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A new technique is proposed for solving the Helmholtz equation, based (in contrast to the
classical method of separation of variables) on combining the variables. As a result,

the wave equation (a partial differential equation) is converted into a single second-order
ordinary differential equation. One solution of the latter is the classical exponential

with imaginary argument (a simple self-similar solution). The second (the compound self-
similar solution) consists of two factors: an exponential of imaginary argument (the

first solution) and a tabulated special function. In the two-dimensional case this function is a
complementary error function, or, in a special case, the Fresnel integral in complex

form. In three dimensions the second factor is the exponential integral function. The physical
part of the work is concerned with utilizing the compound self-similar solutions in

physical applications involving external problems of electrodynamics and acoustics. These
include (in the two-dimensional case) the theory of open waveguide structures.

1. INTRODUCTION

As is well known, the classical method for solving par-
tial differential equations in general and the wave equation
in particular is by separation of variables. On account of its
great generality this method predominates in the majority
of physical applications. As for the object of our investiga-
tions, i.e., the wave equation itself, the search for new ways
of solving it, aside from its methodological interest in view
of the role which this equation plays in theoretical physics,
would also be interesting in the practical sense, since new
mathematical techniques often open a way to new physical
results.

In connection with ways of achieving this goal it is
difficult to imagine that completely new methods can arise
out of thin air. Here what is most needed is a new way of
looking at what is already familiar and a way to overcome
prejudice in treating what is well known. The first fruitful
ideas can arise, e.g., by rereading some classical result well
known to everybody. For us this classical example is the
familiar and very elegant (in the mathematical sense) so-
lution of the Sommerfeld problem for the diffraction of a
plane electromagnetic wave by an ideally conducting and
infinitely thin half-plane.' With that as our starting mark
and also using the results which we have recently
published*® generalizing the corresponding classical Som-
merfeld formulas to the case of a half-plane with “soft”
boundary conditions, we can find, as will be shown, a way
of grouping the independent variables which transforms
the two-dimensional Helmholtz equation written in polar
coordinates into a single ordinary differential equation.
This way of grouping the independent variables, which in
contrast to the method of separation of variables combines
them, is the key to solving the methodological problem.
This is confirmed by extending the grouping technique to
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the case with three special variables. Here, just as in the
two-dimensional case, the Helmholtz equation (written in
spherical coordinates) is transformed into an ordinary dif-
ferential equation, but only for axisymmetric wave func-
tions.

Characterizing the physical content of this work, we
note that it contains both purely methodological results,
which apply entirely to the three-dimensional case and
partly to the two-dimensional case, and also original re-
sults (which apply only to the two-dimensional problems).
In particular, the methodological nature of the work ap-
plied to the solution of the three-dimensional Helmholtz
equation is associated with finding a new method for an
already well-known closed solution of the problem of dif-
fraction of a plane acoustic wave by a paraboloid of revo-
lution with *“hard” boundary conditions for axisymmetric
excitation, when the front of the incident wave is perpen-
dicular to the axis of the paraboloid.® As regards the two-
dimensional models, the purely mathematical results re-
duce here to the statement that in connection with the
familiar Sommerfeld result the new method does not just
simplify the process of finding this solution, but compared
with the classical methods may be said to reduce this pro-
cess to one which is almost trivial in its simplicity.

As for the new physical results obtained using the
mathematical techniques developed here, this aspect of the
problem is exhibited most clearly in the theory of open
waveguide structures,*’ and touches on the most general
aspects of the physical origins of the theory. This will also
be treated in what follows, but from a formal viewpoint of
clarifying the mathematical apparatus which we intro-
duced in Ref. 5 by purely heuristic arguments.
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2. THE SOMMERFELD SOLUTION AND THE CHOICE OF A 2 e s
WAY OF GROUPING THE INDEPENDENT VARIABLES erfcw=T f e “dr (4)
IN THE TWO-DIMENSIONAL HELMHOLTZ EQUATION T Jw

It is well known that the Sommerfeld solution for the
diffraction of a plane electromagnetic wave by a perfectly
conducting and infinitely thin half-plane (Fig. 1a) can be
written in the form?*

E, H,=(U(zp—@5) FU(z,p+@;))e, (1)

where we have written z=kr and k=27m/A, A is the wave-
length in free space, r, ¢ are polar coordinates, and ¢, is
the polar angle of incidence of the plane wave (Fig. 1a). If
we introduce the notation ¥=¢ =+ @, the function U can
be written? as a contour integral over the angular spectrum
of the plane waves:

=y |
_47Tc

where the two-branched contour C is shown in Fig. 2.

It is well known that the Sommerfeld solution (1)
plays an extraordinarily important role as a model solution
in diffraction theory. It is used as an example in order to
study the fundamental behavior in the diffraction of plane
waves by an obstacle. This is related to the fact that the
integral (2) can be expressed in closed form in terms of
tabulated functions:

l_ei/2(6+¢)’-—leizcos 840, (2)

(2iz)'? cosf , (3)

U= l eiz cosa{/erfc
2 2

where the complementary error function (or probability
integral)
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in this case is the complex Fresnel integral, in which
w= (2iz)"? cos %:e"’”‘*(Zz)l/2 cosg, (5

so that the Sommerfeld solution (1) acquires the form of a
closed mathematical expression which can be represented
in terms of the function

U=_ e ZeVerfc w. (6)

It is clear that the latter satisfies the two-dimensional
Helmbholtz equation

_, 9 (8U\y U U—o .
z az(zg)+2 54‘)‘{+ =0, (7N

just as does the function describing a plane wave:
UEeizcos t{/=e—izew2 (8)

in terms of which the wave fields in two-dimensional
boundary-value problems are usually expanded, as was
done, e.g., in Eq. (2) and which (note carefully) enters
into (6) as a factor in front of the erfc w function.

Besides the Helmholtz equation (7), the Sommerfeld
solution (1) satisfies the associated boundary conditions
on the half-plane. Specifically, in the case of TM polariza-
tion, when the electric field vector of the incident plane
wave (E, ) is parallel to the edge of the half-plane, i.e., for
@=0.27, we have the condition

Ezl

¢=0.21T=0,

and in the case of TE polarization
J0H,,
dp

=027

The special role played by the Sommerfeld solution in dif-
fraction theory follows from the fact that a completely
rigorous solution of the boundary-value problem can be
represented here in terms of tabulated functions, the ana-
lyticity properties of which express all of the behavior of
the phenomenon of wave diffraction by objects. In conse-
quence of this, the fundamental analyticity properties of
the complementary error function play an extremely im-
portant role here. We summarize the basic properties of
this function.
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First, from the theory of these functions’ it is known
that the following functional relation holds:

erfc x+erfc(—x)=2, 9)

valid for any complex x. In contrast to this the formula

eerfe x= (mx) " +o(x~?) (10)

for the asymptotic behavior of this function at large values
|x| > 1 holds only under the condition

(11)

Essentially, these two formulas are completely sufficient to
characterize all the most important properties of the fields
undergoing diffraction in the half-plane problem. For ex-
ample, if condition (11) is satisfied, this implies that the
field described by the function (6) contains no wave fields
other than the cylindrical wave.

