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1. INTRODUCTION

The use of high-T'. superconducting ceramics is the
only possible way of making a variety of engineering ap-
plications of high temperature superconductivity practical.
One of the basic obstacles on the path of realization of
these possibilities are the small (even in a zero magnetic
field) critical currents of HTSC ceramics which are by
factors of 10-1000 (depending on the production tech-
nique) weaker than those of crystals and decrease rapidly
with increasing magnetic field. It obviously follows from
the fact that the only fundamental distinction between
HTSC ceramics and HTSC crystals is the macrogranular
structure inherent to the former, that the reason for “bad”
superconducting characteristics of HTSC ceramics lies not
so much in the properties of individual superconducting
crystallites (granules, or grains) as in the contacts between
them, or so-called intergranular (intergrain) boundaries
(GBs). Hence the way to increasing the current-carrying
abilities of HTSC ceramics runs through a better insight
into and improvement (based on this better insight) of the
properties of intergranular boundaries.

In this review we shall discuss problems related to the
“arrangement” and properties of those elements of the
granular structure of HTSC ceramics (with an emphasis
on the ceramics of the YBa,Cu;05 composition) which
define the critical currents and current-voltage character-
istics of ceramic materials. As we have already mentioned,
the basic element of this sort are intergranular boundaries
which may, in principle, play a dual role: as pinning cen-
ters they may increase the critical current, while as “weak”
sites (that is, areas with a low critical current density) they
would lower it. In materials of practical interest the pre-
dominant one seems to be the second (negative) function
of intergranular boundaries, so the task is to reduce it to a
minimum.

The discussion of the role of GBs in determination of
superconducting properties of HTSC ceramics should have
been started with their classification. Unfortunately, there
exists no single physical parameter of such boundaries
which might be used as the basis of a nonambiguous clas-
sification scheme. Hence there are several different ap-
proaches, each of them proceeding from a concept of the
decisive role of this or that property of a GB.! As an ap-
propriate parameter one could use:

1) the misorientation angle of neighboring (separated
only by a GB) grains;?

2) the GB plane orientation relatively to (001) and
(100) planes in which the anisotropic correlation length
takes on extreme values;'
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3) the oxygen stoichiometry of near-to-boundary areas
of grains;’

4) the probability of impurities segregation on a GB;

5) the tendency toward the formation of stacking
faults and “foreign” or amorphous phases on a GB;’

No matter which of the above-listed (as well as un-
listed) factors forms the basis of “bad” superconducting
behavior of an HTSC ceramic, they all ultimately lead to
the formation of weak superconducting links between its
individual grains. That is why for modeling purposes a
ceramic can be regarded as a Josephson medium, that is a
set of superconducting grains interconnected by Josephson
junctions. It provides a means of describing a good number
of properties of superconducting ceramics without going
into detail of specific genesis and “arrangement” of weak
intergranular links. Although this kind of a model allows
one to describe magnetic and transport properties of ce-
ramics, it is expedient for working out concrete recommen-
dations as to purposeful modification of these properties to
take advantage of certain ideas of physical mechanisms
responsible for a distinction between GB properties and
bulk properties of superconducting crystallites of ceramics.

2. MORPHOLOGICAL AND STRUCTURAL FEATURES OF
HTSC CERAMICS

2.1. Grains and intergrain contacts

From the point of view of morphology, an HTSC
ceramic') is a set of superconducting crystallites of various
shapes, sizes and crystallographic orientations, which are
in mechanical contact with each other. YBa,Cu;0;5- ce-
ramics consist mainly of grains of an orthorhombic phase
although the composition of a part of grains corresponds to
a tetragonal phase; besides, it contains inclusions of other
phases of different compositions (Y,BaCuQs, BaCuQ,,
CuO, etc.).6

In early studies, when HTSC ceramics were produced
using a “ceramic” technology, all the above-cited parame-
ters of different crystallites were but weakly correlated, so
microscopic-scale images of ceramics looked quite chaotic.
Nevertheless even then it was noticed that the shape of an
individual crystallite is not completely random: a good
number of them were shaped as relatively thin lamellas (of
irregular form, most often stretched out in one of the di-
rections) whose plane is close to the (001) plane. (It is due
to the fact that the preferred direction of crystallite growth
is [100].) Characteristic crystallite dimensions are strongly
dependent on the method of ceramics production and usu-
ally are in the 1-100 ym range. The internal region of
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crystallites is liable to strong twinning, it may contain mi-
crocracks (their number usually grows with the increase of
crystallite dimensions); there are pores (voids) near the
contacts as well as on the boundaries between and (more
rarely) inside the grains. On the grain boundaries one can
often see structure distortions and amorphization and
changes in stoichiometry. A considerable part of intergrain
contacts is realized through high-angle intergrain bound-
aries with a poor current-carrying ability (see below),
Hence critical currents of such ceramics are not large
(1-10° A/cm? in the absence of an applied field, T=77 K)
and they rapidly diminish with increasing magnetic field
(down to 1 A/cm? in the field of 0.1 T).

A substantial element of the YBa,Cu;O; ceramics
structure is grain alignment which manifests itself in such
kind of “ordering” of its crystallites that the directions of
their c-axes ({001] directions) are in proximity to each
other. A moderate degree of grain orientation in HTSC
ceramics was observable already in the days of the initial
ceramic technology. After it had been realized that the
texture improves noticeably the current carrying ability
production methods of almost completely textured
YBa,Cu;04- ceramics were devised. The most promising of
them are those utilizing liquid-phase processes (ensuring
nearly equilibrium crystal growth): melt-textured growth,’
quench and melt growth,® zone melting.’

The structure of liquid-phase produced materials is ar-
ranged in the following scheme: ceramics—macrograins—
subgrains—crystallites—twin domains (with the corre-
sponding hierarchy of scales: 1 cm—10~' cm—1072
em—10~ 83 cm—10~5% cm) and is notable for a much
higher degree of ordering as compared to ceramics. The
existence of grain alignment manifests itself in the proxim-
ity of the [001] axes directions of all the elements of any
level of this structure. The situation with the base ab-plane
((001)-plane) orientation, however, is somewhat different:
the misorientation on macrograin boundaries is close to a
random one, it is about 10° and 1° (Ref. 10) at the subgrain
boundaries and crystallite boundaries respectively, and it is
equal to 90° at twin boundaries. Critical currents in such
materials are considerably higher than for YBa,Cu;0;4 ce-
ramics (10*-10° A/cm? in the magnetic field of the cur-
rent, T="77 K) and are far less dependent on the applied
magnetic field (10°-10* A/cm? in a field of ~1 T)."! The
critical current anisotropy observable both when there is
and there is no magnetic field is substantial: the critical
current is higher when aligned with the ab-plane, and the
magnetic field parallel to this plane produces a weaker
effect on the critical current.

The major difference between dense textured
YBa,Cu;0s-materials and YBa,Cu;05 ceramics lies in the
fact that a considerable part of intergranular contacts
available in them are small-angle inter-crystallite bound-
aries whose planes are parallel to the [001] direction com-
mon to all the crystallites. (The paramount formation of
small-angle boundaries is due to the high diffusion rate in
the liquid phase and to the long lifetime of this phase,
which contribute to the GB “tuning” to the low-energy
small-angle configuration. The remaining high-angle
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boundaries acquire in this case a clearly seen cut and con-
tain no amorphous layers.'?) Hence it is natural to assume
that it is this small misorientation of neighboring granules
which is responsible for the increased current-carrying
ability of textured materials. A great number of experimen-
tal studies have pursued the aim of checking and confirm-
ing this assumption (see below).

From all the foregoing it follows that the current-
carrying ability of materials under consideration is related
to their “‘weak sites,” i.e., to intergrain (intercrystallite)
contacts. The critical current density of a ceramic is deter-
mined by the number of such contacts and their critical
currents. In order to understand by what, in its turn, the
critical current of GBs in HTSC ceramics is determined,
one should pay special attention to their structure.

First we note that a greater part of the analyzed ce-
ramics is marked by the absence (or, to be exact, by very
rare occurrence) of amorphous and foreign crystalline
phases on the GBs.!*'* In Ref. 14, for instance, it has
been shown (using the method of Z-contrast electron
microscopy) that the stoichiometric composition of the
grains of the YBa,Cu;Ogceramics at distances of ~2 A
from GBs corresponds to the formula unit
Yos7<x<1.13 Baisrcy<201CUs79<2<3210491 <x <900 Where
the content of only one of the components may vary within
the limits cited. In this way the existence of phases of types
Y,;Ba,Cu,05, YBa,Cu05, BaCuO, and others on the
phase boundary is excluded. It means that the critical cur-
rent decrease on the GB (as compared to that in the crys-
tallite bulk) is due to the boundary microstructure rather
than to its “microchemistry.” The main elements of the
GB microstructure are as follows: 1) crystallographic ori-
entation of both crystallites in contact; 2) boundary dislo-
cations; and 3) oxygen stoichiometry.

Boundary surfaces of crystallites of which HTSC ce-
ramics are composed are, as a rule, facets, that is they are
crystalline planes with small Miller indexes. In non-
textured ceramics the contact of most of crystallites (about
90%) occurs in such a way that the contact boundary
surface of at least one of them coincides with the (001)
plane; in grain-aligned (textured) ceramics, possessing
much higher critical currents, the majority of boundaries is
perpendicular to this plane.>!* From this it follows that the
boundary plane (001) is “bad,” that is, associated with low
critical current density.

There is a number of factors which could provide an
explanation of this property of the {001) surface. Firstly, it
is a planar defect frequently occurring on this surface,
which is an excessive Cu—-O layer creating a nonsupercon-
ducting (metallic or even dielectric) interlayer in-between
the contacting crystallites.>!® Secondly, it is an anisotropy
of the correlation length of superconducting electrons
which manifests itself in the correlation length £, along the
c-axis (i.e., in the direction normal to {001) planes) being
significantly smaller than the correlation length £, in the
{001) plane. Both these factors result in a small critical
current of a weak link originating in an intergranular con-
tact. Quantitative studies of such contacts, however, are
yet to be carried out.
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Much better investigated (both experimentally and
theoretically) are intergranular contacts with the planes
parallel to the c-axis, especially those of them which are
associated with small-angle tilt boundaries and were stud-
ied in detail in a series of studies.'>"?° One can find indica-
tions of sufficiently high critical currents in small-angle
twist boundaries as well,'®*' though their properties have
been insufficiently studied as yet.

An important factor determining the properties of in-
tergranular contacts is oxygen stoichiometry in near-
contact areas of superconducting grains.” The reason for a
possible difference between the oxygen atom concentration
in direct proximity to a boundary and that in the grain
bulk lies in the arrangement of these areas occurring in
order to lower the boundary energy. Energetically benefi-
cial (and, consequently, predominantly formed) are the
boundaries with a considerable number of lattice sites si-
multaneously belonging to both contacting crystals. The
formation of such boundaries is favored by a correspond-
ing “‘tuning” of lattice parameters which may take place in
YBa,Cu;O;5-like crystals as a result of variations of oxygen
stoichiometry. Experimental data® suggest that the oxygen
content near the boundary (in a sub-boundary layer less
than ~ 100 A thick) depends on the misorientation angle
of grains in contact: for small-angle boundaries §=7, and
for boundaries with large misorientation angles § <7. A
well-known interrelation of superconducting properties of
YBa,Cu;0; compounds with the oxygen content (7', drop
with a decrease in §) explains the fact that it is contacts
corresponding to small-angle intergrain boundaries that
are “‘good.”

2.2. Twinning planes

Experiments with YBa,Cu;04 single crystals reveal
that twinning planes available in them are (anisotropic)
pinning centers and in such capacity they are capable of
producing a considerable effect on the critical
current.'%!% QObviously, exactly the same pinning mecha-
nism may appear to be equally vital for YBa,Cu,O4 ceram-
ics. The reason for YBa,Cu;05 microcrystal twinning lies
in a structural phase transition occurring at 7 (0«?) =
600-700 °C (the exact transition temperature value de-
pends on the oxygen concentration in the environment).
The origination of a twin structure is not related to the
atom diffusion and may take place very promptly which is
characteristic for a typical martensite transition. This kind
of transition occurs on cooling a ceramic sample in an
oxygen-containing atmosphere from the synthesis temper-
ature ( ~900 °C) down to room temperature and is accom-
panied by a transformation of the initial tetragonal struc-
ture (stable at 7> T (0«»t)) into an orthogonal one
(stable at T < T(0«»>1)). At the transition moment the di-
mension of a YBa,Cu;0jp unit cell along the c-axis is almost
unchanged while lattice constants @ and b in the basal
plane change discontinuously. The relative magnitude of
this discontinuity amounts to Ab/b=—Aa/a=0.008,
which corresponds to crystal compression along the a axis
and its stretching along the 4 axis. The changes of the
microcrystal shape resulting from such kinds of deforma-
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tions in ceramics are to a great extent restricted by neigh-
boring microcrystals and this should lead to the appear-
ance of strong mechanical stresses. The relaxation of these
stresses takes place by means of formation (in the micro-
crystal bulk) of a twin domain structure which is an ag-
gregate of alternating areas of an ortho-phase with parallel
c-axes but mutually rotated with respect to each other
basal ab-planes. The misorientation angle of the basal
planes in neighboring domains equals ¢ =2 arctg(b/a). In
YBa,Cu;05 a=b and hence ¢ =90’, i.e., the twinning plane
must coincide with the (110) or ¢(110) planes. The result-
ing twin structure “helps” the microcrystal to preserve its
shape (or reduce its change to a minimum). The areas of
differently oriented twin domains in this case must be
roughly equal.

