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I. INTRODUCTION

Because a molecule is a complex many-particle system,
perturbation theory is the main working method used for
seeking analytical solutions for the stationary states of mol-
ecules. One arrives at the zero order approximation by
constructing a series of increasingly crude models, each
embedded in the preceding one, until it becomes possible to
obtain an exact solution of the model problem. Each model
has certain symmetry properties which are specified by its
symmetry group. For example, in the Born-Oppenheimer
approximation the symmetry of the intramolecular motion
at sufficiently small deviations from the equilibrium posi-
tion is characterized by the geometric symmetry group of
the equilibrium configuration of the molecule, while in the
zero order approximation the symmetry of rotational mo-
tion of the molecule is determined by the symmetry of the
rigid top, etc. As long as one is working in the framework
of a single model there are no particular problems with the
analysis of the symmetry properties. However, the situa-
tion is considerably more complicated if one attempts to
analyze the evolution of the symmetry properties of the
intramolecular motion (i.e., the evolution of the symmetry
properties of the wave functions and the operators for the
physical quantities) from one model to another. The latter
analysis, as we shall see, is altogether indispensable for any
kind of complete analysis. At present there is no generally
accepted idea for solving this problem.

The most widespread approach is based on the use of
the complete nuclear permutation-inversion (CNPI)
group of the molecule. A detailed exposition of this ap-
proach is given in the monograph by Bunker.1 The CNPI
group is defined as the direct product of the group of per-
mutations of identical nuclei of the molecule and the group
of inversion of the spatial coordinates of all the particles of
the molecule (i.e., all the nuclei and electrons) about its
center of mass. Because of the limited accuracy of the ex-
perimental data and also to simplify the treatment, one
ordinarily selects from the CNPI group only the so-called
"feasible" elements (those relating to transformations of
the molecule that correspond to a zero barrier or a barrier
which is sufficiently small compared to the dissociation
energy), which form the molecular symmetry (MS)
group. It is assumed that: 1) the CNPI group (and, in the
majority of cases, the MS group) includes all the symmetry
elements necessary for characterizing the problem of sta-
tionary states of the molecule in a specified electronic state;
2) the action of the elements of the CNPI or MS group is
specified in the configuration space of any approximate
model and leaves invariant any model Hamiltonian; 3) to
determine the correspondence between irreducible repre-

sentations of the CNPI or MS group and the stationary
states of the molecule it is necessary to write the zero order
wave functions, to calculate the action of the elements of
the CNPI or MS group on these functions, and to decom-
pose the representation thus obtained into irreversible rep-
resentations.

The chain of symmetry groups concept is actually a
generalization of the approach to analysis of the symmetry
properties of molecular states that was laid out in the book
by Landau and Lifshitz.2 The generalization concerns pri-
marily the extension to the case of nonrigid molecules.
Interestingly, the main reason for introducing the CNPI
concept in the pioneering paper by Longuet-Higgins3 was
because of the impossibility of making this extension. The
essential idea of the chain of symmetry groups approach is
as follows. As we have said, in the analytical solution of the
problem of the stationary states of a molecule by pertur-
bation theory methods, a chain of embedded models arises.
It is clear that in a quantitative calculation the transition
between successive models must be continuous, as is ex-
pressed in the possibility of describing the difference be-
tween them in the form of an expansion in a small param-
eter. In spite of this requirement, the symmetry groups of
the models used may be different, i.e., the symmetry can
change abruptly. This is because the approximate model is
based on a definite physical idea and can therefore carry
additional qualitative information about the molecule un-
der study. Since this information is contained in the sym-
metry group of the approximate model, this group plays a
clear independent role in relation to the symmetry groups
of the more rigorous models. All these groups are joined
into a chain by the matching conditions, which identify in
the symmetry groups of successive models the equivalent
elements according to which the solutions of the Schro-
dinger equation must transform identically.

There are extremely significant philosophical differ-
ences between these two concepts for analysis of the sym-
metry properties in the theory of molecular spectra. This
circumstance has even led to papers concerning the errors
in Ref. 2 in regard to these questions (see Ref. 4, for
example"). In the present paper we discuss: 1) the present
state of development of the chain of symmetry groups con-
cept; 2) a number of advantages that this concept has in
comparison with the CNPI-group approach for the analy-
sis of both rigid and nonrigid molecules.

2. CLASSIFICATION OF THE STATIONARY STATES
OF RIGID MOLECULES

In the analysis of the symmetry properties of a mole-
cule an important factor is the number of its energetically
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equivalent equilibrium configurations, which are separated
by a nonzero energy barrier. We will call these configura-
tions independent. A molecule is rigid if it has only one
independent configuration. For the sake of specificity, in
this Section we will use the BF3 molecule as an example.

In a rather rigorous formulation of the problem we can
write the symmetry group as ir3 X Q, which coincides with
the CNPI group2) (the use of the symmetry group Q is
associated with neglect of the weak interactions).2 The flu-
orine nuclei are fermions, and the complete wave function,
in neglect of the hyperfine interaction involving the nuclear
spin, is represented in the form of a contraction of the
coordinate and spin parts, which transform according to
mutually dual Young diagrams.3' Since the spin of the
fluorine nucleus is equal to 1/2, the dimension of the spin
space is 2 and only the following spin Young diagrams are
allowed:

[Aspin]:[3], [21].

3/2 1/2.

