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A Fermi-liquid approach to the theory of superfluidity is developed, based on a generalization
of the combinatoric expression for the entropy to the case in which the state of the
Fermi liquid is described not only by a normal but also by an anomalous distribution function.
The energy of the superfluid Fermi liquid is given in the form of a functional of these
distribution functions. In the weak-coupling approximation the Fermi-liquid approach is
equivalent to the BCS theory. The interaction between the Fermi liquid and an
electromagnetic field is gauge invariant. In addition to the singlet-pairing theory the triplet-
pairing theory is also developed. A unified variational principle that gives rise to the
theory of superfluidity (superconductivity) is used to obtain the London equations and the
Ginzburg-Landau equation. Applications of this theory are made to the derivation of
an equation for ideal two-component hydrodynamics.

I. INTRODUCTION

A system of particles can be in the liquid state when
the particles interact strongly and the density is sufficiently
high. Thus far no detailed general microscopic theory of
the liquid state has been constructed. There is, however, an
important exception to this assertion. We refer to a fermion
gas at temperatures below the degeneracy temperature,
e.g., an electron gas in a metal. The system of electrons in
a metal cannot be regarded as an ideal gas, but must be
viewed as a liquid, which, following Landau, we will refer
to as a Fermi liquid. The Fermi liquid can be in a super-
fluid state. If it exhibits no superfluid properties, then the
Fermi liquid is called normal. The theory of a normal
Fermi liquid was developed by Landau in 1956.1

Note that a Fermi liquid is a quantum fluid. Another
example of a quantum fluid is a Bose liquid, whose parti-
cles are bosons instead of fermions. A quantum fluid com-
posed of bosons necessarily has superfluid properties. A
Fermi liquid at low temperatures, however, can be either
normal or superfluid.

The purpose of the present review is to present some
topics of the theory of Fermi-liquid superfluidity. We begin
with a brief review of the theory of a normal Fermi liquid,
and then go on to present the theory of a superfluid Fermi
liquid. Specifically, we use the concept of a Fermi liquid to
derive the theory of singlet and triplet fermion pairing, and
in particular we obtain the results of the BCS theory. We
present the Fermi-liquid treatment of the London equa-
tion, the Ginzburg-Landau equation, and the equations of
two-fluid hydrodynamics for a superfluid.

Our treatment is semiphenomenological: although we
use concepts of the microscopic theory such as the normal
and anomalous distribution function and the density ma-
trix, we give the interaction between quasiparticles in terms
of phenomenological amplitudes, which for the normal
Fermi liquid were first introduced by Landau.1

In the present review we do not discuss questions as-
sociated with the microscopic basis of the theory of a
Fermi liquid. A number of treatments of these topics have
been given previously.2"5

The basic idea of the theory of a normal Fermi liquid
is that as a result of the interaction each fermion is trans-
formed into a quasiparticle, so that the Fermi gas becomes
a gas of weakly interacting quasiparticles, which are also
fermions. This means that the pair interaction between
quasiparticles is weak, but the interaction between the qua-
siparticles and the self-consistent field of the other quasi-
particles is substantial. As a result of the self-consistent
interaction the total energy of the system is not equal to the
sum of the individual quasiparticle energies. Since in the
theory of a normal Fermi liquid it is assumed that there are
no bound states, the overall number of quasiparticles is the
same as the original number of fermions. The temperature
of the Fermi liquid is assumed to be low. It is for this
reason that the Fermi liquid can be regarded as an aggre-
gate of weakly interacting quasiparticles, since the proba-
bility of a collision between fermions is proportional to the
square of the temperature (we recall that the extent to
which the discontinuity in the Fermi distribution is spread
out is proportional to the temperature).

The individual state of a quasiparticle is characterized
by the momentum p and the projection a of the spin. At
the basis of the quantitative theory of a normal Fermi liq-
uid is the concept of the system energy E=E(f) as a
functional of the "distribution function" fvafa =fu
(the one-particle density matrix) of the quasiparticles and
the combinatoric expression for the entropy

S-=-tr[/ln/+(l-/)ln(l-/)]. (1.1)

In this equation tr represents the trace over one-particle
states Isp,, <TI, 2 = p2, a2.
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The equilibrium one-particle quasiparticle density ma-
trix must be found from the requirement that the entropy
S be a maximum for specified values of the energy func-
tionals E(f ), particle number

N=trf=
P,

and momentum

where pt is the quasiparticle momentum operator. Intro-
ducing the Lagrangian multipliers Y corresponding to the
quantities E, N, Й2, we arrive at the problem of finding the
absolute minimum of the functional

ft (/ ) = -S(f ) + YoE(f ) + Yi tr fpt+ Y4 tr / (1.2)

(since the statistical equilibrium state is assumed to be
spatially uniform, the quantities ft, 5", E, & -t, and N are
proportional to the volume V of the system). From this
variational principle follows the self-consistency equation

(1.3)

a nonlinear equation determining the equilibrium one-
particle Fermi-liquid density matrix; here

d E ( f )

Yn=T (1.4)

where Т is the temperature, u,- is the average Fermi-liquid
quasiparticle velocity, and ц is the chemical potential. The
quantity £(/), which is a functional of the one-particle
density matrix, is the quasiparticle energy or Hamiltonian.

Since to leading order a gas of quasiparticles is ideal,
the nonequilibrium statistical operator of the whole Fermi
liquid can be written in the form6

p0(/)=exp(ft- Е
V 1,2

(1.5)

where aj1" and Oj are the creation and annihilation opera-
tors for quasiparticles in the state 1 =/>], a\. The quantity
ft is determined from the normalization condition
Sp/o0(/) = l- The matrix An, which characterizes the
nonequilibrium state, is related to the one-particle density
matrix /12 by

Using this relation we can easily show (see Ref. 6) that the
entropy of the system, determined by

S=-Sppo(/)lnpo(/).

is the same as the combinatoric entropy (1.1). We empha-
size that in Eq. (1.1) the symbol tr stands for a trace in the
space of one-particle states, while in Eq. (1.6) the symbol
Sp stands for the trace in the second-quantization space of
the entire system.

In the nonequilibrium case the one-particle density
matrix / is time-dependent. This dependence is determined

by the kinetic equation. Since e(f) is the quasiparticle
Hamiltonian, if we neglect collisions between quasiparti-
cles this equation takes the form

(1.7)

Collisions between quasiparticles can be neglected under
the condition u>r>l (here I/a is the characteristic time
scale on which the one-particle density matrix varies and т
is the quasiparticle collision time). This equation is analo-
gous to the Vlasov equation,7 which is widely used in
plasma theory.

In order that Eqs. (1.3) and (1.7) have a specific phys-
ical meaning, it is necessary to give the system energy
E(f) as a functional of the one-particle density matrix.
This functional in the simplest case can be written in the
form

£(/)=! £12/21+3 (/o^i/o) +1
1,2

(1.8)

where

/Opq(^l)qp,p'q'/0q'p'>
p,q;p,q

P,q;p,q

here /0=trff /, /,=tra /<r, and FI and F2 are the ampli-
tudes for the potential and exchange interactions of quasi-
particles, which are called Landau amplitudes, ai is a Pauli
matrix, and trCT is the trace over the quasiparticle spin vari-
ables. In writing down Eq. (1.8) we have assumed that the
energy functional is invariant under spin rotations.

The Landau amplitudes can be introduced in a some-
what more general form, without specifying the form of the
system energy. That is, these amplitudes can be determined
from the formulas

den 32E(f )

— ̂ 12,2'!' — ' 'PlP2.P2Pi 2"!

(1.9)

where after evaluating the derivatives we take the one-
particle density matrix to be the equilibrium form. With
this definition the Landau amplitudes, strictly speaking,
are functions of the thermodynamic variables У0, Yt, У4

(or T, Vj, /i). These amplitudes play a fundamental role
both in studies of the thermodynamic properties of Fermi
liquids and in investigating the high-frequency kinetic
properties of a Fermi liquid8 (zero sound8'9).

The principal physical objects to which the Fermi-
liquid theory applies are liquid 3He above the temperature
of the transition to the superfluid state and an electron gas
above the temperature of the transition to the supercon-
ducting state (if one exists). The theory of a normal Fermi
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liquid was originally derived by Landau in connection with
liquid 3He. The Fermi-liquid description of an electron gas
in metals is due to V. P. Silin.10

A normal Fermi liquid can be unstable against pertur-
bations associated with magnetic ordering. If this instabil-
ity is present, then below some temperature the ordinary
normal Fermi liquid undergoes a transition to a magneti-
cally ordered normal Fermi liquid. The instability condi-
tions for a normal Fermi liquid were studied by
Pomeranchuk.11 Magnetically ordered (ferromagnetic)
normal Fermi liquids were studied by Stoner, ,
Abrikosov,13 I. A. Akhiezer,14 and others. The antiferro-
magnetic Fermi liquids were studied by Akhiezer and
Chudnovskii.15 (See also the review of Akhiezer16 and the
treatise of Kondrat'ev and Uzdin.17)

A normal Fermi liquid can also be unstable against
perturbations associated with the development of anoma-
lous average values (aa). This means that below some tem-
perature the superfluid (superconducting) state is the sta-
ble one. The present review is aimed at describing the
theory of a superfluid Fermi liquid.

In 1986 high-temperature superconductors (HTSC)
were discovered,18 for which the transition temperature is
above 30 K. At the present time there is no detailed theory
of HTSC analogous to the BCS theory. Nevertheless, it is
plausible to assume that the properties of HTSC are con-
sistent with the concept of a Fermi liquid.19 Hence the
theory of a superfluid Fermi liquid may be applicable to
HTSC also, but since this theory is semiphenomenological,
it affords no insight into the microscopic mechanism re-
sponsible for HTSC. For this reason we deliberately do not
concern ourselves in this review with the questions of
HTSC. It is possible, however, that the superfluid model
developed in Sec. 3.5 below has some connection with
HTSC.

2. THEORY OF THE SUPERFLUID FERMI LIQUID

2.1. Entropy of a superfluid Fermi liquid

In the Introduction we outlined the theory of a normal
Fermi liquid, described by the one-particle density matrix
fi2=fPlal ,p a • Below some temperature the Fermi liquid
can be in a superfluid state. This means that the Fermi
liquid consists of two components, normal and superfluid,
where the superfluid component flows without friction
(viscosity). However, the one-particle density matrix /
does not suffice to describe the superfluid state of a Fermi
liquid; we need, in addition, to use the anomalous distri-
bution functions g, g+. As already noted, the normal "dis-
tribution function" is denned by the formula
/12 —Sp P^2a\> whereas the anomalous distribution func-
tions g\2, £n are denned by gi2 = Sp pa2a\ and
S\2~$Р Pa2at (here p is the nonequilibrium statistical
operator of the Fermi liquid, and af and at are the cre-
ation and annihilation operators for fermions in the state
l=Pi, CTI). In a state of statistical equilibrium the anom-
alous distribution function vanishes above the supercon-
ducting transition temperature Tc.

Since Fermi-liquid quasiparticles interact weakly with
one another, a nonequilibrium state of the quasiparticle
(fermion) gas in the presence of anomalous average values

is described by the nonequilibrium statistical

(2.1)

operator

p0(f,g,g+)=exp(fl-F),

F=
1,2

where the quantities /, g, g+ and A, B, B+ are related by

Sp Po(f,g,g+)a2ai=fl2,

Sppo(f,g,g+)<J2<ii=8n, (2.2)

The quantity Q(/,g,g+) is found from the normalization
condition Sp Po(f,g,g+) = l- The nonequilibrium statisti-
cal operator (2.1) is characterized by the property that for
averages of the form Sp ptfi^ ...a^an' ,...a\<, the Wick rules
hold, in which the normal and anomalous distribution
functions (2.2) serve as correlations, e.g.,

Sp р0а^а2~а3а4=/32/41 -/зь&з+Я^&и-

The absence of correlations on the average is a conse-
quence of the fact that we are dealing with an ideal non-
equilibrium gas of quasiparticles.

