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It is pointed out that the classical rules for matching at a tangential discontinuity, viz.,
continuity of the pressure and displacement, are nonuniversal. It is shown that in open systems
both the pressure and the displacement can be discontinuous. The presence of a jump in

the displacement renders meaningless the textbook use of the hydrodynamic concept of a
perturbed surface of tangential discontinuity: the perturbed tangential discontinuity is

not a single surface but a small spatial region bounded by nonparallel surfaces. It turns out
that matching rules which are independent of the structure of the jump can be obtained

only for a narrow (one-parameter) class of tangential discontinuities. In general the matching
rules are different for different structures of the jumps in the main parameters of the

medium. The examples cited in this paper are based on the real tangential discontinuity
observed in the gaseous disk of the Milky Way galaxy.

1. IN WHAT WAY IS THE CLASSICAL CONCEPT OF THE
TANGENTIAL DISCONTINUITY NONUNIVERSAL?

Traditionally two types of hydrodynamic discontinui-
ties are distinguished: tangential and shock-wave.! The
tangential discontinuity is characterized by the absence of
transport of material through the surface of discontinuity.
By using the expression for the momentum flux density
tensor I, =P8, + pvy,, writing the Euler equation in the
form

a a 0
7 (pvi)——a; i

and employing the definition of the tangential discontinuity
v,=0, where v; is the velocity component normal to the
surface of discontinuity, one finds that the pressure P on
the discontinuity must be a continuous function:'

[P]=0. (1)

According to the classical concept,! a discontinuity can
occur on some single surface. With this definition of the
discontinuity, the displacement must also be continuous:

[§]1=0. (2)

It should be noted that relations (1) and (2) were
obtained without taking into account any external forces
acting on the medium or any external sources of heat, i.e.,
they were derived for a closed system.

In the pioneering studies*® of the stability of the tan-
gential discontinuity, conditions (1) and (2) were used as
the matching conditions for the perturbed quantities. For
an open system, however, it is incorrect to use them this
way, since the perturbed forces near the perturbed surface
cannot be described in the framework of a linearized sys-
tem of equations, as is demonstrated by Fig. 1.

Indeed, from the equilibrium condition we have near
the unperturbed boundary (let this be x=0)
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dvy, dpP,

PO = dx (3)
It is seen in Fig. 1 that in the absence of perturbation of the
surface of discontinuity, the functions ¥, and P, have a
kink at the point x=0, i.e., their first derivatives are dis-
continuous there. On the perturbed boundary x=¢ the
functions ¥, and P, behave differently. The form of the
function ¥, is not affected in any way by the existence of
the perturbation itself, since this function is determined by
the external source. Therefore, the kink in ¥, occurs as
before at the point x=0. At the same time, a kink in the
pressure P, arises on the perturbed boundary, at the point
x=¢£. Consequently, at an arbitrary point 0<x<§ there is
an excess force pgd¥o/dx+ dPy/dx of zero order in small-
ness, which can be compensated only by a perturbed pres-
sure dP;/dx. Thus, near the perturbed boundary we un-
avoidably go beyond the framework of the linear
approximation. This contradiction means that for the lin-
earized equations, matching rules on a discontinuity sur-
face of zero thickness cannot be used, i.e., one cannot as-
sume that |£|»|L|, where L is the width of the
discontinuity.