(1)

The numbers under the spin diagrams give the values of
the total nuclear spin of the fluorine nuclei for each dia-
gram. As a result, the allowed coordinate Young diagrams
have the form

[Acoord]:[l3], [21]. (2)

To solve the problem of the stationary states of the mole-
cule we make a number of further approximations, the first
of which is the Born-Oppenheimer (BO) approximation.
Only in this approximation for a given electronic state does
the concept of an interaction potential of the nuclei arise,
and hence the concept of an equilibrium configuration of
the molecule. Information about the symmetry of the spin
field for sufficiently small deviations from the equilibrium
position is carried by the geometry of the equilibrium con-
figuration and is contained in the point (geometric) group
of the molecule. This information is not contained in the
group тг3. As a result, those configurations of the nuclei
which are obtained by their small displacements from the
equilibrium position and differ in relation to the force field
coincide from the standpoint of permutations of identical
nuclei. In the general case the point group of a molecule
can be homomorphically mapped onto a subgroup of the
group of permutations of identical nuclei.7'8 Homomor-
phism arises and plays a fundamental role for linear and
planar molecules. In this case the only allowed representa-
tions of the point group are those which behave identically
with respect to its elements which are homomorphically
mapped into the same one element of the permutation
group. Representations excluded for this reason will be
called geometrically forbidden, since their exclusion is
based on the geometry of the equilibrium configuration of
the molecule.

For the BF3 molecule the equilibrium configuration is
planar and corresponds to the point group9

D3h = C3 vXCs.

The joining of the groups тг3 and D3h is presented in Table
I. Since the multiplet AJ corresponds to a forbidden coor-

TABLE I. Joining of the groups щ and D31l=C3vxCs for finding the
allowed multiplets of the BF3 molecule.

Classes of ir}

Classes of D3h

{I3} {I3} {3} {3} {12} {12}
E <7h 2C3 2S3 3crv 3U2

• ••• [21] •••Irreducible representations [3] [I3]
of ir3

Irreducible representations A j A.'2 A" A'{ E' E"
ofD3h

dinate Young diagram, we obtain the following allowed
multiplets:

2E'(±)
(3)

The numbers in front of the multiplet notation give its
nuclear statistical weight, and the signs (±) correspond to
the behavior of the complete coordinate wave function un-
der the inversion transformation i (group D3 hxCj).

In the next, zero order, approximation the motion of
the nuclei is separated into independent vibrational and
rotational motions, which we describe by the harmonic
oscillator and rigid top models. The symmetry group of the
vibrational problem is formally the same as the point
group, but its elements act only on the vibrational coordi-
nates, i.e., on small nuclear displacements. The symmetry
group of the rotational problem is that of the rigid top. It
has only purely rotational elements, which act on the Euler
angles. In the present case it is the group DM . To construct
a classification it is necessary to know from which of the
electronic, vibrational, and rotational functions obtained in
the zero order approximation that one can obtain the al-
lowed multiplets. The joining of the symmetry groups in
the BO approximation with the symmetry groups of the
zero order approximation is of the form8

) D,h x с —J3h
X ( rvib/D,,

X ( A rot-in ) D1t, X С > (4)

here Ге] and rvib are the irreducible representations of the
group D3h according to which the wave functions of the
electronic and vibrational motions transform; rrot.in is the
irreducible rotation-inversion group. The correlation be-
tween the rotational irreducible representations of the sym-
metry group of the symmetric top D^ and the rotation-
inversion representations of the group D3 hxCj (see Table
II) is obtained by associating these groups according to
their common rotation subgroup D6. Here the representa-
tion D3h pertains to the rotational function and the repre-
sentation Q pertains to the multiplet; this is indicated by
the arrow in expression (4). The association of the groups
D3 hXCj and DM is based on the following circumstances:
1) the behavior with respect to the electronic-nuclear op-
eration i has physical meaning only for a multiplet, i.e., this
symmetry element characterizes the total coordinate mo-
tion; 2) the difference in the use of the nuclear and
electronic-nuclear symmetry operations takes into account
the fact that only a portion of the total angular momen-
tum, characterized by the coordinate motion in the BO
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TABLE II. Correlation between the rotation representations of the group
D^, and the rotation-inversion representations of the group D3hXC|.

D.

A,
A2

E,
E2

E3

E4

E5

E6

D6

A,
A2

E,
E2

E2

E,
A,+A2

D3hXC,

A; ( + ) , A2'(->
A2

( + ) , A"'"'
E"< + > , £ ' < - >
E'( + ), E"(~'

„i i \ .1 \ „( i\ ,( \A "I -r I A ' V i i A " v ~т~ i A

E'( + ), E"'"'
E"< + ), E'(~'

A^' .Aj '- ' + Ai '^.Ar'- 1

approximation, goes over into the angular momentum of
the rigid top. For a linear molecule this, in particular, leads
to the automatic exclusion of states with J< I (see Ref. 7),
where J and / are the quantum numbers of the total and
vibrational angular momenta.

Figure 1 gives a classification of the rotational levels in
a completely symmetric vibronic state of the BF3 molecule.
Here we must emphasize the following. The spatial inver-
sion element i plays a double role. First, it characterizes the
symmetry of the space, and second, it can mix the inde-
pendent configurations of the molecule among themselves.
In the general case the presence of this mixing gives rise to
the so-called inversion doubling of the levels. It is well
known that such doubling is absent for linear and planar
molecules. In the approach considered here this doubling is
automatically forbidden for such molecules by virtue of the
presence of a homomorphism of the point group to the
group of permutations of identical nuclei. Nevertheless, all
the states of these molecules have a completely determined
behavior with respect to the operation i since the symmetry
properties of the space are preserved.