The entropy of a nonequilibrium Fermi liquid is deter-
mined by the general formula S= — Sp poln p0. We show
that this expression can be represented in terms of the
normal and anomalous distribution functions in the form

S=-Sp/ln/,

where

(2.3)

/=
/

g+

g

1-//'
/12 — /21 > #12— 21

and Sp is taken in the extended space in which the matrices
/ act. We will call the matrix / the statistical operator of
a nonequilibrium Fermi liquid. From the definition the
quantities / and g which go into / satisfy the relations

=/, g=-g. (2.4)

In the absence of anomalous average values of g the ex-
pression (2.3) for the entropy is identical to the entropy of
a normal Fermi liquid [see (1.1)].

To prove Eq. (2.3) we represent the operator F in the
form

(2.5)

where

a, В

We introduce the unitary Bogolyubov transformation for
the creation and annihilation operators
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(2.6)

(repeated indices imply summation). This transformation
can be written in the form

(2.7)

(2.8)

where the matrix U is defined by

и v
£/=

zr

and the operators и and v satisfy the relations (the unitar-
ity conditions for the matrix U)

UU+ +VV+ = 1, UV + VU = 0,

u+u + vv*=l, u+v+vu*=0. (2.9)

As is well known, the unitary transformation (2.8) can be
taken so that a quadratic form in the operators a+ and a

becomes quasidiagonal. This requirement is equivalent to
the requirement that the matrix U+ QU be quasidiagonal:

U+QU=Q0, Q0=
0 0

0 -A,
(2.10)

Taking (2.6) and (2.10) into account, we can represent
the statistical operator p0 in the form

where

From (2.2) and (2.7) we therefore have

f=Uf0U
+,

where

Г/о О

(2.11)

-,
/o= 0 l-

Since the entropy 5= — Sp p0ln p0 can be written in the
form S= -Sp p£0)ln p^0), we have (see Ref. 6)

S= -tr[ /o In /o+ (1 -/o)m( 1 -/0) ] = -Sp Л In /„.

From (2.11) we therefore obtain Eq. (2.3),
5=-Sp/ln/.

It can be shown that the general class of unitary trans-
formations U, which leave the structure of / invariant, i.e.,

(2.12)
/'*=/', «'--«',

is defined by the following relations:

U V

V* U*

uv+vu=0, u+v+vu*=Q.
(2.13)

These relations show that the unitary transformations used
here are identical with the u—v transformations of
Bogolyubov.20 For infinitesimal unitary transformations
they take the form U= 1 +ief'(£•<!), where the generator
Т of these transformations, which is a Hermitian operator,
has the structure

T=

Since the physical quantities are generators of unitary
transformations, to any physical variable A in the Fermi-
liquid theory there corresponds an operator

, ~|, a=a+, a=—a.
<L —°i

It is easy to see that the operator A is transformed as
follows under a unitary transformation U:

f a ' a' \
A-*A' = UAU+, A'=\ , , _ ) , (2.14)

\a+ -a I

where

a' = uau++va+u+ + ugv+—vav+=a'+,

a' = uav+va+ij+uav—vau = — 5'.

In particular, for an ordinary unitary transformation we
have

a = uqtt.

Using the unitary transformation U we can always cause
the quantity g' in Eq. (2.12) or the quantity a' in Eq.
(2.14) to vanish.

To conclude this section we show that the statistical
operator / is related to the entropy S by

f=(eQ+\)-\

where

(2.15)

В dS dS

This assertion follows from the fact that the statistical op-
erator / can be reduced to quasidiagonal form by means of
a unitary transformation U [see (2.11)]:

U+fU=
fo

7 =/o>

АО О

О -А,

(2.17)

or [see (2.15)]
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\ Q=
в

-А)'

where

Q=UQ0U+.

From (2.17) it follows that the variation 55 of the entropy
takes the form

65= -tr б/о In т^гЧ Sp б/обоЧ Sp U8f0U
+Q.

— /o

But from (2.17) we have

6/= U8fQU++8UU+f+fU8U+

= U8f0U+ + [ 8 U - U + , f ]

(we have taken into account the fact that
U8U+ = -8UU+). Since [/,0=0, we have

55=Sp6/e/2. (2.17')

Noting that

5/ Sg
6f=\

we arrive at Eqs. (2.15) and (2.16).

2.2. The energy functional and its symmetry properties

The theory of a normal Fermi liquid is based on ex-
pressing the energy as a functional of the distribution func-
tion /. In the case of a superfluid Fermi liquid we similarly
assume that the system energy is a functional of both the
normal and the anomalous distribution functions:

E=E(f,g,g+ )=E(f).

Along with the total energy we introduce the energy den-
sity functional 8?(x;/,g,g+ ) = g? (x;/ ):

E(f)= f
J v

Let us derive the symmetry properties of the functional
<^(х;/ ) [and hence those of E(f )] under phase and spin
transformations, and also under spatial translations.

The average value of a physical quantity

0

associated with a fermion can be represented in the form

e(/)str/e4Sp/a (2.18)

[here we have neglected the term tr a, which does not de-
pend on / and therefore does not contribute to the change
in the quantity a(f )]. Since 1, sh pf are the operators of
the particle number and the electron spin and momentum,
the corresponding operators in the Fermi-liquid approach
assume the form

f3= I d3*p(x), £,= I d3x?,-(x), PJ= I d3*ir,(x),

where the operators of the particle number density p(x),
spin density f/(x), and momentum density тг,(х) are de-
fined by

0

0 -p(j

7,(x) 0

0 -i?,l

p(x)=6(x-x), 5,(x)=i,6(x-x),

,(x) 0

0 -Ji(:

here we have written s,=<r/2; x is the position operator
and o, are the Pauli matrices.

The operator f 3 is the generator of the phase unitary
transformation

The operator sk is the generator of the spin rotations

Finally, the operator pk is the generator of the spatial trans-
lations

In accordance with (2.13) / and g transform under these
operations according to

(2.19)

/*_»/* — p — WkPk fpWkPk сг—>р — P~УъРЬар~Wtfk
J J у & J ь » о &У & '

We will assume that the functional <?(x;/ ) is always
invariant under phase transformations,

If we disregard the relativistic interaction the functional
^(x;/ ) is invariant under spin rotations:

op / „. гг~г- f j j л Ф (v. f \ CJ *У\\

Finally, in the absence of nonuniform external fields the
functional i^(x;/ ) is invariant under spatial translations:

The infinitesimal form of relations (2.20), (2.21), and
(2.22) can easily be found. For this we note that the vari-
ation of the functional ^(x;/ ) with respect to the statis-
tical operator / can be written in the form

"'), (2.23)

where

(2.24)
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[the operator £(x;/) is the quasiparticle energy density
operator; see the next section]. By varying Eqs. (2.20),
(2.21), and (2.22) with respect to <p, со, у and using (2.23)
we find in the case of phase transformations

/Sp/[£(x;/),T3]=0,

in the case of spin rotations

/Sp/[£(x;/U-]=0

and in the case of spatial translations

dxk
-=-8р/[£(х;/Ш.

(2.25)

(2.26)

(2.27)

These formulas will be used below to construct the flux
densities of the corresponding physical quantities, which
are necessary to study the hydrodynamic stage in the evo-
lution of a superfluid.

By varying Eqs. (2.20)-(2.22) with respect to the sta-
tistical operator / and using Eq. (2.23) we find the rela-
tions

"'), (2.28)

*), (2.29)

У;/ ), (2.30)

which express the symmetry properties of the quasiparticle
energy density f(x;/).

Finally, we consider the question of the invariance of
the theory under Galilean transformations. Specifically, we
will say that the energy density functional is invariant un-
der a Galilean transformation if we have

A * A « A mv2

(2.31)

where the unitary operator Ua is defined by

#T=e-to»A

тг,(х;/ ) and p(x;f ) are the average values of the momen-
tum density and particle number density, and т is the
particle mass. By varying this expression with respect to vt

we find

- (2.3Г)

And if we vary Eq. (2.31) with respect to / we find the
transformation properties of the quantity £(x;/) under
Galilean transformations:

mv2

~~

2.3. Variational principle and the self-consistency equations

As already noted, the statistical equilibrium state of a
Fermi liquid corresponds to the maximum value of the
entropy for given values of the constants of motion,
namely, the energy, momentum, and particle number
(when the relativistic interaction is included the spin of the

system is not a constant of motion) . Just as in the theory of
a normal Fermi liquid, instead of looking for the local
maximum of the functional S(f ) we will look for the
absolute minimum of the functional

= -S(f У, tr fp,+ У4 tr /

[here Y0, Yit and У4 are Lagrangian multipliers corre-
sponding to the constants of motion E ( f ) ,
^i(f ) =tr fpit and N(f ) =tr /). From Eqs. (2.17) and
(2.23) we have

=Sp 8f(-
(2.31")

where the matrix Q is defined by Eq. (2.16) and

= ( d3*£(x;/ ), Д= Г d3

Jv Jv

From (2.16) and (2.31") the requirement 5fl=0 yields
the nonlinear self-consistency equations44

/= [exp( УО£(/ -i (2.32)

From this relation it follows that the quantity e(f ) must
be interpreted as the quasiparticle energy. It is a functional
of the normal and anomalous distribution functions.

Now let us derive the condition for uniform superflu-
idity of a Fermi liquid. For a normal Fermi liquid this
condition takes the form [/,/>,]=0. In the case of systems
where the phase invariance is destroyed ([/,т3]^0), the
condition for spatial uniformity must be formulated as

[/>A—Qfa] =0, (2.33)

where qt is the momentum of the condensed particles (the
momentum of the superfluid component of the liquid).
Note that in this case the average value a(x) of a physical
quantity <z(x) depends in general on x. However, if the
operator a(x) is phase-invariant, i.e., [a(x),f3]=0, then
from (2.33) it follows that the average value (a(x)} does
not depend on x. It is specifically for this reason that we
called the relation (2.33) the condition for spatial unifor-
mity (but not the condition for translational invariance,
which corresponds to the case [/,/J=0).

Thus, in order to determine the spatially uniform states
of a superfluid Fermi liquid we must find simultaneous
solutions of Eqs. (2.32) and (2.33).

The fact that these equations hold simultaneously fol-
lows from Eqs. (2.30) and (2.24'), which show that if
[f,pi—<7/Гз]=0 holds then [e(f '),pj—qfo] = 0-

We emphasize that in addition to the parameters
YQI = T (temperature), —Yi/Y0=vi (normal velocity),
and — Y4/Y0=p (chemical potential), which are charac-
teristic of a normal Fermi liquid, the statistical equilibrium
state of a superfluid Fermi liquid requires us to specify an
additional thermodynamic parameter qit called the super-
fluid momentum. In the case of Galilean invariant systems,
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when we can introduce the fermion mass m, the quantity
qi/m = ui is the velocity of the superfluid component (see
Sec. 2.2).

Equation (2.32) holds for both spatially uniform and
nonuniform systems. It yields both the BCS theory with
singlet and triplet pairing (the different superfluid phases
of 3He; see Sec. 3.4) and the London equation and the
Ginzburg-Landau equation. In this sense the self-
consistency equations in the form (2.32) are universal.

Note that by virtue of the phase-in variance property of
the energy functional the self-consistency equations admit
solutions with g=0, A=0 (that is, [/,т3]=0). For these
solutions all the results of the present section go over to the
formulas of the normal Fermi-liquid theory. However, a
phase transition can occur in the system, as a result of
which solutions with g=£Q, Д=^0 ([/,т3]т^0) occur, corre-
sponding to states with spontaneously broken symmetry
[the statistical equilibrium state has a lower symmetry than
the functional <?(x;/ )]. It is precisely these states which
we will be treating in the present review.

2.4. Kinetic equation and differential conservation laws

We will now formulate the kinetic equations for the
normal and anomalous distribution functions, or what is
the same thing, for the statistical operator /. Since we are
developing a phenomenological approach to the theory of
Fermi-liquid fluidity, by noting that e(/ ) can be inter-
preted as the quasiparticle energy we will assume that the
kinetic equation for / in the absence of collisions between
quasiparticles assumes the form

(2.34)

In component form this equation is equivalent to the fol-
lowing system of equations for the normal and anomalous
distribution functions:

dg
(2.35)

-/A.

These equations hold when the characteristic time
scales on which the distribution functions vary are much
less than the quasiparticle relaxation time т. If we consider
oscillations of the superfluid, then their frequency со must
satisfy ш>1. Under these conditions we can neglect the
quasiparticle collision integral.

