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Basic information about the theory of mono- and multifractal sets is presented. Geometric
and thermodynamic descriptions are developed. The geometric picture is presented
on the basis of the simplest examples of the Koch and Cantor fractal sets. An ultrametric
space, representing the metric of a fractal set, is introduced on the basis of Cayley's
hierarchical tree. The spectral characteristics of a multifractal formation are described.
Attention is focused mainly on the application of the fractal concept for a thermodynamic
system with partial memory loss, turbulent fluid flow, hierarchically coordinated set of
statistical ensembles, Anderson's transition, and incommensurable and quasicrystalline
structures.

1. INTRODUCTION

The concept of a fractal, recognized already at the
beginning of the century and popularized by Mandelbrot in
the 1960s,1 is now widely disemminated in different fields
of knowledge (see Refs. 2-25). Several books and reviews
have now been published.2"9 In our view, however, inade-
quate attention is devoted to application of the fractal con-
cept in condensed-matter (and especially solid-state) phys-
ics. This is apparently attributable to the unusual nature of
the geometric image of a fractal, the representation of
which requires unaccustomed, seemingly abstract con-
cepts. In addition, in solid-state physics real fractal forma-
tions of the type dislocation structures12 and fractal clus-
ters of microcracks13 have become an object of
investigation only very recently—after the introduction of
the concept of scale (structural) levels of strain and
fracture.14 A characteristic feature of such formations is
that the fractal structure is manifested only with simulta-
neous allowance of several levels, the difference of whose
scales makes it difficult to represent a geometric image
such as a broken coastline. Although it is difficult to ob-
serve multiscale structures themselves, they can, however,
be described systematically only within a fractal ideology.
This is because such nonequilibrium systems are repre-
sented as super-ensembles, consisting of hierarchically co-
ordinated statistical ensembles, which, in turn, consist of a
collection of subensembles, and so on.15 For this reason, a
fractal in a condensed medium must refer more to the
application of the concept and not the description of the
observed geometric image. This circumstance, which is the
central idea of our exposition, is reflected in the title.

It should not be forgotten, however, that fractals were
initially introduced as a geometric object in ordinary phys-
ical space.1'2 For this reason, from the methodological
standpoint it is best to start the analysis with the graphic
constructions of Koch and Cantor (Sec. 2.1.1). This
choice is made due to the fact that in the first case the
fractal dimension D is greater than the topological dimen-

sion d and in the second case D< d. By gradually increas-
ing the complexity of the procedure for constructing a frac-
tal it is possible to find a general expression for the fractal
dimension of an arbitrary monofractal, characterized by a
single value D. The construction scheme itself is conve-
niently represented by a hierarchical Cayley tree, which is
studied in Sec. 2.1.2. It turns out that the introduction of a
metric on this tree makes it possible to find the distance
between arbitrary points of the set. Since its value is pre-
scribed by the branching ratio of the tree, this means that
the branching ratio determines the dimension of the corre-
sponding fractal. This result is true for both a regular tree
with constant branching ratio and for a fractal, where the
branching ratio changes from node to node, and one can
talk only about an average branching ratio. Questions con-
cerning the determination of the branching ratio are con-
sidered at the end of Sec. 2.1.2 and in Sec. 3.3.2.

The question of determining the dimension D of frac-
tals occupies a central place in the theory of fractals. In
Sees. 2.1.1 and 2.1.2 graphic methods are employed for the
simplest formations. For the general case, however, these
methods break down, and there arises the question of find-
ing an algorithm for determining the fractal dimension of
an arbitrary set. In order to construct it, in Sec. 2.2 a
formal procedure is presented for determining the length,
area, and volume of an ordinary surface. It is shown that
extension of this procedure to an arbitrary set enables in-
troducing a generating function, the condition of finiteness
of which prescribes the fractal dimension D. The basic
methods for determining the fractal dimension experimen-
tally are presented in Sec. 2.3.

The exposition of the material of Sec. 2, which is de-
voted to monofractals, is completed in Sec. 2.4 with an
examination of specific physical situations. Investigation of
the simplest model of nonideal memory in Sec. 2.4.1 shows
that in order to describe such memory the concept of de-
gree of an integral and derivative must be extended to
fractional numbers. From the physical standpoint this re-
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duction of the order of integration/differentiation is asso-
ciated with closing of some memory channels which oper-
ate in parallel. A similar situation is also observed if
nondissipative dynamical and dissipative thermodynamic
channels operative in parallel. In this case increasing the
fraction of the former results in gradual transformation of
a heat-conduction type equation into a wave equation. The
character of the temporal evolution of such nonequilibrium
systems is described in Sec. 2.4.2.