Let us consider the selection rules for the example of
electric dipole transitions. For the strongest transitions of
this class, which go without a change in symmetry of the
spin state, the dipole moment transforms according to the
completely symmetric coordinate Young diagram of the
group тг3. From Table I we find that in the BO approxi-
mation for the dipole moment, only the representation
A j is allowed. When the behavior with respect to the op-
eration i is taken into account, we have A J ( ~ ' . As a result,
the selection rules are written in the form

E'( (5)

Let us conclude this Section with a brief discussion of
the most salient features of the analysis of the symmetry
properties of the stationary states of the BF3 molecule
when the CNPI concept is used. In this case it is necessary
first of all to specify the action of the elements of the group
ir3 X Q on the variables of the configuration space of the
zero order approximation. Strictly speaking, this procedure
is incorrect, since the symmetry transformations of the rig-
orous problem are not defined in the configuration space of
the zero order approximation, and their formal definition is
multivalued. The latter circumstance is due to the fact that
this definition depends on the reconciliation of the behavior
of the axes of the molecule coordinate system (MCS) un-
der the action of the elements of the group тг3хС;, i.e., it
is necessary to specify the relations

(6)

where d, d' is the set of three Euler angles that determine
the orientation of the MCS relative to the laboratory coor-
dinate system (LCS) before and after the transformation
gk. The choice of operators gk is not restricted in any way

J even Jodd

l k l = 0

3

4

FIG. 1. Classification of the rotational levels of the BF3

molecule in a completely symmetric vibronic state. The
symbol X signifies that the state is forbidden. We note
that there is no splitting of the levels with \k\ =3n be-
cause the multiple! A[ is forbidden.
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TABLE III. Rotations of the molecular coordinate system (MCS) cor-
responding to the choice made in Ref. 1 as to the action of the elements
of the CNPI group on the Euler angles; here {...}* = {...}xE*, where E*
is the analog of the operation i; R" is a rotation through an angle a about
the axis n (the z axis coincides with the threefold axis of the group D31l);
for each class of the CNPI group the rotation is given for just one element
as an example; also indicated are the elements of the point group D3h that
represent, for the chosen rotations of the MCS, the action of the elements
of the CNPI group on Фу]ь and Фе].

CNPI

Rotation of the MCS

Da-

{I3}

R°
E

{3}

*^2

2C3

{12}

RJ
3C2

{I3}*
R;
Ob

{3}*

**T

2S3

{12}*

R;
3<rv

X

FIG. 2. Equilibrium configuration of the CH3BF2 molecule.

save for reasons of convenience. As an example, let us
consider the inversion transformation i. In Ref. 10 it was
proposed to use the relation4'

d'=d and , accordingly, 1ФГо1=:Фго1- (7)

An idea that is often used is to perform a rotation of the
MCS in order to compensate completely or partially the
changes that occur in the equilibrium position of the nuclei
in this coordinate system as a result of the inversion trans-
formation. Complete compensation can be achieved only
for molecules with a linear or planar equilibrium configu-
ration. For linear molecules in this case we have the well-
known relation2

It is the idea of complete compensation that underlies
the use of reconciliation (6) in Ref. 1 in an analysis of the
action of all the operations of the CNPI group for the BF3

molecule. This allows one to represent all the symmetry
transformations in the MCS as displacement transforma-
tions for small displacements from the equilibrium posi-
tions. The results are given in Table III, which also indi-
cates the elements of the point group D3h that act only on
small displacements and represent the action of the ele-
ments of the CNPI group on Ф ь̂ and Фе1. It should be
emphasized that the element E* (the analog of i) is used to
describe reflection in the plane of the molecule. This is
incorrect, since i is a symmetry element of the space and
does not pertain to the symmetry of the equilibrium con-
figuration. But when working in the CNPI group one does
not have recourse to any other approach, since reflection in
the plane of the molecule is impossible to describe even
formally by a permutation of the nuclei lying in this
plane."

Table III enables one to specify uniquely the action of
the elements of the group яг3 X С; on the variables of the
configuration space of the zero order approximation. It is
then necessary to evaluate their action on the wave func-
tions of the zero order approximation and to decompose
the representation thus obtained into irreducible represen-
tations. The result of this rather unwieldy scheme of con-
struction is a classification of the stationary states of the
molecule that is in the main equivalent to that which we
obtained using the chain of symmetry groups concept. The
most important difference between them is that the group

D3hxCi, which characterizes the symmetry in the BO ap-
proximation, is wider than the CNPI group, and one loses
part of the information in working with the latter (there is
no explicit information about the behavior of the wave
functions under the operation of spatial inversion i).

Reviewing what was said hi this section, we can reach
the following important conclusion. In the chain of sym-
metry groups approach the concept of symmetry is "pri-
mary" in the sense that information about explicit form of
the solutions of the Schrodinger equation is not used. In
the CNPI-group approach, analysis of the explicit form of
the solutions is an essential part, and therefore the concept
of symmetry is "secondary."

3. CLASSIFICATION OF THE STATIONARY STATES
OF NONRIGID MOLECULES

Classification of the molecular states on the basis of the
CNPI group was first proposed in Ref. 3. The main reason
for introducing this idea was the impossibility of extending
the approach using the geometric symmetry group of the
problem in the BO approximation to the case of nonrigid
molecules. In this Section we discuss a different point of
view, which was developed in Refs. 8, 11, and 12.

