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The modern development of the theory of atomic mag-
netism without doubt merits the closest attention. The past
few years have brought to the quantum theory a number of
very major successes in this area. The questions of atomic
magnetism have proved to be intimately bound up with
questions of the complex structure of the spectral lines, the
internal structure of the atom, and so forth. It is particu-
larly interesting that the various characteristic aspects of
the entire present-day formulation of quantum theory as a
whole is reflected with unusual clarity in the theory of
magnetism. One must acknowledge, on the one hand, the
striking success of ideas that are simple to the point of
naivete, and on the other hand the accumulation of annoy-
ing internal inconsistencies. These contradictions, which
have their roots in the application of the laws of classical
physics to the stationary states of the atom, are perhaps
nowhere manifested so clearly and distinctly as in the field
we shall discuss. For this reason the further development
of the quantum theory of magnetism promises to be par-
ticularly fruitful.

This theory has grown so much that no systematic
account of the related problems has been published. The
present paper will be focused mainly on the question of the
net magnetic moment of the atom as a whole, questions
about the intra-atomic magnetism, which are so important
for the theory of spectra, will be touched on only to the
extent necessary to support the overall picture. Of course,
ferromagnetic phenomena will be omitted entirely, since
they are rooted in the interaction between atoms.

1. THE LANGENVIN THEORY AND THE WEISS MAGNETON

Before turning to a discussion of present-day theories
of magnetism, we should recall the experimental basis of
the study of atomic magnetism.

Except for new spectroscopic methods, a discussion of
which would be premature, there is only one means of
determining the magnitude of the magnetic moment of
paramagnetic atoms; this is the method based on the ki-
netic theory of Langenvin.!” In view of the extreme impor-
tance of this theory, let us recall briefly its principal fea-
tures.

Let us consider a paramagnetic gas whose molecules
have a magnetic moment m. In the absence of an external
magnetic field the gas molecules are oriented in a disor-
dered manner. A magnetic field tends to align the magnetic
axes of the molecules along the direction of the magnetic
field, but the thermal motion opposes this alignment. As a
result, a steady state is established in which, according to
the well-known theorem of statistical mechanics, the dis-
tribution of the axes over the various directions is given by
the Boltzmann formula

dn=ce "*Tdp.
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Here dn is the number of molecules per mole whose axes
fall within the solid angle dw; P is the potential energy
corresponding to this orientation of the molecule, & is Bolt-
zmann’s constant, and 7 is the absolute temperature. If the
angle between the magnetic axis of a molecule and the
direction of the magnetic field H is ¢, then P=
—mH cos .
Introducing the notation

mH
=T

we find
dn=ce’ ** ?dw.

In all cases of present interest a is small, and therefore the
quantity ¢*°* ¥ can be expanded in a series, with only the
first terms of the series retained:

dn=¢( 1+a cos @)do.

The coefficient of proportionality ¢ is determined by the
condition that the total number of molecules in a mole
must equal Avogadro’s number N. Carrying out the calcu-
lations, we find that c=N/4w, and therefore

d Nl d
”_417-( +a cos ¢)dw.

The total magnetic moment of dn molecules is mdn, to
which corresponds the component dG of the magnetization
in the direction of the field H

Nm
dG=mcos ¢ dn=4—1T- cos ¢(1+4a cos ¢p)dw.

Integrating over all possible directions of the axes, we ob-
tain the total magnetization of one mole of gas

=" [ 2 0)d
=an J cos ¢+a cos” ¢)dw

Nma ) 5
=4 J cos” ¢dw=~Nma cos* .
Here cos’ @ as usual, stands for the average value of cos? ¢
over all possible orientations of the molecule

1

cos2(p=Z; f cos? ¢ dw

1
—_ 2 1. =1
_417',[,[ cos” @ -singp dA dp=3 .
However, we shall not yet insert this numerical value into
the previous formula, but only the value of the quantity a.

We obtain
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Nm*H
kT

cos? @.

Dividing both sides of this equation by H, we obtain an
expression for the magnetic susceptibility (per mole)

G Nm?
TH kT

x cos? @.
Multiplying the top and bottom of the fraction by
Avogadro’s number N and recalling that Vk=R, where R
is the universal gas constant, and also introducing the no-
tation Nm =M, we obtain finally

MZ

X=RT cos’ @, cos’ p=1. (1

This is the final form of the Langenvin formula for the case
a<l. This theoretical formula is in complete agreement
with the previously obtained empirical formula of P. Curie

x==, C=const, (2)

which describes very well the temperature dependence of
the magnetic susceptibility of a large number of paramag-
netic substances. A comparison of the right-hand sides of
these formulas yields

MZ

=% cos? @,

from which we have

RC
M= —. (3)
cos® @
Now setting cos® ¢ = 1/3, we obtain finally
M= 3RC. (3a)

Since the Curie constant C is determined from experimen-
tal data, this formula can be used to determine M.

This theory of Langenvin applies to paramagnetic
gases; for paramagnetic solids and liquids the temperature
dependence is no longer expressed by the Curie formula
(2), but by the more complicated formula with two con-
stants

C

= m, ®=const.

x C=const, (2a)

Weiss' was able to give a theoretical interpretation of
this more complicated formula. We assume that during the
magnetization an internal magnetic field H, is created,
which is proportional to the magnetization, H,=AG, and
that this internal field in turn acts to orient the molecules
of the material. That is, the magnetic interaction between
the molecules is taken into account. Then it is necessary to
make the appropriate corrections to the expression for P

and a. Obviously, in this case

m(H+H;) m(H+AG)
- kT kT

a
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Repeating the previous line of reasoning, we arrive at the
final formula of type (2a):

C
*=T_AC
where, as before
M2
=X cos? @. (3)

Thus formula (3) turns out to be applicable to all para-
magnetic substances, regardless of their state of aggrega-
tion.

Weiss applied this formula to a large number of para-
magnetic materials and arrived at the conclusion that the
magnetic moments of the various molecules are almost al-
ways related by the ratio of whole numbers. In other
words, Weiss found that the magnetic moment of a mole-
cule is always an integral multiple of some elementary
magnetic moment, which, by analogy with the electron,
was called the magneton.? The value of this elementary
magnetic moment m, turned out to be 18.6-10~% cgs
units. It is usual, however, not to use m,, but the quantity
My=Nmy=1123.5 G cm, i.e., the magnetic moment per
mole of the substance.

As is well-known, the magnetic properties of chemical
compounds are additive. In verifying this rule, however, it
is necessary to take into account the state of ionization of
the atoms, which has a decisive influence on their magnetic
properties. In other words, it is necessary to distinguish the
magnetism of neutral atoms from that of the corresponding
ions. In return, the magnetic moment of an atom in a given
state of ionization is almost wholly independent of the state
of aggregation of the material (a solution, a crystalline
compound, etc.).

By way of illustration, Table I shows the values of the
magnetic moments of the Mn” ion, as determined by var-’
jous investigators.”’ As usual, the Weiss magneton is taken
to be the unit of magnetic moment in this table.

One of the foremost specialists in the magnetism of
salts, the Spanish physicist P. Cabrera, considers it “almost
certain” that the magnetic moment of the Mn"” ion is equal
to 29.0 magnetons. To the uninitiated, the zero after the
decimal point seems premature, to say the least, since the
agreement among the various determinations is not suffi-
cient to permit assignments of the decimal places. This
example is quite typical of the theory of the Weiss magne-
ton. The correctness of this theory, which states that the
magnetic moments of the atoms are equal to an integral
number of Weiss magnetons, has many times been called
into doubt.*’ It has been pointed out that its proponents
are known to be biased in the deduction of average num-
bers, and it has also been noted that some atoms and ions
have such a large number of magnetons (up to 30), that,
given the low accuracy of the experimental data, the dif-
ference between such large integral numbers and interme-
diate fractional numbers is within the experimental error.
It is clear that in any case the reality of the Weiss magne-
ton cannot be said to be finally established. It must, how-
ever, be recognized that for some materials the measure-
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TABLE L.