Analyzing microcrystals of the YBa,Cu;04 ceramics
with the use of optic (and electron) microscopes proves
them to be in fact strongly liable to twinning, their twin
domains usually having the shape of long (>1 pm) narrow
“strips” parallel to the [110] or [110] axis. The width of
these domains, A=50-3000 A (Ref. 106), depends on the
ceramics manufacturing process and, in particular, on the
size G of the microcrystalline grains constituting it.
Ref. 107 suggests an empirical relation Af[um]
= 0.03 G[pm], which is true for small-sized microcrystals
(1-30 pm) and seemingly reflects that effect of intergran-
ular boundaries which they produce in the process of elas-
tic stress relaxation. On the other hand, Ref. 108 discusses
a simple model providing a means of evaluating the width
A of twin domains in sufficiently large microcrystals
(where the role of boundaries becomes insignificant) pro-
ceeding from crystal chemistry ideas about the YBa,Cu,O;
structure.

In contrast to a high temperature tetragonal structure
of YBa,Cu;0; in which oxygen atoms lying in (001} basal
planes are distributed in a random manner, in low temper-
ature orthogonal structure these oxygen atoms in combi-
nation with copper atoms form a regular pattern of chains
stretched along the b axis. The quantity of oxygen vacan-
cies in such chains depends on the total oxygen content in
YBa,Cu;0;: they are completely absent at §=7 and ap-
pear in ever greater quantity as 6— 6. The model in Ref.
108 assumes that within each of the twin domains §=7,
and the compositions with lower oxygen content are real-
ized as the result of an increase in the number of the twin-
ning boundaries (i.e., the narrowing of domain “strips”) to
which oxygen vacancies in oxygen-copper chains are
“bound.” (This model is supported by the EPR studies of
the twin structure of superconducting YBa,Cu;0j; single
crystals.'® For a domain width A the average number of
unit cells between domain boundaries equals Ny~ A/aq,
and the ratio of the number of oxygen vacancies concen-
trated on this boundary to the number of chain Cu atoms
is ~1/Ny~a/A. On the other hand, this ratio is deter-
mined only by the stoichiometry of YBa,Cu,0; and equals
(7-6)/6. Consequently, A~6a/(7-6). For samples an-
nealed in oxygen the typical value is 6=6.98 and the twin
domain width must amount to ~ 1000 A.

As far as the boundary between two twin domains
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(differing in a,b-orientations) is concerned, the one-
dimensional image of its crossing with a microcrystal
boundary is usually a broken line consisting of a great
number of straight line segments parallel to the [110] or
[110] axes. The sinuosity of this line can be characterized
by its fractal dimension which, according to Ref. 110, may
attain values of 1.2-1.4.

A considerable part of twin domains ends on the
boundaries of ceramic microcrystalline grains. In numer-
ous cases, however, they extend beyond these boundaries,
especially in nearly “‘symmetrical” cases when the angles,
made by domain “strips” in two neighboring grains with
the boundary between them, differ but slightly from one
another.!!!

Apart from the “mirror” twin boundaries considered
above, “rotating” twin boundaries may originate in
YBa,Cu;O; where an alteration of crystallographic axes in
microcrystal neighboring domains takes place: the ¢ axis
transforms into the b axis (or, more rarely, into the a axis).
The probability of forming such boundaries is great when
the ratio ¢/b=3, i.e. for YBa,Cu;045 compositions with a
structure close to tetragonal and with relatively low critical
temperature.1 12113

3. PROPERTIES OF INDIVIDUAL INTERGRANULAR
CONTACTS

In Refs.'®?° properties of individual “artificial” GBs in
epitaxial laser ablated YBa,Cu;O; films (where the film
plane coincides with the basal ab-plane, the film thickness
being ~1 um) on a bi-crystalline strontium titanate sub-
strates have been discussed. The GB orientation in the film
is determined by the bi-crystalline boundary of the sub-
strate. Critical currents and current-voltage characteristics
of GBs with different misorientation have been studied.
Two universal relationships were brought to light: a) an
average (over the area) density ( jf‘B) of critical current
across the boundary is a function solely of the angle & of
the grain misorientation on this boundary; and b) the char-
acteristic voltage v.=i_ry, which is a product of the critical
current i of an intergrain contact by its resistance ry in the
normal state depends only on the critical current density
(SB) of this contact. The very existence of these universal
relationships is an evidence of superconducting properties
of GBs in YBa,Cu;0; being intrinsic properties of the ma-
terial.

The first of the above-mentioned relationships is illus-
trated by Fig. 1, from which it follows that the critical
current density jOP rapidly falls off with an increase in 9,
diminishing by an order of magnitude at 3~ 10° during a
further increase in ¥, the chB fall-off slows down. In dif-
ferent studies where the jSP(3)-dependence was used for
calculations of the critical current of HTSC ceramics dif-
ferent approximations were suggested for it. Thus, in Ref.
22 it was shown that the experimental dependence jSB(3)
is satisfactorily approximated with the expression

sin &
iie
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FIG. 1. Intergrain boundary critical current density ;5B as a function of
the misorientation angle 3 between contacting grains of a
YBa,Cu,0; -film at T=5 K (Ref. 18). Boundary type: @—[001] tilt
boundary; B—[100] tilt boundary; ¢—[100] twist boundary.

where ch is the critical current density in a grain,
5=0.87- 1072 In Ref. 23 a different approximation was
utilized:

1 1
1+3/8, T T+ (7/2=9)/%,

7S%/jS=0.6 —0.08,

(2)

where Jy=4". In Ref. 24, finally, experimental data are
described by the exponential dependence

jS8/jC=exp(—8/8;), So=5". (3)

It should be borne in mind, however, that the afore-
mentioned method of forming GBs in YBa,Cu;0; films
based on the use of cubic substrates gives a possibility of
producing boundaries with misorientation angle 0<3<45°.
Hence the assertion of monotonic GB critical current den-
sity decrease with the rise of the misorientation angle
should be treated with caution. Thus, in Refs. 25, 26 it has
been experimentally established that in YBa,Cu3Os the
[010] twist boundary with 3 =90" does not display qualities
typical of weak links. (A rotation of ab-planes by 90°
around the common a or b axis occurs on a GB of this
kind).

Magnetic field dependences i.( B) of the critical cur-
rent of intergrain contacts testify to their being Josephson
junctions:®” in most cases periodic dependences (with pe-
riods correlating with the theory?® and determined by geo-
metric dimensions of the contacts) are observed. Depend-
ing on the critical current density of a contact the latter
may be regarded as “narrow” or “wide”;'® the parameter
determining the contact type is the ratio of its width L to
the Josephson penetration depth

ﬁCz 1/2
Ay= , 4
' (W) (4)
where d=24,; is an effective contact width equal to a dou-
ble London penetration depth (A;). The contacts with
L/A;>4 are wide, otherwise they are narrow. For

E. Z. Meilikhov 132



YBa,Cu;05 A~ 10~° cm, hence at chB~ 10° A/cm?
(such current density values are typical for small-angle
(9<10°) GBs of the kind under analysis at 7=4.2 K)
Ay~1 um, and taking into account that usually L~1 pum,
we arrive at the conclusion that at 7=4.2 K small-angle
boundaries correspond to wide Josephson junctions, and
narrow junctions are correlated with high-angle ones. As
for T=77 K, when jS8~10* A/cm? (for every value of
1), then practically all junctions are narrow.

Josephson junctions of a different sort in YBa,Cu,O;
have different current-voltage characteristics: narrow junc-
tions are well described by a resistive model where ry is
almost independent of the temperature (within the range
of 42<T <77 K), and at high voltages (v>v.=i.ry)
Ohm’s law is valid: v=ryi (v, i are contact voltage and
current, respectively); wide junctions are not described by
the resistive model (their properties are defined by the
so-called Josephson vortices?®) and are characterized by
the presence of “‘excess” current i,,. (comparable to the
critical current i) violating Ohm’s law at high voltages:
v=ry(i—i..). It should be noted, however, that in any
case the magnitude of the critical voltage v, is as small as
0.2-8 meV which is substantially lower than the theoreti-
cally predicted value equal to A/e~15-30 meV (here A is
the energy gap width in YBa,Cu;0;). This small magni-
tude of v, is most probably due to a suppression of the
order parameter in superconducting grains near the bound-
ary for which (taking into account the small value of the
correlation length) the small-scale inhomogeneities inher-
ent to these boundaries are sufficient. These inhomogene-
ities are the result of structural disorder and/or mechanical
stresses, stoichiometric deviations, impurities, etc. In any
case it means that the Josephson junctions under consid-
eration are not the classic tunnel SIS junctions
(Superconductor-Insulator-Superconductor) and may be
junctions of SS’IS’S- or SNINS-types (S’ is a supercon-
ductor with lower critical temperature, N is a normal
metal). More definite conclusions as to the junction type
can be reached proceeding from the temperature depen-
dence of its critical current (see below).

The second of the above-mentioned universal relation-
ships deals with narrow junctions and consists in the de-
pendence of their characteristic voltage only on the critical
current density: v, « (jS®)%® (Ref. 20). This relationship
is illustrated by Fig. 2 pertaining to high-angle (1>15°) tilt
and twist boundaries in YBa,Cu,0;. The intrinsic nature
of this relationship has been confirmed by the fact that on
artificial variation of the junction critical current (e.g., by
means of annealing) the corresponding point “drifted”
along the curve corresponding to this relationship. The
correlation in question can be expressed in a different,
equivalent, form:

JSB (on) Y2 (5)

~! is the normal conduc-

where oy = (ryXjunction area)
tivity of a junction of unit area.

In order to clarify the nature of Josephson junctions it
is important to measure temperature dependences i (T') of

their critical current. The theory?® predicts that near T,
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FIG. 2. Characteristic voltage v.=i.ry of the Josephson junction on the
intergrain boundary in a YBa,Cu;Os-film as a function of the critical
current jOP at T=4.2 K (Ref. 20). The data are valid for large-angle
(15 <3 <45°) [001] tilt boundaries and {100] twist boundaries in films

produced by laser ablation (@) and electron-beam evaporation ({)) pro-

cesses. Straight line corresponds to the function v, « (j58)%6,

where m =1 for a tunnel SIS-junction and m =2 for a SNS-
transition. In the latter case the temperature dependence
i.(T) has the form*

A’ (T)
§N(T)Sh[dn/§n(T)

where A_ (T') is an order parameter in a superconductor
at a large distance from the contact, dy is the normal metal
intergrain layer width,

i(T)

]§(T), (7N

fvenin 72 . .
0.23 XT (Ingén—""dirty” limit)
§N(T)%' #iv
FN .
016? (IN>§N—“clean” limit) -

(8)

is a coherence length in the normal layer material (vgy, Iy
are the Fermi velocity and the mean free path of charge
carriers, respectively),*® and

£(T)=th? (9)

X0
V26(T)
is a factor accounting for an order parameter decrease at
the ‘“‘superconductor-normal metal” interface resulting
from the proximity effect (&g is the coherence length in a
superconductor and x is the characteristic length defining
the suppression of the order parameter near the boundaries
of an intergrain contact).

According to different estimates, £&4=10-100 A in
YBa,Cu;05 (Ref. 27), in Refs. 31, 32 £&4=20-80 A, as
obtained from an exponential dependence of the SNS-
contact critical current on the thickness of the normal in-
terlayer. From estimates made for the xy/§g(0) ratio in
Ref. 33 by means of comparison of the theoretical expres-

C 7 Rd-ELkeA . PP



sion (7) with experimental temperature dependences of
the ceramics critical current it follows that x,~50 A for
intergranular contacts in YBa,Cu,;0;.