As a rather simple first step we analyze the molecule
CH3BF2. If we neglect the internal rotation, the chain con-
tains the following symmetry groups: 1) the group of per-
mutations of identical nuclei, тг3Хя-2; 2) the point group
Cs (the proposed equilibrium configuration is shown in
Fig. 2); 3) the rotation group D2. Since the spin of the H
and F nuclei is equal to 1/2, the dimension of the spin
space is 2 for both kinds of nuclei. Determining the al-
lowed coordinate Young diagrams of the group тг3 X ?r2

 and
joining it with the group Cs (all the correlation tables re-
quired for a rigid molecule are given in Table IV), we get
the following allowed multiplets:

(6 + 4 + 2)A". (9)

These multiplets can be constructed from the zero order
wave functions according to expression (4) with the group
D3h replaced by Cs. The correlation between the irreduc-
ible representations of the symmetry group of the asym-
metric top D2 and the rotation-inversion representations of
the group Cs X Q are obtained by associating these groups
according to their common rotation subgroup C2. Figure 3
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TABLE IV. Correlation tables used in classifying the stationary states of
a rigid CH3BF2 molecule.

D2

A

в,
B2

B3

7ГзХ7Г2

[I3] X [I2]
[21] X [I2]
[I3] X [2]
[21] X [2]

С2

А
В
В
А

Cs

А'
А' + А"

А"
А' + А"

CSX С,

А'( + >, А"'"'
А"'', А"( + )

д'(-) ) А"( + )

А" + > , А " < - >

shows the classification of the rotational levels of the
CH3BF2 molecule in a completely symmetric vibronic
state. The electric dipole selection rules in the BO approx-
imation are of the form

Table V shows how the class of the rotational electric di-
pole transitions for the ground vibrational state changes for
different models. The symbol b denotes the "forbidden"
transitions (forbidden in the zero order approximation)
that arise for a rigid molecule in the BO approximation.13

We now take into account the presence of internal
rotation about the chemical bond linking the carbon and
boron atoms in the CH3BF2 molecule. It is clear that this
circumstance is not reflected in the symmetry group of the
rigorous problem. The situation is different for the geomet-
ric symmetry of the force field in the BO approximation:
now the point group is insufficient for characterizing this
symmetry. It is necessary to construct a wider geometric
group in order to take into account the symmetry of the

А А
j—

B B

в в

A

(«*4+2)A
*(->

(6+4+2)A *<+)

( 6+4+2

(6+4+2)A 'C-'

(12+6+2)А '

FIG. 3. Classification of the rotational levels of a rigid CH3BF2 molecule
in a completely symmetric vibronic state.

TABLE V. Selection rules for the rotational electric dipole transitions of
the CH3BF2 molecule, a represents transitions between rotational levels in
the rigid top approximation; a,b are transitions in the BO approximation
without allowance for the internal rotation; a,b,c are transitions in the BO
approximation with allowance for the internal rotation.

A
B,
B2

B3

A

с
a
b
с

в,

a
с
с
b

B2

b
с
с
а

В3

с
b
а
с

motion of the nuclei in transitions from one configuration
to another. The expanded group must contain the point
group of the molecule as a subgroup, and, in addition, we
require that all of its elements as before leave one geomet-
ric point (the center of mass) invariant. This is because the
position of the center of mass remains unchanged for any
intramolecular motions. Following Ref. 8, where the con-
cept of an expanded geometric group was first introduced,
we shall call it the expanded point group. 1'hus there ap-
pears yet another symmetry group, which we must join on
the one hand with the group of permutations of identical
nuclei and on the other with the point group.

Specifically for the molecule CH3BF2 the expanded
point group has the form G24=C3vXC2v, where the ele-
ments of the groups C3v and C2v act on the spatial coordi-
nates of the nuclear structures of CH3 and BF2, respec-
tively. For determining the allowed multiplets of the
expanded point group one can separate the joining of the
groups тг3 X ir2 and G24 into the joining of тг3 with C3v and
тг2 with C2v. As a result, we have the following allowed
multiplets for a nonrigid molecule:

4(A 2 XA,), 2(EXA 1 ), 12(A2XB,), 6(ExB,).
(10)

Finally, by joining the groups G24 and Cs (all the addi-
tional correlation tables for the nonrigid molecule CH3BF2

are given in Table VI), we obtain a complete picture of the
splittings with allowance for the internal rotation; this is

TABLE VI. Additional correlation tables used for taking into account
the internal rotation in the CH3BF2 molecule.

Cs

A'
A"

C2

A
В

G24— C3vxC2v

A2 X B,,E X A , , E X B,
A2 X A | ,E X A, ,E X B,

G12

A , , B 2 , E i , E 2

A 2 ,B,,E,,E 2

0,2 G2 4XC,

A,
A2

B,
B2

E,
E2

( A j X A , ) ' - '
( A 2 X A , ) < + )

(A 2 XB,) ( ->
(A 2 XB,) ( + )

(ExBd 1 * 1

( E X A , ) ( ± )
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(1 2+6+2)А

m=3

m=±2

m=±1

m=0

FIG. 4. Classification of the rotational levels of the CH3BF2

molecule in a completely symmetric vibronic state with allow-
ance for internal rotation.

shown in Fig. 4 for a completely symmetric vibronic state.
Also shown in Fig. 4 is a grouping of the splittings accord-
ing to their order of magnitude. Here it was taken into
account that the most strongly split levels are those which
correspond to different representations of the purely rota-
tion subgroups of the symmetry groups used in the con-
structing the classification. Therefore, the nuclear rotation
subgroup of the group G24xQ was considered.6) This sub-
group, which is denoted Gi2, is isomorphic with the group
D6. As a result, we separate out those level splittings to
which there is a contribution from the internal rotation.
Also given in Fig. 4 are the quantum numbers т corre-
sponding to the torsional moment for the case of the free
internal rotation of a rigid rotor. These quantum numbers
are easily obtained from the joining of the group G12 with
the symmetry group Cx of the free rigid rotor.