QOur further analysis is based on the canonical method
of deriving the matching rules, which consists in the fol-
lowing (see, e.g., Refs. 4-9). The tangential discontinuity
is treated as a small region ( —&,e) in which the gradients
of three parameters are nonzero, Vv,V pg, Ve, £0, while
outside this region these gradients are equal to zero (the
latter assumption is not at all obligatory, and we adopt it
exclusively for consistency with Refs. 2 and 3). Then, in-
tegrating the linearized dynamical equations over the layer
(—¢,¢) and neglecting terms which are small for £ -0, we
obtain the matching rules. Here it is easily shown that for
the comparatively simple conditions adopted in Refs. 2 and
3 we arrive at the matching rules (1) and (2).
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FIG. 1. Classical representation of the tangential discontinuity as a sur-
face of zero thickness:' | £|» L, where £ is the displacement and L is the
characteristic width of the discontinuity. The unperturbed surface, the
plane x=0, is shown by the broken line, the perturbed surface by the solid
curve £=£(x,2). In the absence of perturbation the potential ¥, and
pressure P, have a bend at the plane x=0 and for all x satisfy the equi-
librium condition (3). When the discontinuity is perturbed, the form of
the gravitational potential W,(x), which is determined by the distribution
of external masses, does not change, while the function Py(x) varies in the
regions between the perturbed and unperturbed discontinuity surfaces
(0<x<£ for £>0and £<x<0 for £ <0) as shown in the figure: the dashed
line segment in the absence of the perturbation goes over to the solid line
segment in the presence of the perturbation. Thus in these regions there
arises a force which is unbalanced in the zero order approximation (in the
amplitude of the perturbation) and causes perturbed forces (pressure
forces, centrifugal forces, etc.) of the same order of magnitude. As a
result, one goes beyond the framework of the linear approximation. In a
closed system or in the case of a smooth external potential ¥, such a force
unbalanced in zero order does not arise.

In actual situations, however, one is more often dealing
with open systems, for which the hydrodynamic medium
in question is found in the field of external forces. For
example, for the overwhelming majority of astrophysical
objects these forces are gravitational and/or magnetic. In
addition, practically all astrophysical objects are rotating,.

It is natural to ask whether matching rules (1) and (2)
can be used in these cases; moreover, there was no mention
in Refs. 1-3 of their domain of applicability. This question,
as far as we know, is raised here for the first time, even
though previously, in the solution of the problem of stabil-
ity of the tangential discontinuity in a gaseous galactic
disk, matching rules different from (1) and (2) were ob-
tained. For example, the matching rules at a discontinuity
of the angular velocity of rotation® presuppose a disconti-
nuity of the (total) pressure, and in Ref. 9, where the
discontinuity of the unperturbed pressure was also taken
into account, it was found that the displacement as well as
the total pressure are discontinuous. We note that in the
latter case not only are matching rules (1) and (2) incor-
rect, but so is the classical concept of the perturbed tan-
gential discontinuity in the form of a single surface.

Our goal in this paper is to obtain matching rules at the
tangential discontinuity for a rather wide class of open
systems and to elucidate the reasons why, and the condi-
tions under which, they are different from the classical
matching rules.

In Sec. 2, using as an example the gaseous disk of the
Milky Way galaxy with a jump in the unperturbed pres-
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sure, we derive matching rules different from the classical
ones: ! the perturbed pressure and the displacement turn
out to be discontinuous. The reasons for this are discussed
in Sec. 3. In Sec. 4 we introduce the concept of a two-
parameter tangential discontinuity, characterized by jumps
in two independent parameters, viz., the angular velocity of
rotation and the unperturbed pressure. In this case the
matching rules are no longer universal but depend on the
specific structure of the discontinuity. We conclude Sec. 3
by considering the general case of a two-parameter discon-
tinuity. In Sec. 5 we state our conclusions.

2. MATCHING RULES DIFFERING FROM THE CLASSICAL
AT A ONE-PARAMETER CONTACT DISCONTINUITY

To avoid an artificial formulation of the problem, we
refer to tangential discontinuities actually observed in na-
ture. As an example, we consider the gaseous disk of the
Milky Way, in which abrupt changes are observed'® in the
angular velocity of rotation Q,(r), sound velocity ¢y (7),
and surface density of the gas oy(r). The equilibrium con-
dition for such a disk along the coordinate » has the form

Qir=0q '"Py+ Wi+ V,,. (4)

The primes here and below denote differentiation with re-
spect to r: (...)'=d(...)/dr. All quantities refer to the gas-
eous disk of the Milky Way except for the last term, which
describes the acceleration of an element of gas in the ex-
ternal field of the stars. Since the mass of the latter is much
greater than the mass of the gaseous disk, the term d¥,/dr
can be dropped.