Note that the equilibrium normal and anomalous dis-
tribution functions, which are solutions of the self-
consistency equations (2.32), satisfy Eqs. (2.34) and
(2.35). In this connection we use Eqs. (2.34) and (2.35)
in Sec. 3.6 to derive the equations for ideal (in the absence
of dissipation) two-fluid hydrodynamics (valid for й>т<1).
The equations of motion for the phase and superfluid mo-
mentum are obtained from these equations.

Equations (2.35) can easily be obtained starting from
the concept of weak interaction between quasiparticles in

the Fermi liquid. As is well known, the kinetic stage of
evolution6 is described by the statistical operator
p(f,g,g+), which is a functional of the distribution func-
tions f,g,g+- These distribution functions satisfy the ki-
netic equations

(2.36)
gu=iSp p(f,g,g+)[H,a2al],

where H=HQ+ V (here H0 is the free Hamiltonian and V
is the interaction Hamiltonian, whose structure can be
completely arbitrary). We now take into account the fact
that according to the definition we have

Since the free Hamiltonian is quadratic in the operators
a+, a, then from (2.2) we have

' Sp p(f,g,g+ ) [Я0,а2

+с, ] =/ Sp Po(f,g,g+ ) [Я0,а2

+

а1 ] ,

/Sp p(f>g,g+)[H0,a2al]=iSp p0(f,g,g+)[H0,a2al].

Since the statistical operator p(f,g,g+) is identical to
Pe(f,g,g+) if we disregard quasiparticle interactions, the
kinetic equations (2.36) including the terms which are lin-
ear in the interaction can be written in the form

g2i -i Sp p0(f,g,g+ )

Note that when we take averages in the state Po(f,g,g+)
the Wick rules hold, according to which the normal and
anomalous averages

a,+a2=Sp pcfli~a2=f2l, 0^=8? p<fl\a2=g2\-

appear as contractions. It can easily be shown that rela-
tions of the form

-f^ )ABC,

= ( -l)Bg24Sl¥4BC, (2.37)

+8nf24)ABC,

hold, where Aa3 Ba4C are normal ordering operators;
( — 1 ) B= 1 if the operator В contains an even number of a,
a+ operators, and ( — 1 )B= — 1 if the operator В contains
an odd number of these operators. Introducing the energy
functional

8Е

and the quantities

дЕ дЕ

and using relations of the form (2.37), we find

Sp Po(f,g,g+) [afajl] = ( [e,/] -gA+ + Ag)21,
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Thus

ig=eg+ge-^f— /Д+А.

These equations coincide exactly with Eq. (2.35).
Starting from the kinetic equation (2.34) and using the

symmetry properties of the energy functional $ , we can
express the conservation laws and define the flux densities
of the conserved physical quantities. (These results will be
used below to derive the hydrodynamics of a superfluid. )

The time derivatives of the average value of the density
of a physical quantity a, given by a(x;f )=Sp/<i(x)/2,
can be represented in the form

da(x;f dak(
(2.38)

where

(2.39)

A=

The proof of this assertion follows directly from the kinetic
equation (2.34), according to which we have

da(x;f )

and from the obvious relation

ddk(x)

dxk

(2.40)

Setting a(x)=p(x) in Eq. (2.38) and using Eq.
(2.25), which is a consequence of the phase invariance of
£f(x;/), we find the conservation law for the particle
number density:

dp(x;f ) djk(x;f
(2.41)

3t dxk '

where the operator of the particle flux density is defined by

(2.42)

Setting <z(x)=£,(x) in Eq. (2.38) and using (2.26), we
find the law for the conservation of the spin density:

djik(x;f
(2.43)

dt dxk '

where the operator of the spin flux density is defined by

Finally, setting а(х)=тг,-(х) in Eq. (2.39) and using
(2.27) we find the law for the conservation of the momen-
tum density:

dtik(x;f
(2.45)

dt dxk '

where the average value of the stress tensor is defined by

= - 9 (x;
l- J

(2.46)

We next give the energy conservation law. From (2.23)
and (2.34) we have

d%(x;f) 1 д?л - _1
dt 2 dt

Hence setting a(x)=£(x;/ ) in Eq. (2.40) we find

dWk(x;f)

at — 3xk ' (2'47)

where the operator of the energy flux density is defined by

~ J dV4 J'

(2.48)

3. SINGLET AND TRIPLET FERMION PAIRING

3.1. Diagonalization of the operators of dynamic Fermi-
liquid quantities

We return to the self-consistency equation (2.32) and
show that from this relation we can obtain the basic results
of the BCS theory. The problem consists essentially of
block diagonalization of the matrix

£ =
Д+ -£

which determines the quasiparticle energy. To this end we
note that an arbitrary physical quantity A having the struc-
ture

a+ -a I'

is transformed under the unitary transformations (2.13)
according to Eqs. (2.14).

Block diagonalization means that we choose a unitary
transformation so that the operator a' vanishes [see Eq.
(2.14)]:

' = U+AU=
(a1 0

0 -a'

In other words, we require that

u+av+u+au*+va+v—vau*=0

(3.1)

(2.44) or

42 Physics - Uspekhi 36 (2), February 1993 Akhiezer er a/. 42



аХ+а+Ха+Х-Ха=0, (3.2) =Q, X= -X. (3.12)
А л

where v=Xu*. From the unitary condition [[/+[/= 1; see
Eq. (2.13)] it is easy to find

\ uu+X+X(uu+)*=0. (3.3)

Substituting the first relation in the second we find

(l-XX+)(X+X)=0,

from which it follows that

X=-X, uu+ = (l+XX+)-l=K. (3.4)

The equation determining X therefore takes the form

aX+a+Xa-Xa+X=0. (3.5)

Now we find the operator a'. From (2.14) and (3.4) we
have

D=a-aX+ -X5X+ -Xa+ = (3.6)

Using Eq. (3.5) we can represent the quantity D in the
form

D=(a-Xa+)(\+XX+),

and consequently from (3.6)

a' = u+(a— Xa+)u+ .

(3.7)

(3.8)

Note that it follows from the Hermitian property of the
matrix D and from Eq. (3.7) that

K(a-Xq+) = (a-qX+ )

We also have the relation

XK=KX= -KX.

(3.9)

(3.10)

Equation (3.4) determines the matrix и to within a trans-
formation и-»мА, where A is some unitary matrix, AA + = 1.
This arbitrariness in the determination of the matrix и can
be used in order to carry out a diagonalization of the ma-
trix a' in momentum and spin spaces.

We rewrite the self-consistency equation (2.32) in the
form

where

From what was said above it follows that the quantity £
can be made quasidiagonal by means of a unitary transfor-
mation

, „- /T 0

^«"-(o -i
where

and the matrix X satisfies the equation
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Since

(
u v
- J, f=Uf'U+,

where

v* u*

(3.13)

we have

f=uf'u+ + v(l-f')v+, g=uf'v + v(\-f')u.

Noting that from (3.13) and (3.8) we have

(3.14)

it follows that

f=Kn+X(l-n)X+K,

g=K^X+K(l-n)X,

where [see Eq. (3.4)]

(3.15)

rl. (3.16)

In deriving these formulas we have taken into account that
v=Xu* and XK=KX [see (3.10)]. By virtue of the rela-
tion (3.9) the matrix / is Hermitian, while the matrix g is
antisymmetric because KX= —KX.

Equations (3.15) are equivalent to the self-consistency
equation (2.32). We see that when we go over to operators
acting in spin and momentum space the self-consistency
equation ceases to be physically transparent [specifically,
Eq. (2.32) clearly exhibits the self-consistency principle].
However, Eqs. (3.15) are more convenient in specific ap-
plications.

Note that from (3.12) it follows that if X is the solu-
tion of Eq. (3.12), then X' = -X+~l is also a solution
of Eq. (3.12). Using Eqs. (3.9) and (3.10) we can trans-
form Eqs. (3.15) to the symmetric form

f=Kn+K'n', g=-KnX-K'n'X',

where

(3.17)

From these relations it follows that

/U-A"=/. g\X~X'=8>

i.e., the matrices / and g do not depend on whether we use
the matrix X or the matrix X' = —X+ in solving Eq.
(3.12).
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3.2. Energy density functional

In this section we go into details regarding the energy
functional E ( f ) . If we are close to the phase transition
point in the superfluid state, then the quantities g and g+

are small and the functional E(f,g,g+) can be expanded in
powers of g and g+. In this expansion, by virtue of the
phase symmetry, there will be no terms linear in g and g+

or quadratic terms of the form gg, g+g+. Hence the func-
tional E(f,g,g+) for small g has the following structure:

E(f,g,g+)=E(f ) + V~l(g+,Lg), (3.18)

where E(f ) is the Fermi-liquid energy functional of the
normal fluid and L = {Z,12;34} is an operator that maps
quantities of the form g34 into quantities of the same kind
(this operator can in principle be the functional /). We
now take into account the spin invariance. Note that under
a unitary transformation иш the spin matrix st transforms
according to

u^siuta=ai/l(co)sk, (3.19)

where aik(o)) is an orthogonal matrix. From (2.19), the
operator g transforms under the unitary transformation иш

according to g^gta=uiagulll. From (3.19) it can easily be
seen that we have ujj^u^^a^ and Uiaa2aiuia~aik(o))a2ak.
Consequently, the energy (g+,Lg)/V which is invariant
under spin rotations takes the form

(g+,Lg) = i

where

(3.20)

and is characterized by the two anomalous Fermi-liquid
amplitudes L\, L2, which are operators acting only on the
translational degrees of freedom

If the energy functional E(f ) is characterized by the two
Fermi-liquid Landau amplitudes Flt F2 [see (1.8)],

(3.21)

where

/o=Spa/, /,-=Spff/c7,-,

then we see that the superfluid Fermi liquid is character-
ized by the four interaction amplitudes Ft, L/ (/= 1,2). In
Eq. (3.21) £[ is the quasiparticle energy neglecting Fermi-
liquid interactions.

We can approach the determination of the Fermi-
liquid energy E from the point of view of perturbation
theory. If the microscopic Hamiltonian H has the form

(3-22)
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then to lowest order in the interaction we have E=Sp
where p0 is the nonequilibrium statistical operator defined
by Eq. (2.1). Consequently, taking (3.22) into account we
have

1,2,3,4
Ф(12;34) (/32/4, -/31/42

(3.23)

In this equation Ф(12;34) is the spin-invariant interaction
amplitude, which is nonvanishing only for Pi+p2 = P3 + P4

(we have taken into consideration the fact that the average
value of the operator a^a2 is exactly determined even in
the zeroth order approximation, i.e., by the statistical op-
erator (2.1) (see Ref. 6). In this case the quantity
Ф(12;34) determines both the usual Fermi-liquid ampli-
tudes FJ and the Fermi-liquid amplitudes L, which char-
acterize the superfluid Fermi liquid.

3.3. Singlet pairing and the BCS theory

Equations (3.15) [or (3.17)] can serve as the basis for
studying the different superfluid systems corresponding to
the various physical phases. Each phase corresponds to a
different solution of Eqs. (3.15) [or (3.17)]. A selection
from these solutions must be made by taking into account
the symmetry properties of the phase.

In this section we consider the case of singlet pairing,
when the operator / commutes with the spin operator £,:

[/л]=о. (3.24)

As follows from Eq. (2.33), the statistical operator is
/q=trl~/{7q, where C/q=exp (/'<?,*,) is translationally in-
variant, i.e., it commutes with the momentum operator:
[fq,p]=0. From (2.32) it follows that this operator satis-
fies the self-consistency equation

Y,q,)f3] + 1}

where

In what follows we will assume q = 0. In order to find
the operator /„ and hence the operator / for q^O, in the
expressions found below it is necessary to make the substi-
tution

From Eqs. (3.24) and (2.33) it follows that [/>,]=0,
[/>J=0, <rig+g<fi=Q,Pig+gpi=0- Thus,

/12 = /p15p1p26<71,<,2, fl2=^p,5p1,-p2(cr2)£r1a2. (3.25)

where /p=/p, gp = g_p . From this and from (2.24) it fol-
lows that

Consequently, we have Xn = X989

from (3.12) Xf satisfies the equation
, where

Akhiezer et al. 44



whence

2А?