Analysis of the electric dipole selection rules leads to a
new class of "forbidden" rotational transitions (see Table
V). These transitions are due to mixing of different equi-
librium configurations of the molecule as a result of the
internal rotation. Therefore, in Ref. 8 it was proposed to
call them configuration-forbidden transitions.

Significantly more interesting from a technical stand-
point is the treatment of the ethane molecule 12C2H6 in
Ref. 8. Here the point group D3d=C3vxC/ has an inver-
sion element /, which mixes two structures of CH3. This
fact leads to an expanded point group
G72= (C3vXC3v) ЛС/, where C3v is the point group of the
CH3 structure and the symbol Л denotes the semidirect
product.14 The latter arises because the element / does not
commute with the elements of the group C3vXC3v. These
two molecules are linked by the circumstance that the ex-
panded point group includes elements that act only on the
spatial nuclear coordinates. In general, transitions between
energetically equivalent equilibrium configurations of a
molecule can be divided into two types: 1) Transitions for
which the spatial change in the position of the nuclei is an
exchange of places of identical nuclei (exchange transi-
tions). The corresponding symmetry transformations are
purely nuclear. 2) Transitions for which the spatial change

in the position of the nuclei can occur only with a spatial
change of the electronic configuration (nonexchange tran-
sitions). The corresponding symmetry transformations are
electronic-nuclear.

Thus for a nonrigid molecule the group of permuta-
tions of identical nuclei (together with the point group of
the molecule) determines only the number of independent
energetically equivalent configurations,7* while classifica-
tion of the stationary states of a nonrigid molecule depends
substantially on the geometry of the transition between
these equilibrium configurations, which is specified by the
expanded point group. Naturally, the elements of this geo-
metric group by no means always have even a formal an-
alog among the elements of the CNPI group, owing to the
possibility of transitions of the second type (nonexchange
transitions). This is the main weakness of the CNPI con-
cept for analyzing nonrigid molecules.

As an example of the analysis of nonrigid molecules
with transitions of the second type between energetically
equivalent configurations, let us consider the family of mol-
ecules of the type HA AH (where A=O for hydrogen per-
oxide and A=S for disulfane). If we neglect the nonrigid
motion we have the following symmetry groups in the
chain: 1) the group of permutations of identical nuclei
iT2Xir2; 2) the point group C2= (E,C^') (Ref. 9; the equi-
librium configuration is shown in Fig. 5); 3) the rotation
group D2=D2

:i) = (E,C2

;3)

)C2

;2),C2

>)), where the axes (3)
and (2) do not coincide with the axes (z) and (y). In cases
when nucleus A has zero spin (A=16O,32S,34S) the per-
mutation group can be replaced by -ir2 without loss of gen-
erality in the subsequent discussion. Determining the al-
lowed coordinate Young diagrams of the group тг2 and
joining this group with the group C2, we find that the
allowed multiplets are 1A(±), 3B(±). These multiplets can
be constructed from the zero order functions according to
expression (4) with the group D3h replaced by C2. The
correlation between the irreducible representations of the
symmetry group D2 of the asymmetric top and the
rotation-inversion representations of the group C2 X Q is
obtained by associating these groups according to their
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TABLE VII. Correlation of the symmetry groups for the HAAH mole-
cule.

FIG. 5. Equilibrium configuration of the HAAH molecule.

common nuclear subgroup C2 (all the necessary correla-
tion tables are given in Table VII).

We now take into account the fact that the HAAH
molecule has a nonrigid motion involving the tunneling of
the AH structures between energetically equivalent posi-
tions. Since the center of mass of the molecule does not lie
on the chemical bond AA, only a synchronous motion of
the AH structures about the axis, toward each other or
away from each other, is possible. We stress that in such a
motion the nuclei do not exchange places with each other
in space. The expanded point group can be represented in
the form G4 = C2XCS, where Cs=(E)a

u'-t')), where: 1)
the group Cs operates both on the coordinates of the nuclei
and on the force field, i.e., on the electronic configuration
(in this sense this group is similar to the group Q); 2) the
group G4 contains elements that do not have analogs in тг2.
Both of these features are due to the fact that the nonrigid
motion is of the nonexchange type.8' Joining the groups тт2

and G4, we obtain the following allowed multiplets of the
nonrigid molecule:

I ( A X A ' ) , 1(AXA"), З(ВХА'), 3(ВХА"). (11)

A,B3

B,,B2

A ( ± )

A

B,

B2

B3

( A X A ' ) ( + ),

(BxA')<->, (BxA") ( + )

(BXA') ( + ), (BxA") ( ->
')'-', (AxA") ( + )

The symmetry of the purely rotational motion of the non-
rigid HAAH molecule as a whole is characterized by the
rotation subgroup of the group G 4 XCj. This rotation
subgroup is the same as the group D2 = D2

2)

= (E,C(2Z\C¥\C(
2
x)). Interestingly, the rotation group D^1'

is not preserved when the nonrigid motion is taken into
account, since the ellipsoid of inversion of the rigid top
changes its orientation during this motion. More precisely,
only one element of the group D^1' remains, C^, which
then goes into the group D2