Consequently, condition (11) is related to those which
control the localization of the shadow regions of space
adjacent to the obstacle (the half-plane), since the opposite
condition

|arg x| <7/2.

|arg x| > 7/2,
applied to relation (9) yields
L e e erfc w=e"2[e" —1 e’erfc(—w)],

where |arg{ —w)| <w/2 already holds in the right-hand
side; this obviously refers to the formulas specifying the
localization of the illuminated parts of space, because, as
follows from the previous relation, the field of interest to us
contains an additive exponential (geometrical) part in the

form of a uniform plane wave. Thus, the equation
|arg w| =7/2, (12)

which under these conditions reduces to the expression

Pt+Po
2

cos =0, (13)
controls the geometrical position in space of the boundary
between light and shadow.

This boundary moves in a straight line (polar ray),
which coincides with the farthest light ray out of the set of
rays of a geometrical beam of reflected and transmitted
rays (we are talking about a single extreme ray only be-
cause we are considering not the entire beam but its inter-
section with the plane). Recall that it is just condition (12)
which plays the fundamental analytical role in specifying
the most important features of the diffraction phenomenon
studied using the half-plane model problem. It should be
kept in mind that because the parameter ¢, is real, Eq.
(12) reduces here to Eq. (13), which leads to the linear
relations ¢ =1+ @, connecting the angular coordinates of
the boundary between light and shadow for the transmitted
and reflected light beams with the polar angle of incidence
of the plane wave. It is worth emphasizing again that these
relations are linear because the parameter ¢, which enters
into the argument w of the complementary error function
that vanishes at ¢ =1 =% @, is real. Substituting this value in
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the function (6) we are concerned with, and recalling that
erfc (0)=1 (Ref. 7), we can easily find its value at the
boundary between light and shadow:

UE% e_ikrz% e—iw/cr’ (14)
where c is the velocity of light. Hence we can conclude that
the boundary between the light and shadow is determined
in space by the farthest light beam (reflected from the
extreme end of the half-plane, i.e., its edge; see Fig. 1a) out
of the whole set of light rays which are emitted by the
current induced in the half-plane by the incident plane
wave. Here, in the case of a uniform plane wave, the di-
rection of the reflected light rays determined by the rela-
tion (13) is the same as that of the energy they transport.
To put it another way, the direction in which the phase
velocity of the rays is equal to the velocity of light coin-
cides with the direction in which the plane wave transports
energy. Hence the definition of the concept of a light ray as
a line along which energy is transported'® is completely
equivalent to the other definition which is possible here,
namely, a line along which the phase velocity of the wave
is equal to the velocity of light in the medium in which the
wave process is taking place (here and below we will con-
cern ourselves with vacuum).

The question now arises as to what specifically changes
if Eq. (12) contains a complex quantity  instead of the
real parameter ¢y. The function (6), just as in (8), will
still be determined by the Helmholtz equation. This is re-
lated to the fact that the metric coefficients of a polar (or
cylindrical) coordinate system are independent of the an-
gular variable ¢.

In order to answer this question we should keep in
mind that the exponential function (8) which enters into
(6) as a factor but nevertheless can be moved out by using
Eq. (9) into an additive form, in this case is a nonuniform
plane wave. As is well known,’ in the theory of open wave-
guide structures these waves act as modes of an infinite
waveguide when the structures are modeled as an incident
impedance plane. Consequently, if we transform from the
representation (8) to the representation (6) we can expect
that for a complex parameter 6 the latter form will be
related to the description of waves directed by an imped-
ance half-plane, i.e., the waves of an open waveguide for
which the two-dimensional semi-infinite model is a half-
plane with two-sided impedance boundary conditions pre-
scribed on it. There is reason to anticipate that, just as in
the case of a perfectly conducting half-plane where the
Sommerfeld solution plays a very important role as a
model solution for diffraction theory generally, the corre-
sponding solutions for an impedance half-plane will be sim-
ilarly important in connection with the theory of open
waveguides. In other words, just as before in diffraction
theory, relation (12) must play a fundamental analytical
role in the theory of open waveguides.

Let us see whether this is so, and what the physical
content is of applications of Eq. (12) in the theory of open
waveguides.

We first dealt with these questions in Refs. 4, 5, where
solutions of the form
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U=Ade *(U(w,)+U(w_)), (15)
Ulw,)=te" zerfc w,, (16)
w, = (2iz) sin22—-=e”’/4(22)1/2 snf22,an

(where A is an arbitrary amplitude coefficient) were iden-
tified as quasimode functions of characteristic (and non-
characteristic) waves of an impedance half-plane corre-
sponding to the slow characteristic (surface) _waves for
Re O=7€[0, arccos(ch™'£)], where £=Im#, and to
fast noncharacteristic ~ (propagating) modes for
ne[arccos(ch~'€),7/2]. Here the same numbers 6 play
the role of eigenvalues of the respective modes, being de-
termined by the dispersion relation that follows from the
impedance boundary conditions on the half-plane written
for exponential {mode) components of the ﬂeld,4 since the
latter enter adequately into the quasimode functions ( 15).
We stipulate that here, as in Refs. 4, 5, only passive media
are being treated.

Thus, if in the general case of a complex impedance a
complex eigenvalue 0 is found, it is interesting to ascertain
what the structure of the quasimode functions (15) is in
this case and what specifically Eq. (12) means then, since
the physical formulation of the problem has changed dras-
tically compared with the classical Sommerfeld problem.

In the formal mathematical sense these changes reduce
to the assertion that Eq. (12) can no longer be expressed as
an equation of the form (13), since the complex nature of
the parameter 6 means that it can now assume one of the
two forms
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FIG. 3.

argw, _=1/2, (18)

argw, _=3m/2. (19)
It is found* that if we consider only those waves which are
excited at the edge of the half-plane, then Eq. (18) is sat-
isfied only for surface waves when 7€[0, arccos ch™'£],
holds, while Eq. (19) holds only for unconfined waves, i.e.,
for 7€ [arccos ch™'&,m/2].

Now let us consider the physical content of Eqgs. (18)
and (19).