1/2

(3.26)

From Eqs. (3.4) and (3.14) it follows that

i

exp

(3.27)

Thus,

(3.28)

74 Y, 2

Pi

X
2E,PI

2 И1-"--,)

(3.30)

If we take the expression obtained from Eq. (3.23) as
the Fermi-liquid amplitude Ll and disregard the Fermi-
liquid amplitude Fl , then we arrive at the basic equation of
the BCS theory of superfluid systems.21 In this theory the
quantity gp = (a_pop), which we have termed the anoma-
lous distribution function, can be interpreted as the wave
function of two paired electrons in the momentum repre-
sentation. (This wave function is called the Cooper pair
wave function.) According to Eq. (3.28) the function gp

vanishes for p — pF(>A/yF. We can therefore interpret
the quantity |0=Й1^/1гД as the size of a Cooper pair.

If in the self-consistency equation (3.30) (for F}=0)
we take L^p.p') to be a quantity which is non vanishing in
the narrow layer near the Fermi surface,

Noting that

1 dE dE
(3.29)

we see that Eqs. (3.28) together with Eqs. (3.29) form a
closed system of equations determining A and e, provided
the "energy functional E(f ) is known.

As the energy functional we now choose the functional
(3.18), (3.21). Then for the distributions (3.25) we have

2

T?
P.PI

and consequently

Y Y- 2

^ + ̂ />, + - 1X0 X0 ' Pi

PI

Thus, from (3.28) the equations determining £„, Ap take
the form

= 0, or

where for the electron-phonon interaction mechanism в is
a quantity of the order of the Debye temperature, then, as
is well known, for the transition temperature Tc deter-
mined from Eq. (3.3) in the limit A->0

Г"*Л *
Jo Jtk2T'

we find the following well-known expression:

1 / 1

(3.31)

lny=- Г
J

7=2-268...,

where

«(£.-/*)

is the density of states at the Fermi surface. If in the self-
consistency equation (3.30) along with the linear terms we
also take into account the terms which are cubic in A and
the fact that Т is close to Tc, then we find the following
expression for the quantity A, (T):

TC-T 1/2

The quantity Д(Г) in the limit 74 Гс is given by
Д(0)=4Гс/у.
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The self-consistency equation (3.30) for /i>0 has a
nontrivial solution no matter how small the Fermi-liquid
amplitude L is, provided that this amplitude is positive. It
is of formal interest to explain the behavior that occurs
when we solve the self-consistency equation (3.30) for

For simplicity we will assume Z,](p,q) = — L if |p|
and | q | are less than/>0 and L(p,q) =0 in the opposite case
(here L is a positive constant). Then the self-consistency
equation (3.30) assumes the form

1
L po v(£) E
2 Jo E 2T'

Hence we obtain the equation determining the critical tem-
perature,

1

Since

L po V(E) i
=— d£ ;—г th

2 Jo £+ H 2Г '
(3.32)

this equation which determines the critical temperature
Tc, will not have a solution for any value fj, <0 if L < L0

holds, where

. V(£)

[note that v(e) -»0 for e->0]. Thus, in contrast to the case
yu > 0, for ̂  < 0 superfluidity can arise only when the inter-
action is sufficiently strong. From Eq. (3.32) it follows that
the solution corresponding to Tc=0 is obtained with a
chemical potential /x=/x* satisfying the condition

1
L г*

=T d£
2 Jo •

> Eq. (3.32) has noFrom this it follows that for
solution.

To conclude this section we note that the basic equa-
tions of the BCS theory derived from the modified pertur-
bation theory (by canceling the most dangerous diagrams)
were obtained by Bogolyubov.22 He was also responsible
for introducing the equilibrium anomalous distribution
functions in the method of quasiaverages.23 The basic equa-
tions of the BCS theory were derived in the temperature
Green's function method by Gor'kov.24 Eliashberg25 and
Nambu26 derived the basic superconductivity equations us-
ing the Dyson field equations for the normal and anoma-
lous Green's functions.

3.4. Triplet pairing and super-fluid phases of 3He

In the preceding section we studied the singlet pairing
of fermions, where the total spin of the paired quasiparti-
cles was equal to zero. Since each quasiparticle has a spin
of 1/2, in principle it is possible to have another type of
pairing, in which the total spin of the paired particles is
equal to unity. This is called triplet pairing. Whereas the

mechanism for singlet pairing of electrons is usually pho-
non exchange, the basis for triplet pairing, which occurs in
He, is the van der Waals interaction of 3He atoms.

Pitaevskii27 first drew attention to the possibility of this
pairing.

Let us analyze the self-consistency equations (2.32)
for the case of triplet pairing.41 Here we will assume that
the spatial-uniformity condition (2.33) holds with q/=Q.
In order to find the self-consistency equations with q,=£Q it
is necessary to make use of the same substitutions as in the
case of singlet pairing. The anomalous distribution func-
tion <712 in the case of triplet pairing is a symmetric spinor
of rank two and consequently can be expanded in a basis of
symmetric unitary second-order matrices a \a2. Thus we
have

where by virtue of the antisymmetry of the anomalous
distribution function we have g, _„ = — g,p . From this and
from (2.24) it follows that

(3.33)

Just as in the case of singlet pairing, we use the general
expressions (3.14) and (3.15). The solution of Eq. (3.12)
for the matrix X is found in the form

As a result, Eq. (3.12) assumes the form

ВДр+£-р> -^WAp> + ( V;P) ДФ+ ДФ=о.
(3.34)

WetakeF2=0[see(3.21)],sothat£12 = £Pl<5pl ̂  ̂  . We
introduce the notation

Then

(3.35)

(136)

and the system of equations determining the quantities ap

and £p from (3.35) takes the form

1

1

ДфДф+арАфД

(3.37)

Solving (3.37) and taking (3.36) into account, we find

1

(3.38)

where
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Thus, using relations (3.17) and (3.38) for the anomalous
distribution functions g we have

(3.40)

here

exp
|[ДР,Д*]|

+ 1

The result (3.40) has been presented in a form in which it
is clear that the functions ga are invariant with respect to
the choice of the root in (3.39), where for £[ and £2

 we can

take either the "plus" or the "minus" sign of the square
root in (3.39). The structure of the normal distribution
function / in the momentum and spin spaces is determined
by the expression

/12— (3.41)

where, as follows from (3.17) and (3.35), the functions
/OP and /ф take the form

(3.42)

Where the quantity £ I 2 appears in some places in (3.42)
and (3.43) this means that these combinations are invari-
ant themselves with respect to the choice of the root and as
the argument we can take either the first root f ( or the
second root £2.

From expression (3.20) and (3.21) for the energy
functional it follows that

Y- YA 1

£p=£p+—/>/+—+— 2,-^i(P>Pi)/op, >ro *o v p,

2
:F

Hence from (3.40), (3.42), and (3.43) the self-consistency
equations for the quantities £p and Дф take the form

Pi

(3.44)

PI

(3.45)

These equations completely solve the general problem of
the triplet pairing and are analogous to Eqs. (3.30) in the
case of singlet pairing. Note that if the vector product
[Др,Д*] is nonzero, then in the superfluid there exists a
spontaneous magnetization Л/, occurring as a result of the
transition to the superfluid phase, which is determined by
the expression

X(l-npU2)-n°_p(k))] • (3.46)

where /3=e?i/2mc is the Bohr magneton.
Let us consider the states of a superfluid Fermi liquid

for which the product ДД + is a multiple of the unit matrix
in spin space (this is equivalent to the condition
[Др,Д*] =0). Following Legget,28 we will call these uni-
tary states. It is clear that no spontaneous magnetization
occurs in the transition to the superfluid phase in the case
of unitary states.

The self-consistency equations (3.44) and (3.45) for
unitary states take the form

I

(3.47)

PI

here

These equations agree in form with those [(3.30)] of the
BCS theory. The only difference is that the functions Дф
and L2(p,p!) are odd in p.
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The unitary states include, in particular, those for
which the projection of the spin on the quantization axis
vanishes. For such states Дф = d\ Др holds, where di is a real
unit vector parallel to the spin quantization axis. The mo-
mentum dependence of the quantity Д„ must be found
from an equation analogous to (3.47), where it is only
necessary to replace Дф by Д„. For F,=0 the angular de-
pendence of the quantity Др is determined solely by the
structure of the angular dependence of the interaction am-
plitude L2(P>P')- If the system as a whole is rotationally
invariant (as in the case of 3He), then the interaction am-
plitude in the general case takes the form

(here т; is a unit vector in the direction p) and can be
expanded in Legendre polynomials:

= 2 (2/+l)F/(p,p,)/>/(cos0) (3.48)
/=o

(here в is the angle between the vectors p and pj). The
expansion (3.48) gives rise to an expansion of the order
parameter in the form

Др= 2, &lmYlm
l,m

(in the case of triplet pairing L2 and Др contain a super-
position of spherical functions with odd /). If only one
term appears in the expansion (3.48), corresponding to
some value /0 of the angular momentum, then the angular
dependence of Др will also be described by a combination
of spherical functions with /=/0.

An example of unitary states is given by the so-called
A and В phases of 3He. The various superfluid phases cor-
respond to different symmetry properties of the equilib-
rium distribution functions with respect to rotation in spin
and orbit space. For example, in the case of electrons with
singlet pairing the operator / must commute with the spin
operator

[/л]=о.
Moreover, in the usual theory of superconductivity it is
assumed that pairing occurs in the state with 1=0, and so
the relation

[/,>*]=<>,

must hold where

(3.48')

here the second term describes rotation in the space of the
vector thermodynamic parameters Yt, q/;

h= /*

is the operator of the orbital angular momentum of a su-
perfluid Fermi liquid.

In the case of the A phase of 3He, pairing occurs in the
state with s= 1, /= 1 (triplet pairing with /=0 is impossible
by virtue of the Pauli principle). The operator / must
satisfy the following symmetry conditions:

[p-QT3,/]=0,
(3.49)

where dl is the unit vector which determines the quantiza-
tion axis in spin space and A^ is the unit vector which
determines the quantization axis in momentum space.
These relations show that the projection of the spin on the
direction dt vanishes, while the projection of the orbital
angular momentum on the direction &, is equal to unity.

If the projection of the spin on the axis dt is equal to
ms= ± 1,0 and the projection of the orbital angular mo-
mentum on the axis kf is equal to mt= ± 1,0, then relations
(3.49) must be replaced by

(3.50)

This interpretation follows from the fact that relations
(3.50) imply that (we have set Y=q=0)

(s,d)g=mjg, (k,l)g=m,g, (3.51)

where S=s1+s2,l=li + l2- These relations show that if the
anomalous distribution function g12 is interpreted as the
wave function of a pair, then this wave function is the
eigenfunction of the operators of the spin projection and
the orbital angular momentum on the quantization axes dt

and kj.
States with ms= ± 1 are obviously nonunitary, since in

this case from Eqs. (3.51) we have В/~п^+т2р where n\j
and n2j are unit vectors which are mutually perpendicular
and orthogonal to d.

In the В phase pairing occurs for s= 1, /= 1, but the
symmetry properties of the phase are determined by

[Li+SkRki,f}=Q, (3.52)

where Л is a rotation matrix (RR = \,R =R*). In this case
the projections of the spins and orbital angular momenta of
a Cooper pair are indeterminate. The parameters d{, k/, R
together with the parameters Y, qf determine the state of
statistical equilibrium of a superfluid. Whether the /=0,
5=0 phase or the A or В phase in the case of 3He (/=1,
5=1) is actually realized is determined by the condition
that the thermodynamic potential fl be minimized; this in
turn follows from the structure of the functional
E(f,g,g+) [or the Fermi-liquid amplitudes; cf. Eq. (3.48)].

It is known that 3He forms a liquid which does not
freeze down to absolute zero at pressures less than 35 atm.
The degeneracy temperature Tf is determined by

(here m3 is the mass of the atom and и3 is the 3He
He He

atomic density) of order 1 K. The phase transition of liq-
uid 3He from the normal state to the superfluid state was
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atm

0,9 2,6

FIG. 1. Phase diagram of the phases of 3He: S is the region of solid 3He,
N is the region of the normal liquid 3He; A and В are the regions of
superfluid 3He-A and 3He-B respectively.

observed in 1972 (Ref. 29). Superfluid 3He can be found in
the two phases A and В (when there is no magnetic field).
The phase diagram of liquid 3He is shown in Fig. 1. The
phase transition from the normal state to the superfluid A
phase at a pressure of 35 atm occurs for a temperature of
Гс = 2.6 • 10~3 K, while the transition from the A to the В
phase at the same pressure occurs at a temperature
ГАВ = 2.07 • КГ3 К (Ref. 30).