From the equilibrium condition (4) with the numeri-
cal values of the parameters substituted in, it follows that
the gas pressure can vary appreciably over a distance L,
which is much smaller than the characteristic scales of the
problem along r, viz., the radius R and the wavelength A,
of the perturbations that can be excited:’

Ap&l<A,, Ap=Lp/R, A,=A/R. (5)

Indeed, the ratio of the pressure force to the centrifugal
force can be estimated as

§=Py/0e VR = LaRMG) ™!
~(Ma?Ap) "= AN, (6)

where Ma=QR/c, is the Mach number,
A,=h/R=Ma~!; the latter relation is obtained with al-
lowance for the fact that the characteristic thickness of the
disk can be estimated’ in order of magnitude as A~cy/Q.
In the Milky Way a jump in the gas pressure by 2.5 orders
of magnitude (the surface density o, changes from 300
M -pc=*to 5 M- pc™?, the sound velocity c,, from 80 to 9
km/s) is observed at a distance R=0.35 kpc from the
center, which corresponds to the edge of the so-called “nu-
clear” disk. Although the “smearing” of the edge of the
disk has not yet been established from observations, it is
natural to assume that it is of the order of the thickness of
the disk, i.e., Ap=~A,<1. It can be seen from Eq. (6) that
in this case £~ A,<], i.e., the term o, 'P, in the equation
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FIG. 2. Profiles of the angular velocity of rotation },, surface density oy,
and derivative of the angular velocity ) of the gaseous component of the
Milky Way (within the observational accuracy). The narrow jumps of the
surface density and derivative of the angular velocity correspond to the
edge of the molecular gas ring (0.2-0.5 kpc). The region in which the
angular velocity changes appreciably is relatively large (0.2-1.2 kpc).

of equilibrium (4) can be neglected in spite of the sharp
change (in effect, a “jump”) in the pressure at distances
h<R.

We note, however, that the equilibrium equation (4)
does not prohibit Lp from being even smaller than 4. In
fact, if § =~ | then Lp=~hA, <h, and it becomes even smaller
if £> 1. In the latter case the pressure gradient is counter-
balanced by the external gravitational field of the stars.
Thus the approximation of a ‘“jump” in pressure (Ap<1)
holds for any value of the parameter {>A,,.

The edge of the nuclear disk in the Milky Way also
coincides with a narrow region of a jump in the derivative
Q; of the angular velocity of rotation. In addition, this
place in the galactic disk marks the beginning of a region of
sharp change in the angular velocity of rotation itself. Al-
though in general the ratio of the widths of the jumps in
pressure and angular velocity can be arbitrary, in the
Milky Way the latter is substantially greater than the
former'® (see Fig. 2). Therefore, as a first step we consider
the relatively simple case in which the angular velocity can
be assumed continuous, while its derivative and the pres-
sure are discontinuous:

Py(r)=Py=const for r<R—(Lp/2),
=Pgyy=const for r>R+ (Lp/2), .
Qu(r) =0y =const for r<R—(Lg/2),

=Qg=const for r>R+(Lg2),
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~As<€Aq. (8)

The symmetry of the jumps of the functions Py(7) and
Q(7) with respect to the point /=R that is assumed in
formulas (7) and in Fig. 2 is extremely conjectural, since
the small number of observation points do not permit any
couclusions as to the behavior of these functions in the
jump region. We shall see below that the forms of the
functions Py(r) and Qg(r) can differ from (7) without
altering the main conclusion of this paper.

As was shown in Ref. 9, the system of linearized hy-
drodynamic equations can be reduced to the two equations

d ~15-1F
— (raog )= —rog[2mQyr £

+(1—m cgor_zof)_z)'f)], (9)

A

d

72 ~ _
d—r(cgon)=2mﬂor 12 n—i—(w —% )g (10)
Equation (9) is the equation of continuity, and (10) is the
equation to which the equations of motion can be reduced.

In (9) and (10) we have used the notation’

g
7’5;, a‘}:w—mﬂo, %2=2Qo(200+rﬂ())y
0 (11)
4 (3 8 3
U’=E—(5I+ oa‘p)g—"'lwé—'

All the stationary quantities are denoted by the subscript 0,
and the remaining perturbed quantities are functions of the
form A(r,@,t) =A(r)expli(me—wt)]; €y 18 the sound ve-
locity in a self-gravitating medium and is always less than
¢o- Inside the jump the force of self-gravitation is relatively
small, and we can therefore assume that cyo=~cy. The
value of ¢y, outside the jump, which is required for
the matching conditions, has been calculated in Ref. 9:
co=cn—2mGoo( |k|R) ™, Ry=[1+(|k|A/2)]7", =
dPy/day, where k is the radial wave number, which comes
in here through the solution of the linearized Poisson equa-
tion (see Ref. 9), and G is the gravitational constant.