As experience in studying turbulence shows (see, for
example, Refs. 8 and 9), fractal sets, representing real
physical formations and processes, are characterized not
by one value of the dimension D but rather by an entire
spectrum of values. This makes it necessary to introduce
the concept of a multifractal, which can be represented as
a superposition of monofractals with different dimensions
D. Section 3 is devoted to such sets. Since the concept of a
multifractal is itself significantly more complicated than
that of a monofractal (the former, in contrast to the latter,
cannot be represented in the form of a regular Cayley
tree), the exposition in Sec. 3 is unavoidably more difficult
than in Sec. 2. For this reason we thought it would be
convenient to present the material on mono- and multifrac-
tal separately.

In our exposition of the concept of a multifractal we
started from the fact that a multifractal can be generated in
two possible ways: 1) a geometric construction, in the pro-
cess of which the initial fragment is divided into several
blocks, whose number and relative position are then
changed and the process is repeated many times; 2) the
curdling method, where, in contrast to the preceding con-
struction, both the number of blocks and the total magni-
tude of the physical measure (for example, the mass) re-
main constant; the construction process itself reduces to
compressing the blocks (curdling). In this connection,
there also exist two methods for describing multifractal
sets: geometric, which is described in Sec. З.1., and ther-
modynamic, which is described in Sec. 3.2. In the first
method attention is focused on the investigation of the
distribution of distances between points of the set and in
the second method attention is centered on the distribution
of measure on these points.

Just as in the analysis of monofractals, we start our
exposition in Sec. 3 with investigation of the simplest two-
scale Cantor multifractal (Sec. 3.1.1). This makes it pos-
sible to investigate within an analytical approach the spec-
trum of dimensions, trace how a multifractal is formed
from a set of monofractals, and determine conveniently the
required set of characteristics of a multifractal set. In Sec.
3.1.2 the results obtained for a Cantor set are extended to
the arbitrary case. It is shown that the measure can be
defined in two ways: One way extends to multifractal sets
the concept of a generating function, introduced in Sec.
2.2, and the second method takes into account the fact that
after arbitrarily fine fragmentation of the carrying space,
some of the blocks will contain more than one point of the
fractal set (the latter leads to the appearance of an addi-
tional free parameter т). The basic relations between the
spectral characteristics of a multifractal are established in

Sec. 3.1.2 and their characteristic features are investigated
in Sec. 3.1.3.

The thermodynamic formalism presented in Sec. 3.2
makes it possible to describe a multifractal set by analogy
to statistical ensembles of many particles. In order to im-
plement such an approach it is sufficient to assume that the
set of elementary distances between the points of the set
corresponds to the spectrum of effective energies, and the
free parameter of the multifractal, determining the "coor-
dinate" of one of the constituent monofractals, reduces to
a thermodynamic state parameter. Just as in ordinary ther-
modynamics, here two mutually complementary ap-
proaches, related by a Legendre transformation, are possi-
ble. The formalism corresponding to the choice of
temperature as the independent parameter is described in
Sec. 3.2.1. It is found that this approach describes a set
with a constant probability of realization of a measure. If
the effective energy is taken as the free parameter, then the
additional approach, describing the distribution of mea-
sure, provided by the curdling procedure (Sec. 3.2.2), is
realized. Of course, the thermodynamic formalism makes
it possible to retrieve the entire collection of parameters
and spectral distributions of the geometric method. How-
ever, the thermodynamic representations provide not only
a convenient and familiar language of description, but they
also open up the possibility for application of the fruitful
concepts of thermodynamics. Thus, for example, it is evi-
dent from Sec. 3.3.2 that the transformation of a long-
period structure into a quasicrystalline structure can be
represented as a phase transition between monofractals,
belonging to the opposite ends of the spectrum of a multi-
fractal, corresponding to the superposition of two incom-
mensurable structures.

The last section (Sec. 3.3), just as Sec. 2, is devoted to
specific examples of applications of the concept of a mul-
tifractal. Since the properties of a multifractal are largely
determined by the symmetry of the function generating the
set, a symmetric map, given by a parabola (the logistic
sequence), is considered in Sec. 3.3.1 and incommensura-
ble structures, generated by an antisymmetric function, are
investigated in Sec. 3.3.2. The most important of them is
realized in quasicrystals, in which the ordering of the at-
oms is described by a Fibonacci sequence. In Sec. 3.3.3 it is
shown how the geometric characteristics of a multifractal
enable describing a stochastic system consisting of hierar-
chically coordinated statistical ensembles.

In the concluding section the main ideas are presented
and future prospects are discussed.