If the parameter 0 is known, then, as can be deduced
from Egs. (17), Egs. (18) and (19) must be solved with
respect to the angular coordinate @, and the resulting val-
ues will correspond as before to the angular coordinates of
the boundary between light and shadow for a nonuniform
plane wave excited at the edge of the impedance half-plane
and propagating from this edge along its surface. In other
words, according to relations (18) and (19) a nonuniform
plane wave directed by the half-plane is contained in some
angular sector of space adjacent to the half-plane itself
(Fig. 3).

The dimensions of this sector, labeled in Fig. 3 with the
letter a, is determined immediately from relations (18)
and (19). Specifically, the angular coordinates of the
boundary between light and shadow for the surface wave
propagating over the half-plane, are calculated from Egq.
(18), in which the expression for w_ has been substituted.
By replacing w_ with w_ in this equation we can calculate
the angular coordinates of the same wave localized below
the half-plane. Consequently, within the polar angle «
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above the half-plane there exists a nonuniform plane wave
of the form

U=Ade cos(@+0)

and within the same angle a, but below the half-plane,
there is another one given by

U:e—iz cos(cp—é)

If 6=if holds, then we are concerned with an un-
damped surface wave directed by a reactive half-plane.
Plots of the field corresponding to these two cases are
shown in Fig. 3a, b respectively. The same thing applies to
the unconfined wave, except that Eq. (19) with the “+”
sign now gives us the angular coordinate of the boundary
between light and shadow in the lower half-plane and with
the “—"" sign in the upper half-plane. Consequently, in the
upper part of the angular sector the exponential

U=e—lzcos(<p—0)’
is localized, and in the lower it is

U___e—izcos(cp+9)

This change of signs is related to the fact that the ampli-
tude of the unconfined wave inside the localization sector
grows if the observation point is shifted perpendicular to
the surface of the half-plane. A plot of the field for this type
of wave is shown in Fig. 3c, where in particular the expo-
nential amplitude distribution of the wave on the surface is
shown as in Fig. 3a, b for different phases by alternating
regions with and without crosshatching. The heavy arrow
is also used to show the direction in which energy is trans-
ported by the wave perpendicular to the surfaces of the
different phases. Figure 3 also shows instantaneous snap-
shots of the real part of the field profile along the light rays,
indicated in the figure by means of thin lines with arrows
indicating the direction of propagation.

In order to determine the field strength of the quasi-
mode function on the boundary between light and shadow
of a nonuniform plane wave, it suffices to substitute in Eq.
(15) the corresponding values of the arguments w_ and
w_ from (18) and (19), equal to /2 or 37/2. This means
that the argument of the function erfc w, in (15) takes on
purely imaginary values here, namely, m + ix, where x is a
real positive number. In what follows we will use one ad-
ditional analytical property of the complementary error
function with an imaginary argument, noted in Ref. 5:

erfc(44¢) =147 Im erfc(ix),

since we are interested in the asymptotic (for %> 1) behav-
ior of its imaginary part:

Im erfc(ix) e [ (i ym) ' +o(x) 73]

From this it is not difficult to calculate the “penumbral”
(for ¢=a) value of the function (15) in question,

U=de (=" 4 f, (z,a)), (20)

where the function f, has the asymptotic form of the
amplitude of a cylindrical function for z> 1, i.e., is propor-
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tional to z~!/2, regardless of whether it is a surface wave or

an unconfined wave. However, for us it is important here
that since

w*=krB(n,£),

where S is a function that depends on the real and imagi-
nary part of the eigenvalue of this mode, the modal (ex-
ponential) part of expression (20)

UM=%Ae_i(m/c)’€_X’ (2])

(here y is a real positive number) clearly implies the ex-
istence of complex damped light rays, streaming away
from the surface of the half-plane, so to speak (see Fig. 3).

As was done before in diffraction theory using Eq.
(12), one can uniquely determine the direction of propa-
gation of the whole set of light rays reflected from the
half-plane, although this equation is related to only one of
them (the one on the end), so here we can do the same
thing: using the end ray we can uniquely reproduce the
propagation direction of the parallel rays (propagating
with the speed of light), but now damped and complex, as
shown in Fig. 3.

It is clear that in both cases (with the complex param-
eter 6 and with real @) the rays in the beam are collinear
because the beam itself is related to a plane wave, and it
does not matter whether that wave is uniform or nonuni-
form. It is just for this reason that the location of the
boundary ray plays such an important role. But Eq. (12)
does more than determine the propagation direction of this
ray. It also allows us to make an unambiguous choice be-
tween two possible definitions of a light ray.

The first definition, as lines along which energy is prop-
agated, is completely inappropriate here, since it does not
agree at all with the principles described above, which are
based on the analytical properties of the solutions of the
Helmbholtz equation written in terms of the functions (6)
in the general case of a complex parameter 6. These prin-
ciples are consistent with another definition of a light ray,
proposed by myself in Ref. 5 as a line along which the
phase velocity of the waves is equal to the velocity of light
in the medium (in this case a vacuum) in which the wave
process takes place. In fact, this definition, which is (we
repeat) a simple consequence of interpreting the analytical
properties of the corresponding solution of the Helmholtz
equation, satisfies the condition of generality better than
the first definition, since it includes the case of a complex
parameter 6 in a very natural way, and the case of a real
parameter @ is simply a limiting case of this, obtained by
taking ¥ >0 in Eq. (21). But of course the question very
naturally arises as to the basis for the principles which
guided us above in applying a new definition to the concept
of a light ray based on the analytical properties of the
corresponding solution of the wave equation.

Consequently, this question reduces to that of the
choice of basis in solving the wave equation. If the solution
is the exponential

U=e—1%, (22)
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then generally speaking there is no a priori argument in
favor of choosing one definition for the concept of light
rays instead of the other. But if we use a solution in the
form

U=e— 2 erfe x, (23)

then here Eq. (12) leads to the unique possible definition
of light rays as lines along which the phase velocity of a
wave is equal to the velocity of light. The resolution of this
dilemma in favor of the representation (23) (to which in
part the present paper is devoted) plays a central role in
the theory of open waveguides, as shown in Refs. 4, 5. It
ultimately leads to changes in the physical basis of the
current theory of open waveguides, converting it into a
standard form in which the only requirement on the mode
elements of the field is that they satisfy the ordinary bound-
ary conditions on the interfaces separating the various me-
dia. However, in contrast to the theory of closed
waveguides, here the concept of a mode refers not to an
infinite waveguide but to a different idealized model, that
of a semi-infinite waveguide.*> We will come back to this
point after proving the formal equivalence of the solutions
(22) and (23); evidently we can only make a selection
between them as a basis for expanding the field if they are
equally valid.