(The self-gravitation of the disk is taken into account
here exclusively for reasons of generality: the results ob-
tained below will not be altered in the absence of self-
gravitation. )

The initial system of linearized dynamical equations
used in the derivation of (9) and (10) were closed by the
equation of state of an isentropic medium (S=const,
§=0)

P=clo. (12)
This is a particular case (for S; = 0) of the more general
equation of state of adiabatic perturbations (dS/dz=0):

Fecg () s P))E; 3
=Cy0— as 05 o0+ (choog—PH)E; (13)

here we have used the thermodynamic relation
P=(9P/30)s0+ (3P/3S),S and the definition of the dis-

placement in the form (11).
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Integrating Eqgs. (9) and (10) over a radial layer
(R—Lp,R+ Lp) and using (8), we obtain the following
“matching” conditions:’

[00E1=0, [cXii1=0. (14)

In deriving the first of these matching rules we have used
the condition Ma’A%<1. -
We see that the displacement E, like the pressure P, is
not a continuous function. In the absence of self-
gravitation the second matching condition gives

[Poy ']=0. (15)
3. REASONS FOR THE DISCONTINUITY OF THE
PERTURBED PRESSURE AND DISPLACEMENT

The reason for the discontinuity of the perturbed pres-
sure in the presence of the external gravitational field of the
stars, which causes a sharp change in the unperturbed pres-
sure, is illustrated in Fig. 3. Figure 3a shows the jumps in
the unperturbed pressure Py, and unperturbed density o,
resulting from the unperturbed gravitational force shown
in Fig. 3b. The perturbed gravitational force (Fig. 3c),
whose overall profile repeats that of the unperturbed force,
is lower in amplitude by a factor of /0. The correspond-
ing profiles of the jumps in the perturbed pressure and
density are shown in Fig. 3d. Thus the jump in the per-
turbed pressure stems from the need to balance the forces:
—VP=dV®d,, where V&, must be sharp in order to coun-
terbalance the sharp gradient of the unperturbed pressure.
In the absence of such a balance of forces there would arise
arbitrarily large accelerations of the medium.

The cause of the discontinuity of the displacement £ is
explained in Fig. 3e, which shows the interior of the jumps
in the unperturbed pressure and density on the (r,¢) plane.
The wavy lines are the perturbed surfaces through which
matter does not move (matter moves only along these
lines). Since the density falls off with increasing radius, the
volume of matter that is displaced by each succeeding layer
increases from left to righg1 i.e., the displacement E in-
creases. Thus the product £0, turns out to be constant,
according to the first of matching rules (14): a jump in gy
causes a jump in £.

In this case the tangential discontinuity no longer re-
duces to a perturbed surface but is a small spatial region
bounded by nonparallel surfaces.

4. DEPENDENCE OF THE MATCHING RULES ON THE
DETAILS OF THE STRUCTURE OF THE TWO-PARAMETER
TANGENTIAL DISCONTINUITY

4.1. Example of two-parameter discontinuity

As our next step, let us consider the new aspects aris-
ing in the situation when the widths of the jumps in density
and angular velocity of rotation are comparable.