2. MONOFRACTALS

So, naturalists observe, a flea
Hath smaller fleas that on him prey;

And these have smaller still to bite 'em;
And so proceed ad infinitum

Daniel Defoe

We start the exposition with an original definition of a
fractal, given by Mandelbrot:2 a fractal is a self-similar (in
the sense of a change in scale) set, whose dimension is
different from the topological dimension.
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FIG. 1. Cluster with dimension D=\.l\, arising as a result of two-
dimensional diffusion-limited aggregation.3

Since this definition is more a mathematical than phys-
ical definition, we give some convenient considerations
which demonstrate the concept of a fractal. To this end, we
consider condensation of microparticles into a formation of
a new phase. Such a formation is usually compact, and for
this reason the number of particles in the formation of size
R is given by the relation

N<xRd, (2.1)

where d is the dimension of the space. The volume V of the
formation has the same form

V=AdR
d, (2.2)

where Ad is a geometric factor that takes into account the
shape (for an equiaxial shape А1 = 2тг, А2 = 4-тг, A3 = 4ir/3).
Correspondingly, the density of particles of a compact for-
mation p=N/V is independent of the size of the forma-
tion.

A completely different situation is observed for frac-
tals, which are not compact formations (Fig. 1). It is evi-
dent that as the size R of the formation increases, the
number of particles

N*RD (2.3)

increases more slowly. The exponent D is the main quan-
titative characteristic of a fractal and is called the fractal
(Hausdorff) dimension. The anomalous character of the
function (2.3) arises because the fractal dimension D is
different from the dimension d of the physical space in the
relation (2.1) for the dense formation. Accordingly, the
density of a fractal

FIG. 2. Southern coastline of Norway (the resolution of the grid shown
at the top is /~50 km).3

becomes a decreasing function of size, which is what re-
flects the noncompact character of a fractal. Obviously, the
larger the difference between the topological d and fractal
D dimensions, the more open the fractal object is.

The concept of a fractal was first encountered in mea-
surements of the length of a coastline. Although intuitively
it seems obvious that the length L of the coastline should
not depend on the choice of measurement scale /-»0, mea-
surements showed that in reality the relation

L o c /\~D (2.5)

)t d>D (2.4)

where the fractal dimension D> 1, holds (for example, for
the British Islands Z>~1.3 and for Norway D^l.5). This
indicates that the coastline is a set occupying a position
intermediate between the ordinary line (d=l) and a sur-
face (d=2), and the quantity 1 < Z><2 is all the larger, the
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FIG. 3. Two-dimensional pattern of point defects aris-
ing in a beryllium crystal after passage of 25-MeV ura-
nium ions in a direction perpendicular to the plane of
the figure (data obtained by A. I. Kul'ment'ev).

50A

more irregular the coastline is. This circumstance is dem-
onstrated graphically in Fig. 2, where the coastline of Nor-
way is displayed.

A physical example of a fractal are clusters of gels,
formed when sols merge (see Fig. 1). In a solid, defect
fractal structures arise, for example, when heavy particles
pass through crystals (Fig. 3). An example of fundamental
importance are defect structures in solids subjected to an
intense external load, resulting in significant defect densi-
ties. As a result, there appear collective effects, which lead
to the inclusion of new structural levels of plastic strain.
The carriers are first fractal clusters, whose compactifica-
tion leads to formation of superdefects, comprising struc-
tural elements on a new level.15 Thus, Fig. 4 displays the
basic stages of the evolution of a high-density ensemble of
dislocations: At first their distribution is uniform, but then
clusters in the form of clumps and open walls of blocks
form, and at the final stage a distinct block structure is
formed.12 Evidently, it is the accumulations of dislocations,
forming block walls, that represent fractals, whose dimen-
sion at first increases from d=\ (uniform distribution of
dislocations) up to a dimension 1 <D<2 (open accumu-
lations) and then increases up to d=2 (geometric wall of
a block).

As one can see from the examples presented above, the
basic characteristic of a fractal is its dimension D. In this
section we consider the idealized case of a monofractal,
which is characterized by a single value of D. First we
present convenient geometric models, which make it pos-
sible to find the dimension D in an intuitive manner. Next,
an algorithm making it possible to determine D analyti-
cally for an arbitrary monofractal is formulated. The ex-
position is completed by an examination of specific cases
arising in condensed-matter physics.

2.1. Geometric models of fractals

We consider first convenient models of the simplest
fractal Koch and Cantor sets (Sec. 2.1.1). This will enable
us to find a general expression for the dimension of a frac-
tal geometric object, represented in the ordinary physical
space. In Sec. 2.1.2 an extension is made to the hypothet-
ical space with ultrametric topology.17'18 The use of this

FIG. 4. Schematic representation of the restructuring of a dislocation
structure into a block structure, a—Chaotic distribution of dislocations,
b, с—Formation of dislocation clumps and open walls, d—Block
structure.12
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length /„. The number of segments Nn=Ln/ln, comprising
a Koch figure, is determined by the relation (we tempo-
rarily drop the index n)

FIG. 5. Construction of a triadic Koch figure.3

space has made it possible to explain, in the last few years,
the behavior of hierarchically coordinated structures aris-
ing in spin18'19 and structural20 glasses, in the process of
plastic strain21 and fracture22 in structural23 and, in partic-
ular, martensite24 transformations, in high-rc oxides,25'26

and so on.