The A and В phases differ in their symmetry properties
(see above). The phase transition from the normal state to
the superfluid phases is a second-order transition. The
phase transition between the A and В phases is accompa-
nied by the production of latent heat and is a first-order
transition.

The change in the specific heat as a function of tem-
perature in the transition from the normal to the superfluid
state (the second-order transition) is analogous to the be-
havior of the specific heat in ordinary superconductors.

3.5. Model of superfluidity with a nonquadratic energy
functional

Thus far the energy function has been taken to be qua-
dratic in the anomalous distribution function. In this sec-
tion we include in the energy functional nonquadratic
terms of the form (gg*)2 (terms which are cubic in g and
terms of the form gg*, g4 cannot appear in the energy
functional on account of phase in variance). Assuming that
the fermion pairing is singlet and the superfluid momen-
tum qt vanishes, so thatg12 = «Pl5Pl>_p2(o-2)ffl(,2 holds, we
write the part of the energy E2(g) associated with the
anomalous distribution function g in the form

1

''~2V

1

P,q

^r P,p',q,q'

We will assume that the amplitude 7(p,p';q,q') has a sharp
maximum at p'=p, q'=q, and consequently

1 v-< - j. * vi ~ •> 42?sq '

In addition, we assume that the amplitudes /M and /P9 can
be factored:

(we recall that the amplitudes /p? and Iw are positive-
definite, which corresponds to fermion attraction). Then
the function &f=2dE/dg% is determined by

д =--/ I/g--g*/l7g 2

" q q

and consequently from Eqs. (3.28) and (3.29) the self-
consistency equation assumes the form

~ 2л,-1
Др=-Л/р-Я/рД„-^- (3.53)

where

_I V 2>l<~1 лA=- 2,/, 2E^ Д„,

1 - (2и„-1)2
(3.54)

Substituting in (3.54) the solution of Eq. (3.53) for Ap (Ef

and ир also depend on Др), we find transcendental equa-
tions determining the constants A and В (independent of
momentum), whose solution determines Др in accordance
with (3.53).

It is easy to see that if /p=0 holds we return to the
basic equations of the BCS theory. Let us consider a dif-
ferent case, in which for some reason the amplitude /p is
anomalously small. Then setting /p=0 in Eq. (3.53) we
find from (3.54) that A=0 holds, and the quantity В is
determined from the equations

2яр-1

_ (2«q-l)2

Assume /p=0 outside the layer |||
inside it. Then from Eqs. (3.55) we have Др=0 for
and for | J" | < в we have the relation

(3.55)

and p==const
| > в

= -/•
~2и„-1

2Е„
В,

with a nontrivial solution Др^0. Since

ир=(ехР^+1) >

it follows from the last equation that inside the layer
( | £ | <0) the energy Ep does not depend on the momentum
p, and hence we find taking into account Ef = (Д2

+ £p)1/2 the following dependence of the gap Др on the
momentum />,:

Д„=0, (3.56)

p.q p.q

The constant E0 is determined according to (3.55) and
(3.56) from the equation
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ах '-х2+1=0.

FIG. 2. Graphical solution of the equation cucVCx2 — I)=tanh3(*z)

(2«o-l)2

°~l

Еп *-'

Noting that (we assume

we find the relation

or in dimensionless variables

r=th3(;cz), (3.57)

where

z=9/2V5T, a=8(/v(/i))~Vv3.

We emphasize that the variable z is determined by the
temperature and is independent of the interaction strength,
while the variable a depends on the interaction strength
but not on the temperature.

To analyze Eq. (3.57) we turn to Fig. 2, in which the
curves y=ax3/(x2— 1) trace the left side of Eq. (3.57),
while the curves lying below the straight line у = 1 trace the
right side of the equation j>=tanh3(zx). For T=0 the
quantity tanh3(zx) degenerates into the straight linej>=l.
This straight line can intersect the curves y=ax3/(x2 — 1 )
only for a<a0=2/3V3~. For a>a0 Eq. (3.57) has no so-
lutions. This means that if the interaction 7 is less than
/0= 12/v(/x), then the self-consistency equation has no so-
lutions Д^О. A solution Д^О occurs only when the inter-
action is sufficiently strong, I>I0. For Г=0 and I>I0 the
quantity x=V3Eo/6 is found from the equation

This equation has three real roots, one of which is negative;
the second lies in the region 1 < x < V3~, as can be seen from
the figure; the third root satisfies x>V5. In order that the
quantity Д2=£о—£2 be positive for all |£ <# it is neces-
sary to choose a solution of Eq. (3.57) which is greater
than V3~.

Now assume Г>0. Then Eq. (3.57) has two positive
solutions, one of which is larger than V3. If the interaction
is specified and a<a0 holds, then part of the curve
y=ax3/(x2— 1) lies beneath the straight liney= 1. At suf-
ficiently high temperatures the curve y=tanh3(zx) presses
against the straight line y=0 and Eq. (3.57) has no solu-
tion. A solution occurs only at sufficiently low tempera-
tures, when the curves j>=tanh3(z;c) and j>=ouc3/(.JC2—1)
are tangent. The temperature corresponding to the point of
tangency also determines the phase transition temperature.
We will not write down the equation which determines the
point of tangency, but only remark that for a ̂  a0 the
quantity z associated with the temperature Т at the point
of tangency will also be of order unity (since all the coef-
ficients in the equation determining the point of tangency
are of order unity). In this case we have Тс~в, Е0~в. In
the strong-interaction limit (a<a0) it can be shown that

rc~0.03/2v(/i)0, 72v(/z)>12.

We emphasize that for a<a0(7>/0) the transition
temperature Tc can be substantially greater than в, while
for /~/0 the transition temperature is of order в.

Note that at the transition point the gap Др appears
discontinuously, in contrast to the usual BCS theory in
which the quantity Д vanishes at T=TC. Thus, in this
model the phase transition is of first order.

Now we analyze the case in which I=£Q holds, but the
interaction is a small quantity (see below). In this case the
self-consistency equation (3.53) always has a solution cor-
responding to small values of g f , for which the term pro-
portional to /p plays no role no matter how large / is. The
transition temperature corresponding to this solution is de-
termined by the usual formula Тс = вехр( — l/vF7). For
vF/<l (weak interaction) the transition temperature sat-
isfies Tc<6. Consequently, for small values of I [such that
exp( — l/vF/)</2vF holds] there are two solutions, one of
which corresponds to the transition temperature (3.31),
while the other to a higher temperature and is determined
by the solution obtained in the present section. If the tem-
perature of the normal phase is decreased, then for
Tc~I2vFe the phase transition we are considering occurs.
Whether or not the phase transition with temperature Tc

determined by Eq. (3.31) occurs as the temperature is
further reduced depends on the relative magnitudes of the
thermodynamic potential of the high-temperature phase
and that of the BCS phase.

Here we do not go into the situation which arises when
the interactions / and / are comparable in the sense that
exp( - 1/VpO ~?VF holds.

Thus, in the model we are treating the transition tem-
perature can be considerably greater than в, and the phase
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transition is of first order. Note that in high-temperature
superconductors the behavior of the order parameter Д is
very close to that of the order parameter in a first-order
phase transition.

3.6. Thermodynamics and hydrodynamics of a Fermi liquid
with singlet pairing

In this section we derive the second law of thermody-
namics for reversible processes with superfluid Fermi liq-
uids. We will assume for simplicity that pairing of quasi-
particles in a Fermi liquid occurs in the singlet state.

In Sec. 2.3 we introduced the potential f l ( f ). By min-
imizing it with respect to the function / we obtained the
self-consistency equations (2.32). In the case of spatially
uniform states we can introduce the density of the thermo-
dynamic potential a> =

(3.58)r4tr/p(0).

The equilibrium potential co(Y,q) will result from substi-
tuting for / in co(f ) the equilibrium distribution function
/eq, which satisfies Eq. (2.32). As can be seen from Eq.
(3.58), the potential co(Y,q) depends on the thermody-
namic parameters Y and q both explicitly and implicitly
through the distribution function /eq. In consequence of
the variational principle, we can find the derivatives
dco/dYa by differentiating with respect to Ya, taking into
account only the explicit dependence of со on Ya. As a
result we find

до до) dco
(3.59)

where %>, тг/, and p are the equilibrium densities of energy,
momentum, and particle number. Then we find the deriv-
ative дсо/dqj.

For this purpose we introduce the unitary operator

t/g=exp( — i
x_i 0

0 -Xi
(3.60)

(here х/ is the position operator), and taking (2.3) into
account we rewrite Eq. (3.50) in the form

+ У,u)(F,q+g) = F-1Sp/gln/g+]

xlSp/g£g15vt>g
+ + lV|Sp/g

where

(3.61)

Since [xi,pj\ = if-38ij holds, we have

Hence from (2.33) it follows that

i.e., the operator /g belongs to the class of operators
(2.33). Consequently, using Eqs. (2.23) and (3.58), ac-
cording to the variation principle [cf. Eq. (2.3)] we have
from (3.61)

dcoaco i
—=y0--Sp/[e(0;/:

Noting further that

.
Yk • | Sp f[-frk,Xi\ .

'^б(х-х/)

and that according to (2.42)

;,(x;/)=Sp/eJ,(0)/2 = i

we finally obtain

dco

(3.62)

(3.63)

Thus, the second law of thermodynamics for reversible
processes in superfluid Fermi liquids can be derived in the
form

/ Yf \
0\ jt+^r p

\ ro J
(3.64)

Recall that we have written Y0=T~l (here Т is temper-
ature), YJ= — Y0Vj (where y,- is the normal velocity), and
У4= — fj,Y0 (where ц is the chemical potential). For Gal-
ilean invariant systems according to (3.62) and (2.3Г) the
momentum density IT,- coincides with the mass flux density
mJi> /!ri=m' Ji-

Noting that the energy density is given by
s=—(o+%'Y0+iriYi+pY4, we can rewrite Eq. (3.64) in
the form

1

Л1
Y*

r,-— dp + (3.65)

The thermodynamic relations (3.63) and (3.64) which
we have obtained can be used to construct the ideal hydro-
dynamics of a superfluid Fermi liquid with singlet pairing.
For this purpose, in consequence of the principle that a
state of statistical equilibrium is localized, it is necessary to
find the flux densities of particle number, momentum, and
energy in thermodynamic equilibrium. The flux density of
the particle number is determined by the formula (3.63)
which we have just derived. Next we will obtain an expres-
sion for the stress tensor tik and the energy flux density Wk

in terms of the thermodynamic potential a>. We begin with
the stress tensor tik.

Let aik be the coefficients of arbitrary affine transfor-
mations Xj -» x'j = aikxk. Then it is easy to see that the op-
erators a,* }xk and Oj/^k satisfy the same permutation rela-
tions as the operators xitpk. From this it follows, as is well
known, that

= aik

 lxk , Ua = aikpk , (3.66)
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where Ua is some unitary operator. In the limit of infini-
tesimal transformations aik=8ik+gik we have
Ua=l—igikTki where the generator tik of the unitary
transformation (3.66) is determined by

1 /{*/>/>*}
•2 I 0

From Eqs. (3.66) it follows that

0

(3.67)
U+ = (det c

The equilibrium statistical operator / is determined by the
thermodynamic parameters Y, q. From relations (2.33) it
is clear that

[Uj(Y,aq)U+ ,/,-<?,T3]=0. (3.68)

Let | х,Я) (Я=5,т,т= ± 1) be the eigenvector of the oper-
ators x, sз, f3:

х|х,Я)=х|х,Я), 53|хД)=5|х,Я),

т3|х,Я>=т|х,Я).

Then from (3.66) we have #+|x,A>=f(аг'хД). The
normalization condition (х,Я| —х'Я)=б(х—x') leads to
a normalization factor f given by £ = (det a)~l/2. Hence

Calculating the trace in the (х,Я) representation, we can
represent the entropy per unit volume in the form

, f l V Гln/=-- 2,
К я J г

, З чх,Я>.