Solid Anhydrous With Water of Crystallization In Aqueous
Compound Salt 4H,0 Solution Investigator
Mn”SO, 29.04(Th) 29.0 2920 29.33 Th (Theodorids, 1922)
29.05(Th) 29.06 (single crystal) F H (Honda, 1914)
Mn”(NO,), — —_ 29.33 C O (K. Onnes & Oosterhuis, 1913)
Mn”Cl, 28.45(Th) 273 H — —29.43 C F (Foex, 1921)

Mn”O 27.43(Th) -
{26.43(Th) 302 —

C (Cabrera)

ments give numbers of magnetons that are in fact very
close to integers. In any case, a great merit of the Weiss
theory of the magneton is that it has served as a stimulus to
a large number of investigations that have collected a great
deal of experimental data.

It is well known that paramagnetism is found almost
exclusively in those parts of the Periodic Table where the
inner electron layers of the atom undergo rearrangement.
These are the triad of elements that include the elements of
the eighth group and the elements immediately before
those, as well as the rare earth elements. However, only the
elements of the iron group from Ti (22) to Ni (28) have
been studied with any thoroughness, and therefore in most
cases we must henceforth limit the discussion to this group
of elements. Table II lists data on the number of magne-
tons in various ions of this group. For most of them the
number of magnetons is taken from the report of Cabrera,’
while the data for Mn” and Mn'’’’ were taken from the
paper of Gerlach.? Finally, the number of magnetons in V"
and V'’’’ was determined by Pascal and cited in the
present paper following the report of Weiss. The last row
of the table gives the range of the various measurements for
several ions.

2. THE BOHR MAGNETON

The Weiss “theory of the magneton” is purely empir-
ical. It can be given a theoretical foundation only on the
basis of specific ideas on the structure of the atom. The
study of atomic structure has made such great advances in
the last decade that it would appear that all the prerequi-
sites are now at hand for the theory of atomic magnetism.

First, the work of Einstein and de Haas and of Barnett
and their successors has revealed the existence of magneto-
mechanical effects, that is, the magnetization of ferromag-
netic metals and alloys as a result of rapid rotation, and
conversely, the appearance of rotational ponderomotive
forces during the magnetization of these metals. These ex-

time it can be regarded as beyond doubt that the magne-
tism of atoms is due to the motion of electrical particles
within the atoms.

On the other hand, the study of Bohr on the structure
of atoms has made it possible to calculate a priori the ac-
tual value of the magnetic moments of atoms, and with
almost no additional assumptions to arrive at the concept
of the magneton. In other words, the Bohr theory asserts
that the atomic moments must be integral multiples of a
certain elementary magnetic moment, the magneton. How-
ever, despite the qualitative correspondence between the
magnetic theories of Bohr and Weiss, there is a great quan-
titative discrepancy between them: the theoretical unit of
magnetism of Bohr, the “Bohr magneton,” is five times as
large as the empirically determined ‘“Weiss magneton.”

The actual calculation of the magnitude of the Bohr
magneton presents no difficulties. According to the quan-
tum theory, the angular momentum j of an electron in an
atom must be an integral multiple of 4/27:

j nh 1,2,3 4
J"IJ'["]_E;, n=1,4,5,.. ( )

where p is the electron mass, r is its distance from the
center of the atom, and v is its velocity (the square brack-
ets denote the cross product). It is well known that the
angular momentum j is equal to an area-related constant;
that is, it is equal to twice the sectorial velocity of the
electron multiplied by its mass

. ds

where s is the area swept out by the radius vector.

On the other hand, in the calculation of the magnetic
field of a moving electron we can replace the electron by a
loop current i defined by

periments provided the long-awaited demonstration of the _£

Amperian theory of molecular currents, and at the present T

TABLE II.

Identity of Ion Cr” Cr” Mn” Mn"” Mn’’"’ Fe” Fe” Co” Ni” Ti” v g
Number of Magnetons 240 190 29.0 25 19 26.0 29.0 25.0 16.0 86 92 6.7
Range of Measurements — — 26.5-30.2 — —-— 26-29 28.7-29.15 24.0-25.06 13-16.9 — — —
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where ¢ is the electron charge and T is its period of revo-
lution. The magnetic moment m of a current loop is equal
to iS

m=iS,
where S is the area around which the current flows.
Clearly,

S=T ds
T ar

and thus

< ds
m=iy=¢ a
Comparing this expression with formula (5), we ob-
tain the important relation

£ 6
from which, using Eq. (4), we have, finally
ek 1,2,3 7
m—n2‘u_2ﬂ_, n=1,z,3,... ( )

Thus the magnetic moment due to the motion of an
electron in an atom must always be an integral multiple of
the elementary magnetic moment m,, called the Bohr mag-
neton:

€h
2u-27

m=nmy, my= (8)
Substituting into formula (8) the known values of the uni-
versal constants, and converting, as usual, to the magnetic

moment per mole, we obtain

ch G
2w 217_—-5584 cm.
(9)

Equations (4), (6), and (7) can be expressed very
simply if we measure the angular momentum j and the
magnetic moment m of the atom not in cgs units, but in
rational units, equal, respectively, to A/27 and eh/
(2u - 2m), i.e., the Bohr magneton. Then these equations
assume the following simple form

Bohr magneton=My=Nmy=

j=n, n=123,.. (4a)
m=j, (6a)
m=n, n=1273,.. (7a)

Unless otherwise specified we shall from now on always
use this rational system of units.

Let us now turn to the numerical value of the Bohr
magneton. As Eq. (9) shows, the Bohr magneton is actu-
ally five times (more precisely, 4.98 times) larger than the
Weiss magneton, and so, according to the Bohr theory the
number of Weiss magnetons in an atom of any substance
must always be a multiple of five. This conclusion is defi-
nitely in contradiction with experimental data, and the
acuteness of this contradiction is in no way related to the
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question of the reality of the Weiss magneton. Indeed,
Weiss arrived at the concept of the magneton in a purely
empirical manner, and the Weiss magneton is by definition
equal to the largest common divisor of the magnetic mo-
ments of the various atoms. Consequently, the magnetic
moments of the atoms can in no way be integral multiples
of the five times larger Bohr magneton.

How shall we explain this contradiction between the-
ory and experiment? Have we overlooked something in the
argument? First, it can be shown that we have taken into
account the magnetic field of only the electrons and have
forgotten the field of the positive charges, which perhaps
also move about in the atom. If we assume, however, that
formula (7) also is valid for the positive charges, then the
ratio e/u for these charges is incomparably smaller than
the same ratio for the electrons, and we see that we can
neglect the magnetic field of the positive charges with im-
punity.

A shortcoming of this theory might also be found in
the fact that if the magnetic moment of each of the elec-
trons moving in an atom is equal to an integral number of
Bohr magnetons, then it is no longer possible to draw any
conclusions about the magnetic moment of the atom as a
whole: the resultant magnetic moment of the atom is com-
posed vectorially of the moments of the constituent elec-
trons, and so depends on the geometric arrangement of the
orbits of these electrons. However, from the point of view
of the quantum theory this objection is groundless. In or-
der to understand the fundamental importance of the prob-
lem we must discuss in detail the so-called space quantiza-
tion.

3. SPACE QUANTIZATION (RAUMQUANTELUNG)

In general, the quantum theory limits only the numer-
ical value of the angular momentum vector j, requiring
that this vector assume only integral values.”’ However,
the direction of the vector j remains arbitrary.

If, however, among the possible spatial directions a
particular direction is preferred for some physical reason
(for example, if it coincides with an electric or magnetic
field), then there is an additional constraint on the direc-
tion of the vector j: not only must the vector itself assume
integral values, but also its projection on the preferred (aus-
gezeichnete) spatial direction must have only integral
values.® If we apply this rule to the structure of the atom,
as Landé first did,’ then the “preferred” direction must be
taken as the direction of the resultant angular momentum
(the normal to the invariant plane of the atom). Thus the
projection of the angular momentum of each of the elec-
trons on the direction of the resultant must be an integer,
and consequently the resultant must also be an integer. In
other words, the net magnetic moment of an atom as a
whole must be equal to an integral number of Bohr mag-
netons.

Thus the objection to the quantum theory of magne-
tons advanced at the end of Sec. 2 is groundless from the
point of view of this theory, and the contradiction between
theory and experimental remains. This contradiction was
for a long time a favorite argument against the Bohr theory
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TABLE III.

Number of Bohr Magnetons, n 1 2 3 4 5
Apparent Number of Weiss Magnetons, ¥ 8.7 13.7 187 23.7 287

until finally in 1920 W. Pauli showed that the contradic-
tion is only rooted in the insufficiently consistent applica-
tion of the quantum theory.