It should be kept in mind, however, that a direct uti-
lization of Egs. (6) and (7) for clarifying the nature of a
Junction is hindered by the presence of strong fluctuation
effects near T=T_ (Refs. 19, 27, 34). A comparison of the
experimental dependences i.(T) with theory accounting
for fluctuations reveals'® that most of the GBs are J oseph-
son junctions of the SNS- (or SNINS-) type and may be
approximated with Eq. (7), which predicts an exponential
dependence of the SNS-junction critical current on the
contact width dy in “thick” junctions:

A2 (T)
i(T) oc-————g'(T)exp[—

En(T) (10)

dn
EN(T) |
An analysis of the magnetic field dependences i.( B) of
the critical current of individual intergrain contacts not
only confirms their Josephson nature but also allows one to
draw conclusions about the spatial distribution jSB(x,y) of
the critical current density over the contact area. The anal-

ysis is based on the well-known expression for a narrow
(L <42;) Josephson junction:*®

i(®/Dy) = l f f 7B (x,p)exp(2m i(®/ D) (x/L)Jdxdy|,
(1)

which relates to the case when the magnetic field projec-
tion (B,) on the junction plane (plane xy) is directed
along the y-axis; ®= B Ld is the magnetic flux passing
through the contact, L is the contact dimension perpen-
dicular to the magnetic field, d=dy+ 24, is an effective
contact thickness and ®y=hc/2e=2-10"7 Gs-cm? is the
magnetic flux quantum.

Applying Eq. (11) to the known function i ( B) it is in
principle possible to deduce the distribution jSB(x,»), al-
though this reverse problem is an incorrect one so it is
common practice to limit oneself to “guessing” (proceed-
ing from certain physical arguments) such a distribution
7SB(x,p), which would provide an i,(B) close to the ex-
perimental one. The reference points here may be the
known magnetic field dependences i.( B) for a rectangular
contact (see Fig. 3) corresponding a) to a uniform distri-
bution of the critical current density, jSB(x,y) =const:

) ] sin(7®/ D)

io(D/By) /i (0) = 1—1?%0—’ (12)
(the so-called “Fraunhofer diffraction dependence); b) to
strongly nonuniform 1D  U-like  distribution
78B(x) < ch[2y(x/L)] (y>1) with increased critical cur-
rent density at the contact edges, and c) to a randomly
nonuniform 1D distribution jSB(x)=;+ j.(x), where
jg=const, and j.(x) is a random function with a zero

average value j (x) = O, and a correlation radius r defined
by the expression
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FIG. 3. Magnetic field dependences i.(B) of the critical current of a
narrow Josephson junction for different distributions of the local critical
current density jSB(x). I—uniform distribution [see Eq. (7)]. 2—U-like
distribution (see the text) with y=10 [Ref. 28]. 3—random distribution
(see the text) with 277/ L=0.01 and ¥*=0.09 [Ref. 96].

[ Je(x)) = A1 jelxy) — jol
={je—i"1P exp( = |x—x,| /1),

and an effective variance ¥ = (2r/L) (jo—jO)%/ (j9)2 The
following factors are characteristic of i.(B) functions: a)
symmetric (in relation to the contact center) distributions
jSB(x) give us i,(B) =0 at definite values of the magnetic
field with the distance between the first zero minima (sym-
metric about B=0) of the Fraunhofer dependence being
twice as large as that between all the subsequent minima,
while for a U-like distribution with y> 1 all these distances
are equal; and b) for the random distribution jSB(x), i
does not become zero for any value of B and the envelope
of the dependence i,( B) may have a plateau.?’

Experiments show that although magnetic field depen-
dences i,(B) of the critical current of separate contacts
resemble those of Fraunhofer, they provide evidence of the
inhomogeneous nature of the corresponding distributions
jSB(x)." The wide intergrain Josephson junctions in
YBa,Cu;0s are also inhomogeneous. An example of
“guessing” the distribution jSB(x) in a Josephson junction
corresponding to a large-angle intergrain tilt boundary in a
polycrystalline YBa,Cu;0,-film is given in Fig. 4.

It has already been mentioned above that one of the
basic parameters of GBs in YBa,Cu;0; defining the mag-
nitude and the magnetic field dependence of their critical
current is the angle 3 of misorientation of contacting
grains: as 9 increases the superconducting properties of a
contact worsen. Undoubtedly, one of the reasons for this
phenomenon are the structural features of such a bound-
ary. According to a dislocation model of an intergrain tilt
boundary, it is a dislocation wall, that is a set of edge
dislocations lying in the boundary plane and spaced at a
distance from one another*’
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FIG. 4. Experimental (a) and model (b) magnetic field dependences
i.(B) of the critical current of a narrow Josephson junction in a poly-
crystalline YBa,Cu,O; -film at 7=4.2 K [Ref. 38]. In the insert: model
distribution jSP(x).

a

D=35n®/2) (13)

Here a is the value of the Burgers vector which, for a
boundary between grains with a common c-axis, practi-
cally coincides (because of a nearly tetragonal structure of
YBa,Cu,0;) with the lattice parameter in the basal plane.
For small-angle boundaries between such grains D> a and
the lattices of neighboring grains are well adjoined every-
where except in the areas near dislocation nuclei; for large-
angle boundaries these areas overlap, and the whole
boundary becomes *‘bad.”

Different reasons are possible for the deterioration of
superconducting properties of a material due to the pres-
ence of dislocations on the tilt boundaries in question. One
of them is the order parameter suppression in elastically
deformed areas of the boundary.'* Let p,, be the effective
radius of the deformation area near a separate dislocation
in the basal plane perpendicular to it (according to theory
Pm is Of the order of the lattice parameter in this plane®®).
Assuming the superconducting current across the bound-
ary to flow only in its undeformed part we obtain
j‘c:'B/ch=(D—2pm)/D, where j$ is the critical current
density in a grain. For small misorientation angles, when
D=qa/4, it brings us to

2Pm
jg'B/ch:l—(T)ﬂ, (14)
that is a linear (in ¥) decrease in jSB. The experimental
data in Fig. 1 are in agreement with this dependence at
J<«1 if we let p =2.9a. Such a large value of p_, suggests
that the superconducting properties of YBa,Cu;0; are
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FIG. 5. Deformation field £, (maximum deformation component) on z
symmetrical intergrain tilt boundary (x=0) with an infinite dislocation
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very sensitive to the lattice deformation (this is indirectly
confirmed by the fact that a deformation of ~ 1% is suffi-
cient to prevent a tetra-ortho transition).

For further clarification of the model under consider-
ation the authors of Ref. 14 calculated spatial contours of
the constant magnitude (equal to 0.01) of one of the com-
ponents of the relative deformation caused by a dislocation
wall on a symmetric intergrain tilt boundary. Results of
the calculation carried out within the framework of the
isotropic theory of elasticity®® are plotted in Fig. 5. It can
be seen that with an increase in the angle 3 the thickness of
weakly deformed (e, <0.01) near-to-boundary areas di-
minishes and at ¥=10° it becomes smaller than the unit
cell dimension (in the ab-plane). This means that the
structure required for the existence of superconductivity is
destroyed along the complete interface. This “destroyed”
near-to-boundary layer extends as deep into the contacting
grains as D/27=a/27Y¥ and is a normal metal (or insula-
tor). It is in this manner that a Josephson junction of the
SNS- (SNINS- or SIS) type originates on the boundary.

A somewhat different approach, which allows for the
minimization of the tilt boundary energy by means of ad-
justment of its individual atoms has been undertaken in
Ref. 40. It gives a possibility to estimate the thickness dy of
the transition layer on the boundary and by making use of
Eq. (5) to find the critical current dependence on the mis-
orientation angle. The result agrees qualitatively with the
experiment.'®

Nevertheless, the situation considered does not mean
that any GB with a sufficiently large misorientation angle 9
is necessarily a weak link. It has already been noticed
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above that in YBa,Cu;0;4 the [010] twist boundary with
U =90° exhibits no properties characteristic of weak links.
Besides, from experiments of Ref. 25 it follows that no
such properties are exhibited by the [001] twist boundary
which corresponds to two contacting crystallites with a
common c-axis, mutually rotated around the a- (or b-)
axis by an angle 3 =14". It means that the atomic structure
of real GBs may (at least at certain misorientation angles
of contacting grains) rearrange in such a way that it would
not manifest properties of a weak link.>) The rearrange-
ment of this kind becomes easier if the process of crystal-
lites growth and intergrain boundaries formation goes in
the presence of a liquid phase. That is why in the materials
produced by the liquid phase technology the high angle
intergrain boundaries often do not reveal the properties
typical for the weak links, 102103

4. CALCULATIONS OF THE CRITICAL CURRENT OF HTSC
CERAMICS (PERCOLATION MODEL)

4.1. Analytical methods

Calculation of the critical current density j_. of HTSC
ceramics (regarded as an assembly of superconducting
grains being connected by weak (Josephson) links) is a
complex problem. When solving this problem in a general
case one should take into account not only the spread of
the coupling energy, €5, over Josephson contacts but also
the correlation of the order parameter phases in different
grains. The task may be significantly simplified if we ne-
" glect the latter: in this case currents in adjacent contacts
may be regarded as mutually independent. Such a situation
is realistic either at sufficiently high temperatures (T>¢;),
when temperature fluctuations of the order parameter are
large, or in a sufficiently strong magnetic field B~ ®y/a’
which results in strong “magnetic field” fluctuations of the
order parameter. In this case the critical current calcula-
tion can be made on the basis of the percolation theory***
or the effective medium theory.44

Any of these theories assumes the function f(i,) (nor-
malized to unity) of the intergranular contact distribution
in critical currents to be known. The form of this function
may in principle be deduced on the basis of model concepts
about the properties of HTSC ceramics intergranular con-
tacts or experimentally. One of the schemes of an approx-
imate calculation of the critical current density j. of a
ceramic has been suggested in Ref. 45 and consists in the
following. The function

Py = [ fuiadi=1- | riadi, (15)

{
is introduced. It determines the portion of contacts with
critical currents i, > i. Let this portion be equal for i=r* to
the so-called percolation limit P, (i.e., P(i*)=P,.). Then a
set of contacts with i.>/* forms an infinite cluster ensuring
the superconducting current flow across the whole system.
The critical current of such cluster, however, equals zero
and in order to obtain a finite value of j it is also necessary
to take into consideration contacts with i </*. We consider
an infinite cluster consisting of contacts with critical cur-

oo mfen Hlamalki 22 {9\ Rar~h 1QQ2

rents i, > ™*, where ** </*, Its critical current density is
finite and increases still more by an amount Aj(i**), if
contacts with critical currents within the limits of
** — Ai <i </** are added to the cluster. Then the func-
tion P increases by AP(/**)=P(i**—Ai)— P(i**)
= f(**)Ai. If the cluster in question were a random net of
identical (but broken with probability 1-—P) resistive
bonds then, according to the effective medium theory, its
conductivity would be a linear function of P(i**) (Ref.
44). The basic (and dubious) supposition made in Ref. 45
comes down to an assertion that the contribution Aj (**)
of the “added” contacts (with critical currents within
** _Ai<i <i**) to the critical current density of the
whole cluster under consideration is proportional to
AP(i**), and besides, to average critical current

1 © .
i =pezewy | oSG
of the contacts of this cluster:

Aj (%) « (i,) AP(i**). (16)

Summing these contributions, we get the total critical cur-
rent density of the ceramic

1 dP P
P, 0

where i(P) is a function inverse to the function P(i) [see
Eq. (14)], A is a proportionality factor independent of the
form of f(i.) which can be easily established by means of
considering a cubic net whose bonds consist of identical
contacts with critical current i . The critical current den-
sity in this sort of a system obviously equals j,=i/a®~!,
where a is the spacing between contacts and D is the sys-
tem dimensionality. The comparison of the result obtained
with Eq. (17) brings us to 4={a®~'(1—-P,))"L

A somewhat different (and, to our mind, a more con-
sistent) procedure of deriving a j_ value has been suggested
in Ref. 46 and used for concrete calculations in Ref. 47. In
essence it is as follows. Let us imagine that a cluster con-
sisting of contacts with critical currents i,>i determines
the critical current density j. of the system (which means
that for current density equal to j. all the contacts outside
this cluster are in a resistive state). It is clear that the
magnitude of j_ is limited by the “worst” (i.e., with the
smallest critical current i,=/) contacts and, consequently,
is directly proportional to i. Besides, the current flowing
through the cluster under consideration is proportional to
the density of percolation paths in this cluster. The latter
density itself is proportional to the conductivity of an
equivalent network of resistive bonds, where P is the frac-
tion of unbroken couplings. This conductivity is, according
to the percolation theory, directly proportional to
(P—P,)', where t is a critical conductivity factor depend-
ing on the form and dimensionality of the network. Thus,

(18)

(17)

je(P) « (P—P.)'i(P).

The actual critical current of the system is calculated by
means of maximization of Eq. (18) relative to P and cor-
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responds to some “critical” cluster with P=P_; at
P, <P<P, the cluster, although being infinite, is very
“sparse,” while for P> P_ the cluster is crowded with
“bad” contacts. (The unknown constant factor in Eq. (18)
is found using the same procedure as was used above.)

