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1. Evaluation of the time-dependent (dynamic) or
equilibrium (static) correlation functions is one of the
most important problems in quantum statistical physics.
There are a number of methods used to solve this problem,
the simplest and most convenient of which is the method of
two-time retarded and advanced Green's functions, which
were introduced in 1959 by Bogolyubov and Tyablikov1

(see also the review2). This method can be used to solve in
a unified way many problems in both equilibrium and non-
equilibrium statistical mechanics,3"7 including the evalua-
tion of the thermodynamic characteristics of a system, the
kinetic coefficients, and also the generalized susceptibility.

The main difficulty arising in the use of this Green's
function method consists in the necessity of choosing a
method of breaking off (decoupling) the infinite chain of
equations of motion for the increasingly complicated
Green's functions. Such a procedure is, of course, nonu-
nique except in those cases when the problem has an ex-
plicit small parameter (e.g., in the hydrodynamic or high-
frequency region), in which case the decoupling procedure
is completely equivalent to the procedure of selecting the
important diagrams in the diagram expansion method.8

A great deal of interest in statistical physics centers on
problems in which the system undergoes a phase transition
(e.g., a ferromagnet in the Ising or Heisenberg models).
For constructing the solution in the entire temperature re-
gion there is no single small parameter, and the decoupling
is done in a heuristic way (as, e.g., in the Tyablikov
approximation1"4 in the problem of a Heisenberg ferromag-
net). The only justification for such a decoupling or any of
its numerous modifications (see, e.g., the Supplement to
Refs. 4 and 6) is that it yields reasonable approximations
throughout the entire range of temperatures and fields, that
the sum rules are satisfied to sufficient accuracy, or, possi-
bly, other additional physical conditions. These last in-
clude, e.g., the presence of gapless Goldstone modes, finite
values of the critical temperature for systems with a phase
transition, fulfillment of symmetry requirements for the
correlation functions, etc.

Unfortunately, at the present time there are no meth-
ods for choosing a priori a specific form of decoupling, nor
is there a mathematically rigorous justification for such a
choice (or even an precise estimate of its accuracy). Nev-
ertheless, there are a number of rather well developed ap-
proximate methods that enable one to take into account in
a systematic and unambiguous way the contribution of the
higher approximation in evaluating the Green's functions.
In all these methods it is necessary to break at some step
the chain of equations for the Green's functions, but now it

is not the original chain, as in the early papers (see Refs. 1
and 2), but a suitably reconfigured chain that is broken. In
the present paper we successfully use for this purpose var-
ious different versions of projection operations that permit
reconfiguration of the chain of equations for the Green's
functions in such a way that each equation of the chain in
the succeeding step describes the evolution in a space
which is orthogonal to the dynamical variables appearing
in preceding step. Then the equations of the reconfigured
chain couple Green's functions that are irreducible with
respect to the previous functions of lower order. This sub-
stantially simplifies the construction of the approximations
for the two-time retarded and advanced Green's functions
and in practice replaces the diagram method that has been
successfully applied, e.g., to the causal Green's functions at
Г=0 or the Matsubara Green's functions at T^Q (see
Ref. 8).

2. One of the most frequently employed methods based
on the introduction of projection operators is the Mori
method,9'10 which was applied directly to the two-time
Green's functions in Refs. 11 and 12. A characteristic fea-
ture of these methods is the time dependence of the corre-
lation functions in terms of the projected, or reduced, ev-
olution operators, which becomes increasingly complicated
with each step. Although this dependence remains undeci-
phered in the Mori method, it is clear that it necessitates
making additional approximations. In the papers by
Tserkovnikov13"15 an alternative method of constructing
the chain of equations for the Green's functions was devel-
oped, based on differentiation with respect to the two times
and being on the whole equivalent to the Mori method, but
making explicit the action of the reduced evolution opera-
tors. The Tserkovnikov method has been developed in two
completely equivalent versions: for the energy (£)
representation,13'14 and for the time (t) representation15

(see Ref. 17 for examples of the application of this
method); the details of the derivation and examples of the
application of the E representation, which is more conve-
nient in practice, can be found in Refs. 14 and 16, respec-
tively.

The main result of the projection method in the Tserk-
ovnikov formulation for the E representation is as follows.
Suppose a physical system is described by a Hamiltonian H
and the so-called basis operators Л, and B1 (each of which
for a specific physical problem can be represented by a row
or column). For the majority of systems considered in
quantum statistical mechanics there is an infinite system of
operator equations of motion ( H = \ ) , which determines
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the sequence of operators of increasing complexity An and
Bn («=1,2,...),

=a)(n,n)An+U(n,n+\)An+l, -iB+ (1)

The matrix «(//,«) [and, respectively, v+(n,n)] relates the
operator iAn with the operator An (respectively, —iB^
with 5+ ) and describes the "free evolution" of the system;
the matrix U(n,n+\) [respectively, V+(n+l,n)] which
relates the operator iAn to the operator An+] (respectively,
/5+ to B++l), takes the influence of the "interaction" into
account.