Indeed, the value of the magnetic moment of paramag-
netic atoms and ions is calculated, as we have seen, by the
Langenvin formula

M= J3RC. (3a)

In the derivation of this formula one must determine the
average value of cos’ @, with the assumption that the axes
of the atoms can point in any direction in space. However,
the theory of space quantization limits the direction of the
axes of the atoms to a number of discrete possibilities, and
hence the numerical value of cos® @ can be substantially
changed. According to the classical theory cos? @ is always
equal to one-third, but according to the quantum theory it
depends on the magnitude j of the angular momentum.
Since the projection of the vector j on the preferred direc-
tion of the external magnetic field H must take on only
integral values, when |j| =»s (where n is an integer) cos ¢
can have only one of the following values’)

1 2 n—1 n
COS(p=:l:;, :l:;,..., + n :l:;.
Therefore
> 17/1\% /2)\? n—1\2% /n\?
et 8+ )

Doing the calculation, we obtain

-~ 1 (n+1)@n+1)
cos (p—3 —2’12—

Thus cos? @ assumes its classical value 1/3 only in the limit
n— 0, and in general formula (3a) must be replaced by
the following formula (see Eq. (3))

RC 2n
M =\eoTo™ PR GTD @D
M=M 2’ 3
=M\ GIDE D (3¢)

Here M’ is the magnetic moment per gram-atom calcu-
lated by the quantum theory, M is the same quantity cal-
culated by the classical theory, and # is the number of Bohr
magnetons in the atom.

From the quantum point of view, formula (3a), by
which the magnetic moment of the atom is usually calcu-
lated, is incorrect. It is not surprising that the fictitious
values of the magnetic moments obtained with this formula
are not integral multiples of the Bohr magneton. On the

(3b)
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other hand, the quantity M’ must always be an integral
multiple of the Bohr magneton; i.e., the following equality
must be valid:

M’'=n-5584 G-cm, where n is an integer.

But what must the relation be between the Bohr and the
Weiss magneton? The number k of Weiss magnetons in an
atom is calculated, of course, from the magnitude of its
magnetic moment M, determined according to the classical
formula (3a); that is, k is determined from the relation

M'=k-1123.5 G-cm

Putting the last two equations into formula (3c¢) and di-
viding by (about) 1123.5, we obtain

Sk 2n
=MDty

or

(10)

fl i)

Thus, even though the magnitude of the Bohr magne-
ton is almost exactly five times that of the Weiss magneton,
the relation between the number k of Weiss magnetons in
an atom (calculated according to classical theory) and the
number 7 of Bohr magnetons in the same atom (calculated
according to the quantum theory) is a very complicated
one.

It is easiest to understand this dependence with the aid
of Table III. The number k of “apparent” Weiss magne-
tons corresponding to one, two, etc, Bohr magnetons is
calculated according to formula (10) and listed in the last
row of this table.

This table allows us to check the validity of the theory.

Actually, if the quantum theory is correct, then an
analysis of the experimental data according to the classical
formula (3a) must necessarily give one of the following
values of k for the number of Weiss magnetons (in round
numbers): 9, 14, 19, 24, etc.

Pauli believed that this test could be carried out only
for paramagnetic gases: in solids and liquids the internal
molecular forces are too strong to speak of space quanti-
zation relative to an external magnetic field.

Only two paramagnetic gases are known: NO and O,.
The apparent number of Weiss magnetons k according to
the most recent measurements vary from 8.9 to 9.2 for NO
and from 13.9 to 14.12 for O,. The agreement of these
numbers with the numbers in the last table (k=8.7 and
k=13.7) is quite satisfactory; we can infer that NO has one
and O, has fwoe Bohr magnetons. That is, each oxygen
atom has one Bohr magneton.
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Although this quantitative agreement comes down
strongly in favor of the quantum theory, it must be pointed
out that the Pauli theory presented refers only to mon-
atomic gases, and for the case of the diatomic gases NO
and O, one would have to take into account the thermal
rotation of the molecule. It would appear very probable a
priori that the rotation smears out the influence of the
space quantization. However, the agreement between the
elementary theory and experiment shows that the thermal
rotation does not disrupt the discrete quantized orientation
of the magnetic axes. This fact can only be explained if we
make the unlikely assumption that the magnetic axes of the
NO and the O, molecules are perpendicular to their axes of
symmetry (i.e., the lines joining the centers of the atoms).

In any case, whatever difficulties there may be in the
further development of the theory, one thing is certain: by
pointing out the incorrectness of the Langenvin formula
from the point of view of the quantum theory, Pauli proved
groundless the objections to the quantum theory of mag-
netism based on the apparent contradiction between this
theory and the “direct” measurements of the atomic mag-
netic moments.

A few reported works of Pauli (1920) contain essen-
tially all the basic tenets of the present-day theory of
atomic magnetism. Further development of the theory has
consisted of working out the details and an experimental
verification of these tenets.

4. DIRECT DEMONSTRATION OF SPACE QUANTIZATION

We have shown that the principal premise of the quan-
tum theory of magnetism is that the orientation of the
atoms has a discrete quantized nature. It is natural, there-
fore, that a direct experimental demonstration that the ori-
entation is quantized should be of enormous significance
for the entire theory. The way to achieve such a demon-
stration was pointed out by O. Stern in 1921, and the ac-
tual experimental was performed by him in collaboration
with W. Gerlach in 1922.

This experiment is remarkable in its simplicity, and is
probably the most direct of all known experimental verifi-
cations of the quantum theory. The persuasive power of
this experiment is so great that, influenced mainly by the
success of this experiment, M. Planck in the fifth edition
(1923) of his famous book, Theorie der Warmestrahlung,
abandoned his second version of the quantum theory of
radiation.®)

In view of the wide reknown that the Stern—-Gerlach
experiment has enjoyed,” I may confine the discussion to
only the most important aspects. The problem that Stern
faced was to measure the magnetic moment of the atom,
or, more precisely, the component of this moment in the
direction of an external magnetic field. Stern pointed out
that for this purpose it is sufficient to measure the mechan-
ical action of the field on the atom under the condition that
the field is nonuniform. In a nonuniform magnetic field, in
addition to couple forces, which tend to rotate the atom
and align its axis in the direction of the field, the atom also
sees a net force on its center of mass. Let us assume for
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simplicity that the direction of the gradient dH/ds coin-
cides with the direction of the field H. Then, clearly, the
atom will be acted on by a resultant force

oH
F=m B cos(m,H),
where the magnetic moment m must, of course, be ex-
pressed in c¢gs units, and not in rational units.

In this way, the magnitude F of this force depends on
the projection m in the direction of the field A, that is, on
the quantity m cos(m,H). By measuring the force F and
the gradient JH/ds it is thus possible to measure
mcos(m,H).

According to the classical theory, any value of
cos(m,H) from 0 to 1 is possible, whereas according to the
quantum theory all the atoms are divided into several dis-
tinct groups, each group corresponding to one specific
value of the projection m cos(m,H). Observations of the
deflection of atoms in a nonuniform magnetic field by the
force F should provide a decision as to which of these
theories is correct.

In practice, this experimentum crusis was carried out
in the following way. The element silver was evaporated in
a high vacuum,'® and two diaphragms with apertures of
dimensions 0.5 < 0.05 mm separated out a narrow beam of
atoms from the atomic flux emanating from the surface of
the molten silver. This atomic beam was passed along the
wedge-shaped pole of an electromagnet at a distance of
several tenths of a millimeter from it and then was caught
by a cooled glass plate. Near the pole the magnetic field
gradient dH/3s reached 150 000 G/cm, with the direction
of the gradient in the same direction as the direction of the
field. Figure 1 shows a photomicrograph of the silver de-
posit, magnified 40 times, obtained from the glass plate
with the magnetic field turned off, while Fig. 2 shows the
deposit (the trace of the beam) obtained with the magnetic
field on. In the latter case the silver beam is distinctly split
in two, with some of the atoms attracted toward the mag-
net pole and some repelled from it.

It is thus seen that the atoms are divided into two and
only two groups, with the axes of the atoms of one group
pointing along the field and the axes of the atoms of the
other group pointing against the field. The intermediate
case is completely absent.