This case can be regarded as a particular example of a
two-parameter tangential discontinuity: the behavior of the
characteristics of the medium in the region of the discon-
tinuity is set by the behavior of two independent parame-
ters, in this case the density and angular velocity of rota-
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FIG. 3. lllustration of the cause of the jumps of the perturbed pressure P
and the displacement £. a: Jumps of the unperturbed pressure P, and
unperturbed density o,. b: Profile of the unperturbed gravitational force
causing the jumps in P, and o, shown in part a of the figure. c: Profile of
the perturbed gravitational force which in its overall shape resembles the
unperturbed profile but is smaller by a factor of 5/0,. d: Profiles of the
perturbed pressure and density constructed by integrating the function
VP shown in part ¢ to obtain P and then using the equation of state
=P/ tofind5.e: A representation of the tan§ent1al discontinuity that
is opposite from the “classical” representation,'™ i.e., with £«¢L (cf. cap-
tion to Fig. 1). In this case the linear approximation for describing the
perturbed quantities is correct. The illustration shows the “jump” of the
displacement £(r,f) on different sides of the *“‘discontinuity”. The unper-
turbed boundaries of the *‘discontinuity” region are shown by the broken
lines and the perturbed boundaries by the solid curves. Outside the ‘“‘dis-
continuity” region the stationary parameters of the medium can be as-
sumed homogeneous (in accordance with Refs. 2 and 3). No transport of
matter occurs through the perturbed surfaces. Since the density falls off
with increasing radius, the matter displaced by each succeeding layer
increases from left to right, i.e., the displacement £ increases. It follows
from Eqs. (14) that §1aq_ 52002 The case considered in the figures is for
0Op)>0,; consequently, £,<E,.
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tion. Such a situation becomes possible owing to the
appearance of a “free” parameter (the external force) in
the equation of equilibrium. In general the number of in-
dependent parameters necessary for the description of a
discontinuity is one greater than the number of external
influences acting on the system. For example, if in addition
to external forces one includes external sources of heat, the
discontinuity can turn out to be a three-parameter one.
According to such a classification, the discontinuities in
closed system are one-parameter.

The matching rules for the case considered in this Sec-
tion are analogous to the previous ones. The matching rule
for the displacement is unchanged, while Eq. (10) must
include a term (Q3)’£ in the discontinuity region. When
there is no pressure jump this term can be taken into ac-
count without difficulty, and it leads to a jump in the per-
turbed pressure:8

[P]=—[0Q%]0otR. (16)

In the case of a two-parameter discontinuity (with a
jump in Py) the result of integrating Eq. (10) over the
layer (—g,g) is not so obvious. In fact, when the discon-
tinuity £=£r£ is taken into account according to (14), we
obtain,

[c§0ﬁ1=_§um[f:ao-‘(ng)'dr]. (17)

£-0

The value of the limit on the right-hand side depends on
the detailed structure of the jumps and cannot be evaluated
in general form. Let us demonstrate this for several exam-
ples.

The simplest case is when the narrow jumps of (), and
0, do not coincide but are separated by such a small dis-
tance that this fact is unobservable. In this situation the
limit can be easily evaluated, and one obtains the matching
condition

(o] =—E05;'[95) (18)

if the density jump is farther from the center than the jump
in angular velocity, and

2 ~ Z —1rn2
[cgo‘ﬂ] =—£og, (2]
in the opposite case.
As an intermediate case between these two we can

consider the case when the jumps of Q2 and o5 ' coincide
in the sense that

(19)

Q=(Q)) .+ f(r—R)(Q))_, (20)

oy '=(o5"), +8(r—R) (g ") _, (21)
where

(Q3), =505, +95), (@) _=1(03,—03)), 2

(oo M =305"+05"), (05" _=05'—0a5"),

and f and g are narrowly localized odd functions of their
arguments that take the values +1 and —1 outside the
jump region. In this case the integral in (17) reduces to the
sum of two integrals, one over an even integrand and the
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other over an odd. Only the first integral contributes to the
limit in (17), and we obtain the matching condition

(2] =—E[Q3] (o5 1) ;..

From the examples given it is clear that for the tan-
gential discontinuity under discussion there is no matching
condition per se in the classical sense, i.e., a condition in-
dependent of the details of the structure, relating quantities
on different sides of the discontinuity. In the general case a
condition similar to a matching condition can be obtained
by using the theorem of the mean:

(23)

(671=—E | o5 (0 'dar=—F [ o5"a0}

=—E[Q3)oy (P, (24)

where R —e<7<R+¢ is a certain intermediate point and,
accordingly, oy(7)€[0g,,00;] is a certain intermediate
value of the surface density, which can be evaluated exactly
only if the structure of the jumps in o, and {}; is known.

This example shows that in general neither the per-
turbed nor the initial unperturbed tangential discontinuity
can be reduced to a single surface.

4.2. General case

We shall conclude by showing that the effects consid-
ered above are not specific to tangential discontinuities
with a sharp pressure differential (a “jump”). To do this,
let us consider the behavior of tangential discontinuities in
a nonuniform rotating medium with a continuous pressure
profile. This system is convenient because it permits one to
track at once the role of noninertial effects, the effect of
inhomogeneity of the density of the medium, and the in-
fluence of external forces, which lead, for example, to kinks
in the pressure at the jumps in the density of the medium.