2.7.7. Koch and Cantor fractal sets

We consider first Koch's triadic figure. As one can see
from Fig. 5, in order to construct this figure a segment of
unit length is taken at the step и=0. At the next step и= 1
an interval of length 1/3 is cut out of the center of the
segment, and an equilateral triangle without a base is con-
structed on the segment. At the next step, an interval of
length (1/3)2 is cut out on each of the four segments ob-
tained and the same construction as performed above is
made. Then the procedure is repeated л -»oo times.

Let L be the length of the fractal obtained. Since after
each step the length increases by 4/3 times, at the nth step
we obtained £„=(4/3)". Since the length of each link is
/„= (1/3)", we have и= — In /„/In 3, and it is evident that
the relation (2.5), where the fractal dimension is

О=1п4Лп 3=1.263, (2.6)

holds between the total length Ln and the elementary

I- D (2.7)

As one can see from Fig. 5, in the limit n -» oo Koch's curve
is a formation intermediate between an ordinary line and
an ordinary surface. For this reason, its fractal dimension
(2.6) lies in the interval КD<2.

According to the definition given above, a fractal is a
self-similar set. This is easily seen from Fig. 5, by noting
that the identical construction, but at a reduced scale, is
performed at each step n. For this reason, any fragment of
Koch's figure can be obtained by simply increasing any of
its components up to the required scale. This circumstance
is formally reflected in the equality of the type (7). Indeed,
if the length / of an elementary section is reduced by £~'
times, then the number of segments N(l) will also increase.
Then we obtain from Eq. (7)

By definition the function N(l), satisfying an equation of
the type (2.8), is a homogeneous function of order D,
whose value is equal to the fractal dimension. A charac-
teristic function of homogeneous functions N(l) is that a
decrease of the measurement scale of the argument / by a
factor |~' is equivalent to increasing the function N by a
factor £~ D.

This self-similarity property is characteristic not only
of Koch's figure, but also all fractal formations. The simi-
larity relation (8) is itself more general than the expres-
sions (2.6) and (2.7) for a triadic Koch figure. Indeed,
fixing in Eq. (2.8) the similarity parameter £ by the con-
dition £/= 1, we immediately obtain the relation (2.7). On
the other hand, it is evident hence that with an arbitrary
scale £ the elementary length /„=£" does not reduce to
(1/3)" and Eq. (2.6) must be generalized as follows:

/)=1п4Лп|~1, (2.9)

where the similarity parameter | < 1 shows the amount by
which the length of each of the four segments of the block
forming the Koch figure is shortened.

We now consider an example of a fractal set with di-
mension D < 1—"Cantor dust." As one can see from Fig.
5, its construction is different from the Koch curve only in
that at the и-th step one does not add but rather removes и
intervals of length /„=(1/3)". Accordingly, the length of
the remaining set is Ln= (2/3)", and each link /„ remains
the same as in Koch's figure. As a result the relation
/,„(/„) is expressed by the previous function (5), where,
however, the fractal dimension is

Я=1п2Лп 3=0.631. (2.10)

The condition D< 1, as one can see from Fig. 6, means
that "Cantor dust" is a formation intermediate between a
point and a line. It is easy to see that the number
Nn=Ln/ln of segments of length /„ is determined by the
same formula (2.7) as in the case of a Koch curve.
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FIG. 6. Construction of a triadic Cantor set. a—Geometric method,
b—Curdling method.3

The equation (2.10) corresponds to the simplest case
of a symmetric Cantor set, shown in Fig. 5. Just as for
Koch's figure, it is evident that if after each step л of the
construction the length of the segments /„ is taken to be £
and not 1/3, then in the denominator of Eq. (2.10) In 3 is
replaced by In |r'. On the other hand, comparing the nu-
merators of the expressions (2.6) and (2.10) shows that in
the general case In j should apparently occur there, where
j is the number of blocks participating in the construction
of the elementary figure of the fractal (for a Koch curve
and Cantor dust, shown in Figs. 5 and 6, we have у =4 and
2, respectively). Thus it can be inferred that the expression
for the fractal dimension, generalizing Eqs. (2.6), (2.9),
and (2.10), has the form

D=\UJ/\U£-\ (2.11)

where j is the number of blocks representing an elemen-
tary fragment of the fractal and § is the similarity index,
determining by how many times the size of the block is
diminished at each step of the construction. Since for a
Cantor set the size of the obtained fragment must not ex-
ceed the size of the initial block, the value of the similarity
parameter is limited by the condition £/<!, which in turn
leads to the result D<1. As found above, it corresponds to
the fractal sets for which at each step of the construction
separate blocks are removed. In the case when blocks are
added, as in the Koch figure, we have D> 1, and according
to Eq. (2.11) the similarity parameter assumes the value