2).
Since the behavior of the wave function with respect to

the operations of the group Cs has physical meaning only
for a multiplet, we have the following scheme of construc-
tion:

X (Гго,.сопГ) c2 x cs x q • (12)

The correlation between the rotation representations of the
group D^2) and the rotation-configuration representations
of the group G4XQ is obtained by associating these groups
according to their common nuclear rotation subgroup
D2

2). Figure 6 shows the classification of the rotational
levels of the nonrigid HAAH molecule in a completely
symmetric vibronic state. We note the following. The con-
figurations obtained from the initial configuration with the
use of the electronic-nuclear operations i and a(xy^ are
dependent. However, this does not lead to errors in the use
of the group G4XQ, since the joining of this group with
the groups of the zero order approximation takes this pos-

FIG. 6. Classification of the rotational levels of a
nonrigid HAAH molecule in a completely sym-
metric vibronic state.
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FIG. 7. Equilibrium configuration of the 12CH4 molecule.

sibility into account. In Fig. 6 one can clearly see the rather
nontrivial correlation between the indices +, — and ', ".

To retain the CNPI concept in the analysis of the non-
rigid HAAH molecule, an expanded MS group is artifi-
cially introduced.1 As in the case of a linear molecule, this
is done for the purpose of obtaining at least formal analogs
of all the necessary geometric symmetry elements in the
BO approximation. This prescription is not the only pos-
sible one. For the nonrigid NH3 molecule the symmetry
operation corresponding to the tunneling of the N nucleus
through the plane of the H nuclei is described with the aid
of the element E* (the analog of i).1 Attempts have been
made to describe the symmetry element corresponding to
nonrigid motion of the second type as some permutation of
identical nuclei through an additional rotation of the mol-
ecule as a whole.5 This rotation is to make the equilibrium
configurations that are coupled by the nonrigid motion
coincident in space. However, as was pointed out in Ref.
11, such a procedure leads to an incorrect additional re-
quirement on the behavior of the wave function during
nonrigid motion, stemming from the requirement of a def-
inite transformation of the wave function under the per-
mutation of identical nuclei that is used in describing this
motion.

4. QUALITATIVE CONSTRUCTION OF THE OPERATORS
FOR THE PHYSICAL QUANTITIES

The chain of symmetry groups concept enables one
easily to construct in the required model the operator for
any physical quantity characterizing the molecule. The
construction of purely rotation operators for the physical
quantities (i.e., operators characterizing the coordinate
motion of a rigid molecule in a nondegenerate vibronic
state) is discussed in Ref. 16, where, in particular, expres-
sions are derived for the corrections to the rotation Hamil-
tonian due to the presence of interactions in the molecule
that are noninvariant with respect to the operation of spa-
tial inversion i. Here we examine the case of rigid mole-
cules by considering as an example the construction of the
spin-rotation Hamiltonian of the hyperfine interaction due
to the nuclear spin for the methane molecule 12CH4.

For the 12CH4 molecule the chain has the following
symmetry groups: 1) the group of permutations of identi-
cal nuclei тг4; 2) the point group Td (Ref. 9; the equilib-
rium configuration is shown in Fig. 7); 3) the rotation

group R3. The dynamical variables in the Hamiltonian are
the coordinate angular momentum (the coordinate part)
and the spins of the H nuclei (the spin part). From the
requirement that the spin-rotation Hamiltonian be invari-
ant under transformations of the group тг4, it follows that
its coordinate and spin parts must transform according to
the same irreducible representation [Я] of the group тг4.
Then for each such representation in the case of the spin-
rotation interaction of the lowest order9' (with the mne-
monic notation JI), one can write the following general
expression:

- ,—rrik (13)

here /, is a component of the coordinate angular momen-
tum in the MCS, 4a are the direction cosines specifying the
orientation of the MCS relative to the LCS (the quantities
lka permit one to represent in the MCS the nuclear spin
components determined in the LCS, Iaa is a component of
the spin of hydrogen nucleus a in the LCS, № andp^ are
constant coefficients, and r is the index of the basis vector
of the irreducible representation [Я].

The spin part, which depends on the variables I0 (a
= 1, 2, 3, 4) in the LCS forms a representation of dimen-
sion 4, which decomposes into the direct sum of the irre-
ducible representations [4] and [31]. Naturally, only these
two representations are possible in expression (13). The
interaction corresponding to the completely symmetric
spin Young diagram will be called the scalar interaction,
and that corresponding to the remaining possible spin di-
agrams, the tensor interaction. Joining the groups тт4 and
Td, we obtain for the total coordinate part of the Hamil-
tonian in the BO approximation the following allowed rep-
resentations: A$ + ) and F^+). Here it has also been taken
into account that the coordinate part must be invariant
with respect to the operation i (the group TdxC;). Thus
the problem reduces to that of constructing a coordinate
part with the required symmetry from purely rotational
elements. The solution of this problem can be represented
in the form

Х(Г,rot-in )TdXC|- (14)

The electronic and vibrational parts of the Hamiltonian are
absent in this case, and we use for them the representation
A). The correlation between the rotation representations of
the symmetry group R3 of the spherical top and the
rotation-inversion representations of the group Td X Q is
obtained by associating these groups according to their
common rotation subgroup O. Thus it is necessary to find
purely rotational combinations in expression (13) that
upon transition to the BO approximation evolve into solu-
tions with symmetry A| + ) and F£+ >. It is easily found10'
that these combinations must transform according to the
representations A; and F2, respectively, of the rotation
subgroup O.