It must be said that we are touching upon a very subtle
aspect of the problem here. From a formal point of view all
special solutions of the wave equation, of which there are
an infinite number for a partial differential equation, are
equivalent. Nevertheless, there are serious arguments re-
garding the degree of generality, based mainly on the prop-
erties of the space-time symmetry,!! about why the expo-
nential solution (22) should be chosen as the basis from
among all the possible solutions. In principle, therefore,
very weighty reasons must be found in order to replace this
basis solution with another.

One of our main purposes here is to find this justifica-
tion, because the change of basis from (22) to (23), with
all the resulting changes in the formal mathematical appa-
ratus, was already demonstrated in Ref. 5, but in a purely
heuristic manner.

If we compare the solutions (22) and (23), we readily
note that they have homogeneous structure, which is prob-
ably not just an accident. But the structure of Eqgs. (22)
and (23) itself is a clue to the correct solution of this
problem.

First, it is quite apparent that the most important
property of this structure is that it has a rapidly oscillating
phase factor e~ %, so that it is better to separate this right at
the start in writing the wave function:

U=e *V(z,p), (24)

where we only know now that it must satisfy the Helm-
holtz equation (7).

Before going on let us recall that we are interested not
only in the analytical side of the matter, but also in the
geometrical aspects, because we noticed in the previous
discussions that the exponential solution (22) has geomet-
rical properties such that it can be distinguished from
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among all the other solutions. Since questions of geomet-
rical interpretation can be of particular importance, in
treating the solutions of the Helmholtz equation (7) we
will relax the usual restrictions on the domain of the inde-
pendent variables: r€[0, ], p€[0,27], allowing the angu-
lar variable @ to range over the entire real axis: p€[— oo,
+ w]. Thus, we are offering a broader geometrical
interpretation of the solutions of Eq. (7) as purely math-
ematical entities. We can only compare the resulting solu-
tion by restricting the geometrical region of definition to
the ordinary two-dimensional geometrical space in which
@€[0,27] holds, and thus draw conclusions about the phys-
ical significance of these solutions.

Now substituting expression (24) in Eq. (7) we find
an equation for the amplitude V:

PV u+2(1=2i2)V,+ Voo —izV =0, (25)

which we call the reduced Helmholtz equation. Note that
the argument of the amplitude function V, whether taken
from Eq. (22) or from Eq. (23) is

x=(2iz) 2 sin%,

where we have written y=¢+0 and 0 is an arbitrary pa-
rameter which without loss of generality can be set equal to
zero, so that we can write immediately ’

x=(2iz)1/2sin§. (26)
We see now that the variable x contains both independent
variables r and @, since z=kr. We also see that the form of
the group (26) is related to both solutions (22) and (23)
equally, so that it thus possesses a certain degree of gener-
ality, which immediately suggests using this grouping to
create a new independent variable by means of Eq. (26), in
which the variables r and ¢ are combined.

In fact, this is a departure from the classical approach
to separation of variables.

3. SELF-SIMILAR SOLUTIONS OF THE REDUCED
HELMHOLTZ EQUATION (TWO-DIMENSIONAL CASE)

Tﬁus, taking x [see Eq. (26)] to be the new indepen-
dent variable for the amplitude function V in the reduced
Helmholtz equation (25), we rewrite the terms as

V= =31 XV 4 i X'V,

2(1=2iz)V,=3 xV,— (iz)xV,,

Vo= —1xVi—i X*V i+ (i) 3 V.
Now substituting all this in (25) we find

iZ(V—2xV,—2V) =0,

from which we arrive at the ordinary differential equation

V—2xV,—2V=0. 27)
If we now substitute
V=c"W,
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then Eq. (27) goes over to

W,x—2xW,=0, (28)
which has the general solution
W=A erfc x+ B, (29)

of which we can readily convince ourselves by directly
substituting Eq. (29) in (28), recalling that

2 *® _tz
erfc x=—= J e fdt
Jr Jx

from which it follows by differentiation that
d 2
a erfc x= ——\/; e_xz.

Taking erfc x to be an entire function, it is not difficult to
see that generally speaking there exist two other ways of
writing Eq. (28), both completely equivalent to (29):

W =4 erfc x4 Berfc(—x),
W=4A erfc(—x)+ B,

also containing only entire functions. This property of the
solutions of Eq. (28) is due to the existence of the func-
tional property (9) of the complementary error function,
noted previously. The way we choose to write the general
solution of Eq. (28) has no significance in principle.

Thus, we see that the solution of the two-dimensional
Helmholtz equation derived using the self-similar
solutions!’ of the reduced Helmholtz equation (25) as-
sumes the form

U=Ae 2% Perfc eiﬂ’/4(22)1/2 sin% +Be~izcos<p’
(30)

where (2z)? is taken to be the absolute value of the
square root. Thus the solutions (22) and (23) of the
Helmholtz equation are actually set apart among all the
other possible solutions because they are written in terms
of the corresponding self-similar solutions of the reduced
Helmholtz equation (25). In this sense the two solutions
are equally interesting to us. And since one of them (the
exponential) plays an exceptionally important role in
mathematical physics, we now have some grounds to in-
vestigate more completely the possibility of extending the
role of the second solution. We have in mind using it as a
basis solution of the waveguide in terms of which the field
can be expanded in two-dimensional problems arising in
the same areas of mathematical physics. In order to make
explicit the conditions under which the basis solution (22)
can be replaced by (23), we must first perform a compar-
ative analysis of their most general geometrical properties.
From this point of view we first consider the exponential
solution, i.e., the second term in expression (30), which for
brevity we will call the general self-similar solution of the
Helmbholtz equation.

Since the exponential function is an entire function of
its argument with period equal to 2, it has the same pe-
riod in the variable @. In a certain context this is its main
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analytical property, since it enables us to identify the in-
terval @<[0,27] as the nontrivial domain of definition of
this function in the sense that to extend it further intro-
duces no new information. The geometrical interpretation
of this property is therefore that the natural geometrical
space of this self-similar solution of the wave equation is
the whole plane. Note that in this case the natural geomet-
rical space of the solution defined above by purely analyt-
ical means coincides with the usual two-dimensional geo-
metrical space, although it is not necessary in general that
they coincide. This can easily be seen by treating the first
term in Eq. (30) in the same way.