*>;-'•
2.1.2. Hierarchical Cay ley tree
It is easy to see that the above-described procedure for

constructing a Cantor set (see Fig. 6) can be represented
by a hierarchical Cayley tree, shown in Fig. 7a. We shall
show that the topological equivalence of the figures pre-

n-0

n-2
00 010210 П 12202122

b

FIG. 7. Simplest regular Cayley trees, a—Tree describing a chain of
bifurcations (degree of branching 7=2). b—Parameterization of a Cayley
tree with л = 2 hierarchical levels and ratio y' = 3.

sented in Fig. 6 and 7a" makes it possible to associate to
each element of a fractal set a point in an ultrametric space,
whose geometric image is a Cayley tree. To this end, we
must introduce a parameterization of the hierarchical tree,
i.e., we must construct a method for describing the tree
analytically.17

We begin with the simplest example of a one-
dimensional tree, presented in Fig. 7b. It is characterized
by the number of levels n=2 and the branching ratio j = 3.
It is evident from the figure that each node of the tree at
the lower level л = 2 can be prescribed by л numbers a,,
where the index / runs through the values 0 up to л— 1,
and the numbers a/ themselves vary from 0 to j — 1. In
other words, the coordinates of the nodes at the level n

{ai}J

a = a0ai...a!...an_i, a,=Q,l,...,j-l (2.12)

are n-digit numbers in a j-adic number system. They also
determine the space with ultrametric topology. The char-
acteristic feature of the space is that its points cannot form
triangles all of whose sides are different.17 This property
can be easily checked by assuming that the distance / be-
tween any nodes of a Cayley tree, which belong to a given
level л, is determined by the number of steps up to the
common ancestor, lying at the level и — /. For example, the
distance between the nodes and 10 and 12 in Fig. 7b is 1,
and the distance between nodes 01 and 12 is 2; the points
01, 12, and 20 form an equilateral triangle, and the points
01, 11, and 12 form an isosceles triangle. It follows from
the examples presented that if two nodes are enumerated
by the collections (2.12) of numbers a/ and &/, then the
distance between the nodes depends only on which of the
numbers differ first. Thus for the tree shown in Fig. 7b the
distance is 2 if a0^b0 and 1 if a0=b0, but al^bl. For an
arbitrary collection of numbers л and j the distance be-
tween given points is/=0,1 л + l ifam=bm, m=0,l л
-/-1, but an_f^bn_,.

The importance of the concept of an ultrametric space
is determined by the fact that, being a reflection of the
hierarchical structure of the system, it realizes a so-called
logarithmic metric for physically observable quantities.
This means that in such a space the distance / is a linear
function of the logarithm of the observed quantity p. Since
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it is more convenient to manipulate In p than a linear func-
tion of /, it is convenient to introduce, instead of the ordi-
nary axis of the values of p, the corresponding ultrametric
space, characterized by the distance /, and then perform all
calculations in this space.17"18

In order to determine the function p ( l ) we represent p
in the y'-adic number system (2.12). This is done by ex-
panding in a power series

p(a-b) = (a0-

n-bn), (2.13)

the first л coefficients of which are given by the n-digit
numbers (2.12), and the last coefficients determine the or-
igin with respect to which p is measured. It is easy to see
from Fig. 7b that the representation (2.13) corresponds to
partitioning j" nodes of Cay ley's tree into n+l groups,
each of which consists of clusters of nodes characterized by
the same values / of the maximum distance between them.
Thus the first term in the series (2.13) corresponds to the
group consisting of j" isolated nodes, for which /=0. The
second term in Eq. (2.13) describes the contribution of
clusters whose nodes are separated by a distance /=1 (in
Fig. 7b three such clusters can be singled out: 00, 01, 02;
10, 11, 12 and 20, 21, 22). Since each of these clusters is
engendered by a node lying at the preceding hierarchical
level n — 1, it is easy to see that in the general case any such
cluster consists ofj nodes, and there are j"~l clusters. The
group of clusters engendered by the hierarchical level n — I
corresponds to an arbitrary distance /. For this reason, the
number of such clusters is j"~l, and each of them contains
_/' nodes. These nodes are grouped into j subclusters, cor-
responding to the shorter distance /— 1. Thus it can be
concluded that the degree of the factor of j"~' of any ar-
bitrary term in the series (2.13) is given by the number of
clusters of nodes the maximum distance between which is
/, and the magnitudes of the coefficients a/— b/ are limited
by the number j of subclusters, corresponding to the dis-
tance /— 1, contained in them.