This experiment thus demonstrates, first, the fact of
quantization of the orientation in a magnetic field, and,
second, the presence of one magneton in the silver atom.
The latter result is clear by virtue of the fact that, as shown
on p. 19 the number of possible orientations of the axis of
the atom is twice the number of magnetons in the atom.

Moreover, the Stern—Gerlach experiment makes it pos-
sible to measure the magnitude of the magnetic moment of
silver, that is, the value of the Bohr magneton. To do so,
one need only measure the deflection of the beam in the
magnetic field and the gradient dH/ds, and also the time
that an atom is subjected to the action of the deflecting
force. The latter is determined from the length of the path
in the magnetic field and the velocity of flight (this velocity
was measured directly by Stern in 1920 under the same
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FIG. 1.

experimental conditions). The average value of the mag-
netic moment of the silver atom, as inferred from two dif-
ferent experiments, is equal to

mN=M=5475+5% G-cm

per gram-atom, which is in excellent agreement with the
theoretical value of the Bohr magneton of M =5584
G cm.

Thus the experiments of Stern and Gerlach provide a
brilliant confirmation of the quantum theory of the mag-
neton.

Two questions naturally arise in connection with the
success of this experiment. How does the axis of the atom
come to be aligned in a quantum-permitted direction? and
what happens when the direction of the external field is
changed? Does the axis of the atom follow continuously
the direction of the field? In an exceedingly interesting joint
paper, Einstein and Ehrenfest examined a number of pos-
siblities and arrived at the following rather discouraging
conclusions.

Every change in the orientation of the axis of an atom
in an external magnetic field must be accompanied by the
emission or the absorption of the corresponding amount of
energy. If this emission or absorption of energy were to
occur according to classical laws, then the quantum-related
alignment of the axis of the atom would require a time 10'
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times longer than the flight time of an atom in the Stern—
Gerlach experiment. We could abandon the classical view
and conclude that when the direction of the field changes
the direction of the axis of the atom at first lags behind the
field and then aligns itself abruptly, while the energy is
emitted (or absorbed) in accordance with the quantum
laws. However, this idea would require that we make a
completely irrational distinction between systems that can
radiate (charged systems) and systems that cannot radiate
(uncharged systems). To introduce such a distinction runs
contrary to our notions regarding the specific heat of solids
and gases.

Finally, if we assume that the axis of the atom tracks
instantaneously each change in the direction of the field,
then we come up against contradictions with the laws of
mechanics.

Thus the great successes of the quantum theory entails
a number of perplexing and unresolved questions.

5. THE BOHR AND WEISS MAGNETON

Despite the mentioned difficulties in its theoretical in-
terpretation, the Stern—Gerlach experiment has strongly
reinforced the theory of Pauli, which we advanced in Sec-
tion 3. Among the shortcomings of this theory must be
included the extremely limited range of direct application
of the theory (two paramagnetic gases). Pauli decided not
to apply his formulas to liquids and solids, assuming that
the interatomic forces in these materials, the hydration of
the ions in solution, etc., would change the nature of the
orientation of the elementary magnets beyond recognition.
These arguments seemed so obvious and irrefutable that
Sommerfeld in 1923 (Ref. 12), discussing the report of
Cabrera (see Sec. 1) and calling attention to the theory of
Pauli, regarded it necessary to emphasize the inapplicablity
of this theory to solids and liquids. Meanwhile, one needs
only to compare the summary of the experimental data
(Table II) with the theoretical data (Table I1I) to be per-
suaded of the undeniable applicability of the quantum the-
ory to paramagnetic matter of any state of aggregation.'"

According to the quantum theory of magnetism, one,
two,... real Bohr magnetons must correspond (in round
numbers) to 9, 14, 19, 24, 29,... apparent Weiss magnetons.
However, for the ions of the iron group the following val-
ues of k of Weiss magnetons have been determined by
experiment (also in round numbers): 9 has been found
twice, 19 twice, k=24 has been found once, and the close
number 25 has been found twice, and finally k=29 has
been found twice. All these seven values are in complete
agreement with theoretical predictions. The remaining
three values are

k=67 (V''""), k=16 (Ni”) and k=26 (Fe”).
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Data for Fe are the least reliable: various determinations
fall between 26 and 29. Finally, the data for V'’’’ hve been
taken from old and relatively inaccurate measurements of
Pascal.'?) This coincidence between the results of measure-
ments and theoretical predictions is also found for other
paramagnetic substances, as is clearly seen in Table IV, in
which only ferromagnetic metals,”) complex compounds,
and the rare earth elements are left out. The second col-
umn lists the theoretical values of the number k corre-
sponding to one, two,... Bohr magnetons. The next column
lists those values rounded off, and finally the fourth col-
umn lists the experimentally determined values of & for the
various substances. These values differ appreciably from
the theoretical values in only three instances.

While bearing in mind the low accuracy of most of the
experiments, one cannot but admit that the agreement be-
tween theory and experiment is better than satisfactory.
This agreement is all the more surprising and unexpected
in that we did not take into account intermolecular inter-
actions, which, of course, cannot help but distort the re-
sults of the quantization of the orientation in the external
field.

In order to account for the unexpected success of this
undeniably incomplete theory we need only appeal to the
fact that all the magnetometric measurements have been
carried out in very strong fields. It is clear that for space
quantization the decisive factor is the ratio between the
force of this field and the force of the molecular fields.

In this connection it is interesting to recall that in
many crystals, even in relatively weak fields, a marked
Zeeman splitting is observed in the absorption spectrum
and in the fluorescence spectrum, which no doubt shows
that the external field dominates the internal fields. In any
case, it cannot be entirely accidental that all the measured
values of the number %k are definitely grouped around five
definite, theoretically predictable numbers. It should also
be noted that the quantum theory attributes to the mea-
sured atoms a small number of magnetons (up to 5),
whereas according to Weiss, many atoms have over 20-25.
Obviously such a large number k considerably reduces the
credibility of the Weiss theory: in the long run, with such
large integers one can come as close as one wants to any
sequence of any numbers.

Finally, it is necessary to take into account that the
quantum theory provides an a priori calculation of the
magnitude of the magneton without the aid of any exper-
imental data and with the use only of the universal con-
stants (g, &, and k).

It only remains to be stated one more time that the
simplest and seemingly least probable assumptions (the
applicability of quantization to matter of any state of ag-
gregation) are far from being always wrong.

The persuasiveness of the quantum theory is enhanced
when one examines the dependence of the magnetic mo-
ment of ions on the number of outer (valence) electrons.
We shall, however, postpone the discussion of this issue
until we introduce one more completely independent
means of determining the number of magnetons in an
atom, that is, the spectroscopic method.

244 Physics - Uspekhi 36 (4), April 1993

6. SPECTROSCOPIC METHOD OF DETERMINING THE
MAGNETIC MOMENT OF AN ATOM

The topic of atomic magnetism has been of decisive
importance in the past few years in the further develop-
ment of the theory of spectra. Occupying the central point
of this theory are two questions that the elementary quan-
tum theory is powerless to answer. These have to do with
the nature of the multiplicity (Multiplizitdt) of most spec-
tral lines (doublets, triplets, etc) and the anomalous nature
of the splitting of these lines in a magnetic field (the anom-
alous Zeeman effect).!> We now know that the inability of
the theory to address these questions is explained by the
fact that they are directly related to the magnetic proper-
ties of the atoms.

At the present time we can regard it as established that
all magnetic properties of atoms are anomalous.'® The
reason for this is clearly that the ordinary laws of electro-
magnetism are inapplicable even to the stationary states of
the atom. The need to modify the fundamental laws of
mechanics and electrodynamics has definitely been estab-
lished by all the modern developments in the quantum
theory, but the inadequacy of the classical viewpoint is
perhaps nowhere so clearly evident as in the study of mag-
netism (Landé, Ref. 18).

It is understandable, therefore, that for a time all at-
tempts to understand the internal “magnetic” mechanism
of atoms ended unsuccessfully; then in the last few years,
thanks mainly to the work of Landé, Sommerfeld, and
Heisenberg, it was found possible to construct a purely
formal theory, or rather, a systematic numerical scheme
that encompasses in a unified way all these complex phe-
nomena. This theory has so far been found to be in excel-
lent agreement with experiment, and a whole series of its
predictions have already been verified experimentally. Only
because of this theory has it been possible finally to deci-
pher such complex spectra as, for example, those of Mn,
Cr, Fe, and others. However, this theory is still in the
development stage, and moreover, because of its formal
nature, it admits of a number of different interpretations.
Even yet, the statement of the theory by different investi-
gators differs not only in essence, but even in the choice of
the basic quantities and their meaning. I do not plan to
discuss this theory in detail, but shall only give a brief
account of it, since it leads to a new spectroscopic means of
determining the magnetic moment of atoms. We shall re-
strict the discussion to the form of the theory used by
Sommerfeld, first, because this theory is somewhat simple
than the theory of Landé, and, second, because Sommer-
feld has applied his theory to the question of the
magneton”) (see Ref. 15).