In the calculation procedures under consideration the
influence of any external parameter, §, (e.g, of magnetic
field or pressure) on the magnitude of the critical current
can be allowed for if we know the dependence i, =i (i.,§)
which interconnects the “old” critical current i, of an in-
dividual contact with the “new” critical current /. A
“new” distribution function, f ;(icg) of the contacts is cal-
culated using the relationship

-1

fg(lcg) =f[ic(ic§’§)]

aicg
a_ic (19)

After that we may again utilize one of the previously men-
tioned procedures of the critical current calculation.
Thus, the problem comes down to the determination of
the distribution function f(i.). To this end several meth-
ods have been suggested based on the results of different
experiments: dependence of the contact critical current on
the misorientation angle between contacting grains,”> mag-
netic flux creep in a ceramic sample,” a current-voltage
characteristic of HTSC ceramics in the resistive state.*’
The first of them assumed that contacts are uniformly
spread over disorientation angles 4 and have equal areas.
Then, if we let £=9 in Eq. (19), we shall easily obtain
(i)« |3i,/33| ~'. In Ref. 23 the angular dependence,
i.(9), is described by relation (1). The form of this depen-
dence seems to be rather unnatural and its applicability at
¥ >45° looks doubtful, especially if we recollect that
experiments'® underlying the presentation of i.(9) in the
form (1)-(3) are limited in principle to angles 34 <45°
moreover, in other studies different forms of the i (3) de-
pendence are suggested [see, e.g. relations (2) and (14)].
Hence a simpler and more general two-parameter power-
law dependence i.(d) « (9 +d,) """, where ¥, and n
are fitting parameters, seems to be more appropriate for
this approach. The distribution function in this case also
turns out to be power-law: f(i.) « ;. Naturally, the last
relationship may be valid only within some upper-bound-
limited range of critical currents i, <i, (7, is the maximum
critical current of a contact), and the normalized distribu-
tion function f(i,) would be defined by the expression

n+l(1’c)" L
N e ’ Ic<10
fly)=4{ b \b .
0 )

(20)
>

Such a distribution function has been put forward (but on
quite different basis) in Ref. 47, where it was used for
explanation of experimentally observed power-law current-
voltage characteristics of HTSC ceramics (see below).
Note that distribution (20) may be obtained for Josephson
junctions of the SNS-type in which the critical current is
described by Eq. (10) if we assume that their distribution
fa(dy) over the thickness dy of the normal-metal inter-
granular layer is exponential: f,(dy) « exp(—dn/{(d)).¥
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FIG. 6. The distribution F{J) of the intergrain boundaries over misori-
entation angles 9 in the YBa,Cu;O4-ceramic [Ref. 24]. Straight line:
F(3) xexp(—3/(3)), (3)=6".

The magnitude and the temperature dependence of the pa-
rameter n near T here are governed by the relationship:

En(T)

n=—m——l, (21)

where (d) is the average thickness of the intergranular
layers.

A different procedure of determining f(J;) may be rec-
ommended for ceramics with a known F(?3) function of
GB distribution over the misorientation angles 3. Then
SU)=F[3()]{di/3¥| ~! where (i) is a function in-
verse to the (experimentally) known function i (d). The
distribution F(9) may, in principle, be found from elec-
tron microscopy analysis of a large number of GBs. The
result of such analysis for the melt-produced
YBa,Cu;04-ceramics is given in Fig. 6.'® It can be easily
seen that this distribution is close to exponential:

F(d) cexp(—3/(d)). (22)

In this case the average misorientation angle is (9)=6".
But this value is typical only for the ceramics under anal-
ysis. Making use of the distribution found and the depen-
dence i.(D) in the form (3), we arrive again at Eq. (20)
where

Jo
n=-——

()
Comparison of (23) with (21) allows us to determine the

relation between the average thickness (d) of a SNS-
junction and the average angle (§) of grain misorientation:

En(T)
B(T)

From this it follows that the temperature dependence of
parameter ¥, defining the angular dependence of the con-
tact critical current [see Eq. (3)], should coincide with the
temperature dependence £n(T).

L. (23)

(d)= (9). (24)



One more method of determining f(i_) is based on the
analysis of the magnetic flux creep in HTSC ceramics un-
der conditions when it is due to thermal activation motion
of separate vortices through potential barriers in Josephson
contacts.*® Processing of experimental results allows one to
deduce a distribution function of contacts over heigts ; of
such barriers. However, since g5« i, the same function
would define the contact distribution over their critical
currents. Although the function f(i.) obtained in Ref. 48
describes only the ceramic (Y ,sBag45)CuO with 7',=80
K utilized in this work that is “bad” (from the point of
view of its current-carrying ability), it illustrates one im-
portant point, namely: a shift of the maximum of this func-
tion towards smaller critical currents of contacts in a weak
(4 G) magnetic field. It is the allowance for this sort of
magnetic-field-induced “‘deformation” of the distribution
function that provides an explanation of the magnetic field
dependence of the HTSC ceramics critical current (see
below).

4.2. Numerical methods

For calcualtion of critical curents of HTSC ceramics
various numerical methods have been used.>*>* One of
these is the critical surface method? based on the following
concept. Let us imagine a high-temperature superconduct-
ing ceramic sample in the form of a collection of closely
packed cubic superconducting grains (with equal density
of the intragrain critical current). Their contacting faces
are weak links with different (in value) critical currents
i,; (I is a link number), characterized by the distribution
function f(i,). For a preset arrangement of current elec-
trodes let us select an arbitrary (consisting of faces of cubic
grains) surface ¥, dividing the sample under consideration
into two separate parts. Each of the parts contains one of
these electrodes. Among these surfaces let us find the one
for which the sum (2i) of critical currents of all (/ey)
the intergrain weak links would be maximal. This “criti-
cal” surface y, is exactly what defines the critical current of
the sample equal to I, = Zi, (/€y,). The critical surface
that is so determined is essentially a single large Josephson
junction, neither flat nor spatially uniform.

Although in Ref. 23 numerical calculations were per-
formed using this approach only for a 2D grain-aligned
system with the basal planes of all the grains being parallel
to each other (as is the case, e.g., in a grain-aligned poly-
crystalline YBa,Cu;Qj; film), the results quoted there make
it possible to understand qualitatively the effect produced
by the spread of critical current of intergrain contacts on
the ceramics critical current. This spread is related to a
different grain orientation determined by the angle ¢ be-
tween their g axis and the average direction of the current
flow and described by distribuiton function
Sf4($) <exp( —¢*/$%). The angle of mutual misorientation
of the grains is # = |¢—¢’| (the angles ¢ and ¢’ pertain to
two neighboring grains) and applying Eq. (2) we can eas-
ily find the distribution function f(i,) for any value of ¢;.
The results of numerical calculations consist in the follow-
ing. 1) The average critical current density j., of a non-
textured material (¢p= o0 ) turns out to be by a factor of

anea Mlhunine

{lenalhi 2R {2\ Marnh 1003

TABLE I. Results of numerical calculation of the critical current and
CVC exponent for random lattices of elements with critical currents
corresponding to a power-law distribution (20).

_Square lattice Cubic lattice
L n=0 1 2 0 1 2
0,12 0,26 0,36 0,14 0,28 0,38
[47] [47) [47M [47] [47) [47)
| oo, 0.36 0,66
&b | (s0] [49) [49)
(per link*)} 0,06
(23]
" 2,1 {47113,2 [47) |4,3 [47] |1,8 [47] 12,6 [47) |3.4 [47]
20501 | ‘ 12,6 [49] 2,9 [49]
(VeI ) ‘ ‘
iy is the maximum critical current of a link [see (20)].

~ 30 lower than in the case of an ideal texture (¢,=0). 2)
The density j_ of the ceramics critical current is deter-
mined by the critical current averaged over the misorien-
tation angles ¥ (i;)g= [i.(9)f3(9)d¥ of the intergrain
contacts only in a strongly aligned system (¢,<5°): in this
case we may assume j,, = (i,)3/a’, where a is a grain size;
otherwise the j_, value turns out to be smaller by a factor
of 2 or 3 than what might be expected. The latter conclu-
sion is of crucial importance: it proves that a frequently
used method of calculating the ceramics critical current by
means of averaging the critical currents of its individual
intergrain contacts (e.g., Ref. 51) is not always justified for
it does not allow for the percolation nature of the phenom-
enon.

A basically different, variational, method of the numer-
ical calculation of the critical current (as well as of a
current-voltage characteristic of HTSC ceramics, see be-
low) has been developed in Ref. 49. This method also
makes use of the model of cubic superconducting grains
with weak links which are a 3D network of Josephson
junctions with different critical currents i_;. This network is
desribed by the nonlinear system of Kirchhoff’s equations
for currents /; and voltages v,, relating to separate Joseph-
son junctions with individual current-voltage characteris-
tics vy = vy(i ;,i;). A solution of this system is obtained by
means of iterations with the application of the variatonal
principle which is a generalization of the principle of the
dissipated power minimum® relevant only for linear sys-
tems. It has been shown that the actual distribution of
currents and voltages in the system in question corre-
sponds to the minimum of the functional

i

w=3 | otisipai, 25)
in which the summation is taken over all the system ele-
ments and which for a linear network (v;«i;) is equal to
the power being dissipated in the system. Numerical cal-
culations were made for the distribution function (20)
with n=0, 2.

The results obtained in the aforementioned studies are
listed in Table 1.
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5. CALCULATION OF THE HTSC CERAMICS CRITICAL
CURRENT (JOSEPHSON NETWORK MODEL)

Under conditions when the correlation of the order
parameter phases in different granules of HTSC-ceramics
(see above) cannot be neglected, its critical current and
current-voltage characteristics become collective proper-
ties of a system which in this connection is called a “Jo-
sephson medium.” The latter is usually analyzed using the
Josephson network (or lattice) model. Randomly located
sites of this network correspond to ceramics granules,”
and its couplings correlate with Josephson contacts with
their inherent properties (critical current, current-voltage
characteristic, etc.). The study of the properties of this sort
of a network relies on the use of the Josephson equation

d 2e

dz (x—¢1) =% (Vi—V1) (26)
(where ¢, is an order parameter phase in the kth granule
and V, is its potential), the equation defining the current
iy, of the weak link between the kth and the /th granules

L=l sin(dr—¢) + (Vi— Vi) /Ry,

(5, is the coupling critical current and R, is its resistance
in the normal state), and of the Kirchhoff’s equation

; ikl = 0’

provided with relevant boundary conditions. When there is
no dissipation in the system (i.e., at currents below the
critical one) V,=V,.

The calculation of the system state (for a given applied
current) comes down to the determination of all the cur-
rents i, the phases ¢, and the potentials ¥, for which
this or some other numerical method is required.’>>* As to
the transport critical current, it can be calculated in differ-
ent ways. Thus, in Ref. 53 the total system current as a
function of the order parameter phase difference on the
system boundaries (that is, electrodes) was determined
and the maximum value of this current was taken as crit-
ical. With this in mind the contribution to the system free
energy

(27)

(28)

> (el 1 —cos(dr—a) 1,

k.

(£5) =1/ 2e, (29)
resulting from passing a current® through this system was
calculated and a configuration (that is a set of the order
parameter phases) was sought which corresponds to the
absolute minimum of this energy. For a moderate spread of
contact critical currents i3, the total critical current of the
sample made up of a large number of granules has turned
out to coincide with the current-carrying ability averaged
over its cross-sections. This current-carrying ability is re-
garded as the sum of critical currents of couplings pene-
trating the sample cross-section perpendicular to the cur-
rent.

A numerical calculation of the critical current (and
also of the current-voltage characteristic, see below) of a
2 D system exhibiting an exponential dependence (3) of the
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critical current of individual Josephson junctions on the
misorientation angle 4 and a “cut-off”” Gaussian distribu-
tion of these angles (F (& <20°) « exp(—92/2(8?%)), F(§
>20°)=0), has been carried out in Ref. 24. The critical
current of this kind of system rapidly diminishes with the
rise of the parameter (9?) (that is, as the F(9) distribu-
tion broadens): for (8%)!/2=5°, 10° and « the values ob-
tained were I,,/I°,=0.2, 0.1 and 0.06, respectively, where
I° is the critical current at (%) =0 (a single crystal).

In Ref. [54] the numerical solution of a system of non-
linear differential equations (26) was found for a 2D
closely packed granular structure with regular hexagonal
grains, their c-axis being perpendicular to the structure
plane. The orientation of these hexagons in the basal plane
has been assumed to be random, and the links connecting
them (with similar normal resistances R;;) were classified
into two types according to the critical current magnitude:
“good” links with a high critical current, i3, = i;, and “bad”
links with critical current i, = i, <€ ;. The intergrain link
was considered to be “good” if the intergrain misorienta-
tion angle was 3<3, (in accordance with the results of
Refs. 16-20, 3,~10°), otherwise, the link was assumed to
be “bad”’; the magnitude of the ratio i;/i, was taken equal
to 25. Depending on the ratio of the portion of the “good”
links p=1,/45° to the percolation threshold p.~0.35 two
possible modes should be distinguished: a) p <p. when the
system critical current is defined only by the “bad” links:
I «i; and b) p.<p <1 when the critical current depends
on the links of both types. In the latter case the numerical
calculation results may be presented in the form

(30)

where i, =1_./N, N is a number of weak links in the sys-
tem cross-section perpendicular to the current, v=1.23.