Since for spatially uniform states (2.33) the matrix ele-
ment <х,Я|/1п/|х,Я> is independent of x, we have

*(/) = -Е<ОА|/1п/ |ОЯ>.
я

Alternatively, using (3.69) we have

= - (det a) I <ОЯ | UJU+ In UJU+ \ ОЯ> .

Thus,

Consequently from (3.58)

det а

(o(Y,aq)

det a

ik \ Sp /e# { Sp fap(0) .

(3.70)

The right-hand side of this relation depends on a both
explicitly and in terms of fa . Variation of the right-hand
side of (3.70) with respect to fa (followed by taking the
limit а,*-»5,£) leads to a null result according to the vari-
ational principle [see Eq. (2.3)]. Consequently, setting
aik=Sik+£ik ш (3.67) and expanding in powers of gik we
find

da>

Note that according to (2.46), for states / satisfying the
spatial uniformity condition the average value of the stress
tensor tik(f ) is equal to

',*(/ ) = - *«,*+!• Sp /[£(0;/ ),f ik]/2.

Consequently, taking (3.59) into account we have

/ч оi, до) д (oY/
tik(f)=yodq~-dY~k^- (3J1)

In order to find the energy flux density Wk we note
that for spatially uniform states [see (2.33)] the following
lemma holds: if we have [/,/>,—<?/f3] =0 then

-Ц. (3.72)

where

To prove this we introduce the general eigenfunctions
of the commuting operators Pi—qfa and /:

' =PiXV' ' fXr'= Sv'Xv •

The trace which appears in Eq. (3.72) is taken in the
system of eigenfunctions xv '•

Sp/[e(x),e(0)]

Sp /e In

Y, { Sp 4 i Sp /0

(3.69)

or from (3.67)
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here CPlP2(x) = <...p! | g(x) |p2-..> is the operator in spin
space and in the space in which the matrix f3 acts (in this
space we use the trace Sp'). Consequently we have
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/ V

P,=P;

where Q9= VQW(Q). It is easy to see that

and consequently we have /p = (e^r + 1 ) -1 [compare Eq.
(2.15)]. Then, noting that [/р,б„]=0 we have

PI=P

or

_ г _ , Гё

(here dsk is an element of the surface of integration). Thus,
we have Wk=0, which was to be shown.

Using the definitions of the operators тгДх), р(\) it is
easy to find the following commutation relations:

[p(x),p(x')]=0,

сЭ<5(х-х')
(3.73)

We now employ the lemma (3.72) for the state of statis-
tical equilibrium, in which

C(x) = УО^Х;/ ) + Y{ff,i±) + Yrf(x).

Using expressions (2.42), (2.46), and (2.48) for the oper-
ators j,, tik, and Wk and taking into account Eqs. (3.73)
we find

wk(f) = - (3.74)

If we use £аЛ(а=0, 1, 2, 3, 4) to represent the average
values of the flux densities of the operators
Kat=»rft(/).fft='flt(/).f4ft=yt(/)]. then we can re-
write Eqs. (3.63), (3.71), and (3.74) in the compact form
(cf. Ref. 31):

да д

~dqkdYk

д aYk
-^Г^, 0=0,1,2,3,4.

From the principle of localization of a state of statis-
tical equilibrium the hydrodynamic equations of an ideal
superfluid Fermi liquid follow:

dt

where

dxk

(3.75)

[see Eq. (3.59)], £0=V(f),

). £4 = P(/ )• In these equations £a and £„* de-
pend on x and t through the intermediacy of the spatially
and temporally slowly varying functions Ya=Ya(x,t),
qj=qj(x,t). In order to find a closed system of hydrody-
namic equations it is still necessary to find an equation for
the superfluid momentum qt(x,t). In order to derive this
equation we note that the equilibrium distribution function
does not commute with the quasiparticle Hamiltonian

). In fact, from (2.33) and (2.32) we have

r
o

(3.76)

Consequently, the operator / describing the state of statis-
tical equilibrium must depend on time. It is easy to see that
this dependence must reduce to some phase transformation

f = (3.77)

In fact, using Eq. (3.76) we see that the operator /, satis-
fies Eq. (2.34):

(3.78)

(3.79)

if the phase q>(t) satisfies the equation

Thus, the general structure of the equilibrium statistical
operator is determined by Eqs. (2.32), (3.77), and (3.79).

We now give the general definition of a phase depend-
ing on x, t. Consider the operator g in the x representation,
g(x,x'). Then the phase <p(x) in the case of singlet pairing
is determined by

where the trace is taken in spin space [g(x) is a real func-
tion]. It is easy to see that this definition is equivalent to the
following:
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(p(x)=ImlnSp./V(x),

О О

»(х) О

(3.80)

Using Eq. (3.79) it is easy to show that for the equilibrium
statistical state (3.77) we have

.
(p,(x) Щ Im In

from which we obtain

• , ^<p,(\)= =qt.

t +qjXj+cp0(0),

(3.81)

(3.82)

If we neglect the gradients of the parameters of the reduced
description Ya, q/, these equations also hold for weakly
nonuniform states. Consequently, from (3.82) we have

.
9i~dXi Y0 •

This equation together with Eqs. (3.75) constitutes a
closed system of equations for an ideal superfluid Fermi
liquid (cf. Ref. 31).

These relations apply to the general case in which the
energy functional has no Galilean invariance property, so
that it is impossible to introduce the concept of particle
mass, and hence of superfluid velocity. This situation
arises, e.g., for electrons in a metal with an arbitrary dis-
persion law.

We now present expressions for the flux densities in a
form corresponding to two-fluid hydrodynamics. The ther-
modynamic potential со is a function of Y0, Y2, Y4, q

2, and
Yflj. We introduce the quantities crn(rs, m*, which are
functions of these thermodynamic variables:

dot

да)

(7, = -.

(3.83)

Then if we use (3.83) the fluxes jk, tik, and Wk acquire the
form

(3.84)4k— — vГ0

Wk=Vnk

where q0= (Y4+ У^,)/70. From this it is clear that crn acts
as the "mass" density of the normal component and CTS as
the "mass" density of the superfluid component. If the
quantity m* is interpreted as an effective "particle mass,"
then q/m* must be interpreted as the superfluid velocity.

Note that the total density a=m*p=m*du}/dY4, gener-
ally speaking, differs from the sum of the normal density <rn

and superfluid density CTS: cr^an + as.
Assume that the energy functional is invariant under

Galilean transformations. Then from (2.31) we have

A mv
%(х;е-*"»*/е*"»*) = &(х;/ )-v^(x;f ) +— p(x;/ ),

(3.85)

and consequently, using the definition of e(/ ) in (2.24)
we have

If we note that

(3.86)

the self-consistency equation (2.32) and the spatial unifor-
mity condition (2.33) can be rewritten in the form

exp

mV2

x- + 1

=0.

When we compare these formulas with (2.32) and (2.33)
we find

o.Yi.Y^e-W^f Y0,Y,- Y0vh

mv2

— mviYi+-j-Y0, qi

where /(F0>^i>^4>9/) l& the equilibrium statistical opera-
tor determined by the thermodynamic parameters Y, q.
Using this relation, and also Eqs. (3.85) and (3.86) and
the definition of the thermodynamic potential co(Y, q)
given in (3.58) we can easily see that in the case of a
Galilean-invariant Fermi liquid we have

=« Y0,Y,+ Y0 ,

from which we obtain

where

r0=Y0, Y'k=Yk+Y0vsk,

(3.87)

(3.88)
mv

and the parameter vsi = q/m acts as the superfluid velocity.
Thus, taking rotational invariance into account we find
that the thermodynamic potential ca of Galilean invariant
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systems is a function of three independent variables Y'0,
Y'2, and Y'4. Equation (3.87) shows that for Galilean-
invariant systems, Eq. (3.83) implies that we have

(3.89)mjk=Trk,

and Eqs. (3.84) assume the form

а„ а.

со
tik= -^7

со

(3.90)

Using Eqs. (3.75), (3.86), and (3.90) we can easily
convince ourselves that the ideal hydrodynamic equations
we have obtained with singlet pairing in the case of Gal-
ilean invariant systems go over to the two-fluid Landau
hydrodynamic equations.32

4. INTERACTION BETWEEN A CHARGED FERMI LIQUID
AND AN ELECTROMAGNETIC FIELD

4.1. Self-consistency equations and kinetic equations when
an electromagnetic field is present

Thus far we have not included the electromagnetic in-
teraction associated with the possible presence of an elec-
tric charge in the quasiparticles. If the quasiparticles have
an electric charge, then there is an additional electromag-
netic interaction between the quasiparticles and also an
interaction between the quasiparticles and the external
electromagnetic field. The effects associated with the inter-
action between the Fermi-liquid electron superfluid and the
electromagnetic field play an important role in studies of
superfluid phenomena.

It is well known that if the particle Hamiltonian is
given in the absence of an electromagnetic field, then elec-
tromagnetic interactions can be included in a universal
fashion. Specifically, the particle momentum p/ is replaced
by Pi+ (e/c)Aj(\) [here Л,(х) is the vector potential of the
electromagnetic field] and the interaction with the scalar
potential <p(x) s^40(x) is included in the usual fashion,
i.e., a term efd3xA0(x.)p(\) is added to the Hamiltonian
[here p(x) is the particle number density].

In the Fermi-liquid theory the situation is complicated
by the fact that it is impossible in the general case to dis-
tinguish terms corresponding to the particle kinetic energy
in the energy functional E(f ).

We will assume that in the presence of an electromag-
netic field the energy density §?(x;/ ) of the Fermi liquid
is replaced by £?(х;Л;/ ):

(4.1)

where
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>=exp(/- fd3x^(x,x')p(x')V
\ c J I

fx'
Ф(х,х') =

J x

(4.2)

and the integration in Ф(х,х') is performed over an arbi-
trary contour С connecting the points x and x'. If we take
a straight-line segment between the points x and x' as the
contour C, then

Ф(х,х,х') = (х'-х)* Г
Jo

'-x),/). (4.3)

This definition of the functional ^ (x^4;/ ) is related to the
fact that for gauge transformations of the electromagnetic
field and the statistical operator /

( € Г
i- \ d3xx(x,t)p(x.)

(4.4)

[here #(x,f) is an arbitrary function of x and t], the energy
density (4.1) is transformed according to the usual for-
mula

(4.5)

This formula follows directly from Eq. (4.1) if we note
that

For the momentum density ir/(x) = {/>,-,т3р(х)}/2 [see Eq.
(2.18')] we have

Similarly, if the kinetic energy density is determined by

9 (x;/ ) =Sp //,.p(

then

/ e \ I e \
= I А--Л,(х)т3 U(X) I А--Л,(х) J,

and consequently

Х/3(х)(/,--Л,(х)т3).
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Since the variation of the functional &(x;f ) with re-
spect to the statistical operator / can be written in the form
[see (2.23)]

Л

where e(x;/ ) is the quasiparticle energy density, it is easy
to see that the following relation holds:

8f&(x;U+fU)=Sp Ue(x;U+fU)U+8f/2.

Hence by varying the energy density functional (4.1) with
respect to the statistical operator / we arrive at the follow-
ing expression for the quasiparticle energy density in the
presence of an electromagnetic field:

+eA0(x,t)p(x). (4.6)

Consequently, the quasiparticle energy operator is equal to

Then from this equation and (4.5) we find the gauge trans-
formation law for the quasiparticle energy density:

and hence

+e J d3x(dx(x,t)/cdt)p(x), (4.7)

f ) U+ +e(dx(*,t)/cdt)p(x).
(4.8)

The kinetic equation (2.34) for the statistical operator
/ when an electromagnetic field is present takes the form

df
(4.9)

It has the gauge invariance property. Specifically, the op-
erator fx= UxfU^ satisfies the equation

) U+ +e J

From this by virtue of (4.7) we have

p(x),f

which proves the gauge invariance of Eq. (4.9).
Let us find the variation of the total energy of the

Fermi liquid

,f)= fE(A

with respect to the vector potential A. From (2.23) we
have

Noting that 8A( U
+fU) = U+[£,8U • U+]U holds and us-

ing expression (4.6) for e(x^4,/ ) we find

8AE(A,f)

./а.
(4.10)

Choosing the integration contour С in the form of a
straight-line segment [cf. Eq. (4.3)] in the transformation
£>(х,Л) [see Eq. (4.2)], we find

8AE(A,f) = -(e/c) [ d3x8Ak(x,t)jk(x,t), (4.11)

where

(4.12)

[cf. the definition of the particle number flux density
(2.44)]. The variation of the energy with respect to the
scalar potential A0 is found directly from expression (4. 1 ) :

8AE(A ,f)=e t (4.13)

In order to find the total energy functional when a
magnetic field is present (Л0=0) it is necessary to add the
energy of the self-consistent magnetic field Z»,(x) to the
functional (4.1). Thus, the total energy functional has the
form

J
dV

817

b(x)=curl A. (4.14)

Just as in Sec. 3, the self-consistency equations for / and A
are found by determining the extremum (minimum) of the
functional

П(/,А) = -S(f ) + YoE,(A,/ ) + Y4 4 Sp /f3.