A remarkable property of the expansion (2.13) is that
for y>l only one term dominates in it. Indeed, if the dis-
tance between the points of the ultrametric space is /, then
the first и — / terms, containing the maximum powers of the
large number j, are zero, since by definition am = bm for
m=0, !,...,« — /— 1. The last / terms of the series contain
the powers jk, k=l— 1, 1—2, ..., 0, whose values are neg-
ligibly small compared to j1. Thus the only remaining term
is (an-i—bn_i)jl<jn+l, and to logarithmic accuracy the
series (2.13) reduces the form

In (2.14)

It is this equality that specifies the logarithmic metric of
the ultrametric space.

We considered above a discrete ultrametric space,
since it is only in this case that a definite Cayley tree can be
associated to it. However, just as in ordinary space, it is
possible to pass to the corresponding continuous limit

FIG. 8. Irregular Fibonacci tree with variable degree of branching.

(such a limit visually looks like smearing of a set of points
uniformly filling the area of a sheet of paper). In the Cay-
ley tree representation this smearing is achieved by an in-
finite increase in the number of levels n and/or branching
ratio j. Then the number of nodes

IV — i""n — J > (2.15)

at each level n becomes so large that the interval
ln=N~l=j~" between the closest points of a discrete
space becomes infinitely small, and the ultrametric space
itself becomes continuous. Correspondingly, the distance /
in Eq. (2.14) becomes continuous. The transition to the
continuum on Cayley's tree means infinite bunching of hi-
erarchical levels.

Everywhere above we had in mind a uniform Cayley
tree, whose degree of branching is the same at all nodes.
Obviously, the dimension of the corresponding ultrametric
space will be d= 1. Indeed, since here the similarity param-
eter £=j~\ we obtain the elementary length /„ = £"=у ~",
and Eq. (2.15) acquires the form (2.7), where D=l. It is
easy to see that the fractional dimension D< 1 is obtained
only in the case if at each level n the branching vanishes for
some nodes. Such a situation is realized, for example, for
the Fibonacci sequence, studied in Sec. 3.3.2. It is evident
from the corresponding Cayley tree, shown in Fig. 8, that
aperiodic (but completely regular!) alternation of nodes
with branching ratios у = 1,2, is observed. In Sec. 3.3.2 it
will be shown that here for each nonbranching node the
number of doubly branching nodes is equal to the so-called
golden mean т = (д/5 + l)/2 ~ 1.618. It turns out that
this results in a reduction of the dimension of the ultra-
metric space, corresponding the Fibonacci tree, to the
value Z>=ln т/ln 2^0.694. In the general case we have

£>=ln p/lny, (2.16)

where p is the number of nodes, per nonbranching node,
with branching ratio у =2,3,....

Of course, just as for ordinary space, the dimension of
the ultrametric space can take on values D > 1. Thus Fig.
9a displays an example of the two-dimensional uniform
Cayley tree, whose dimension d=2. The characteristic fea-
ture of this tree is that branches from both the vertical and
horizontal components of the tree enter into all nodes at
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FIG. 9. Regular (a) and irregular (b) two-dimensional Cayley trees.

lower hierarchical levels. When this rule is violated (Fig.
9b) the dimension of the space decreases to D=\n(jar)/
In j, where the parameter cr<.j determines the fraction of
the nodes where branches from both components of the
two-dimensional tree converge. As the topological dimen-
sion increases to values d>2, the parameter a coupling
different components acquires the exponent d— 1. If, be-
sides incomplete merging of the components, the compo-
nents themselves have a fractal character such as the Fi-
bonnaci tree in Fig. 8, then in accordance with Eq. (2.16)
/с/"1 must be replaced by /к/"1, where the parameter p
determines the fraction of the branching nodes. As a result
the fractal dimension of the ultrametric space correspond-
ing to nodes of the rf-dimensional Cayley tree assumes the
form

In p
r-

!-:
In у

In a
1-^.
\nj

(2.17)

The foregoing analysis refers to a rarefied ultrametric
space, for which the fractal dimension D is less than the
topological dimension d. The inverse case D>d occurs if
not only the nearest hierarchical levels but also distant
hierarchical levels are connected (Fig. 10). In other words,
the condition D > d is realized for non-Markovian hierar-

A/.VL _„ДМЛ
FIG. 10. Cayley tree corresponding to non-Markovian generation of scale
levels.

chical systems exhibiting memory. It is obvious that Eqs.
(2.16) and (2.17) are also applicable to this situation, if it
is assumed that the parameters p and a assume the values

2.2. Determination of fractal dimension

In the examples presented above the fractal dimension
was determined from graphical considerations. In the gen-
eral case, however, the situation becomes so complicated
that the arguments are no longer obvious and the construc-
tions indicated above must be generalized. The crux of the
constructions is that the fractal set is covered by elemen-
tary «/-dimensional cubes with edge length /-»0 and the
number N(l) of the cubes is counted. The fractal dimen-
sion is then determined from a relation of the type (2.7). A
formal device, enabling implementation of this procedure,
is to introduce a generating function, whose meaning can
be seen from the following example.