Here we are dealing with a product of entire functions
which thus is itself an entire function of ¢. As can be seen
from expression (30), the argument of each of the factors
of this product has its own natural periodicity in ¢. The
period of the argument of the complementary error func-
tion, which is equal to 4, is twice that of the exponential.
Consequently, it is this which determines the period of the
product of the functions. From this we deduce that the
natural geometrical space of the second self-similar solu-
tion (23) is the Riemann surface of two sheets, the upper
given by ¢€[0,27] and the lower by @e[2m,47], fastened
together along the ray ¢ =0,27(4). On the upper sheet of
the Riemann surface the solution in question behaves in
accordance with Eq. (10) for z> 1 like a cylindrical wave,
diverging (with time dependence ¢’) from the branch
point z=0 of the natural geometrical space of this solution.
On the lower sheet, as can be seen from combining Egs.
(9) and (10), to this cylindrical wave is added the uniform
plane wave exp ( —iz cos ). Thus, we see that the natural
geometrical space of the second self-similar solution is not
at all the same as the usual two-dimensional geometrical
space where this solution, or rather its partial derivatives
beginning in first order, has first-order discontinuities on
the polar ray ¢=0(27). Naturally, this property of the
self-similar solution we are studying here may not be re-
flected in the conditions under which it is applicable phys-
ically as a basis solution of the wave equation; this will be
discussed further below. For now, rather than summariz-
ing we restrict ourselves to establishing the fact that the
transformation (26) which combined the independent
variables of the two-dimensional Helmholtz equation actu-
ally converts the reduced form (25) into a second-order
ordinary differential equation, two particular solutions of
which are distinguished among the infinite set of other
Helmholtz partial differential equations by their self-
similarity.

In order to see whether the transformation (26) also
works in three dimensions or whether it is only a coinci-
dence that it works in the two-dimensional case, we must
try to extend it to the three-dimensional Helmholtz equa-
tion.

4. SELF-SIMILAR SOLUTIONS OF THE
THREE-DIMENSIONAL HELMHOLTZ EQUATION

The Helmholtz equation for a scalar wave function for
the Hertz vector in a spherical coordinate system has the
well-known form

A. V. Kukushkin 87



FIG. 4.
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+22U=0, (31)

where z=kr; r, 6, a are the corresponding spherical coor-
dinates (Fig. 4). It is evident that the variable 6 plays the
role of the polar angular coordinate. Moreover, since the
transformation (26), which here takes the form
o

x=(2iz)"? sin 3 (32)
contains as before only two independent variables, if we
want to ascertain its applicability to the three-dimensional
differential form of the Helmholtz equation (31), we must
restrict ourselves to axisymmetric wave functions U, which
are independent of a. In this case the reduced form of the
Helmholtz equation for the amplitude function V(z,8) re-
lated to the wave function U by

U=e~%V(z,0),

takes the form

s 6
Vo—2izV=0.

COos
2V, +2z(1—i2)V,+ Voot 55

(33)

Then, introducing a new independent variable x in accor-
dance with Eq. (32), we reduce Eq. (33) in the same way
as before to an ordinary differential equation

Veix— (2x—x" 1YV, —4V=0.
After substituting

V=e"W

we finally arrive at the equation

Wt (2x4+x"HW, =0 (34)
whose general solution is
W=AEi(—x?)+ B, (35)

as follows readily by direct substitution of (35) in (34) if
we recall that
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Ei( —x?) = fm et dr.
( ) 2

Thus, the integral of Eq. (31) constructed using the gen-
eral self-similar solution of the reduced equation (33), can
be expressed as

U=Ae 2 %Ei[ —iz(1—cos 8) |+ Be=2¢%8  (36)

From this it is clear that the first term of expression (36)
is the one of greatest interest to us; it contains a factor in
the form of the exponential integral function Ei(—x?),
whose exponential factor has the same period in 8 (equal
to 2m) as does the argument —x” of this function. Every-
thing else therefore follows from its intrinsic analytical
properties.

As is well known, “ in contrast to the complementary
error function this function of x has an infinite number of
sheets with a single finite branch point x=0(6=0, + 2,
+4,...), where the function Ei( —x?) itself has a logarith-
mic singularity:

12

Ei( —x?) =In yx(|x?| 1), (37)

where v is the Euler constant.

In the limit |x?| > 1, the principal value of the function
Ei(—x?), which we will distinguish from the multivalued
function by replacing the letter E by the lower-case letter,
has the asymptotic form!?

o2 3
) (38)

ei( —x?) =x"2 "2(1——2+7 —5+

We now consider the behavior of the amplitude function
Ei[ —iz(1—cos 6)] on the 6 axis.

According to (37), this function has a singularity at
6=0. On the interval 6¢e (0,7}, it follows from Egs. (36)
and (38) that if we agree to take the principal value of the
function here it is the amplitude of a spherical wave. On
the interval [7,27) this function exactly repeats the varia-
tion on the reversed interval (0,7]. This is a consequence of
the symmetry of the function 1—cos 6 about the point
0=, and implies that extending the domain of definition
of the angular coordinate 6 in the spherical system of co-
ordinates to [0,27] does not introduce anything new.”
When we intersect the coordinate 6 =27, we also intersect
the branch point of the function Ei( —xz) and therefore
wind up on a different sheet of this function for 6€[27,47].
The transition to the next sheet obviously occurs at =4,
etc. Exactly the same thing happens at the points 6= —2r,
—4,... . Hence the amplitude function, which has the cy-
clic constant 27 (Ref. 12) can thus be represented in the
one-dimensional 6 continuum broken up into intervals
0e[2mm,2m(m—+1)], where m=0, £1, £2, +£3,.., as

Ei[ —iz(1—cos 8)] =ei[ —iz(1—cos 8) ] +2mmi.
(39)

It follows that the nontrivial domain of definition of the
first term of the self-similar solution (36) is the whole 6
axis. The geometrical interpretation of this is obviously
that the natural geometrical space of the self-similar solu-
tion of the Helmholtz equation which is of interest to us is
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the dissected space consisting of a denumerably infinite set
of three-dimensional spaces, fastened together at the polar
rays 8=0, 27, x4m,...

This dissected space (a kind of Riemann volume) is
the three-dimensional analog of a Riemann surface with an
infinite number of sheets. The corresponding self-similar
solution is continuous in precisely this space, together with
all its partial derivatives of arbitrary order. This is the main
difference in a nutshell between this self-similar solution
and the second exponential form, which has a natural geo-
metrical space that coincides with the ordinary three-
dimensional geometrical space. What links them is that
they comprise a pair of self-similar solutions of a second-
order differential equation, which are thereby set apart
among the infinite set of other solutions of the three-
dimensional Helmholtz differential equation, regarded as a
partial differential equation.