The main objects of study in quantum statistical me-
chanics are the time correlation functions (A(t) B+ ( t 1 ) )
or the closely related Green's functions

= ---
n

(see, e.g., Refs. 1-8), where (...) denotes an average over
the Gibbs canonical (or grand canonical) ensemble,
9(t-t') = l for t>t', e(t-t')=0 for t<t', and
(A(t) B+(t')) is taken to mean one of the bilinear com-
binations constructured from the operators A(t), B+(t'):

(A(t)\B+(t'))K =- г*Jt

')}т= f
Jo

( A ( t ) \ B + ( t

(A(t)\B+(t')}=-([A(t),

(2)

or

The Green's functions corresponding to the different ways
of choosing (A(t)\B+(t')) in (2) are, respectively, the
Kubo relaxation function, the scalar product determining
the isothermal susceptibility at t' = t, the retarded or ad-
vanced (anti) commutator (т;=±1) Green's function,
and the causal Green's function. The equations of motion
for all these Green's functions are based on Eq. (1) and are
identical in form (the only difference is the form of the
initial condition (A \ B+)). Since in the equilibrium case all
the average quantities (A(t) \ B+(t')) depend only on the
time difference t—t', it is convenient to go over the E
representation and obtain according to Ref. 13 the Dyson
equation for the Fourier transform ( ( A \ \ B f ) ) E of the
Green's function constructed from the basis operators
/4[, 5,+ (see Ref. 14 for the generalization to the case of
the Green's function ( ( A n \ B+ ))E for n > 1):

-((A\B+}}E((Al

The mass operator on the left-hand side of (3) is expressed
in terms of the irreducible (with respect to the initial
Green's function) part of ((A\\ B^))E, which has the
form

\B+)}E

l

(4)

it is clear that any operator A or B+ that can be expressed
linearly in terms of the operators A j and B f , respectively,
will not contribute to (4) i.e.,

for any A and B+. Thus relation (4) does in fact perform
a projection or, what is the same, a separation of the irre-
ducible part with respect to the basis operators A\, B^,
which is another way of saying that a transition has oc-
curred into a subspace orthogonal to the initial basis oper-
ators.

3. It is clear from Eqs. (3)-)(5) that the maximum
possible contribution to the mass operator in the case when
the equations of motion (2) are linearized with respect to
the operator A\ or В* (independently of the specific way
that the linearization is carried out and of the choice of
coefficients in it) is given by so-called generalized Hartree-
Fock approximation (GHFA), which, according to Eq.
(3), has the form

((A, B+))E~(Al\B+)[E-(co(\,\)

X(A:
k-i\i -i (6)

In other words, Eqs. (3)— (5) imply that any attempt to go
beyond the framework of the GHFA with the help of lin-
earized equations of motion for the basis operators Alt B^
will give a manifestly zero result.

One can construct approximations different from the
GHFA only by constructing some nontrivial approxima-
tion for the Green's function ((A2 which deter-

(3)

mines the mass operator and which is clearly of a higher
order than the initial function ( ( A , B*)) E. A systematic
procedure for constructing the corresponding infinite chain
of equations for the irreducible Green's functions of arbi-
trary orders, with an increasing degree of irreducibility,
was set forth in Refs. 13 and 14, and examples of its ap-
plication are given in Ref. 16.

We note that the approximation expressions for the
Green's function ((A\ B^))E (or, correspondingly, for
the spectrum of elementary excitations) of the form (6) in
the scalar case have been proposed previously by many
authors, including Roth,18 Plakida,19 Kalashnikov and
Fradkin,20 Tahir-Kheli and Jarrett,21 and also Wallace.22

The authors of Refs. 18-22 used different physical ap-
proaches: in Refs. 18 and 19 the Green's function method
was used; in Refs. 20 and 21, the spectral intensity method
with accuracy up to allowing the lower moments; and, in
Ref. 22, an effective linearization of equations of motion of
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the form (2). A common finding of these and a number of
other papers is that the GHFA expressions of the form (6)
are the maximum possible within the framework of the
idea of a "single-particle" linearization without expansion
of the initial operator basis. In these expressions the effect
of the mean field of the system on the effective spectrum of
the (noninteracting and undamped) quasiparticles used to
model the given system is taken into account.

(As we know, the ordinary mean field approximation
presupposes that the localization procedure is carried out
back at the stage of the initial Hamiltonian and not at the
state of the first equation of motion, as in the GHFA.)