The multiplicity of the spectral lines obviously stems
from the multiplicity of the stationary states of the atom.
Generally speaking, the difference in the states of the atom
lies in the difference in the orbit of the outer electron
(Leuchtelektron), and the nature of this orbit also deter-
mines primarily the internal energy of the atom. Each orbit
is characterized by two quantum numbers: the so-called
principal quantum number (Hauptquantenzahl) and the
azimuthal quantum number (7 and k in the notation of
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Bohr). However, only in the very simplest cases (H and
He™) are these two numbers sufficient for an exhaustive
determination of the state of the atom. In general the same
pair of quantum numbers n and & can correspond to sev-
eral more or less close-lying energy levels. The existence of
these finer subdivisions of the energy levels is also observed
in the multiple structure of the spectral lines.

The cause of the splitting lies in the possibility of dif-
ferent orientations of the orbit of the outer electron (or
electrons) relative to the “core” of the atom (Atomrumpf;
the so-called combination of the nucleus and the inner elec-
trons). It is believed that the core of the atom constitutes a
more or less bound entity and that the axis of the core can
take on various orientations relative to the plane of the
orbit of the outer electron, while at the same time obeying
the laws of quantization. To the different orientations of
the core correspond different potential energies of the core
in the magnetic field of the outer electron. Thus in order to
characterize fully the state of the atom it is necessary to
specify the angle between the plane of this orbit the axis of
the core in addition to the quantum numbers n and k that
determine the orbit of the outer electron. For this purpose
it is sufficient to specify the resultant angular moment of
the atom, which is the geometrical sum of the angular
momentum of the outer electron and that of the core of the
atom and thus depends on the orientation of the axis of the
core. The number that expresses the magnitude of this net
angular momentum in rational units (#=~h/2m) is called
the internal quantum number and is denoted by the letter
j. Unlike the usual quantum numbers, it can assume not
only integral, but half-integral values (multiples of one-
half). In this way, the same value n; can correspond to
several different internal quantum numbers, and thus to
several energy levels of the atom. For example: the yellow
doublet D, and D, of sodium correspond to the initial
orbits 2p, and 2p,, the former of which is characterized by
the quantum numbers, n=2, k=2, and j=1/2, while the
latter corresponds to the quantum numbers n=2, k=2,
and j=3/2."%

Let us now turn to the Zeeman effect. In the absence of
an external field the direction of the atomic axis, that is, the
direction of its resultant angular momentum j, is com-
pletely arbitrary. When an external magnetic field is ap-
plied the laws of space quantization come into play, and
the direction of the atomic axis is limited to a number of
discrete possibilities. The orientation of the atom is char-
acterized by the angle between the direction of the field H
and the direction of the angular momentum vector j. The

TABLE IV.

n k

1 8.7 9 Ag (n=1), Cu"k=9-10, V”9.2, V’*"’9,
Ti"”8.6, NO 9.2, Pt 8-9, Pd~8

2 13.7 14 0,14, V'"’'14, Ni"16(?)

3 18.7 19 Cr”19, Mn’""’'19

4 23.7 24 Co”24, Cr"”24, Mn"25, Fe”26(?)

5 28.7 29 Fe™29, Mn"29

245 Physics - Uspekhi 36 (4), April 1993

quantization rule reduces to the statement that the projec-
tion jn of the vector j on the direction of H
(jg=Jjcos(j,H)) must be either +; or different from
that by an integral number of units. For example, for
J=3/2 there are four possible values of the projection j g

+3/2 and +1/2.

Depending on the orientation of the atom, its potential
energy also varies in an external magnetic field. This en-
ergy is

AE=—mH cos(m,H), (1)

where m is the magnetic moment of the atom, expressed
this time not in rational units, but in ordinary cgs units.

Thus the same set of values of n, k, and j can corre-
spond to a number of different energies of the atom (de-
pending on cos(m,H)). In other words, in a magnetic field
each spectral term (energy level) is split into a number of
close-lying terms corresponding to the different orienta-
tions of the magnetic axis of the atom. This also explains
the magnetic splitting of the spectral lines (the Zeeman
effect).

The magnitude of the splitting AE of the terms can be
measured spectroscopically. On the other hand, the direc-
tion of the vector m, of course, coincides with the direction
of the vector j, i.e.,

cos(m,H)=cos( j,H).

Thus in Eq. (11) the values of AE and H can be mea-
sured directly, while the value of cos(j,H) is determined
by the quantization rules, and so this equation makes it
possible to use measurements of the Zeeman effect to cal-
culate the atomic magnetic moment .

It can be shown that we have complicated a simple
problem to no purpose. We have already alluded many
times to the well known relation between the angular mo-
mentum and the magnetic moment

£
m=ZJ(EQ- (4).

We have pointed out that if m and j are measured in
rational units (equal, respectively, to A/2# and to the Bohr
magneton eh/(2u - 27)), then Eq. (4) reduces to the nu-
merical equality of the numerical values of the angular
momentum and the magnetic moment of the atom

m=j. (42)

The quantity j in this formula is none other than the
internal quantum number; i.e., the number of magnetons m
in an atom must be simply equal to the internal quantum
number ;.

Thus it can be shown that to determine the magnetic
moment m there is no need to measure the Zeeman effect.

Unfortunately, however, the matter actually is much
more complicated, as is shown mainly by the anomalies in
the Zeeman effect observed most spectral lines. The ele-
mentary theory, which is based on the equality (4a) re-
quires that all lines have the normal Zeeman triplet. To
explain the experimental data one must assume that the
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relation between the magnetic moment and the angular
momentum is much more complicated than is assumed by
the classical theory, and that equality (4a) should be re-
placed by the relation

m=gj. (12)

Introducing the factor g into this formula brings in the
so-called “splitting factor” (Aufspaltungsfaktor), which is
a very complicated function of the azimuthal quantum
number X, the internal quantum number J, and, finally, a
third number », which characterizes the so-called maxi-
mum multiplicity of the terms of the given spectral
series,'?

To determine m it is therefore insufficient to know only
/, and one must have recourse to the method outlined
above, which is based on the measurement of the splitting
AE of the terms. This method, as already mentioned, per-
mits a direct determination of m; then by means of formula
(12) one can also calculate g=m/;.

It should be acknowledged that by replacing the equal-
ity m=j (Eq. (4a)) by the relation m=gj, the quantum
‘theory of magnetism, strictly speaking, cuts the ground
from under our feet, for equality (4a) is based on the
fundamental laws of electromagnetism, the very founda-
tion of the concept of the Bohr magneton.

Here we must again make reference to a most charac-
teristic feature associated with the development of modern
physics—the accumulation of deep internal contradictions
in new fruitful theories. Nonetheless, it is these contradic-
tions that in many cases point us towards the discovery of
new laws-laws that are so simple and persuasive that they
undoubtedly correspond to the true nature of matter.

This is the situation in the case we are studying. The
factor g was introduced by Landé'! only in order to explain
the anomalous Zeeman effect in the twofold and threefold
spectral lines (doublets and triplets). A natural genergli-
zation of this theory then allowed him to predict the com-
plex structure of multiple lines (multiplets) and the nature
of their splitting in a magnetic field. These theoretical pre-
dictions made it possible to work out for the first time the
extremely complicated and tangled field of spectral analy-
sis and they were brilliantly confirmed by experiment. At
present scarcely a month passes that does not see new
successes in this area.??) If only for this reason the merit of
the theory is very great. However, it turns out that the
same theory is able, almost without any additional assump-
tions, to “explain” the anomalous magneto-mechanical
effect.2!)

Finally (for our purposes this is of the highest impor-
tance), one can on the basis of this theory determine the
number of magnetons in an atom, with the results in full
agreement with the results of direct magnetic measure-
ments.