Ideas like this suggest the possibility of finding some
other grouping, different from (32), which would combine
all three independent variables. This would convert the
three-dimensional Helmholtz equation into an ordinary
differential equation, differing from Eq. (34) and having
different self-similar solutions. Be that as it may, we are
interested here in the question of the conditions for the
applicability of these self-similar solutions in physical ap-
plications.

5. PROPERTIES OF THE TWO-DIMENSIONAL SELF-SIMILAR
SOLUTIONS IN APPLICATIONS

In what follows we will refer to the exponential solu-
tion as the simple self-similar solution, and the nonexpo-
nential solution as the compound solution, bearing in mind
that it consists of factors.

It is clear that utilization of both these solutions in
physical applications presumes above all the presence of a
three-dimensional geometrical space (the geometrical
space of the observer). In this case the two-dimensional
self-similar solutions should be regarded as solutions of the
three-dimensional Helmholtz equation written in a cylin-
drical coordinate system such that the wave function U is
taken (for some reason) to be independent of the coordi-
nate z' in the system of coordinates 2’, 7, ¢ (see Fig. 1a).
All the other properties when these solutions are used will
probably be determined by the analytical (and by the geo-
metrical) properties of each.

We first note a property which is common to both
solutions. This is the fact that solutions of the form

i +
Uy 3=A,5(y)e~ 5@ Verfe| (2iz) /2 sin‘p—z—y :

(40)
(7],2=21’2(}/)e_izws(¢iw (41)

with a nonzero complex parameter ¥ in the general case are
the same self-similar solutions as those with y=0. As was
already emphasized, this is related to the fact that the met-
ric coefficients of a polar or cylindrical coordinate system
do not depend on the angular variable.
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But with this the properties that the simple and com-
pound solutions share in common end. Everything else will
evidently depend precisely on the differences in the analyt-
ical and geometrical properties of these two solutions, and
these differences, as already mentioned, are quite marked.

If the simple self-similar solution in the space of the
observer, where @€[0,27] holds, together with its partial
derivatives is continuous, then the compound solution, or
rather its partial derivatives, exhibits first-order disconti-
nuities in the coordinate half-plane ¢=0(27). As noted
previously, this is related to the structural features of the
natural geometrical space of this solution. Of course, this
property of the compound solution must be taken into ac-
count when it is utilized in applications.

The most natural step now would be to impose some
boundary conditions on this half-plane. These would intro-
duce an element of physical justification associated with
the properties of the wave function to the corresponding
discontinuities that manifest themselves on this half-plane.
After these boundary conditions are imposed, it can be
used to model some material object (e.g., a “thin” semiin-
finite sheet of metal or insulator).

Thus, the main prerequisite for using the compound
self-similar solution as the basic solution of the wave equa-
tion in applications is a need to formulate some sort of
boundary-value problem on the half-plane. Here the idea is
that, exactly as in the most general case of arbitrary
boundary-value geometry, the full system of functions is
constructed using the simple self-similar solution in the
form of a mixed wave spectrum:

U= ZAk exp[ —iz cos(@+7yi)]
k
+ z By explizcos(p+6,) ]+ fA('y)
k

Xexp[—izcos(p+7y)]dy+ f B(5)

X expliz cos(p+8)]d8, (42)

Now we have at least formal grounds to construct a full
system of boundary-value functions on the half-plane using
the compound self-similar solution

U= D Ay exp[—izcos(p+7i)]
3

Xerfe| (2iz)12 sin

P+Yk
2

+ z B exp[iz cos(@p+6;)]
k

o]
Xerfe| (2iz)V? cos ?y] + fA(y)

Xexp[—izcos(p+7)]

+7
2 ]dy
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+ f B(6)expliz cos(p+6)]

p+6

Xerfc[ (2iz)? cos — dé. (43)

The specific form of the representation (42) in any partic-
ular case depends on the details of the boundary-condition
geometry, the mode of excitation, the spatial symmetry,
and other physical factors. Thus, in the initial representa-
tion (42) one, two, or even three of the four terms can
vanish. In the same way, the final form of the representa-
tion (43) can undergo similar transformations.

We present one very simple example from electromag-
netic wave diffraction theory. Note that in the cylindrical
coordinate system, when the potential U is independent of
Z’, we can use it to represent either the electric field com-
ponent E, or the magnetic field component H,, depending
on the polarization of the field.

Suppose now that a TM-polarized plane wave with
unit amplitude is incident on a perfectly conducting infinite
sheet of metal at some angle @, (see Fig. 1b). If we leave
out the time-dependent factor ¢’ the solution of this prob-
lem in cylindrical coordinates will obviously have the form

E, =expliz cos(p—pg) ] —expliz cos(p+@p) ].

We see that it is composed of only two terms from the
second sum of Eq. (42) for y,=—@q, Va=+¢o, B;=1,
B,= —1. Now we solve almost the same problem, but with
half the metal plane “cut off’ so that the electric vector of
the incident plane wave is parallel to the edge thus pro-
duced.

We note that the four terms in expressions (42) and
(43) are similar to one another in form, taken in pairs. Just
as before, we make use of this by assuming that the solu-
tions of the boundary-value problem require only the two
corresponding terms of the sum from the second term of
expression (43):

1 . . —
Ez,=§ exzcos(¢—¢o)erfc[exw/4(22)\/2 cos 4 2%]

1 . )
_5 elzcos(:p+zp0)erfc em/4(22)l/2 co

. P+@o
|

(44)

There is one minor difference compared with the prob-
lem involving a plane treated above: here we have taken
By=1/2, B,=—1/2, which is simply related to the nor-
malization of the complementary error function.

Thus, we see that the solution of (44) is the classical
Sommerfield solution.! However, here it is obtained in the
form of a trivial set of discrete terms from the expansion in
the compound self-similar solution. In general, this prob-
lem has to be solved (like any boundary-value problem) by
starting with the complete solution in the form of a super-
position of incident and scattered waves:

E, —e cos(@—gp)
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+B, &2 cs(e—0)erfe i (2iz) 2 cor

S‘P—‘Po
2

P+

+ B, eZcs9+®erfc >

(2iz)? cos

]. (45)

It is not hard to see that when the expression (9) is taken
into account, the boundary condition E, (¢=0,27)=0,
which applies to expression (45), yields the solution (44).
The solution for the problem of TE-polarized plane waves
is obtained in exactly the same way.