The combinations Jjlka transform according to the ten-
sor representation U3XU3, where U3 is the three-
dimensional representation of the group of unitary
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TABLE VIII. Coordinate and spin parts of the Hamiltonian of the spin-
rotation interaction of the // type for the 12CH4 molecule in the ground
state. The vectors are given for the laboratory coordinate system.

Coordinate part Spin part

[4]: I = I

transformations.6 Performing the reduction to the group
R3, we obtain U3xU3=D(2)+D(1)+D(0). Here we are
interested in the representations D(2) and D(0), since only
they contain the required combinations. The coordinate
and spin parts thus constructed are given in Table VIII.
The basis vectors of the spin part of the tensor interaction
are chosen such that the matrices of the irreducible repre-
sentation are the same as the transformation matrices of a
polar vector for the group Td. Such a basis was first intro-
duced in Ref. 17. Finally, we have the following expres-
sions for the scalar term

Щ

and tensor term

(15)

д^'-т^з Е J/d^+i}*') (16)
jW=.*j>z,.vzx,z;t>'

of the spin-rotation Hamiltonian. It is straightforward to
construct the terms of the spin-rotation Hamiltonian for
the higher orders as well.18

Until now we have been considering the construction
for a nondegenerate completely symmetric vibronic state.
The generalization to the case of a nonsymmetric nonde-
generate state is quite trivial. A more serious problem is to
take degeneracy into account. Let us consider as an exam-
ple vibrational degeneracy of type E for a rigid molecule
with point symmetry group C3v. To characterize the de-
generacy it is necessary to introduce an additional dynam-
ical variable, the vibrational "spin" 1. In the case under
discussion, the three components of 1 must represent the
operators whose matrix elements describe the system of
two degenerate sublevels.1" However, the operator 1 can-
not be represented by a spinor operator with /= 1/2 (21+1
=2) because this spinor has unacceptable symmetry prop-
erties for describing the coordinate motion. In particular,
its components change sign2 upon a spatial rotation by 2тг.
Therefore, it is necessary to use an angular momentum
operator 1 with /=1, but with the additional requirement
that the state with zero eigenvalue of the operator lz be
suppressed (the z axis is coincident with the threefold sym-
metry axis of the group C3v). As a result, the operators for
the physical quantities can contain only the following com-
binations of the vibrational "spin" operator: /+, /2_, and /z,
where l±=lx±Hy are the raising and lowering operators.
From this purely qualitative analysis we see immediately
that the quantum number of the operator lz can change
only by 2. Thus, in constructing the operators for the phys-
ical quantities, one finds that the coordinate part contains

vibrational terms which form a three-dimensional repre-
sentation of the symmetry group C3v of the vibrational
problem. It is easy to show that this representation decom-
poses into the direct sum of the irreducible representations
A2 and E. The final results of the construction for the
effective Hamiltonian can be found in Ref. 19.

In the case of nonrigid molecules there arises a degen-
eracy due to the presence of several equilibrium configura-
tions (configurational degeneracy). The description of this
type of degeneracy is a very important problem in the the-
ory of molecular spectra. It is this problem that we will be
discussing in the conclusion of this Section, using as an
example the NH3 molecule in a completely symmetric vi-
bronic state. The nonrigid motion here is a tunneling of the
N nucleus through the plane of the H nuclei (the so-called
"inversion" motion, which is of the nonexchange type). As
a result, the chain contains the following symmetry groups:
1) the group of permutations of identical nuclei ir3; 2) the
point group C3v (Ref. 9); 3) the rotation group D^; 4) the
expanded point group C3vXCs=D3h, where Cs is the
group of reflections in the plane orthogonal to the threefold
axis of the group C3v. We note that a classification of the
stationary states of the NH3 molecule by the chain of sym-
metry groups approach is constructed in Ref. 5.

The effective Hamiltonian describing the rotational
motion with allowance for transitions between equilibrium
configurations depends only on the spatial coordinates of
the molecule. Therefore, it must transform according to
the coordinate Young diagram [3] of the group тг3. It fol-
lows from the joining of the groups тг3 and C3vxCs that for
the Hamiltonian in the BO approximation the possible rep-
resentations are Al s and Al a of the expanded point group.
The indices s and a indicate symmetry and antisymmetry
of the representation, respectively, with respect to reflec-
tion in the plane crh of the group Cs. The possibility of an
asymmetric representation Al a is due to the fact12 that we
are determining the contributions to the Hamiltonian to an
accuracy up to a factor that does not depend on the dy-
namical variables under consideration. For contributions
of the type Al a this factor changes sign on reflection in the
plane ffh. Such a situation cannot occur for rigid mole-
cules, since for them the factor in front of the allowed
contributions always transforms according to a unitary
representation of the geometric group. As we shall see, the
presence of two possible symmetry types in the Hamil-
tonian automatically gives rise to the terms in it that are
responsible for describing the existing twofold configura-
tional degeneracy. In other words, we do not introduce a
priori the corresponding dynamical variable, since there is
no independent "inversion" degree of freedom.

To construct the effective Hamiltonian one must find
combinations of the angular momentum components that
on transition to the BO approximation evolve into solu-
tions with symmetry (Аь,А1а)

( + ) with respect to the
group D3h x Q. We have a solution of this problem in the
form
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X

For a quantitative construction of the Hamiltonian (18)-
(20) one must solve the rather complicated problem of
taking into account the nonrigid motion even in the zero

*• ' order approximation.20

The correlation between the rotation representations of the
group Dx and the rotation-configuration representations
of the group C3 vXCsXCi is analogous to that given in
Table II if one makes the replacements '->s and "->a. It
follows from formula (17) that the desired rotational com-
binations must transform according to the representations
A] and B2 of the rotation subgroup D6.