This kind of a scaling dependence (but with a different
index v) also describes the current of a more complex 3D
system analyzed in Ref. 56. The critical current numerical
calculation of a random 3D cubic lattice, consisting of
identical Josephson links, gives I« (p—p.)", where
v=1.7 and p,=0.37.9

(irh——iZ) &« (p_pc)vr

6. EFFECT OF EXTERNAL FACTORS ON THE CRITICAL
CURRENT OF HTSC CERAMICS

6.1. Magnetic field dependence of the critical current

As has been previously mentioned, allowance for the
magnetic field effect on the current-carrying ability of
HTSC ceramics within the framework of analytical calcu-
lations of their critical current requires knowledge of the
distribution function fg(i.z) of intergranular contacts
over their critical currents i,z “reorganized” by the mag-
netic field. The latter may be calculated using relation (19)
if the function i_g(i.,B), describing variations in the crit-
ical current of a single contact in the magnetic field, is
known. This function depends on four factors, namely, 1)
the size, 2) the orientation, 3) the shape and 4) the spatial
distribution of local density jS®(x,y) of the critical current
over the contact area. For calculations the shape and dis-
tribution jS’B (x,y) are usually taken identical for all the
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FIG. 7. Evolution of the function fz(i ) of contact distribution over
critical currents /_p under the action of a magnetic field. a—Uniform
distribution of the critical current density [Ref. 47). b—Randomly non-
uniform 1D distribution [Ref. 96]; correlation radius r=0.01(L/2w),
variance f=0.09. Initial (b=0) distribution function f(i.) is described
by relation (20) with n=2.

contacts. As far as the contact sizes and orientations are
concerned, they are averaged assuming for simplicity that
corresponding distributions are uniform (within certain
limits of parametric variations).”

In Refs. 47, 96 this problem has been solved for con-
tacts of a square form with the initial distribution function
(20) for a uniform distribution of the critical current den-
sity, 7CP(x,y) =const [see Eq. (12)] and for a randomly
nonuniform one-dimensional distribution jf’B(x), dis-
cussed earlier. The results demonstrating the evolution of
the distribution function fg(i,5) in the magnetic field are
plotted in Figs. 7a, b. The magnetic field magnitude is
determined by the dimensionless parameter
b=2mAgaB/®,, where a is the average contact size; the
initial (b=0) power-law distribution function f(i;) is de-
scribed by Eq. (20) with n=2. In both cases the magnetic
field shifts the distribution function fz(i.g) towards
smaller critical currents, although in a strong magnetic
field (b3 1) the form of this function is quite different: for
a uniform jSP.distribution the function fp(i.z) varies
with the magnetic field increase gradually and at small
critical currents fz(i.g) = const, while for a randomly
nonuniform jSB.distribution there is a magnetic field re-
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FIG. 8. Magnetic field dependences of the ceramics critical current. I,
I1—Uniform distribution of the local critical current density;*’ dots: ex-
perimental data for the “bad” YBa,Cu;Osceramic (T .=80 K, T=77
K). 2—Randomly nonuniform 1.D jSB(x)- distribution;’ correlation ra-
dius 2wr/L=1/300, variance f=4.10‘4, initial (5=0) distribution
function f(i.) is described by relation (20) with #=2. Dots: experimen-
tal data for the YBa,Cu;0; -ceramic (T,=90 K, T=77 K) [Ref. 59].

gion (in Fig. 7a these are fields 3<b<300), where the vari-
ation of this function is negligible (as compared to fields
below and above these limits) and at small critical currents
fpli.p) « i2p. Such differences result in different behavior
of the magnetic field dependences I..(b) of the ceramics
critical current in both situations under consideration: in
the first case I (b>1) < 1/b, and in the second case the
function I(b) has a plateau (see Fig. 8a, b).»

Experiments**® actually show that the magnetic field
dependences [ (b) for HTSC ceramics of different com-
position have a plateau in the region of sufficiently strong
magnetic fields.” Is this an argument for spatial nonuni-
formity of Josephson contacts of HTSC ceramics causing a
random distribution of the local density of the critical cur-
rent over the contact area? In Refs. 59, 60 a different in-
terpretation is suggested: every (or nearly every) Joseph-
son contact is spatially nonuniform and contains a region
of a “strong” link. It is these regions that provide the
current transfer in strong magnetic fields lessening the lo-
cal density of the critical current in the rest (“weak”)
sections of each of the contacts.

The evidence in favor of this interpretation, in the au-
thors’ opinion,® is provided by the investigation results for
magnetic field dependences I.(b) in grain-aligned
YBa,Cu,05-ceramics which are aggregates of crystallites
with nearly parallel ab-planes (misalignment of their
¢-axes is ~ =10°). In these experiments the transport cur-
rent was passed along the ab-plane, and the magnetic field
perpendicular to the current was directed either along or
across this plane. In both cases a plateau in /_.(b) could be
observed; however, the field B*, corresponding to its high-
field boundary on the side of strong fields is much stronger
in the first case: B*(|| ab)=30 T and B*(|| ¢)=7 T at
T=76 K. Assuming these values of the field to be close to
the values B, (|| ab) and B,(|| ¢) of the upper critical
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field for YBa,Cu;0;, the authors of Ref. 60 come to the
conclusion that the critical current of a textured material
in a strong magnetic field is limited by the material prop-
erties close to those of a single crystal rather than to those
of weak links. In this connection two observations are ap-
propriate here. Firstly, the known values of
B.,(]| @b)=130 T and B,,(|| ¢)=25 T (for T=76 K)%
are noticeably higher than the measured values of B*. Sec-
ondly, when making an estimate of the magnetic field
within crystallites and intercrystallite “layers” (which in
this case have the form of comparatively thin lamellas par-
allel to the ab-plane) it is necessary to account for demag-
netization factors which are different for different field di-
rections. Then the difference of the measured boundary
fields, B*(|| ¢) and B*(|| ab) may be due to the difference
of these factors. Thus, the interpretation suggested in Ref.
60 is not well-grounded.

Both hypotheses considered above (randomly nonuni-
form contacts and contacts with a ““strong” coupling) may
be made consistent if we assume that in non-textured ce-
ramics ‘“‘strong” intergrain links are absent and its behavior
in the region of the plateau of I as a function of the
magnetic field is defined by randomly nonuniform weak
links while in textured ceramics “strong” links appear ow-
ing to peculiarities of its structure. One of the possible
reasons for this phenomenon consists in favorable struc-
tural conditions for the formation of the above-mentioned
intercrystallite [001] twist boundaries (a mutual rotation of
contacting crystallites with respect to each other around
the common c-axis) with the misorientation angles near
3 =14 (and also, possibly, with other favorable misorien-
tation angles), exhibiting the properties of a “strong”
link.”> A portion of such boundaries may be sufficient
(>»15%) for the formation of continuous current paths in
strong magnetic fields, when all the remaining (weak)
links turn out to be “destroyed.”'® These considerations
might explain the results obtained in Ref. 60.

The analysis of experimental data suggests that the
plateau on the I (b) dependences is observed only in ce-
ramics with a sufficiently high critical current density and
is absent in the case with low current densities. The mean-
ing of this correlation is discussed in the Section dealing
with ceramics current-voltage characteristics.

Experiments show that a magnetic field not only re-
duces the critical current of HTSC ceramics but also pro-
motes the appearance of its anisotropy (even in nontex-
tured ceramics): the critical current densities along
Jjo(I|| B) and across j (/L B) the magnetic field differ
substantially (by a factor of 2-3) from each other.®%
This effect is due to a selective action of the magnetic field
on different contacts: an effective decrease of the critical
current occurs only for contacts whose planes form a small
angle with the magnetic field direction; the contacts whose
planes are almost perpendicular to this direction preserve
their current-carrying ability. Hence current trajectories in
HTSC ceramics in a strong magnetic field for a current /
nearing the critical one are of completely different forms
for various B and I orientations: when 7|| B almost all the
sections of the trajectories are directed roughly along the
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FIG. 9. Current paths in an HTSC-ceramic in a strong magnetic field for
the current nearing the critical one. The magnetic field is parallel (a) and
perpendicular (b) to the average current [ direction. Sinuosity (a) of the
current path is characterized by the average values of path declination
angle a off the average current direction.

current, while for 71 B they are perpendicular to the cur-
rent (see Fig. 9). By virtue of the difference of these tra-
jectories, the averaging defining the j_ values gives differ-
ent results.%

Apart from the analytical calculations cited above of
magnetic field dependences I . ( B) of the ceramics critical
current within the framework of the percolation model
calculations of these dependences are known based on the
use of the Josephson lattice model.’%4-%8 A nalytical results
obtained using this model are related only to 2D systems
made up of identical Josephson contacts. The influence of
the spread of contact properties in a 2.D system as well as
a 3D system (composed of identical contacts) has been
investigated only by using numerical methods.

Thus, in Ref. 67 a 2 D square lattice has been analyzed
with the links formed by Josephson contacts with critical
currents #;, dependent exponentially on the magnetic field:

, B< By

[i.(0)/i(0)]'~ B/ | B> B,/
(31)

where i (0) and i.( o ) are the critical currents that are the
same for every contact in small (B< B) and large
(B> By)) fields, By, is an individual “critical” field for each
contact.'” Calculations of I.,(B) (based on the minimiza-
tion of the system energy (29)) have been made for two
types of contact distribution f(B;,) over the “critical”
fields By;: a uniform distribution (f( By;) =const within a
certain range 1<By/B,<b,, outside of which
S (By;) =0; the parameter satisfies b,> 1), and a power-law
distribution (f(By) « Bg® with the exception of a certain
region of small fields 0< By, < B,,, where f(By)=0; the
index is f=1.8-2.3). In all the cases analyzed it appeared
that in the strong field region (B> B,) the critical current
of the system decreases exponentially with the magnetic
field increase:

i(B)/(0) =

1
In[I(B)] < const+— .

V3 (32)

E. Z. Meilikhov 141



The index a depends on the distribution of the contact
parameters and in the cases analyzed varies within 0.8—1.0.

The exponential dependences I .( B) of the form (32)
have in fact been observed for the YBa,Cu;0; ceramics;®
the experimental value of the parameter 2=0.5, however,
was noticeably different from the calculated one. This dif-
ference is likely to result from the 3.D nature of the real
ceramics.

The numerical analysis of the magnetic field depen-
dence of the critical current in a 3.D lattice of Josephson
contacts is limited by the available calculating facilities and
hence has been carried out only for small-size lattices.
Thus, in Ref. 56 a (7X7X7) 3D lattice of superconduct-
ing grains interconnected with weak links with identical
critical currents was investigated.'?’ The disorder inherent
in actual HTSC ceramics was imitated in this system by
random shifts of constituent granules. The fundamental
property of such a system is the inherent frustration in the
magnetic field, that is the existence of a multitude of meta-
stable states corresponding to local energy minima and
differing in the magnetic flux distribution ®,=(an
integer +6,) P, (0<8,<1) over various lattice cells (a is
the cell number). The authors of Ref. 56 provide qualita-
tive considerations in favor of the argument that in a
strong magnetic field the parameters §, are uniformly dis-
tributed between O and 1 and this distribution remains
almost unchanged as the magnetic field increases. The field
of transition to this situation is estimated to be
Bs~®y/AS, where AS is the r.m.s. fluctuation of the area
of the cells. As the result a plateau is expected to appear on
the magnetic field dependence 7_.( B).

Unfortunately, it is difficult to check experimentally
the correctness of the model suggested. The problem is that
the underlying element of the model under investigation is
disorder and frustration (rather than weak links) which, in
the authors’ opinion, should cause the appearance of a
plateau on the / .(B) dependence also for a (sufficiently
“holey”) lattice of “strong” links. Nevertheless, further
development of this course look promising.