Of course, we can always write the scattered field in
the form of an integral of plane waves, as is done
everywhere.'™ That is, we can use the integral terms in the
expansion in the simple self-similar solution (42). Then we
can solve the integral equation by means of elaborate and
fairly tedious mathematical techniques like the Wiener—
Hopf method.’ The alternative path, which we have dem-
onstrated here, involves using an already available expan-
sion in the compound seif-similar solution (43). This
reduces the process of obtaining a solution of the problem
with a half-plane to a process which is literally trivial. To
say more than this regarding the methodological advan-
tages of the expansion (43) would be, in our opinion, com-
pletely superfluous.

We have already mentioned the discrete terms in the
expansion (43) with complex parameters at the very be-
ginning of this treatment. There is consequently some ob-
scurity regarding the integral terms in Eq. (43). To dissi-
pate it we must return again to the question of describing
the characteristic waves of the semi-infinite “thin” un-
screened waveguide. For this a natural model is the half-
plane with the corresponding (two-sided) boundary con-
ditions that we have indicated. In connection with the
problem when this half-plane is a ““thin”” semi-infinite plane
insulating waveguide, in Ref. 5 we have shown that the
integral terms in the expansion (43) play the role of quasi-
mode functions of the continuous wave spectrum of a semi-
infinite waveguide in the theory of open waveguides. The
modes of this spectrum are a continuum of light rays at
grazing incidence along the surface (both upper and
lower) of the half-plane. The edge where the half-plane is
cut plays the role here of an exciting “inhomogeneity.” The
point is that, as shown in Ref. 5, the integral terms in (43)
contain modes of the continuous wave spectrum of an open
waveguide only when the angle a (the polar angle localiz-
ing the nonuniform plane wave directed by the half-plane;
see Fig. 3) goes to zero. This case is illustrated graphically
in Fig. 3d. There one of the light rays of the continuum
(and an instantaneous snapshot of the real part of the field
associated with this ray) is shown. It consists of light rays
for which the direction of the field is described by Eq. (21).
This is the integrand of an indefinite integral defined on
Y€[0, ], where y is the variable of integration entering in
expression (21). Note that the direction in which the light
rays propagate, corresponding to grazing incidence along
the surface of the half-plane, is generally the limiting value
of all the possible directions shown in Fig. 3a—c. (This
assumes that we have in mind deterministic relations be-
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tween the currents of the half-plane and the light rays.))*
An extraordinary property of the expansion (43) is pre-
cisely that in principle it does not contain modes with light
rays “flowing in” to the surface of the half plane. This
cannot, of course, be said of the representation (42). In the
theory of open waveguides this difference in the represen-
tation plays a fundamental role. In fact, in deciding the
dilemma of how to choose between the basic representa-
tions (42) and (43) in connection with the theory of open
waveguides, we are essentially solving the problem of
choosing an idealized physical model for an infinite or
semi-infinite waveguide, respectively. If we choose the lat-
ter, then these waves (according to the current
terminology® associated with the infinite waveguide
model), both characteristic (exponentially damped at in-
finity in the transverse direction) and slow noncharacter-
istic (exponentially growing at infinity in the transverse
direction), the light rays of which “flow into” the surface
of the half-plane are automatically eliminated from consid-
eration. We note in passing that the so-called Zenneck
wave (the fast eigenmode) once predicted on the basis of
the representation (42), has not been observed thus far,
although its field satisfies all the conditions of the theory,
for which the infinite waveguide serves as the basic model.
Thus, the representation (43) contains from the start in-
ternal information reducing the number of additional pos-
sibilities allowed by the expansion (42). In particular, the
presence of these extra possibilities implies that the theory
of open waveguides formulated for infinite waveguide
modes is also redundant. The physical basis of this theory,
in addition to imposing the standard boundary conditions,
contains conditions such as that at infinity (transverse or
radial). Despite this (or rather, because of this) the theory
lacks clear criteria according to which the spurious solu-
tions, both characteristic and noncharacteristic, could be
eliminated a priori. In contrast, with (43) chosen as the
basic representation this problem is solved in a natural way
irrespectively of what mode is being treated, characteristic
or noncharacteristic. The only requirement imposed on the
mode of the semi-infinite waveguide is the standard re-
quirement that it satisfy the boundary conditions for this
field. Thus, the semi-infinite waveguide model is preferable
to that of the infinite waveguide as regards the derivation
of an *“‘economical” theory of open waveguides. Over and
above this, as shown in Ref. 5, another consequence of
reducing the physical basis of the theory to standard form
is the relationship of the discrete and continuous spectral
components of the scattered field. This means that the
present theory of open waveguides is logically complete.

The only thing left to emphasize is that all these con-
sequences stem from the simple analytical properties (9)
and (10) of the compound self-similar solution of the
Helmholtz equation. These are properties which increase
the information content of the mathematical apparatus
built on this solution in comparison with the conventional
formalism, which is based on the simple (exponential) so-
lution of the wave equation.
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6. USE OF THE THREE-DIMENSIONAL SELF-SIMILAR
SOLUTIONS IN APPLICATIONS

Although the self-similar solutions have been derived
by a single technique without regard to the number of
independent variables in the Helmholtz equation, the way
these solutions are utilized in applications depends sub-
stantially on this point. For example, because the metric
coefficients of the spherical coordinate system depend on
the variable 0, functions constructed using formulas like
(40) and (41) no longer have any meaning, since they do
not satisfy the Helmholtz equation. Consequently, ques-
tions regarding the use in applications (in the theory of
electromagnetic or acoustic waves) of the compound self-
similar solution

U=Ae 29 Ei[ —iz(1—cos 0)], (46)

where Ei(—x?) is the principal value of the exponential
integral function, and @€ (0,7] are resolved in a very dif-
ferent manner than in the two-dimensional analog.

Next, it makes no difference what the specific applica-
tion of expression (46) is, whether as a Debye potential
used in describing electromagnetic oscillations or as a ve-
locity potential in the theory of sound waves. The question
of the conditions under which this expression can be ap-
plied in the corresponding applications can probably be
answered after one answers the question, what specifically
are the surfaces of equal amplitudes of the wave described
by the potential (46).

The relation (46) implies that these surfaces are spec-
ified by

z(1—cos ) =p, (47)

where p is a real parameter. It is not difficult to see that Eq.
(47) describes the surface of a paraboloid of revolution
(shown in Fig. 4) written in the spherical coordinate sys-
tem. Here the parameter p acts as the focal parameter of
the paraboloid (written in units of the wavelength).

From this it follows that Eq. (46) can be used most
effectively to describe the space-time distribution of the
field in acoustic or electromagnetic wave theory in
boundary-value problems with the boundary condition ap-
plied to the surface of a paraboloid of revolution, except for
the interior parabolic regions of the space containing the
axis 6=0, where the potential (46) has a singularity.