As already mentioned, to determine the magnetic mor
ment of an atom it one must use formula (12). We shall
not go into how one determines the values of g and j
corresponding to a specific state of an atom, since this
would take us too far afield. We only recall a simple rule
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that in a number of cases gives a direct determination of
the value of m.

Of all the quantum numbers that characterize the state
of the atom, the most important is the azimuthal quantum
number k. Later we shall refer to single-quantum, two-
quantum, and so forth, states, meaning thereby the value of
the quantum number k, since the principal quantum num-
ber n has no bearing on the angular momentum or the
magnetic moment of the atom. We recall again that in
spectroscopic notation the letters s,p,d,... are used to des-
ignate the orbits corresponding to k=1, k=2, k=3,....

Having decided on the terminology, we can formulate
in the following way the Sommerfeld rule: In the normal
single-quantum state s (k=1) the number of magnetons in
an atom is one less than the maximum multiplicity of its
energy levels.??) For example, for an atom such as Ca that
emits simple lines the maximum multiplicity of the lines is
1; so that the number of magnetons is m=1-—1=0. For
atoms that emit doublets (e.g., Na) the maximum multi-
plicity is 2, and consequently m=2—1=1; for atoms that
emit triplets (e.g., Ca) the maximum multiplicity is 3, and
consequently

m=3—1=2, etc.

Calcium atoms can emit single lines as well as triplets,
and thus these atoms can be in two different states. To
distinguish these states they are customarily denoted in
spectroscopic notation by capital and lower-case letters,
S,P,D,..., and s,p;d,,... . In the § state (simple lines) the
number of magnetons is zero, and in the s state (triplet)
the number of magnetons is two. Of course, this simple
rule is applicable only to the normal single-quantum states
of the atom. In an excited state of the atom its angular
momentum j is changed, and so the magnetic moment m is
also changed.

It is necessary, finally, to note that some materials,
even under ordinary conditions, are found in multiple-
quantum states (k> 1), which for these materials are thus
normal. Such a situation is found, for example, in the va-
pors of Al and T1 (normally 2p) and Fe vapor (normally
3d), and so forth. The simple Sommerfeld rule does not
apply to these materials.

7. MAGNETISM AND THE PERIODIC TABLE

One of the best confirmations of the quantum theory of
magnetism is the complete agreement between the results
obtained by totally different methods (spectroscopy and
direct magnetic measurements). Figure 3 shows a diagram
due to Sommerfeld, which displays the results of measure-
ments of the group of elements whose magnetic properties
have been most thoroughly studied. The number of
“outer” electrons®) is plotted along the horizontal axis,
and the number of magnetons along the vertical axis.
Above the number of outer electrons stands the total num-
bir of etectroms in the atom and the name of the corre-
sponding neutral atom. The results of spectroscopic mea-
surements are indicated by the underline below the element
symbol; the rest of the values were taken from the usual
magnetic methods of measurement (see the summary in
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Table IV). The number of magnetons is rounded off to
whole numbers; this can induce doubt only for the case of
Ni” and Fe"”.?¥

The diagram is augmented by some data not Hcluded
by Sommerfeld (data for K, V", V''"’, Mn’’"’, Fe”, and
Cr). I calculated the number of magnetons for Fe on the
basis of new spectroscopic work of Hilda Gieseler and W.
Grotrian (Ref. 16).2>) Two values are given for some at-
oms (Ca,Cr,Mn), since these atoms can exist in two dif-
ferent single-quantum states S, and this circumstance
shows up in the presence of two different systems of spec-
tral lines. For example, the Ca atom can emit both simple
lines and triplets, and Cr can emit quintets and sextets, and
so forth.

Immediately upon inspection the diagram is seen to
exhibit a strict regularity, which is evidence for the com-
plete agreement between the results obtained by the two
entirely independent methods (magnetic measurements
and spectroscopy).

Particularly conspicuous is the straight line that passes
through the origin at an angle of 45°. The entire line is
occupied by points that are in mutual agreement. The mag-
netic moments of all 15 atoms and ions lying on this line
conform to the following simple and convincing rule: The
number of magnetons in an atom is equal to the number of
outer (valence) electrons. When the atom loses electrons
by ionization it also loses magnetons. For example: Mn has
7 electrons and 7 magnetons (m=7), while for Mn"” m=35,
and for Mn" m =4, and finally, for Mn’’'* m=3. The rule
is confirmed in a particularly convincing way by the agree-
ment of the number of magnetons for ions of completely
different kind but with the same number of outer electrons.
An example is m=1 for K, Ca’. Ti"" and V"*"’.

Let us now turn our attention to the straight line lying
somewhat below the former one, where a large number of
points are situated.”® The numbers of magnetons at the
corresponding points of these two lines differ exactly by
two. For example: for Ca, m=2 and m=0; for Cr, m=6
and m=4, and for Mn m=7 and m=5.

Without attempting to examine in detail the internal
mechanism, we can interpret this result in the following
way. The maximum number of magnetons in an atom is
equal to the number of outer electrons and corresponds to
the revolution of all these electrons in the same direction.
However, if one of the electrons happens to revolve in the
retrograde direction, then its magnetic field will neutralize
the field of one of the direct-revolving electrons, and the
resulting magnetic moment of the atom is reduced by two.
For example: Ca has two valence electrons; when both of
them revolve in the same sense, then m=2, and if they
revolve in the opposite sense, then m=0. Another example
is Fe”: it has six electrons and m =4, so that one of the
electrons revolves in the opposite direction. This retro-
grade electron obviously is less tightly bound to the atom
and therefore is the first one removed with subsequent ion-
ization. Therefore the ionization of Fe” results not in a
decrease, but in an increase in the resultant magnetic mo-
ment of the atom: for Fe", m=35 (all five remaining elec-
trons revolve in the same direction).
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Obviously, an atom may have not only one, but several
retrograde electrons. For example, for Ni” the total num-
ber of outer electrons is 8, and m=2; hence one must
conclude that it has three “retrograde” electrons that neu-
tralize three “direct” electrons.

At any rate, in whatever way we regard these attempts
to obtain an intuitive interpretation, the diagram shows
beyond doubt that the following rule holds: The number of
magnetons in an atom can be either equal to the number of
outer electrons or less than that by an even number (mu-
tually cancelling electrons drop out pairwise). The conse-
quence is that in atoms with an even (odd) number of
electrons the number of magnetons is always even (odd).

The only exception to this rule is the Co” ion, which
has 25 electrons and 4 magnetons. It should also be noted
that the magnetic moment of the Ni” ion may be equated
to two magnetons only by stretching things somewhat (see
Table IV).

Save for these exceptions, this rule has been confirmed
not only for the elements of the iron group, but also for all
the generally known materials related to magnetism and
monatomic gases. We cite, for example, the diamagnetism
of the inert gases, the results of the Stern-Gerlach experi-
ment with silver, and the spectroscopic laws of displace-
ment and replacement?” (Erschiebungssatz and Wechsel-
satz), and so forth.

Strong paramagnetism is found only in certain regions
of the Periodic Table (the eighth-group triad and the rare
earth elements); that is, only where the number of magne-
tons is 2 maximum, equal to the number of outer electrons
in the atom. This is probably related to the fact that these
are the regions of the Periodic Table where new electrons
are added to the inner layers of the atom. However, gen-
erally speaking the inner state of the atom are set up ac-
cording to the minimum possible value of the magnetic
moment (one magneton for the odd columns of the Peri-
odic Table and zero magnetons for the even columns).

Thus if we set aside the question of Co”, then all the
rest of the experimental data fit into the orderly scheme of
Sommerfeld, striking and attractive in its extreme simplic-
ity.

Nevertheless, just because of its simplicity, this scheme
is utterly incomprehensible.

The fact is, the rule of Sommerfeld regarding the num-
ber of magnetons in an atom appears so convincing because
it is automatically connected with the idea of the extremely
simple intraatomic mechanism. This rule clearly must be
understood in the sense that in the normal state of the
atom all of its outer electrons move in single-quantum or-
bits (single-quantum in the sense of the azimuthal quan-
tum number of the orbit n,), so that each electron corre-
sponds to one magneton. Moreover, the orbits of all the
electrons are arranged in a common plane, so that the
geometric summation of the magnetic moments of the in-
dividual electrons is replaced by an arithmetical summa-
tion. However, not one of these assumptions can hold up
against even the smallest criticism from the point of view of
our present-day understanding of the structure of the
atom. On the contrary, the extreme complexity of the or-
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bits of the valence electrons can be taken as solidly estab-
lished; the planes of these orbits in any case are not paral-
lel, and finally some of the valence electrons definitely do
not move in single-quantum orbits.