Consider an ordinary (nonfractal) surface with dimen-
sion d=1 and area S0 (Fig. 11). First we cover it with
squares with side /-»0, whose number is

(2.18)

The total area of the squares is determined by the formula

S(l)=N(l)P. (2.19)

Although from the algebraic standpoint the equations
(2.18) and (2.19) seem to be identical, it should be kept in
mind that the first equation is applicable only to ordinary
surfaces, whereas the second is applicable only to fractal
surfaces. Substituting Eq. (2.18) into Eq. (2.19) obviously
gives

S(l)=S0. (2.20)

It appears that an elementary square is the most nat-
ural element to use in determining the surface area. But
this is not the only possible choice. Thus our surface can
also be covered with elementary cubes, as shown in Fig. 11.
Their total volume is expressed by the obvious equality of
the type (2.19)

V ( l ) = N ( l ) f .

Substituting here the number of cubes (2.18)

(2.21)
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FIG. 12. Graph of the length of the coastline of Norway versus the
resolution of the covering square grid.3

FIG. 11. Definition of surface measure.3

S0l. (2.22)

Continuing the list of elementary figures with whose
help the surface of interest is covered, we can, in principle,
also use a broken line, consisting of N(l) segments of
length /-»0. The total length of the line is determined by
the formula

£(/)=#(/)/, (2.23)

leading, after substituting Eq. (2.18), to the relation

'-So/"1- (2-24)

The equations (2.24), (2.20), and (2.22) have in com-
mon the fact that they express the measure %q of sets with
dimensions q= 1,2,3, covering the set of interest—a surface
with dimension d=2. It can be represented in the general
form

-d (2.25)

A characteristic feature of this equality is that in the limit
/-*0 the function #9(/)^oo for q<d [Eq. (2.24)] and
X,(/)-0 for q>d [Eq. (2.22)]. The measure (2.25) as-
sumes a finite value #?(/)-»<So ОП1У ^ q=d, which condi-
tion gives the dimension of the surface of interest.

The graphic example considered above shows how to
construct the generating function which makes it possible
to find the fractal dimension D of an arbitrary set (in the

example considered above, it reduced to an ordinary sur-
face with d—1}. Evidently, the general form of this func-
tion can be represented as the equation

*,= 2*?. (2.26)
/

where the summation extends over elementary formations
characterized by the length /, and dimension q. In contrast
to the previously considered examples, where /,=const = /
and 9=1,2,3, here, first of all, it is assumed that the par-
titioning into elementary sets is nonuniform (/,• is not a
constant) and, second, the parameter q is assumed to be
continuous. If uniform partitioning is employed, then the
definition (2.26) assumes the simpler form

(2.27)

Taking into account Eq. (2.27) we obtain the relation

X,(/)<x/«-0, (2.28)

extending the result (2.25) for fractal objects. The formula
(2.7) for the length of a coastline is an example of such a
relation with q=\.

Thus in order to determine the fractal dimension ana-
lytically the fractal must be covered with elementary
^-dimensional blocks with edge length /, and the generating
function must be found using the formula (2.26). Chang-
ing the exponent q, we must find next the value q= D that
gives the generating function a finite value. This will be the
fractal dimension D. The generating function ^?(/) itself is
the main characteristic of a fractal of a type such as the
length of a coastline.

2.3. Experimental methods for determining fractal
dimension

The most convenient method for determining D is
based on direct computation of the generating function
(2.26). For example, in determining the length of a coast-
line the coastline is covered by a collection of squares with
side /->0 and the number of squares N(l) is calculated for
different values of /. Next, the function N(l) (Fig. 12) is
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constructed in double logarithmic coordinates and the
fractal dimension is determined, using Eq. (2.7), from the
slope

Z>=-
const—In TV

l n ~ 7 '
(2.29)

Another variant of the geometric method is to deter-
mine D from the relations between the characteristics of
sets of different topological dimension. For example, if for
the figure bounded by the fractal boundary the area S&R2

and the perimeter length L<zRn, where R is a character-
istic length, is measured, then the following formula fol-
lows from the relations S1/2 <x R cc Ll/D:

D=
const + In L2

(2.30)

according to which the fractal dimension D of the bound-
ary is defined as the tangent of the slope angle of the func-
tion of the square with perimeter L2 versus the area S,
constructed in double logarithmic coordinates.2) The
length of the perimeter is measured either directly (for
example, with a curvimeter) or in the same way as in the
coastline problem.