It is well known, however, that problems like these can
be solved most readily in parabolic coordinates. These con-
sist of a system of confocal paraboloids of revolution (co-
ordinate surfaces) with focus at the origin of coordinates.
Figure 5 shows the intersection of such a coordinate sys-
tem with the x,x; plane. It is easy to show that the para-
bolic coordinates are related to spherical coordinates by
the following expressions:

=r(1—cos 9), ?=r(l4+cos9), a’=a. (48)
In addition we have
rcos 0=1 (7*—a?). (49)
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Substituting (48) and (49) into (46) we can easily obtain
an expression for the potential U in the parabolic coordi-
nate system:

U=e— D -DEi( _ikg?), (50

which, as can be seen by inspection, can be derived by the
conventional method of separation of variables in the
Helmholtz equation written in parabolic coordinates'?

a ([ au a [ aUu
o' — (03—) N (T-—) +K(?+)U=0,
o ar\ Jr

do
(51

where we have omitted the dependence on a’.

The general theory of solutions of Eq. (51) was de-
rived by Fok, who published some of his results in Ref. 13,
where expression (50) was obtained as one of the partic-
ular solutions of Eq. (51). The same paper also indicated
ways of using these solutions in the theory of electromag-
netic wave diffraction by an ideal conducting paraboloid of
revolution. However, Horton and Karal® gave the most
direct approach to applications of the solution (50). In
particular, just using the potential (50) they found a rig-
orous closed expression for a plane acoustic wave scattered
by a paraboloid of revolution with a rigidly attached sur-
face, where the wave is incident on the external (convex)
surface of the paraboloid in the paraxial direction.

It is easy to see that the solution of this problem with
boundary conditions

au

s =0,

0=(pl)]/2

where we have written p’ = p/k (the focal parameter of the
paraboloids expressed in units of wavelengths) takes the
form

k
U=exp —ii('rz—oz)][l—}—FEi(—-ikoz)],

T'=ip/[2 exp(—ip) —ipEi(—ip)].

7. CONCLUSION

The general methodological significance of this work is
obviously that it demonstrates a way of solving the Helm-
holtz equation which converts it into an ordinary differen-
tial equation. This gives rise to a pair of so-called self-
similar solutions, which are distinguished from among the
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denumerably infinite set of other solutions of the wave
equation, viewed as a partial differential equation, by pre-
cisely this fact. But this is only the superficial, formal side
of the matter. The more important thing is that this implies
consequences which are far from formal. This can be seen
particularly clearly in the two-dimensional examples. The
main result there reduces to demonstrating those analytical
properties of the compound self-similar solution, used as
the basic solution of the wave equation in order to model
the wave processes in the theory of open waveguides,
which result in quite general improvements (relative to the
conventional form of this theory); this is practical evidence
for the distinctiveness of the self-similar solutions.

We have shown that in the three-dimensional case the
compound self-similar solution is not as general as its two-
dimensional analog. This, however, is not a basis on which
to draw final conclusions. It simply means, in our opinion,
that further studies are necessary, whose direction may be
very different from those carried out in this work, which is
methodological in nature.

In this connection we note only that the direction of
such studies cannot be entirely arbitrary. It must be deter-
mined from the properties of the three-dimensional solu-
tion; these, as shown here, differ very substantially from
those of the two-dimensional analog.

YThe term “self-similar solution” is adopted from hydrodynamics'® from
the formal appearance of self-similarity, where the mathematical de-
scription of a physical process reduces to a problem with a single inde-
pendent variable.

DFor spherical coordinates this extension simply means that if 6 runs over
the whole interval [0,27], then the end of a unit radius vector with {0,27]
describes the whole sphere twice. The multivaluedness of the represen-
tation of the spatial distribution does not stem from the explicit sym-
metry of the factor 1—cos 6 which appears in the argument of the
function Ei( —x2).

3 As shown by Kukushkin,*® the existence of deterministic relations be-
tween the currents in the half-plane (if it is a semi-infinite “thin” insu-
lating plate,’ then the term currents here should be taken to mean the
corresponding polarization currents in the insulator) and the light rays
plays a central role in the development of the very concept of modes of
a semi-infinite waveguide. In the theory of shielded waveguides, e.g., this
concept is meaningless precisely because here the principle of determi-
nacy applied to the modes of the field of an infinite waveguide never
fails. This is because there are two planes, rather than one, which are
constantly “exchanged” by the two reflected light rays. By virtue of this
the presence of “incoming” rays here does not contradict the determin-
istic relations that hold in electrodynamics.

'A. Sommerfeld, F. Frank, and R. von Mieses, Differential and Integral
Egquations of Mathematical Physics, Springer, Berlin (1930). [Russ.
transl.,, ONTI, L., M., 1937].

2P. Ya. Ufimtsev, The Method of Boundary Waves in the Physical Theory
of Diffraction [in Russian], Sov. Radio, M., 1962.

3L. A. Vainshtein, Diffraction Theory and the Factoring Method [in Rus-
sian], Sov. Radio, M., 1966.

*A. V. Kukushkin, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 33, No. 10,
1138 (1990) {Sov. Radiophys. 33, (1990)].

A. V. Kukushkin 92



SA. V. Kukushkin, ibid. 33, No. 11, 1242 (1990). [ibid., 33 (1990)].

SC. W. Horton and F. C. Karal, J. Acoust. Soc. Am. 22, No. 6, 855
(1950).

"M. Abramowitz and 1. A. Stegun, Handbook of Mathematical Func-
tions, National Bureau of Standards, GPO, Washington (1964). [Russ.
transl., Nauka, M., 1979].

%Y. L. Luke, Mathematical Functions and Their Approximations, Aca-
demic Press, N.Y., 1975 [Russ. transl., Mir, M., 1980].

9V. V. Shevchenko, Continuous Transitions in Open Waveguides, Golem,
Boulder, CO., 1971.

93 Physics - Uspekhi 36 (2), February 1993

19 Encyclopedic Dictionary of Physics [in Russian], Sov. Entsiklop., M.,
1983.

'y B. Berestetskil, E. M. Lifshitz, and L. P. Pitaevskii, Quantum Elec-
trodynamics, 2nd ed., Pergamon, Oxford, 1982.

2E. Jahnke, F. Emde, and F. Losch, Tables of Higher Functions, 6th ed.,
McGraw-Hill, N.Y., 1960. [Russ. transl., Nauka, M., 1977].

By, A. Fok, “Theory of diffraction from a paraboloid of revolution,” in
Diffraction of Electromagnetic Waves by Some Bodies of Revolution [in
Russian), Sov. Radio, M., 1957.

Translated by D. L. Book

A. V. Kukushkin 93