Nonetheless, one cannot regard Sommerfeld’s rule of
the number of magnetons in an atom as a purely mnemonic
device without any physical substance. The extreme sim-
plicity and intuitiveness of Sommerfeld’s scheme and its
complete verification by experiment is a clear indication
that this scheme expresses some new important law of
atomic structure. We cannot understand this quantum
rule, discrete by its very nature, because in its present con-
dition the quantum theory rests on an internally inconsis-
tent base. Research into laws similar to those of Sommer-
feld must also create the possibility of placing a new and
solid foundation beneath the quantum theory.

8. DIFFICULTIES OF THE QUANTUM THEORY OF
MAGNETISM

The present-day quantum theory bears the imprint of
internal inconsistencies; all of its successes have generated
new difficulties for it. Such has been the fate of the theory
of magnetism. We have already had occasion to mention
the theoretical difficulties that have arisen in connection
with the success of the Stern-Gerlach experiment. Let us
now turn to difficulties of another type.

So far we have avoided by silence the following fact.
According to the presently accepted model of helium (the
“crossed” model of Landé) the helium atom must have a
magnetic moment, and consequently paramagnetic proper-
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ties. Nonetheless, helium is strongly diamagnetic. How can
we escape from this contradiction? There are two ways.
First we can assume that in contradiction to all the known
laws of electrodynamics the helium atom has no magnetic
moment: Bohr, for example, has expressed the notion of
electron orbits that are “dead” with respect to magnetism
(magnetischtot). This is what the formal theory of Som-
merfeld reduces to in essence, assigning to helium an in-
ternal quantum number j equal to zero (the angular mo-
mentum equal to zero).

On the other hand, while not denying the existence of
a magnetic moment in the helium atom, one can take the
view that in a magnetic field the axis of the helium atom is
aligned perpendicular to the field rather than along it (this
assumption, of course, also contradicts the laws of quan-
tum mechanics). Landé takes this point of view, and we
shall now give a brief exposition of this theory (Ref. 11).

In Sec. 6 we stated that from the spectroscopically
measured magnetic splitting of the energy levels of the
atom

AE=—mH cos(m,H) (11)

one can determine the magnetic moment m of the atom.
However the solution of this equation is not unique. By

direct experiment one can obtain only
AE
mcos(mH)=— 0

but the way in which the product m cos(/,H) is decom-
posed into its factors is arbitrary, and one can determine
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the value of m only by applying the space quantization
rule. This is how the formulation of these rules of the
Landé theory differs from the theory of Sommerfeld. With-
out going into detail we only mention some of the final
conclusions of the Landé theory.

According to the Landé theory, space quantization of
the orientation along the axis of the field is forbidden, so
that the axis of the atom is always inclined to the direction
of the field. For the helium atom (for which the internal
quantum number is j=1/2 according to Landé) only a
single unique arrangement is possible, namely, the perpen-
dicular one, which is thus in full agreement with the dia-
magnetism of the helium atom.?®) The Stern-Gerlach ex-
periment is explained by Landé in the following way: the
silver atom has not one, but two magnetons (j=1, g=2,
m=gj=2), and in a magnetic field the axis of the atom is
aligned at an angle of 60°, so that cos ¢ = +1/2. Conse-
quently, the projection of the magnetic moment on the
direction of the field is equal to

mcos p=2X(+3)==+1,

which agrees entirely with the results of the Stern—Gerlach
experiment. It is curious therefore that in the opinion of
one of the leading experts in this field, even this extremely
simple experiment is deficient in that it has a very complex
and unconvincing interpretation. If we consider in the con-
text of the Landé theory what the number k& of “apparent”
Weiss magnetons is that corresponds to one, two, etc. Bohr
magnetons, we obtain the same values 8.7, 13.7,..., as in the
Pauli-Sommerfeld theory (Table V). As we have seen, this
prediction of the two theories is well supported by experi-
ment. The only difference between the theories in this con-
text cannot be resolved by experiment; the difference lies in
the nature of the correspondence between the numbers k
and » and is readily illustrated in Table V.

In general, it must be said that despite the difference in
the interpretation of the experimental facts, all of these
facts are equally well explained by either theory. An ex-
perimentum crusis to decide between them is not possible
because these theories as yet are essentially only productive
formal schemes for systematization of experimental data.

By comparison with the Landé theory, the initial
Pauli-Sommerfeld theory was distinguished by a greater
simplicity, but later it was found necessary to introduce
into this theory some complicating corrections.

Indeed, in Sec. 3, in the derivation of formula (3b) and
in the calculation of Table III, we used as a basis the
equality (in rational units)

m=j. (6a)
Then in Sec. 6 we found it necessary to introduce the
splitting factor g:

m=gj. (12)

This complication entails the necessity of a corre-
sponding change in formula (3b), since space quantization
applies to the vector j and not to the vector m. Let us
illustrate this by an example.
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Let us take m=3; then according to the initial theory
of Pauli we also have j=3, and there are six different
orientations available to the axis of the atom, correspond-
ing to

cosp==+1, +3 =}

therefore

cos? p=12=0.52.
When the corrected formula is used it is necessary to make
a specific assumption about g. If the atom is in the normal
S state, then, as we already know, g=2, and therefore
J=3/2 for m=3. Consequently four different orientations
are possible for the atom, corresponding to

ju=jcosp=+3 +i ie, cosp==x1, +3i

since, according to the quantization rule, the projection j
must be either equal to j or differ from it by an integer.””)
Consequently

75> 0.56
COS =—=0.00.
=

Thus the results of the corrected and of the initial
theory are very close. A more complete comparison of the
two theories is given in Table VI.

Comparing the numbers in Table VI with the experi-
mental data listed in Table IV, we can readily note that the
agreement of the theory with experiment is not only not
destroyed by the corrections, but perhaps is even im-
proved.

At the present time the introduction of this correction
to the initial theory is regarded as necessary by Sommer-
feld as well as by Pauli himself.

Thus the success of the initial theory is accounted for
only by a more or less fortuitous circumstance: the effect of
the correction factor g on the final results of the calcula-
tions is small.

In summary, the quantum theory of magnetism has
experienced the fate of all quantum theories (and non-
quantum theories as well): The initially simple concept has
been extraordinarily complicated and encumbered by an
abundance of details and corrections. However, incompa-
rably more serious is the fact that this theory is torn by
internal contradictions. Indeed, all of quantum theory, the
calculation of the stationary orbits, even the calculation of
the Bohr magneton, rests on the application of classical
electrodynamics to the stationary states of the atom. By
abandoning the relation

m=j,

and introducing the completely incomprehensible, classi-
cally unfounded splitting factor g, we thereby remove all
the theoretical foundations of the the theory. Lack of
space, unfortunately, does not allow us to dwell on even
more serious paradoxes, by comparison with which even
the “anomaly” in the splitting factor g is only an insignif-
icant violation of the laws of mechanics’”?? (Landé, Ref.
17).
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TABLE V.