6.2. Temperature dependence of the critical current

The temperature dependence of the critical current,
I_.(T), of HTSC ceramics is determined by two factors,
namely, 1) by temperature dependence i.(T') of the critical
current of individual intergrain Josephson contacts of the
ceramics and 2) by the increase in the number of effective
(i.e. participating in the near-critical current transfer) con-
tacts as the temperature decreases. As has been previously
emphasized, the majority of intergranular contacts are of
the SNS (or of the SNINS) type, hence the temperature
dependence of their critical current near T obeys Eq. (5)
with m=2. As far as the other of the two factors in ques-
tion is concerned, its role can be assessed with the help of
the analytical method of the ceramics critical current cal-
culation discussed in the previous Section. As has been
demonstrated in Ref. 47, for a distribution function f(i.)
of the form (20) and for the temperature dependence
i{T) < (1—T/T,)"exp(—d/&y) the magnitude of I,
can be deduced from the expression:
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T m
Icr(T)ocK(T)(l——T—) ) (33)

K(T)=[t(n+ D] [t(n+1) 1] [Vt D+

X(I—Pc)l/("+l),

where t=1.5 and P,=0.25 are percolation parameters for a
3D medium, n+1=5y(T)/{d) [see Eq. (21)]. For an
intergrain layer made of “clean”  material
n(T)+1={Ex(T)/{d))(T./T). Application of (33) re-
veals that for 1—T/T_~0.1 the temperature dependence
of the coeflicient K(7T'), related to the distribution of con-
tacts over the critical currents, is negligible and practically
does not alter the power-law temperature dependence
I (TY<(1—T/T_)™, typical for individual intergrain
contacts. It provides the grounds for the frequently used
method of determination of the nature of the ceramic con-
tacts from the asymptotic behavior of its critical current
near T,."%

At temperatures noticeably different from T, the tem-
perature dependence of the distribution function, f(i.)
might have turned out to be substantial. However, n—
as T—0, i.e. K(T)—1; hence such dependence becomes
irrelevant and the temperature behavior of I .(T) is again
dependent on the properties of individual contacts.

Thus, almost within the whole temperature range of
T < T the temperature dependence of the ceramics critical
current is close to that of the critical current of its separate
intergrain contacts.

6.3. Critical current dependence on pressure (Uniform and
axial compression)

6.3.1. Uniform compression. Numerous experiments
prove that the critical current of HTSC ceramics increases
under hydrostatic pressure.”®’’ The relative variation of
the critical current at P~ 10 kbar goes as high as ~100%
and depends on its magnitude at zero pressure: for “bad”
ceramics (with low critical current) relative variations are,
as a rule, greater than for ““good” ones. For interpretation
of these results it is essential that the conclusion made in
the previous Section (concerning the temperature depen-
dence of 1) is equally valid for the dependence of the
critical current of a ceramic on pressure: the latter is de-
termined mainly by the variation of the critical current of
individual intergrain contacts.!¥

Thus, the mechanism of pressure action on the prop-
erties of a single Josephson SNS contact should be
analyzed.”® Local density jS’B(x,y) of the critical current in
such a contact is defined by the relationship [see Eq. (9)]

d(x,y)
I3Y

where d(x,y) is the local thickness of a normal layer. For
analyzing the “responses” of an intergranular contact to
external pressure it is convenient to use a very simple
model: two spherical granules of radius R compressed by
an external force F. In this case the contact radius r and
the local pressure, p(x,p), in its plane obey the relations™

FSB(x,p) cexp , (34)
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WF+F) [, = AV

(33)

where a=[3(1 —vz)/SE']m, E and v are Young’s modulus
and Poisson ratio of the granule material, respectively. The
“internal” force F, takes into account the fact that even
when there is no external force F the area of their contact
is characterized by the initial radius ro=a(FoR)"? (e.g.,
owing to thermal tensions originating in the course of the
ceramic synthesis). The “external,” F, and the “internal,”
F,, forces are correlated with “external” (P) and “inter-
nal” (P,) pressure by simple relationships: P~F /R,
Py~Fy/R*a(ry/R)>. Let roy/R~0.1 and E ~ 10° kbar, then
Py~1 kbar<FE, that is, the initial deformation is of the
elastic type. From Eq. (35) it follows that the contact
radius rp increases with pressure according to:

173
rP=r0( 1 +F(;) .

A nonuniform pressure distribution over the contact
area [see (35)] leads to a change of its thickness
d(x,y)=d[1—p(x,p)/E] and, in accordance with Eq.
(10), to a nonuniform distribution of the local current
density

(36)

rp=ro(1+P/Py)"3,
(37)

where A= (4/7)(ro/R) (dy/En)/(1—47), d, is the normal
layer thickness at the contact edge. For relatively small
pressures when the ceramic deformation is reversible, the
distribution chB(x,y) may be substantially nonuniform
only for “bad” ceramics for which dy»£x. In “good” ce-
ramics (d~£y) this distribution is always close to a uni-
form one. [Here we, naturally, do not take into account
any other reasons which are not connected with the non-
uniformity of the local pressure on a contact but which
cause a nonuniform distribution chB(x,y)].

The total critical current i, of a contact in the presence
of a magnetic field B, lying in its plane and directed along
the y-axis is determined by Eq. (11). For “good” ceramics
the pressure action is confined to a change of areas of
intergranular contacts.'> In this case

A
JSB(x,y) <exp =~ (A—x?—y)12|,
0

Ji(krp)

io(P.B) ==

7S (38)

where J, is a Bessel function. Oscillations of i, disappear
after averaging over all the contacts of the ceramics and
then the expressions for its critical current density acquire
the following form: in a zero magnetic field

2/3
fcr(P,0)=(rp/ro)2jc,(0,0)=jcr(o,o)(1+F0) :
(39)

which correlates well with the experimentally observed de-
pendences; and in a strong magnetic field (krp»1)
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FIG. 10. Critical current dependences of different types of ceramics on
pressure for B=0, calculated using Egs. (39), (41) [Ref. 78]. The ce-
ramics “quality” is defined by the parameter 4: (4«1 is a *‘good™ ce-
ramic, A> 1 is a “bad” ceramic). I—A<«], 2—A=1, 3—A=3, 4—A=5,
5—A=9.

176
jc,<P,B)=jc,(o,B)(1+—) , (40)

Py

which corresponds to a much weaker dependence of the
ceramics critical current on pressure. It results from the
fact that the contact area increase, potentially favorable
from the point of view of raising its critical current, simul-
taneously brings about the rise of the magnetic flux
through a contact lateral surface ($ « rpd;B), which in its
turn assists the critical current decrease [Eq. (12)].

For “bad” ceramics an approximate (asymptotically
exact at 4»1) expression for the critical current of an
individual contact has the form:

i.(P,B) = (14+P/Py)"*®(P,B),

where

(41)

7/2
©®©(P,B)= f exp| (Arp/rg)sin 6]
)

X cos|krp cos 8]sin*? 6d6.

The ceramics critical current dependences on pressure in
the absence of a magnetic field (B=0) calculated using
Egs. (39) and (41) are plotted in Fig. 10. They provide an
illustration of the idea put forward in this connection by
the authors of Ref. 75: “He who has little has more to
gain!” For our case: the lower is the initial (P=0) critical
current the greater is its rise under pressure. At A»1 (very
“bad” ceramics) the critical current may increase by sev-
eral orders of magnitude.

A different situation is expected to arise in a strong
magnetic field (krp>1). Here the critical current rise due
to pressure turns out to be comparatively small even for
“bad” ceramics (see Fig. 11). The reason for this is the
same as for “good” ceramics (see above).

6.3.2. Uniaxial compression. Up till this point we were
considering the critical current variations under uniform
pressure. New interesting effects are brought about by
uniaxial compression.®® In this case the deformation e(d)
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FIG. 11. Critical current dependences of different types of ceramics on
pressure in a strong magnetic field (krp=10), calculated using Eqgs. (40)
and (41) [Ref. 78]. The ceramics “quality” is defined by parameter A:
(A«1 is a “good” ceramic, 4 S 1isa “bad” ceramic). I—A<l, 2—A= 1,
3—A55.

of the medium is anisotropic. Both its value and sign de-
pend on the angle ¢ between the direction of compression
and that of deformation:®

e($) =%, Py=P[(1+v)cos’ $—v]. (42)
In accordance with relation (42), uniaxial compression is
accompanied with expansion in directions for which |m/2
—¢| <arccos[v/(1+v)]. It means that all the intergranu-
lar contacts may be divided into two types: critical currents
of the contacts of the first type (their planes form an angle
with the compression direction which does not exceed
arccos[v/(1+v)]), decrease, and those of the second type,
on the contrary, increase. The total effect of the uniaxial
compression effect on the ceramics critical current in this
situation depends on the orientation of an average direc-
tion of the transport current relatively to the compression
direction as well as of the ‘sinuosity” of current-
conducting paths along which the near-to-critical current
transfer is performed (see Fig. 9). If this sinuosity charac-
terized by the average deviation () of current paths from
the transport current direction is not large [if, to be exact,
(a)<(6v)'/? (Ref. 65)], then for the current flowing (on
the average) along the compression direction it is the com-
pressed contacts that are critical and for the current per-
pendicular (in general) to the compression direction the
leading role belong to expanded contacts. Correspond-
ingly, the critical current density should increase under
uniaxial pressure in the former case and decrease in the
latter one. Calculations reveal the ratio of variations of the
densities of these currents (for small sinuosity of current
paths) to be equal to Ajt /Ajl = —v (for the YBa,Cu,0;
ceramics v=0.2). Experiments” carried out with the
YBa,Cu30; ceramics (with the critical current j_ (77
K) ~10% A/cm?) confirm this conclusion fully. From this,
in particular, it follows that the sinuosity of current paths
in this ceramics is not large: (a)<30°.

Heaalbki 2 /N hMar~rh 10QQ1

Nontrivial results can be obtained with ceramics
uniaxial compression in a magnetic field.®> Pressure raises
the critical current of contacts with planes normal to the
compression direction, and the magnetic field reduces the
critical current of contacts with planes parallel to the mag-
netic field direction. Hence the uniaxial compression effect
is to a great extent dependent on the mutual orientation of
the directions of uniaxial compression, magnetic field and
current. Ref. 65 scrutinizes the situation when all the three
directions are parallel (this situation corresponds to exper-
imental conditions in Ref. 74). It is shown that in a strong
magnetic field (b 1) the influence of uniaxial compression
on the ceramics critical current is described by the

relation'®
1+P/P
I(P.B)=— L, Py=!Py(E/Py)3 (43)
and rapidly declines with the field increase:

I.(P,B)—1I_(B,0)x P/B*? Exactly this kind of a rela-
tionship has been established experimentally.”

7. CALCULATION OF VOLTAGE-CURRENT
CHARACTERISTICS OF HTSC CERAMICS (PERCOLATION
MODEL)

7.1. Analytical techniques

Calculation of current-voltage characteristics (CVC)
of superconducting ceramics at currents I exceeding the
critical current I, is complicated by the fact that the re-
sistive elements of such a system (intergrain contacts) are
essentially nonlinear: the voltage drop v across a SNS con-
tact with critical current i, and normal resistance ry is
described by the function®!

0 . y i<i,
v(ii,)= P . 44
(iic) (=22 >, (44)

where i is the current flowing through the contact. Since
for nonlinear systems the superposition principle is invalid
the utilization of well-developed percolation and effective
medium methods is inapplicable for the calculation of the
conductance of such a system. Particularly, for a consid-
erable spread of the parameters i, and ry determining the
nonlinear conductance of separate elements of the system
the CVC of the system may differ strongly from that of the
constituent elements.

It can be easily seen from a simple and frequently used
model which regards an HTSC ceramic as a set of 1D
“threads” connected in parallel and composed of a large
number of weak links connected in series.?” In this case the
voltage V at the ends of a ““thread” with a current i is

1

mn«Lumvmmw (45)
The normal resistance ry of a contact is proportional to its
thickness dyy and for “thick” contacts [see Eq. (10)] de-
pends only weakly (logarithmically) on i.. If we neglect
this dependence and use the distribution function (20) we
shall obtain from Eqs. (44) and (45 )47
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FIG. 12. Distribution function of intergrain Josephson junctions over
critical currents in the YBa,;Cu;Og-ceramics in the absence (O) and
presence (H) of a magnetic field B=250 G [Ref. 47].

n+2

i i<i0

i , >0y (46)
from which it follows that a 1D chain of Josephson links
possesses a power-law CVC at moderate currents, is char-
acteristic becoming linear for large currents. The natural
current scale here is the maximum critical current of cou-
plings, i,.