Later Sawada23 confirmed the hypothesis made in Ref.
24 that the GHFA spectrum is optimal in a variational
sense and yields the minimum free energy functional in the
given class of solutions (this was shown in reference to a
Heisenberg ferromagnet in Ref. 25; one should, however,
pay heed to the discussion in Refs. 26, 27 as to the appli-
cability of the "exact" GHFA near the Curie point).

4. In connection with the results presented above, it
was dismaying to read in Uspekhi the recent article by
Sarry,28 which we think is seriously deficient from the
standpoint of both methodology and results. For evaluat-
ing correlation functions, Sarry formulates a so-called (in
his terminology) "direct algebraic method," which is os-
tensibly free of any ambiguities and "volitional solutions,"
admits 'exact self-consistency" and "nonlinear lineariza-
tion" of the initial equations of motion, and is, moreover
(in the words of the author) mathematically rigorous
"from beginning to end."

Perhaps this paper, which abounds in arbitrary and
fallacious assertions, should not be taken seriously but left
to the conscience of its author and the referees. However, it
was published in our esteemed journal and contains
pointed and completely unproven criticism of the Green's
function method, whose development and current level of
refinement are clearly not adequately understood by its
author.

(For example, he cites the lack of "convincing" justi-
fication for the decoupling method, even though such
methods can be justified a priori only in the context of
perturbation theory in the case when the problem contains
an explicit small parameter, and, in the absence of such,
only by the self-consistency of the results.)

For these reasons we think it would be helpful to pre-
vent any possible misunderstandings on the part of readers
who are just becoming acquainted the Green's function
method, since the scientific look, abundance of formulas,
and verbosity of that paper28 might temporarily obscure
the fundamental errors of its author.

First of all, the "direct algebraic method" and its re-
sults are essentially not original but are completely equiv-
alent to the well-known GHFA, which was derived not
only by Roth,18 who is cited in Ref. 28, but also, indepen-
dently, in a number of other papers19"27 (see Sec. 3). This
approximation is sometimes sufficient for an adequate de-
scription of a system at the level of the so-called first-order
theories (a detailed comparative analysis of which for the
example of a Heisenberg ferromagnet is reviewed by RudoT

in Ref. 6). However, even in this approximation there is a
significant degree of ambiguity in the evaluation of the
right-hand side of Eq. (6), especially in systems with non-
trivial kinematic properties of the operators (e.g., spin op-
erators; see Ref. 17 and the Supplement to Ref. 4). More-
over, it is wrong to try to claim ultimate truth for the
GHFA, as is done in Ref. 28. The author of that paper
naively assumes that by means of some technical contriv-
ances (e.g., the Jacobi identity of the commutators) he can
force practically all the essential dynamical and kinemati-
cal information about any system having a strong interac-
tion into a "procrustean bed" of some effective frequencies
(or of the К matrix in the notation of Ref. 28). This, of
course, is far from being the case, as the author of Ref. 28
could have seen if he had taken the trouble to acquaint
himself with the literature;4"17 in particular, in Ref. 17 it is
shown for the example of a Heisenberg ferromagnet that it
is fundamentally necessary to take into account along with
the GHFA the contribution of the mass operator from Eq.
(3). True, he does mention casually the necessity of ex-
panding the operator basis even in his scheme, but nowhere
does he attempt to implement this idea.

5. In conclusion, we wish to point out one egregiously
bad mistake that clearly demonstrates the level of "math-
ematical culture" of Ref. 28. In the framework of the stan-
dard BCS model, for which it has been rigorously proven7

that an asymptotically exact solution exists, the author of
Ref. 28 manages to obtain some new equation for the crit-
ical point, the physical meaning of which, in his words, is
not clear. According to this equation, superconductivity is
ostensibly possible in the BCS model not only for an at-
tractive potential but also for a repulsive potential in a
certain range of electron density. It is easy to see, however,
that this "result" stems simply from errors in evaluating
the commutators appearing in the GHFA, specifically,
from ignoring the role of taking the thermodynamic limit,
N-> <x>, V-* oo, N/ V= const, while at the same time keep-
ing in Eq. (3.5.25) of Ref. 28 terms of different orders in
the parameter \/N. Of course, the correct result is given
only by Eq. (3.5.26) of that paper, which agrees with the
long-known and well-known formula (see, e.g., Ref. 8).
The "new" equation (3.5.27) [and the equations (3.5.28)
and (3.5.29) that follow from it] is simply the result of the
aforementioned misunderstanding [which the author of
Ref. 28 for some reason calls an "interesting physical prop-
erty" of Eq. (3.5.25)] and also the completely incorrect
discussions that come between Eqs. (3.5.26) and (3.5.27),
on the grounds of which the author drops terms ~N2 in
comparison with ~N.

In the other examples given in Ref. 28, the results,
although not wrong, are largely "rehashes" of the well
known results of the GHFA. This only points up the fal-
laciousness of the claim of its author to have created a new
method of evaluating correlation functions in quantum sta-
tistical physics.
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