True Number n of 0 1 2 3 4
Bohr Magnetons

Apparent Number k of 0 8.7 137 187 237
Weiss Magnetons

Apparent number & of Weiss 0 0 8.7 13.7 18.7

Magnetons According to Lande

But how shall we relate to this complicated and inter-
nally contradictory theory? A half century ago such a the-
ory could not have been acknowledged or responded to.
Much has changed since that time. Then there prevailed
the self-assured confidence that the fundamental shape of
the physical picture of the universe was known, and it
remained only to fill in the details. It is natural that then
the main criterion for the suitability of a new theory was its
logical coherence and simplicity. Now, we have seen that
the laws that direct the elementary internal processes are
totally unknown. The complication and the inconsistency
of present-day theory—Ilet us recall the Bohr correspon-
dence principle (Korrespondenzprinzip) and the applica-
tion of the theory of astronomical perturbations to the cal-
culation of the orbit of an electron—the complexity of
these theories arises because we attempt to interpret atomic
processes of the microcosmos on the basis of the “classi-
cal” laws of the macrocosmos, which are alien to that
sphere of activity. We must approach these theories not so
much from the point of view of the internal consistency
and regularity, since all these theories are equally doomed
to be displaced, but more from the point of view of their
fruitfulness in discovering new simple facts and regulari-
ties, which will serve as the basis for a simple and system-
atic theory of the future. I say “simple” because the per-
suasiveness and simplicity of the laws of nature have
always lain at the root of all scientific activity. From this
perspective the quantum theory of atomic magnetism, as
we have seen, has to its credit the Stern—Gerlach experi-
ment, the simple interpretation of experimental results of
magnetic measurements, the simple scheme of Sommer-
feld, which relates the chemical and magnetic properties of
the elements, and finally, a scheme, which, although not
yet susceptible to interpretation, is by its nature extremely
simple, and which binds together the magnetic “anoma-
lies” (the multiplicity of the spectral lines, the Zeeman
effect, and the magneto-mechanical effect). All these ac-
complishments are irrefutable and permanent assets, which
not only confirm the existence of the theory itself, but lead
us to anticipate that the concepts underlie the theory are
correct ones, and that the further development of the the-

TABLE VI

Number n of Bohr Magnetons 1 2 3 4 5
Apparent Number & of Weiss Magne- 8.7 137 18.7 237 287
tons According to the Initial Theory

The Same, According to the 8.7 14.1
Corrected Theory(for g=2)

19.2 244 294
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ory will lead to new advances and permit the creation of a
fundamentally new and consistent theory of intraatomic
processes.

*First published in Usp. Fiz. Nauk SSSR 5, 105-137 (March 1925).

DFor ferromagnetic objects the atomic moments are calculated from the
saturation magnetization at low temperatures, while in paramagnetic
materials there is no saturation.

2)As regards the historical sequence, it must be remarked that Weiss was
the first to arrive at the concept of the magneton on the basis of his
studies of the saturation of ferromagnets at low temperatures. This does
not change the essence of the discussion.

The table is taken from the paper of Gerlach (Ref. a).

YAt the present time the authors of the theory acknowledge that the
number of magnetons in an atom can be half-integral (multiplies of
1/2)! (J. Phys. (Paris) §, 129 (1924)).

S)Of course, with the choice of rational units for the angular momentum,
equal to h/27. See Eq. (4a).

1 shall quote the simplest initial formula of Sommerfeld, without touch-
ing on the deeper and more productive analysis of this problem given by
Bohr.

"'For cos ¢ we might even expect the value of k to be zero, which also
corresponds to an integral (zero) value of the projection. However,
using the adiabatic hypothesis, Bohr concluded that its value is cos =0
exclusively (see the proof in e.g., Sommerfeld’s Atombau IIT Aufl,, S.
382). On the basis of this reasoning this value was also not taken into
account in the theory of Pauli. We shall not go into this issue, since the
zero value cos =0 is now considered as possible for complex atoms
(the proof of Bohr is applicable only to hydrogen).

8 As is known, in this version the primary significance is attributed only
to the emission events, whereas for absorbing systems a continuous set of
states is permitted (continuous absorption).

9The work of Stern and Gerlach was reported in detail in Usp. Fiz. Nauk
SSSR 3(2-3), 301. (see also in the same issue the article of N. N.
Semenov “Molecular beams”—Editor’s note).

190 eliminate the effect of collisions between the molecules.

! This circumstance was first pointed out independently by P. Epstein®
and W, Gerlach.!

D1n the most recent paper of Weiss (J. Phys. (Paris) 5, 129 (1924)) the
new value k=9 was obtained for V’*’’, which is in excellent agreement
with the requirements of the theory. I have used this value in Table IV.

1At high temperatures these metals become paramagnetic.

Y According to Sommerfeld,'* Cabrera believes that the magnetic mo-
ments of some ions of the iron group are measured so precisely that one
can with certainty state that there is a discrepancy with the require-
ments of the quantum theory, while the theory of Weiss is supported.
Despite all the authority of Cabrera in matters of this sort I neverthe-
less hold with Gerlach and Sommerfeld that to the unprejudiced mind
the statement of the matter should be viewed in the opposite light, the
more so since the numbers of Table III have the nature of a first
approximation (the molecular fields are not taken into account; see also
later the possibility of fractional numbers of Bohr magnetons in an
atom).

Y As is known, for all multiple lines the Zeeman effect is anomalous in
the sense that these lines are split not into three components as required
by the classical and the elementary quantum theory, but into an ex-
traordinarily large number (up to 24) components, with the spacing
between the components and their polarizations also anomalous.

16)See text after Eq. 4(a) for the magnetomechanical anomaly.

"Some statements of the first work of Sommerfeld, partially generalized
in the third edition of his well-known book “Atombau und Spektralli-
nien”, were later somewhat modified by him,

18)The values of the quantum numbers corresponding to different states of
the atom have been determined on the basis of a collection of spectral
data. We cannot go into detail here, but later we shall regard these
numbers as specified.

)This function has the form

3 Mr+1)—k(k—1)

TG D

The number r is equal to zero for single lines, 1/2 for doublets, 2/2 for

triplets, etc. The physical nature of the factor g is not presently known.

It is hypothesized that the appearance of the factor g in Eq. (12) is due

to the fact that the orientation of the individual electron orbits in a

I. E. Tamm 250



magnetic field are to a known degree independent of one another. This
assumption makes it possible to explain the nature of the magnetic
splitting of the doublet spectral lines, but the application of this as-
sumption to more complex structure has not been successful.

To characterize all the new developments in this field it is sufficient to
say that previously our information did not go beyond triplets. Now it
is possible to decipher the spectrum of Mn, which contains octets
(eight lines). Some of its lines are split in a magnetic field into 24
components! All these complex relations are fully accommodated in the
theoretical scheme of Landé.

2DHere we can only touch upon this question in a superficial way. As is
known, measurements of magnetomechanical effects makes it possible
to determine the ratio between the angular momentum and the mag-
netic moment of the atom. The usual theory leads to relation (6) or
(6a). The first experiments were in good agreement with this equation.
However, a number of more precise experiments in recent years
(Arvidson, 1920; Chattock, Susmith, Bates (1922)) have shown con-
clusively that expression (6a) cannot be applied directly to any of the
investigated materials (Fe, Ni, the Heusler alloy) and that this expres-
sion must be replaced by the equation m=2j. The latter relation is a
special case of our formula (12) for g=2. Most remarkable is the fact
that Landé’s spectroscopic theory of magnetism has yielded by entirely
independent means the conclusion that g=2 for all atoms and ions in
the normal single-quantum state (azimuthal quantum number k=1).
Thus the magneto-mechanical anomaly can be “explained” on the basis
of the assumption that the atoms or ions of a ferromagnetic substance
under ordinary conditions are in a single-quantum state. Because of
lack of space we must put to one side the question of how much this
theory is compatible with the views of Bohr concerning the structure of
the Periodic Table and the most recent investigations of the spectrum
of iron vapor.

2)We are referring to the maximum multiplicity because the multiplicity
of the energy levels of this atom, generally speaking, increases with the
azimuthal quantum number X until the maximum value is attained. It
is well known, for instance, that the single-quantum .S energy levels
(terms) generally are not split.

2)The number of “external” electrons is understood to mean the differ-
ence between the total number of electrons in a given atom and the
number of electrons in the preceding inert gas.

M)See Sec. 5; Gerlach'® assumes that n=>5 for Fe” and not n=4, and we
do so also.

29)See also the note of Angerer and Joos in Naturwissenschaften for Feb-
ruary 15, 1924.

%)This straight Jine is not found on the Sommerfeld diagram, but is
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reproduced here from the arguments developed by Sommerfeld and
published in the most recent of his papers.

For these laws see, e.g., Sommerfeld (Atombau. III Aufl. C. 6, § 6).

™ According to a verbal report of P. S. Ehrenfest, Oskar Klein, in calcu-
lating the action of a magnetic field on a hydrogen atom, concluded
that the axis of the hydrogen atom is always perpendicular to the field.
If the calculations of Klein are correct, then they are a serious argu-
ment in favor of the viewpoint of Landé.

?The present-day theory, unlike the initial theory, allows for an align-
ment perpendicular to the field (cos ¢=0), if j is integral (see footnote
28), which is in complete accord with the quantization rules cited in
the paper.

391 andé has presented an interesting review of the fundamental difficul-
ties that confront the modern theory of atomic magnetism.'®
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