An attractive feature of the model in question is, apart
from its simplicity, the feasibility of reconstructing the
form of the contact distribution function f(i.) over the
critical currents from the shape of the CVC (Ref. 47). For
an approximate solution of this problem let us approximate
the CVC of a single contact (44) with the step function

V(i) « f (P— )2 f (i) di,
0

0 ,i<i
v(ii) = ni ) i>Q 47)
Then instead of (46) we obtain
r(t')E@oc f(:f(l'c)dic, (48)

for the nonlinear “thread” resistance, from which it fol-
lows that
JdR

SU/N) 3’ (49)
where R=Nr and I=Ni are the resistance and the current
of a sample consisting of N parallel “threads.” An example
of the application of Eq. (49) is given in Fig. 12, where the
distribution functions f(i;) and fg(i.g) (in magnetic
fields B=0 and 250 G, respectively) as calculated using
this equation are plotted for the YBa,Cu3;05 ceramics with
a low critical current j_, (78K) =10 A/cm?* Comparison
with Fig. 7 reveals that in this case the majority of the
contacts of HTSC ceramics are contacts with a uniform
distribution of the critical current density.
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This simple model seems to provide an adequate de-
scription of HTSC ceramics only in the direct proximity to
T,, when the network of conducting paths is sufficiently
sparse and may be roughly represented as a set of
“threads” connected in parallel. On lowering the temper-
ature more and more intergranular contacts get involved in
this network, its structure becomes still more complex and
CVC calculations require a more general approach. The
first approximation consists in letting the contact resistance
in the normal state be identical while retaining the contact
spread over critical currents.” Then an analogy with a
percolation problem on the conductance in a random sys-
tem made of resistive and superconducting bonds can be
utilized.*

If the portion P, of superconducting bonds of such a
random lattice is smaller than the threshold value, P_, then
its conductance X is finite and equals = « (P,—P,) ~°. (For
a 3D cubic lattice P,=0.25 and s=0.7-0.9; for a 2 D square
lattice P,=0.5 and s=1.1-1.15). The “distance” to the
superconducting state transition point is determined in this
problem by the difference (P,—P,). Its counterpart in
CVC calculations is the portion of broken links in the
above deduced (see Sec. 4) critical cluster, increasing with
the 7>1_, growth, ie., the difference (1—P’), where
P'=P'(I) is the portion of contacts remaining in the su-
perconducting state for 7> 7. For a power-law distribu-
tion function (20) the dependence P'(7) is also expected
to be a power-law one, besides, taking into consideration
that P'(I) =1, we find'” P'(I)—1x (I—1I,)"*'. Then
for 7> I, we obtain the following expression for the con-
ductance of the system under analysis:

S < ()T 1=P(D] 7= (ra) " =L)"Y,

where (ry) is the average contact resistance in the normal
state. Thus, the CVC of the system in question V([) < 1/
2(I) is described by the relation

V(I) & (r) (I —1 )" Ds (50)
and at I» ], it acquires the power-law form:
Valt, pu=14+(n+1)s. (51)

Taking into account that s=1 we find that, in conformity
with the above deduced expression for CVC of 1D
“threads,” ¥ « I"*? [see Eq. (46)].

7.2. Numerical techniques

The complexity of an analytical solution of the prob-
lem concerning the CVC of a random system of nonlinear
elements which is the case with HTSC ceramics has initi-
ated attempts of its numerical solution***®* and experi-
mental investigations on studying CVC of artificial nonlin-
ear systems.®> In the course of these studies an interesting
circumstance was discovered, namely: a system made of
threshold elements with section-linear individual CVC ex-
hibits a power-law CVC under random spread of threshold
values. An example of this kind of system is given in Ref.
50. It is a square (L L) lattice where every bond is a
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nonlinear threshold element (of the Zener diode type)
with the following interconnection between current / and
voltage v:

(0 y V<Y,
i= _ . (52)
o(v—vg) , V>,
If all the elements of the lattice are identical, its CVC has
a similar form: I < (V— Ve, where Ve=Lu,. If the ele-
ments have equal conductance o but random thresholds v,
(uniformly distributed over the range.from 0 up to v,),
then a numerical calculation shows that its CVC (in the
range of intermediate voltages where not all the elements

are involved in the current transfer) becomes nonlinear:
Ioc(V—Vg)‘f, (53)

with the threshold #,=(0.22+0.02) Lv; and exponent
¥=2+0.08. For Ly»1 the voltage interval in which the
CVC is described by Eq. (53) is sufficiently broad (for
L=100 1< V/V,<10°).

To get a better insight into the origin of this result is
possible using the following reasoning. For a small increase
(6¥) of the voltage across the lattice the voltage drop on
each of its elements is proportional to 8¥. For a uniform
distribution of their thresholds v, the number of the “acti-
vated” (i.e., starting to transfer current) elements, &n, is
also proportional to 8. Neglecting the correlation be-
tween conducting elements we may use the classical result
of the effective medium theory* according to which the
variation of the total conductance of the lattice is
62 o 6n « §¥. Taking into-account that 8] =35V we ob-
tain [ < (V- Vg)z, which is in conformity with the numer-
ical result (53)..

The principle of the dual nature of electric circuits®
enables one to translate the result obtained to a system
imitating HTSC ceramics and composed of nonlinear ele-
ments with a current threshold rather than a voltage
threshold (an analog of a weak intergrain link possessing a
critical current). Then for a square lattice of superconduct-
ing elements with randomly distributed critical currents we
obtain, instead of Eq. (53), a power-law CVC of the form:

Va(I—I,)" p=2+008. (54)

with the exponent practically coinciding with that in Eq.
(51) since the latter equals u=2.1 for a 2 D square lattice
(if we assume ¢=1.1 and take into account that for a uni-
form distribution of elements over the critical currents
n=0). : :

A 2D lattice model consisting of “Josephson™ elements
whose critical currents may take on two strongly different
values has already been discussed (see Section 5).%4 Apart
from a numerical calculation of the critical current of such
a system, a study of its CVC evolution due to a variation of
the portion p of its ‘“‘high-current” elements was con-
ducted. When p<€p.=0.35 or p==1, the CVC of the system
coincides with those of its constituent elements (“‘weak-
current” elements in the former case and ‘‘strong-current”
ones in the latter). However, within the limits of p.<p <1
the randomness in the arrangement of elements of different
current-carrying ability becomes essential and it is not dif-
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ficult to notice (although this circumstance has not been
commented upon by the authors of Ref. 54) that near I,
the calculated CVC of the system exhibits symptoms of
power-law behavior. .

A more realistic model (discussed above in Section 5)
was used as the basis of CVC calculations for a 2 D square
lattice of “Josephson” elements in Ref. 24. The distribution
S(i.) of the critical currents over the lattice elements, as
distinct from the previous work, has been assumed to be
continuous and was determined by a combination of the
exponential dependence i.(3) [see Eq. (3)] and the “cut-
oft”’ (for misorientation angles 3 > 20°) Gauss distribution
function F () <exp( -3 (62) ). The analysis of CVC
adduced in Ref. 24 suggests that they are described by
power-law dependences of the form ¥V o (I —1I)*, with the
exponent diminishing with the broadening of the distribu-
tion F(3). Thus, for (3%)/2=5°, 10° and « we may find
p=4.4,2.4 and 1.4, respectively. It is easy to confirm that
the distributions f(i.) in these three cases are such that
their “weak-current” part (essentially the one responsible
for the CVC form) is close to the power-law function
f() « i with n=2, 0.6 and —1, respectively. If we
calculate the exponent u substituting these values of n into
Eq. (51), it will give us p=4.3, 2.7 and 1, which is in good
agreement with the analysis of CVC cited in Ref. 24.

The numerical CVC calculation of a 3D network of
“Josephson” contacts requires far more calculating time
than for a 2 D case and it was performed in Ref. 49 with the
help of the aforementioned (see Section 5) variational
principle. The results relating to different means of disor-
dering the parameters of system elements prove that in all
the cases when such disordering is crucial (that is, the
spread of the parameters of “Josephson” elements is large)
the CVC of the system has a considerable portion of the
exponential type. At the same time in Ref. 56 it has been
shown that a percolation 3.D system consisting of “Joseph-
son” elements with equal critical currents also has power-
law sections of the CVC. The values of the exponents u in
this case are small (1 <p<2) however.

Thus, all the investigations reviewed in this Section
prompt us to the conclusion that the power-law nature of
the CVC is a universal property of a system composed of a
large number of threshold nonlinear elements with a broad
spread of parameters. Nevertheless it is not clear now if
this .conclusion is universal and it is impossible to set re-
quirements for individual elements of the system which are
necessary for the appearance of a power-law CVC.

In conclusion to this Section we note that there is a
considerable number of studies whose authors attribute the
power-law nature of the CVC of HTSC ceramics to critical
fluctuations of the order parameter phase near the transi-
tion of the system consisting of superconducting grains
(interconnected with “Josephson” intergranular contacts)
into a coherent state.®”-®® This model (a so-called “‘super-
conducting glass model”) also predicts CVC of the form
(54) with p =2, but the range of its applicability is limited
by the proximity to the transition temperature, and the
predicted value of u~1 with weak temperature and mag-
netic field dependences raise doubts about the effectiveness
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of such a mechanism over the whole wide range of fields
and temperatures where the power-law CVC of HTSC ce-
ramics has been observed.

8. EFFECTS OF EXTERNAL FACTORS ON THE CURRENT-
VOLTAGE CHARACTERISTICS OF HTSC CERAMICS

8.1. Magnetic field and temperature dependences of CVC

Within the framework of the model considered in Sec.
7.1. the CVC dependence on temperature and magnetic
field is derived from the corresponding dependences of the
exponent u, the critical current /, and the average resis-
tance {ry) in the normal state [see Eq. (50)]. Of special
interest and importance are, undoubtedly, the functions
u(T) and p( B).

The temperature dependence of the exponent 1 may be
found from relations (21), (51):

En(T)
u(T)—1=s @
EN(T) [((T/T)~V* (“dirty” limit)
=) “WT/TH™" (“clean” limit) °

(55)

According to (55), the parameter u should grow mono-
tonically with the temperature increase. As to the magnetic
field dependence of the CVC exponent u( B) it depends on
the nature of the evolution of the distribution function
S li.g) in the magnetic field (see Fig. 7). In the case of
contacts with randomly nonuniform distribution of local
critical current density jSB(x) the magnetic field produces
a scarcely noticeable effect on the form of the distribution
function and this correlates with a weak dependence of
u(B) on B. For contacts with a uniform local current
density ( chB(x) =const) the part of the distribution func-
tion fz(i.p), which determines the ceramics critical cur-
rent [, corresponds (in a sufficiently strong magnetic
field) to the value of n=0. It means [see Eq. (51)] that
with the magnetic field increase p should decrease down to
p=1+s

Power-law CVCs of the form (51) have been observed
more than once in experiments with HTSC ceramics of
different composition‘go‘95 Analysis proves u(B=0) to be
always ~ 1 for ceramics with low current carrying ability
e (77K)~10 A/cm? at T,=80-90 K),”"°*% and u(B
=0)>1 for ceramics with sufficiently high critical current
density (j,, (77 K)~10? A/cm?).**® Such behavior is
naturally explained with the help of Eq. (55): the former
case (u~1) corresponds to “thick” contacts where
(d)/&x>1 and, consequently, critical currents are small
[see Eq. (10)] and the latter case corresponds to “thin”
contacts ({d)/&x<1) with large critical currents.

This approach also explains the difference in the form
of magnetic field dependences p( B) in ceramics with both
low and high current-carrying ability. It only requires tak-
ing into consideration the fact that a randomly nonuniform
distribution of the local critical current density, chB (x),
can exist only in “thin” contacts sensitive to structural
inhomogeneities of near-contact regions of ceramic super-
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FIG. 13. Temperature dependences of the exponent p of a power-law
current- voltage characteristic. a) Bi-ceramics (phase 2212) with j . (77
K)~10* A/cm?, B=0 [Ref. 95]; solid curve—dependence p— 1o T~
(“dirty” limit). b) GdBa,Cu,O; -ceramics with ;.. (77 K)~1 A/cm?,
B=0 [Ref. 91]; solid curve—fitting dependence p— 1« T~ *.

conducting granules. For “thick” contacts, on the con-
trary, the spatial distribution jS®(x) of the local critical
current density is practically uniform. It has already been
discussed above why it should lead to different magnetic
field dependences p( B).

In Fig. 13a, b temperature dependences u(7") are plot-
ted for Bi-ceramics (phase 2212) with j., (77K)~10°
A/cm’ (Ref. 95) and GdBa,Cu;Osceramics with j,,
(77K)~1 A/cm® (Ref. 91) at B=0. It can be easily seen
that in the first case, in fact, u» 1, while in the second case
u~ 1. Estimates made using Eq. (55) give us (d)/£x~0.1
for the Bi-ceramics with a considerable critical current
density and {(d)/&n~ 1 for the GdBa,Cu;05-ceramics with
a low critical current density.