Let F,, be the external force per unit mass acting in the
radial direction, and suppose that the following equilib-
rium condition holds:

Py=poQar+ poFo. (25)

The equations, analogous to (9) and (10), for the per-
turbations in this case become!'®

pocyr ™ (7€) +2mQ~'E) — P = (Kckd—— )P,
(26)

P’ —2mQyr~ &~ 'P— Py pocd) ~'P

= po(&2— XV E+BTC5 'SLPLE; (27)

here py, T, B, and Cp are the volume density, tempera-
ture, temperature coefficient of volume expansion, and heat
capacity at constant pressure, respectively,
I?=k3+ (m?/7%), and the perturbed quantities are all de-
noted by a tilde.

From the first equation we see the intimate connection
between the jump in displacement and the jump in the
unperturbed pressure. If the latter jump is absent, the dis-
placement is continuous:

[£1=0. (28)
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Integration of the second equation over the layer yields the
classical matching conditions only for a narrow class of
discontinuities. An indication of this can be seen from the
fact that_the “singular” (at the discontinuity) term
po(Q3)’ r§ contained in p0x0§ gives a total derivative only
in the case of a continuous density profile; otherwise the
result of its integration depends on the details of the struc-
ture of the jumps in py and Q.

For a more accurate analysis let us transform the last
two terms in Eq. (27), assuming a continuous pressure
profile (the profile of Py can be discontinuous):

poRE—BT oCr 'SIPLE = pol Q2)'rE+ pg ' piPIE
= (poXre)’ +piFE.  (29)

It is clear that the result of integration of the expres-
sion obtained reduces to the classical condition [P
+ Pg£] = O only if the mass force Fy is constant, as is the
case, for example, in the traditional problem of gravita-
tional waves (or the Rayleigh-Taylor instability):
Fy=g=const. Otherwise, everything that was said in Sec.
4.1 applies.

Thus it follows from what we have said that matching
rules that do not depend on the detailed structure of the
jumps can be obtained only for one-parameter tangential
discontinuities. For two-parameter or higher discontinui-
ties one needs to know the detailed structure of the jumps
of the individual parameters in order to obtain the match-
ing rules.

CONCLUSIONS

I. In open systems the classical concept of the tangen-
tial discontinuity, which is based on analysis of closed
systems, '™ is modified in the following fundamental ways:

1) The perturbed tangential discontinuity is not a sin-
gle surface!™ but a small spatial region bounded by non-
parallel surfaces. (We are referring to the boundaries of the
region outside of which the parameters of the medium can
be considered homogeneous, in accordance with Refs. 2
and 3.)

2) The conventional approximation"3 of assuming a
discontinuity of zero thickness, |£|> L (£ is the displace-
ment and L is the width of the discontinuity), is incom-
patible with the linear approximation in the stability anal-
ysis of the tangential discontinuity.
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3) Universal matching rules can be obtained when the
tangential discontinuity is one-parameter. In the case of a
two-parameter tangential discontinuity the matching rules
depend on the details of the specific structure of the jumps
of the individual parameters.

II. A study of various particular cases of the tangentlal
discontinuity in' the presence of an external field (in the
presence of a jump in potential) has led to the following
results that are qualltatlvely different from the analogous
results in closed systems.!"

4) In_an isentropic medium the perturbation of the
pressure P and the displacement £ are not continuous func-
tions but rather exhibit jumps in accordance with the jump
in the unperturbed ‘density g:[0,£]=0, [P]/ao 0. This is
an example of a one-parameter jump, and the matching
rules -obtained do not depend on the detalled structure of
the discontinuity. .

5) In the case of a two-parameter discontinuity-with
jumps in the density and angular velocity of rotation, the
following matching ‘rules are obtained: [0,£]1=0,
[c30/00l= —RE[QG), i=1, 2. Here i=1 when the jump in
the density is closer to the center than the jump in the
angular velocity, and i=2 in the opposite case. When the
two jumps are both localized in the same region,. the
matching  condition takes the form [czgoﬁ/ao]
= —REQ (05, + 053" /2.
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