expression is analogous to the Ziman relation for liq-
uid metals,

S= - (pi2T/3e)d In (A5)

In order of magnitude we have Szz —I(eE?) '.
The transition from an ideal plasma to the metal state

is characterized by sharp changes in S, analogous to those
that occur with the electrical conductivity; see, e.g., the
form of the 12 MPa isobar in Fig. 18.
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Probably behavior of the form shown in Fig. 19 is
typical of simple metals. The thermal emf of such a "poor"
metal as mercury changes sign not too far from the critical
point.43 The reason for this is unclear.
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