Additional arguments in favor of the above consider-
ations are given in Fig. 14 where magnetic field depen-
dences p( B) are plotted for the Bi-ceramics (phase 2212)
with j (77K)~10° A/cm?® (Ref. 93) (upper curve) and
the YBa,Cu;0;-ceramics with j.. (77K)~1 A/cm? (Ref.
92) (lower curve) at T=50 and 77 K, respectively. Here,
as in the case, u~1 (and is essentially dependent on the
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FIG. 14. Magnetic field dependences u( B) of the exponent of a power-
law current-voltage characteristic. Top curve—Bi-ceramics (phase 2212)
with j, (77 K)~10° A/cm?, T=50 K [Ref. 93]; bottom
curve—YBa,Cu;0; -ceramic with j., (77 K) ~1 A/cm?, T=77 K [Ref.
92].

magnetic field) and as in the second case, u»1 (and ‘is
slightly dependent on the magnetic field up to B~1 T).
One of the interesting and frequently noted properties
of HTSC ceramics CVC’s is the existence of a peculiar
scaling: on extrapolating the power-law portions of a CVC
which correspond to different temperatures (or to different
magnetic fields) they are all found to intersect in a single
point (or, at least all their intersection points are very close
to each other).”* This peculiarity of the CVC’s also
turns out to be “built-in” in the model in question. Fig. 15
presents a family of current-voltage characteristics ob-
tained using Eq. (50). The critical current here was calcu-
lated using Eq. (33) and, besides, it was taken into account
that {(ry) < T (a typical temperature dependence of the
normal resistance of superconducting metaloxides). Fig.
15 demonstrates clearly the above property of the CVC.
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FIG. 15. Current-voltage characteristics of an HTSC ceramic calculated
using Eq. (50) for the following parameter values: r=1.5; 5=0.9;
P,=0.25 (a 3D system); n[T=(77/91)T ]=2; m=2 (SNS-contacts). t:
1—0.9; 2—0.8; 3—0.7;, 4-0.6; 5—0.5; 6—0.4; 7—0.3.
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8.2. Current-voltage characteristic dependence on pressure
(Uniform and uniaxial compression)

A study of uniform pressure or uniaxjal compression
effects on the CVC of HTSC ceramics has been a key issue
of the not too numerous experimental studies.”’~”* Uniform
compression has been found to cause the CVC to shift to
larger currents’™* while qualitatively retaining its form.
Analysis of the CVC reveals that within the complete pres-
sure range investigated (P<9 kbar) CVCs of the
YBa,Cu;04-ceramics with critical currents j. (77K) ~20
A/cm’® retain their power-law behavior, the exponent u
being virtually independent of pressure (@ =1.5-2). In the
light of the previously discussed model, according to which
p=£x/{d)—1, this signifies that pressure produces no
changes in the normal interlayer thickness (in the ceramics
analyzed) in SNS-type intergranular contacts and affects
solely the contact area (see Sec. 6.3).

Uniaxial compression influence on a CVC of the
YBa,Cu;0;4-ceramics is not so unambiguous:'* the CVC
corresponding to a current perpendicular to the compres-
sion direction moves to the high current side while for a
current parallel with the compression direction the CVC
goes to the opposite side. It corresponds to the previously
discussed ambiguity of the uniaxial compression effect on
the ceramics critical current (see Sec. 6.3.).

On the whole we may affirm that the compression ef-
fect on the CVC of HTSC ceramics consists in the main in
critical current renormalization while retaining the general
form of CVC which is described by the relation

Vo (I—1I)" (56)

9. CONCLUSION

The problem of increasing the critical current density
of bulk high temperature superconductors is related to the
solution of two problems, namely: elimination (or minimi-
zation) of “bad” intergrain weak links and creation of ef-
fective pinning centers in the bulk of superconducting
grains. In this review we passed over the questions con-
nected with a solution of the second problem (of vital
importance!) and just tried to trace the interconnection
between the properties of individual intergrain contacts of
HTSC ceramics with its macroscopic transport properties
such as the critical current and the current-voltage char-
acteristic. Revelation of this interconnection provides a
better understanding of the physical essence of previously
described methods of raising the current carrying capacity
of HTSC ceramics and points to determination of new
promising approaches of achieving this goal. Among these
methods let us dwell on the following.

1) Predominant formation of intergrain contacts with a
Sfavorable ‘“geometry.” Typical contacts of this type are
small angle tilt boundaries with the planes parallel to the
c-axis. It is these contacts that have the highest (charac-
teristic of a single-crystal film) critical current density. It
should be specially noted that well-known methods of ce-
ramics texturing®®®® result in meeting only one of these
requirements, for ceramics of this type usually consist of
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grains with (nearly) parallel c-axes but randomly oriented
in the basal ab-planes. As the result, the majority of inter-
grain contacts are either tilt boundaries (parallel to the
c-axis) with a broad distribution of misorientation angles
d, or twist boundaries with planes perpendicular to the
c-axis with a reduced critical current density. Hence any
further improvement of the properties of textured HTSC
ceramics requires either a development of a production
process which would ensure a more complete ordering of
individual grains (including their ordering in the basal
plane) or, else, producing ceramics with “architectural”
features which would provide a possibility to achieve suf-
ficiently high critical current densities even with relatively
“poor” intergrain twist boundaries. The former of these
directions has not yet yielded any tangible results, while
the latter is seemingly implemented in a number of liquid-
phase methods of HTSC ceramics production.

2) Creation of randomly nonuniform intergrain con-
tacts. From the practical point of view, it is of primary
importance (apart from raising the absolute value of the
critical current density) to preserve high values of j_, in
sufficiently strong magnetic fields. The only effective mech-
anism of limiting the rapid drop of the Josephson contact
critical current with the rise of the magnetic field is the
inherent (or induced in one way or another) random non-
uniformity of the local critical current density jSB(x,y)
which is apparently exactly the reason for the appearance
of a plateau observable on magnetic field dependences
jor(B) for HTSC ceramics of different composition.*®!%!
The ratio y of critical current densities in magnetic fields
corresponding to this plateau and in zero magnetic field is
y~ (ry/L)8* for a 1D random function, jSB(x) (Ref. 96)
and y~[r3/S]"/?6 for a 2D random function jSB(x,p)
(Refs. 28, 100) (S is the contact area). Here r, and & are
a correlation radius and a r.m.s. relative fluctuation of this
function, respectively. Hence one should aim for an in-
crease of the 8 and r values which are, naturally limited to
values §=1 and 7y« L (1D nonuniformity) and 3 <S (2D
nonuniformity). On the other hand, a magnetic field cor-
responding to the upper limit of the plateau of the mag-
netic field dependence j. (B) is inversely proportional to
ro.”® This signifies the necessity of a certain compromise in
the choice of the value of 7, (if, of course, we assume that
there are technological possibilities for such a choice).

3) Manufacturing of textured ceramics with favorable
“architecture.” An example of this kind of architecture is a
ceramic with the grains in the form of comparatively thin
platelets (parallel to the ab-plane) arranged similarly to
bricks in the wall. In this case the total contact area be-
tween the “bricks” (grains) belonging to different rows
(contacts of the A type) exceeds noticeably the total con-
tact area between the grains forming a row (type B con-
tacts). The ratio of these areas equals L/D» 1, where 2L is
the grain size (along the row), D is its thickness. Hence
the lines of the current directed (on the average) along the
rows will have the form of sinusoidal lines passing through
type A4 contacts of larger area and by-passing type B con-
tacts of smaller area. As the result the critical current den-
sity of the ceramic increases and becomes
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Fee~{jSBY(L/ D), where (jSB) is the average (over the
contact area) density of the critical current across the twist
boundary (type A4 contacts). Thus, raising the L/ D ratio
one can increase substantially the current-carrying ability
of the ceramic.”

It should be borne in mind, however, that the efficiency
of this method is limited by the {(j&B) decrease as the
contact length L rises because of the magnetic field of the
current: (jOP) «A,/L at L>4,.2® Hence any further im-
provements of j_, will require a decrease of the grain thick-
ness D.

And lastly, one more possibility of raising the critical
current density consists in the purposeful variation of the
intergrain boundary ‘‘chemistry.” An example of this ap-
proach is the investigation of Ag-doped ceramics (see Ref.
72 and references therein). Small (several percent) Ag
admixtures increase substantially (by several times) the
critical current density of the YBa,Cu,0; ceramic without
changes in its critical temperature. The mechanism of the
phenomenon is still vague and needs further investigation.

Finally we formulate several conclusions that follow
from the above discussion of the properties of HTSC ce-
ramics: 1) the distribution function of the critical currents
of intergranular contacts is close to a power law; 2) the
random structural inhomogeneity of “‘good” intergranular
contacts is the reason for the plateau on the magnetic-field
dependence of the critical current of HTSC ceramics; 3)
there is a correlation between the index of the CVC and the
critical current density; 4) the power-law CVC of HTSC
ceramics is a universal property of systems that represent a
set of nonlinear elements with a large spread of parameters.

DHereafter the term “HTSC ceramics” will apply first of all to ceramics
of the YBa,Cu;04 composition. At present it is this material which has
been most thoroughly investigated from the point of view of the prob-
lems discussed in our article. However, a good deal of models consid-
ered and results obtained may be applied with equal success to HTSC
ceramics of a different composition.

The nonuniformity of the local critical current density j°®(x) in the
contact may result not only from its intrinsic structural inhomogeneity
but also from some “external” factor, e.g., a magnetic field. Thus, if the
superconducting boundaries of a contact are in the mixed state (which
is possible when the magnetic field B exceeds the lower critical magnetic
field BS, of the superconducting granule material) the nonuniform mag-
netic field of the Abrikosov vortices close to the contact plane results in
inhomogeneity of jSB(x). This effect is discussed in detail in Refs. 35
(randomly situated pinned vortices) and 36 (regularly spaced vortices).
Similarly, the reason for the inhomogeneity of j&8(x) in a wide contact
may lie in the field of Josephson vortices.’’

1t has long been known of the existence of “special” large-angle GBs
along which the impurity diffusion proceeds with the greatest rate. Such
boundaries exist for orientations corresponding to good adjustment of
lattices of neighboring grains.*! It is quite probable that it is these
boundaries in YBa,Cu;0; that do not exhibit properties of a weak link.

)t is equivalent to an assumption that the order parameter phase inside
each granule suffers no changes.

9Eq. (29) does not allow for terms proportional to i3, corresponding to
the magnetic field energy of weak links and to the kinetic energy of
electrons.

©'The above value of p, differs from the one known for an infinite cubic
lattice (p.=0.312, Ref. 42). The difference results most likely from the
small number of elements in the analyzed 7X7 X7 network.

) As has been shown in Ref. 51, the actual form of the contact distribution
over sizes and orientations affects the results of averaging only insignif-
icantly.

®The form of dependence 7..(b) in strong magnetic fields (63 1) for a
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uniform ;&B-distribution depends on the contact form: /.,(6% 1) « 1/b
for square contacts, but . (6% 1) 1/6°/% for round contacts.”” The
allowance for contact anisotropy resulting from anisotropy of the Lon-
don penetration depth produces only an insignificant effect on this re-
sult: the calculation in Ref. 58 gives 1< |dIn//d1n b| <2.

1nitial dependences /., (b) are meant which correspond to a monotonic

variation of the magnetic field from zero up to a preset value. Otherwise
hysteresis phenomena may be observed resulting from magnetic flux
capture inside superconducting grains.®!

10Since there are no systematic studies of the boundaries of this kind it is
highly possible that § =14° is not the only misorientation angle ensur-
ing the properties of a “strong” link. Besides, if we suppose, by analogy
with the results of Ref. 18 (relating to small-angle tilt boundaries), that
the properties of a “strong” link are preserved for all boundaries of the
type under consideration with misorientation angles 4=14"+Ad,
where Ad ~5°, then the portion of the boundaries with “strong” links
can be estimated as being equal to (2A3/45°) =0.2 (for this estimate
no difference is made between axes a and b, ie., the properties of
contacts with misorientation angles 4 = 14 and 76" are considered iden-
tical).

D1n strong magnetic fields (B> By,) Eq. (31) is reduced to an asymp-
totic magnetic field dependence of the critical current of a wide Joseph-
son contact where the nonuniformity of the 7SB(x)-distribution results
from the field of Josephson vortices penetrating it.*’

DA system of equations was investigated that differed from Eqs. (26)—
(28) by the fact that the phase difference appearing in expression (27)
was augmented by the phase factor that appears in a magnetic field

()
A= 2n/d) f ®d!
(k)

which is obtained by means of integration of the vector potential along
the line connecting the centers of the kth and the /th grains.

191t should be borne in mind, however, that in close proximity to T the
power-law  dependence (6) may be distorted because of
fluctuations.'>7:34

“)Nevertheless, the fact that a ceramic is a set of differently oriented
contacts with various critical currents appears to be important in a
number of cases (see below). This fact should be taken into consider-
ation if there is a specified direction in the system, e.g., a direction of
axial compression or of a magnetic field (when the critical current of a
ceramic becomes anisotropicm), or in a textured ceramic.

%) Experiments reveal a weak dependence of intrinsic superconducting
parameters proper of high temperature superconductors on pressure
(for YBa,Cu,Qs, for instance, [T/ T.]/dP~10"%-10"" kbar~).

19 For the YBa,Cu;O; ceramics P, ~ 10 kbar.*

") The increasing of exponent in Equation for P’ (/) by one as compared
with the exponent in the distribution (20) is related to the integral
form of the dependence P'(/) « [ f(i.)di..
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