Variation with respect to A yields the magnetostatic equa-
tions

4тг
curlb=—j,

с

where j, is defined by Eq. (4.12). Here we have taken into
account the fact that

b2

8 fd3x—= Г d3*6A • curl b/4ir.

Variation with respect to / leads to the self-consistency
equation for the normal and anomalous distribution func-
tions, in which, however, in contrast to Eq. (2.32) the
quasiparticle energy operator ё is determined by the total
functional (4.14). Thus, the full system of self-consistency
equations for / and b(x) takes the form
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/=

4ir
curl b=—j,

с

e(A,/

ie Г i Г1

У*(х)=- dV*£ d|Sp/
с J Jo

(4.15)

Д1 2(А,/)=2 (4.16)

These equations are the ones which describe superconduc-
tivity (superfluidity) phenomena in the presence of a mag-
netic field. From these equations [see also (4.4)] follows
the gauge invariance property of the statistical operator
/=/(A) and the current У,-=у,.(А,/ ),

Uxf( A) U+ =f(Ax), УДА,/ ) =У,( A^/p.

The first of these equations leads to the relation

д <5/(A)ie

с

4.2. The London equation

In this section we simplify the self-consistency equa-
tion (4.15) and show that in this case, when the magnetic
field is a slowly varying function of position, the expression
for the current is given by

e2

(4.17)

where ps and m* are determined by Eqs. (3.83). For this
purpose we note that when the gradients of the vector
potential Л,(х) are neglected in the calculation of the cur-
rent У,-(х) [see (4.16)] from (4.2) it follows that we can
represent the unitary transformation £/(x;A) in the form

;A) = *70(x;A)+...,

lie \ I ie \
U0(\;A.) =exp — Ax expl — — Axf3 1

(4.18)

[the vector potential A / ( x ) refers to the same spatial point
as does the current у'Дх)]. We will assume in solving the
self-consistency equation (4.15) that the source of the non-
uniformity of the statistical operator /(A) is the nonuni-
formity of the vector potential Л,(х). Consequently, again
recalling that the current density y'/(x) is calculated at the
point x, by virtue of the localization principle we could
write the expansion

dxk

(4.19)

where

/o(A(x))=/(A)|A = A ( x ) (

with (see Ref. 6)

[A,/ol=0, [A,[ -0. (4.20)

However, taking into account the possibility of carrying
out the gauge transformations

we see from (4.4) that the phase of the statistical operator
/ is indeterminate. Consequently, the solution of Eq.
(4.15) will be written in the form

where the expansion /(A) is determined by Eq. (4.19)
and

ф= f

The expansion of the phase ф, analogous to the expansion
(4.19), takes the form

where

ф0=[<р(\)-х/с *k. (4-21)
k xk

and <pl~d1(p('iL)/dxidxk. This expansion induces the ex-
pansion

where

From this equation and Eqs. (4.20) and (4.21) it follows
that

Р—ТЗ- = 0.

Introducing the statistical operator

ie \ , / e
/o=exp --Ax /Oexp i-Ai (4.22)

е е

and noting that from (4.6) and (4.18) we have

e(A;/ ) ~eieA±/cE(e-ieA*/cf0e-ieA±/c)e-ieA*/e (4.23)

[we have taken into account the phase invariance property
of £(/ ); cf. Eq. (2.28)], we find the self-consistency equa-
tion for /0:

/0= [exp( (4.24)
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and also a supplementary condition expressing the "spatial
uniformity" of the leading approximation /0:

=0. (4.25)

Comparing Eqs. (4.24) and (4.25) with Eqs. (2.32) and
(2.33) we see that the statistical operator /0 can be ex-
pressed in terms of the equilibrium statistical operator
/(Ч>У) (in the absence of a magnetic field) when there is
a super-fluid momentum qt :

У,=0, <7,=

or, using Eq. (4.22),

(4.26)

The electric current in the leading approximation [ne-
glecting the gradients of Af(x)] according to (4.16) and
(4.23) is determined by

/,(*)—

or, using Eq. (4.25),

/,(x) ~ J dVxJ J*

dq> e

From (2.42) this can be rewritten in the form

dxk

the current (4.19) is gauge-invariant. Noting that accord-
ing to Eqs. (3.83) we have

5V
dq/dqk • m'

q=0,y=0

we thus arrive at Eq. (4.17) in the gauge ф(\)=0.
We emphasize that m* is a thermodynamic quantity

depending on temperature and the chemical potential; only
in the case of Galilean invariance does m* reduce to the
ordinary electron mass m, i.e., m*=m.

The magnetostatic equation (4.16) together with the
definition (4.17) of the current can be written in the form

l curl curl b=0, (4.30)

where

This equation is called the London equation.33 It is usually
employed in determining the magnetic-field distribution in
a superconductor.

Let us consider the simplest case, in which the super-
conductor fills the half-space z > 0, and the magnetic field
outside the superconductor is steady and directed parallel
to the z axis. Then the field bt inside the superconductor
also points in the z direction and by virtue of the condition
div b = 0 is independent of z; hence from Eq. (4.30) it
follows that inside the superconductor we have 6,-=0 and
y',=0. Now assume that an external field bt points in the x
direction. Then inside the superconductor the field is also
parallel to the x axis and is a function only of z. From Eq.
(4.30) it follows that

and consequently,

where y,(q,F) is the particle current density in the statis-
tical equilibrium state in the absence of a magnetic field
[see Eq. (3.63)]. In Sec. 3 we saw that the current density
7/(q,r) in the absence of an electromagnetic field in the
limit of a small superfluid velocity gf takes the form

(4.28)

where

ft*= dq/dq/.
ft) =-

q=0,r=0 °

Hence in the absence of a vector potential the electric cur-
rent is given by

(4.29)

Since under gauge transformations the phase <p(x) and the
vector potential Л,(х) transform according to

The current density in this case is in the у direction, and
from (4.17) is given by

Thus, the quantity AL in Eq. (4.30) can be interpreted as
the depth to which the magnetic field penetrates into the
superconductor. The quantity AL is small (it is usually of
the order of 10~6 cm at T=0 K), and hence the magnetic
field does not penetrate into a massive superconductor (the
Meissner effect).34'35

The London equations apply when the quantity AL is
large compared to all other microscopic parameters with
the dimensions of length. In the BCS theory this parameter
is the characteristic size £0 of a Cooper pair,
£0=#uF/irA(0). Superconductors for which AL>£0 holds
are called London superconductors or superconductors of
the second kind.

In the opposite limiting case AL<£0> the London equa-
tions are invalid and must be modified. Specifically, in the
London theory the relation between the current and the
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potential A is local and linear. In the case AL < £o *пе field
changes considerably over distances of order |0, as a result
of which the relation between the current and the potential
must be nonlocal. In the London gauge div A=0, Л п | 5 = 0
the phenomenological relation between the current and the
potential, proposed by Pippard, takes the form

7,00 =< (4.31)

where we have written R = x — x' and the coefficient С is
found by combining Eq. (4.31 ) and Eq. (4. 17) for a slowly
varying field A(x):

Superconductors for which AL<£0 holds are called super-
conductors of the first kind or Pippard superconductors.
When we treat the problem of the penetration of a mag-
netic field into a superconductor of the first kind we obtain
the following expression for the depth of penetration A:

A3=0.62AJ^0.

4.3. The Ginzburg-Landau equation

In this section we study the solution of the self-
consistency equations (2.32) in the presence of a nonuni-
form steady magnetic field. Here we will assume that the
temperature of the Fermi liquid is close to critical, and
hence the anomalous distribution function g is small.

In the region of small g the energy density functional
can be written in the form

where g?2(x;g)~g+g [see Eq. (3.20)], i?,(x;/) is the
functional of the interaction energy density of the normal
state, and

^0(x;/) = I d3X|d3x2/0(x1,x2)£(x;x2,x1),

/o(x1,x2)=SpCT/(x,,x2)

(we employ the coordinate representation). The quantity
£0(x;x2,x,)=5^0(x;/ )/<5/0(x,,x2) is obviously the ma-
trix element of the energy density operator £0(x) of a free
quasiparticle in the coordinate representation,

e(x;x1,x2) = (x!|£0(x) |x2>.

We assume that the interaction energy density functional
<^int(x;/ ) = ̂ i(x;/ ) + <?2(x;g) is invariant under gen-
eral phase transformations:

In this case the energy density of the Fermi liquid in the
presence of a magnetic field is given by [see Eq. (4.1)]

where

;и+ (х;А)/и(х;А) ),

lie
;A) =expl —

(here x is the position operator).
Since the anomalous distribution functions transform

under phase transformations according to

the phase-invariant functional <?2(x;g), which is quadratic
in g(~gg+) can be written in the form [cf. Eq. (3.20)]

J / X1 + X2\
d^dVMxi-XjWx- — - — I

Xg0(xi,x2)* + J d3x1

(4.32)

where

i ,X2) =SpCT ,X2),

The functional ^0(х;А,/ ) can obviously be written in the
form

?0(x;A,/ ) = J d3*,d3

X (x21 и(х,А)е0(х;р,х)и+ (х,А)

Thus, the quasiparticle free energy density operator in the
presence of a magnetic field is given by

е0(х;А)=м(х;А)е0(х;р,х)м+(х;А)

[cf. Eq. (4.6)], while the quasiparticle energy operator in a
magnetic field is given by

£o(A)= J d3XM(x;A)e0(x;p,x>+(x;A). (4.33)

[We write e0(x;p,x) instead of e0(x) in order to emphasize
that the operator e0(x) is constructed from the operators
p, x.] Note that

м(х;А)хм+ (x;A) =x,

«(х;А)ри+ (х;А) =p— A(x) -eZ(x,x),

where

-Г
(4.34)

and y = y(A;x1 ;x2) is a parametric equation for the inte-
gration contour С connecting the points X[ and
X2(j(0;xi,x2)=x1, y(l;x1,x2)=x2); H = curl A is the in-
tensity of the magnetic field.
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If we take for the quasiparticle energy density operator
the operator

£0(x)=pj8(x~ x)p/2m, (4.35)

then, noting that we have Z(x1,x])=0, we find

£0(x,A)=
l

<5(x-x)lp,— -А/(х) },
е

and consequently, the operators £0(x, A) and £0(A) do not
depend on the choice of the integration contour С in Eq.
(4.35). Note, however, that if we were to choose the ex-
pression

1
£o(x) =y

as the energy density operator £0(x) rather than Eq.
(4.35), then £(x;A) and £(A) would still depend on the
contour C.

Let us find an approximate expression for the energy
E0(A,f ) of the system of free quasiparticles in the pres-
ence of a magnetic field:

= f

In this expression the electron distribution function
/0(xj,x2) is substantially different from zero when Xj is
close to x2 ( |x!— x2| %a, where a is the lattice constant),
since the electrons of the Fermi liquid are close to the
Fermi surface (a~pF~l, where pF is the Fermi momen-
tum). Hence in the matrix element

l i e e \ \
(x2 e0lx;p--A(x)--Z(x,x),xl xl )

the quantity Z(x,x), which is proportional to the gradients
of the vector potential A(x) [cf. Eq. (4.16)], can be disre-
garded and hence the energy functional EQ(A,f ) can be
written in the form

(4.36)

where the momentum p has been replaced by p— (e/
c)A(x) in the quasiparticle energy.