According to Ref. 6, the complete set of independent
combinations, which are angular momentum components
of total degree 2л, transform12' according to the symme-
trized tensor representation U3

2 "' . When the group of uni-
tary transformations is reduced by the group of three-
dimensional rotations R3 we have U3

2"' = D(2/l)

+ D(2"~2) + ... + D(0). By choosing the orientation of the
Cartesian axes of the molecular coordinate system such
that the z axis coincides with the threefold symmetry axis
and the x, z plane coincides with one of the three reflection
planes of the group C3v, we obtain the following general
expression for the terms of the effective configuration-
rotation Hamiltonian with rotational combinations of total
even degree:

= I
n=0

n=0 r,s,t
(r+s+3t=n)

#>= I Hft

= 2- Z
n — 2 r,s,t

d2r>3s+1;6r+3

(19)

The coefficients с and d are operators in the space of states
|s), | a) and have nonzero matrix elements only on and
only off the diagonal, respectively. Further, we must take
into account the fact that the terms of the type AJ+' in the
effective Hamiltonian (which are off-diagonal terms in the
space of states | s) and | a)) can contain rotational combi-
nations of total odd degree as well. Therefore, we have in
addition

r/(a)_Я// —
л=1

12n+l

r,s,t
(r+s+3t=n-l)

5. CONCLUSION

In this paper we have demonstrated the rather rich
possibilities of the chain of symmetry groups concept in the
theory of the spectra of rigid and nonrigid molecules. The
main advantages of this approach in comparison with the
more widely used approach based on the CNPI group can
be summarized as follows: 1) symmetry notions are "pri-
mary" in the sense that one does not use information about
the explicit form of the solutions of the Schrodinger equa-
tion; 2) philosophical difficulties do not arise in the anal-
ysis of molecules whose essential symmetry elements can-
not be represented as elements of the CNPI group; 3) the
analysis of the symmetry properties is unambiguous; 4) no
formal widening of the domain of applicability of physical
concepts is incurred. At the same time, it must be empha-
sized that the construction of the expanded geometric
group can be an extremely nontrivial problem. An inter-
esting example of this is the PF5 molecule.21'22 The geom-
etry of this molecule is such that apparently only with the
use of a nonrigid motion (the Berry pseudorotation) can it
be rotated in space by an arbitrary angle. In this case the
expanded point group will have an infinite number of ele-
ments.

"The specific reasons why the conclusions of Ref. 4 are mistaken are
analyzed in Ref. 5.

2)The notation for all the symmetry groups used in this paper and for
their classes and irreducible representations corresponds to Refs. 2 and
6. In the present case тг} is the group of permutations of the identical
fluorine nuclei and C, is the group of inversion of the spatial coordinates
of all the particles of the molecule. We also note that the complete
symmetry group of the rigorous problem also has other transformations
which are not important for our present purposes.

31 In working with the permutation group we will use the technique set
forth in Ref. 6. As far as the results are concerned, it is completely
equivalent to the technique used in Ref. 2, but it is more efficient.

4)We will use the same notation for the transformation operator acting in
configuration space and in the functional space of states of the system.

5)A more dramatic situation arises when one is considering linear mole-
cules. For a molecule without identical nuclei the CNPI group is
IT, X Q. Naturally, this group cannot even formally describe the rich
symmetry of the equilibrium configuration (point group CK V). There-
fore, an extremely artificial permutation group irf, which is continuous
in the parameter e, is introduced.23'1 We note that in such an approach
the exclusion of states with /< / is imposed from without by proceeding
from the specific solution of the Schrodinger equation.

6)The symmetry element i is related to the properties of the space and
commutes with all the symmetry elements determined by the geometry
of the molecule. We also note that the rotation group is equivalent to the
MS group of the CH3BF2 molecule.

7)For example, the molecules NH3 and BF3 have the same group of
permutations of identical nuclei, but for the molecule NH3 (point group
C3v) there are two independent configurations, while for the BF3 mol-
ecule (point group D3h) there is only one.

8'One can also construct a wider geometric group G8 = G4xCs, where
Cs=(E,at-yz}). However, in the present case such an expansion of the
group does not lead to any important new qualitative results.

"The requirement that the Hamiltonian be invariant with respect to to
time inversion implies that it must be of total even degree in the dy-
namical variables under discussion.

(20) 10)As in Ref. 2, we assume that the operation i is not defined in spin space.
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This is contrary to the CNPI philosophy, where the invariance of the
spin vector with respect to this operation is postulated and used in the
analysis of the symmetry properties.24"26 Furthermore, in the CNPI
approach one makes use of the invariance of the rotational combina-
tions with respect to transformations of the group Td, which is isomor-
phic with the group O. For this, however, one must determine the
behavior of the rotational combinations with respect to improper trans-
formations of the group Td.

'"This idea was used previously2 to determine the principal contributions
to the Coriolis interaction energy in a threefold degenerate vibrational
state of a molecule of the spherical top type. The main advantage of this
approach is that the discussion can immediately be restricted to only
the required vibrational states.

12)The dynamical variable of the coordinate angular momentum has a
classical analog. Therefore, following Refs. 16 and 27, in order to sim-
plify the analysis we can go over to the classical analog of the Hamil-
tonian in this variable. The form of the Hamiltonian will not be
changed from that for the consistent quantum mechanical treatment.
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