Let us consider the solutions of the self-consistency
equation (2.32) in the spatially nonuniform case for tem-
peratures Т close to the critical temperature Tc. In order
to find the quantities / and g from Eq. (2.32) we use the
general expressions (3.15). Here the quantity |=Д in the
equation for X [see (3.12)] can be taken to be small. Ap-
plying perturbation theory in the small parameter Д, we
find the following expansion for the operator X in the mo-
mentum representation:

ЛРР'~ЛРР'

where
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У1 Лрр'•Л nnt ~~~~

М-Г'

*PP' =

APP"A*'"p"AP'"p'
(4.37)

here we have introduced the notation |=|p, |' = |p»,
|" = |p», I'" = |p»/. The expansion in powers of Д of the
operator и which enters Eqs. (3.14) takes the form

where

о

(4.38)

From these relations and Eq. (3.15) we derive an expan-
sion in powers of Д for the normal distribution function

/PP'

where

fan'— ̂

1-й"

(1+ГНГ+Г)
n'

APP"Ap*p<"
(4.39)

(!-!')(!'+!")
and an expansion in powers of Д for the anomalous distri-
bution function g

1 , 3 ,
8m' =

?PP'
1-и-и'

Sna' fr i £•' ^PP'' (4.40)

-и) (ДД+Д)..,.

The quantities /pp/, gpp/ in the Wigner representation are
given by

v г
,\L\ т
' }~(2тт)3 J

(4.41)

From (4.19), in this representation we can use Eqs. (4.39)
and (4.40), assuming in the latter that the quantity | de-
pends on x through the vector potential of the magnetic
field [here we have neglected the variation of A(x) over
distances of order pF ']:

- A(x)
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where £j(p) =#£,(/ )/<9/p. In the case of singlet pairing
we have g,=0, and hence

dE

dE

' d g f ( x ' , x )
= 0.

We will assume in what
L,(x-x') = L16(x-x'). Then

Д0(х-х')=5(х-х')Д(х),

follows that

(4.42)

where

1

F p,p

Substituting expression (4.40) for gpp, in (4.42) and noting
that

Р'=-р J d^A (4.43)

we find the linearized self-consistency equation in the pres-
ence of a magnetic field

Д(х) = —^ £ f dVA(x')e'(x-x'
" P.P' J

-x')(p+P
,, l—n — n'

(4.44)

Hence expanding in the small gradients of the order pa-
rameter Д(х) and the vector potential A(x) we find

' д 2e
lj\dxt ' с ' '

X

where

2е
(4.45)

;=-<^?/'
1-2й(е)

'=0

. £'=£0(p')+£i(p'),

Substituting gpp, in Eq. (4.42) and also expression (4.40)
for gjjp,, and using Eq. (4.45), we include in the self-
consistency equation a term which is nonlinear in Д. Thus,
we obtain a nonlinear self-consistency equation for the gap
Д(х) in the presence of a magnetic field (we have disre-
garded the effect of the electric field on the nonlinear
term):

(4.46)

where

B=
L, l-2n(£)

-У02п(е)(1-и(е)) .

Since the chemical potential /z= — Y4Y0 ' is considerably
greater than Tc, at temperatures Т close to the critical
value the coefficients G, Gtj, and В are given by

TC-T

where £F and yF are the Fermi energy and the quasiparticle
velocity, v(£F) is the density of states at the Fermi surface,
and £(x) is the Riemann zeta function. Equation (4.38)
assumes the well-known form (see Ref. 36)

1 / д

(4.47)
T-T

Let us now calculate the current density j in the pres-
ence of a magnetic field. We determine the current density
j(x) from the formula

J<
de

2V

(4.48)
P=y+k, p'=y-k.

Using Eq. (4.30) for the matrix element / , in the limit
A(x) =0, we find an expansion for the Wigner distribution
function /(x,^1) in the gradients of the order parameter:
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,
- Yl Д*(х)
2

where

е(р,р',р")=-77гт4"

-И

(Г+ГН1+Г)
1 / и' • л

The current density in the absence of a vector potential
A(x) assumes the form

<ЭД(х) <ЭД*(х)
-—-A(z) -—

where

(4.49)

Now we take into account the effect of the vector po-
tential A(x) in first-order perturbation theory. Since

the correction to the current density jA(\) due to the vec-
tor potential A can be written as follows:

—, —

where

-p--A(x)J.

Expanding the quantity Q in powers of A(x), we find

where Dik is given by (4.49). Hence the current density
y(x)=y( 0 )(x)+y/ 4(x) in the presence of a magnetic field
is equal to

The coefficient Dik in the limit /i> Tc, Tzz
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(4.50)

. is given by

7g(3) v(eF)i|

Now that we have the expression (4.50) for the cur-
rent, we can write the equation for the magnetic field

curlb=—j, b=curlA. (4.51)

Equation (4.50) for the current contains the unknown
function Д(х), which is determined by Eq. (4.46). The
magnetostatic equations (4.51) together with Eq. (4.46)
constitute a closed system of equations determining Д(х)
and A(x) [or b(x)]. These equations are called the
Ginzburg-Landau equations.37 In particular, they can be
used to solve the problem of how a constant magnetic field
penetrates into superconductors. These equations were ob-
tained by Gor'kov36 in the microscopic treatment based on
the temperature Green's function.

In the weak-field limit to lowest order in the field the
order parameter Д can be regarded as independent of po-
sition. In this case the current given by Eq. (4.50) takes
the form

If! 2
me "

and consequently the equations determining the magnetic
field are the same as the London equations (4.30),

b+A2(Dcurlcurlb=0,

where

Д. (4.52)

Noting that Д(Г)~(ГС-Г)1/2 holds, we have for the
depth of penetration

-1/2

AL(0), (4.53)

where Af 2(0) =4тгие2/тс2. Observe that Eqs. (4.52) and
(4.53) are equivalent to Eq. (4.30) if we set m* = m in the
latter and evaluate ps by starting from Eqs. (3.83) with Т
close to Tc.

Thus, the Ginzburg-Landau equation leads to a local
relation between the current and the vector potential.
However, this equation can be used to describe supercon-
ductors of both the first and second kinds. This is because
it contains two parameters with the units of length: the
Cooper pairing length E,(T), which is contained in the
terms that are not associated with the vector potential of
the magnetic field, and the London penetration depth
Я(Т'), which is contained in the terms associated with the
vector potential.

A nonlocal relation between the current and the vector
potential A(x) can arise when we improve the approxima-
tions which lead to the Ginzburg-Landau equation; specif-
ically, we take into account the following terms in the
expansion in the order parameter Д(х) and in the gradi-
ents of the order parameter.
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To conclude this section we discuss the topic of the
structure of the Ginzburg-Landau equation for neutral
particles (such as 3He atoms) in the case of triplet
pairing.42'43 It can be shown that the transition tempera-
ture Tc in the case of triplet pairing is given by the equa-
tion

A;(r,p) = -- J< !/>-<? I )д,.(г,а)
1-2п„

The order parameter Ду is a vector in spin space. Close to
the transition temperature this order parameter is small.
We expand the self-consistency equation (2.32) in this
quantity to terms of order Д3, and also in gradients of this
parameter. We further assume that the amplitude
L2(xl— x2) has a sharp maximum at X! = x2. Then the
Fourier component Z-2(k) of this amplitude can be ex-
panded in powers of k:

L2(k) = L2(0) + k2 /, + .... (4.54)

Using this assumption, we can look for a solution of the
self-consistency equation in the form

&j(r,p)=pplpiAji(T), (4.55)

where the quantities Лу/(г) determining the nonuniform
order parameter ДДг,р) satisfy the equation

(4.56)

This equation is a generalization of the Ginzburg-Landau
equation to the case of triplet pairing, in which on account
of the approximation (4.54) pairing takes place in the state
with orbital angular momentum 1=1. We refrain from
writing the expression here for the current density, assum-
ing that the system is a neutral Fermi liquid (3He).

5. CONCLUSION

In this review we have treated topics related to the
semi-phenomenological description of a superfluid Fermi
liquid. This description is based on the ideas put forward
by Landau in constructing the theory of a normal Fermi
liquid. In the weak-interaction approximation the theory
we have developed goes over to the BCS theory of super-
conductivity. In this review we have considered triplet
pairing in superfluid systems in detail. In particular, we
have derived the self-consistency equations for the nonuni-
tary phases, and have also considered the symmetry prop-
erties of the superfluid A and В phases of 3He. We have
studied questions involving gauge-invariant switching-on
of the electromagnetic interaction in the theory of super-
fluid Fermi liquids.

Many problems in the kinetics of superfluid liquids lie
outside the scope of our review; in particular, these include
the problem of the propagation of high-frequency oscilla-

tions, the determination of the dissipative kinetic coeffi-
cients, and the treatment of impurities. In this connection
we note that the development of the hydrodynamics of the
superfluid phases of 3He, which we do not enter into here,
is the subject of reviews by Mineev30 and Volovik;38 the
theory of high-frequency oscillations in the superfluid
phases of 3He has been treated, e.g., by Brusov and
Popov.39 We have not treated the effect of the electric field
on superconductors. These questions are explored by
Svidzinskii.40 We have also not touched on the important
applications of the theory of superfluidity in nuclear phys-
ics and astrophysics.

We emphasize, however, that in this review we have
developed a mathematical apparatus by means of which it
is possible in principle to investigate both problems associ-
ated with the static properties of superfluids and with var-
ious kinetic problems in terms of a semi-phenomenological
approach.

NOTATION

S, total entropy of the Fermi liquid
s, entropy density of the Fermi liquid
/, statistical operator of a quasiparticle
f, g, normal and anomalous distribution functions, respec-

tively
/eq, equilibrium quasiparticle statistical operator
n, diagonalized quasiparticle distribution function
E(f ) , total energy functional of the Fermi liquid
& (x,f ), total energy density functional of the Fermi liq-

uid
N, total particle number of the Fermi liquid
PI, total momentum of the Fermi liquid
e, quasiparticle energy operator
£, normal part of the quasiparticle energy operator
Д, anomalous part of the quasiparticle energy operator

(energy gap)
p/, momentum operator of a quasiparticle
Sj, spin operator of a quasiparticle
f3, quasiparticle number operator
a(x,f ), average value of the density of a physical quantity
st(x), spin density operator
TTj, momentum density operator
p(x), particle density operator
ft, total thermodynamic potential of the system
со, density of the thermodynamic potential
x, spatial coordinate
t, time
V, system volume
Fj, normal Fermi-liquid amplitudes
Lif anomalous Fermi-liquid amplitudes
a+, a, quasiparticle creation and annihilation operators
a,, Pauli matrices
Ji(x), particle flux density operator
jik(x), spin flux density operator
Wj(x), energy flux density operator
tik(x;f ), average value of the stress tensor
U, Bogolyubov unitary transformation in "one-particle"

space
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и, v, Bogolyubov transformation coefficients

Uj, unitary phase transformation
Uw, unitary transformation for rotation in spin space

Uy, unitary transformation for spatial translations

Tki, generator for arbitrary affine transformations
H, microscopic Hamiltonian

Ф( 1,2; 3,4), microscopic fermion interaction amplitude
<?,, superfluid momentum

ф(х), phase of the anomalous distribution function
У0= Г"1 ( Т is absolute temperature)

Yj— — Y^Vf (v/ is the normal velocity)

Y= — YO/J, ((J, is the chemical potential)
Tc, transition temperature
pf , eF , Fermi momentum and energy respectively

V F > Fermi velocity
VF, density of states at the Fermi surface

Mh spontaneous magnetization
/3, Bohr magneton

/, m, orbital angular momentum quantum numbers
crn , crs , mass densities of the normal and superfluid com-

ponents

m*, effective quasiparticle mass of a superfluid Fermi liq-

uid
vn , vs , velocities of the normal and superfluid components

of a Fermi liquid
A0, scalar potential of the self-consistent electromagnetic

field
A / , vector potential of the self-consistent electromagnetic

field
X, gauge function
U(x,A), unitary operator for switching on the electromag-

netic interaction

bj, self-consistent magnetic field
AL , London depth of penetration into a superconductor by

a magnetic field
£0, coherence length (size of a Cooper pair)

), Riemann zeta function
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