For all their convenience, the methods presented above
have the drawback that the quantity / must be determined
empirically: On the one hand, it must not be so small that
it would be impossible to count the number of elements
and, on the other hand, it cannot be so large that the
relation (2.7) is not applicable. For this reason, methods
based on direct experimental determination of N(l) are
more reliable. Thus, if a large number of identical fractal
clusters, displayed on a transparent photographic plate, are
available, then passing a light beam of thickness r through
the transparent and measuring the intensity / of the trans-
mitted light Eq. (2.29) can be replaced by the formula

D=-
const — In

Inr

This formula is applicable not only for a uniform distribu-
tion of identical fractal clusters, but also for investigating a
single fractal. The centers of the beam and cluster must
coincide, and the size r of the diaphragm must not exceed
the size R of the cluster.

In a real experiment the most reliable structural data
are obtained by determining the correlation function,
whose spatial Fourier transform is proportional to the in-
tensity of the scattered radiation. For this reason, when
measuring fractal dimension preference should be given to
the method of small-angle scattering of the transmitted
radiation (for large clusters ordinary light can be used, but
as the cluster size decreases, x-rays, electrons, or thermal
neutrons must be used). If the value of the scattering vec-
tor q falls in the range R ', where R is the cluster
size and a is the size of the particles forming the cluster,
then the intensity / of small-angle scattering is determined
by the formula27

(2.32)

70'

to'

10*

10

1

S-2,1

10 -j

FIG. 13. Intensity of scattered light (small q) and 2 small-angle scatter-
ing of x-rays (large q) versus the scattering wave vector q.3

where /0 is the intensity of the incident beam, Я is the
wavelength, and в is the scattering angle. Constructing the
function I(q) in logarithmic coordinates, we find the frac-
tal dimension from the slope angle of the obtained straight
line

D=
ln/0-ln/(g)

In q
(2.33)

Here it is important to work in the region of scattering
vectors q that reflects the fractal structure. As the scatter-
ing vectors increase up to values qa~ 1, for which Porod's
regime21

(2.34)

is realized, the measurements will give the topological di-
mension d of the cluster (Fig. 13).

(2.31) 2.4. Examples of application of the concept of a fractal

In describing fractals one usually has in mind real for-
mations (fractal gels, ball lightning, mixture of liquids with
different viscosity, fractal surface of a fracture, fractal for-
mations obtained by sintering powders, defect structures,
and so on).3"7 In the present section we shall not describe
their structure, but rather we shall consider the theoretical
aspects based on fractal representations.

2.4.1. Fractional integral and fractional derivative
Consider a medium exhibiting memory. Such a situa-

tion arises when describing a structure of a solid far from
thermodynamic equilibrium: in amorphous materials,18"20

in the description of structural relaxation of high-Tc oxide
superconductors,25 in the process of plastic deformation15

and fracture of solids,13 in the description of solid
solutions23 and the macrostructure of martensite,24 and so
on. The existence of memory means that if at time /' a
force f(t') acts on the system, then there arises a flux J
whose magnitude at time t > t' is given by the equation

J ( t ) = f M(t-t'
Jo

)f(t')dt'. (2.35)
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For a system which does not exhibit memory the time
dependence of the memory function M(t-t') has the form

M(t—t') = y8(t—t'), (2.36)

where 7 is a positive constant and S(t—t') is the Dirac
delta function. Substituting Eq. (2.36) into Eq. (2.35) we
obtain the relation

J ( t ) = Y f ( t ) , (2.37)

according to which in the absence of memory the flux J(t)
is affected only by the value of the force f ( t ) acting at the
same time t. When memory is switched on the delta func-
tion in Eq. (2.36) spreads into a dome-shaped function,
whose width determines the time interval т during which
the action of the force / affects the flux /. For systems with
ideal memory we have т-» оо, i.e., the flux J ( t ) is formed
throughout the entire duration of action of the force /( t ' )
up to the moment t. This is expressed formally by prescrib-
ing the kernel of the integral relation (2.35) in the form

M(t-t')=Y/t. (2.38)

Here there is no dependence on the time t' at which the
force / acts, and the dependence of the memory function
on the time t at which the flux J is measured is taken in a
form so as to satisfy the normalization condition

M(t-t')dt' = y. (2.39)

The relation (2.35) written in the temporal representation,
is inconvenient due to the presence of the convolution (in-
tegral over t'). It can be eliminated by using the Laplace
transform

ло= f+"
J —/oc

fW= ГJo

. dA

55-
(2.40)

which enables switching from the time t to the complex
frequency A. Applying it to both sides of the definition
(2.35) we obtain the algebraic form of this relation

ДА)=М(А)/(А). (2.41)

It is easy to see that the Laplace transform of the ker-
nel (2.36), corresponding to the absence of memory, re-
duces to a constant:

M(A)=7. (2.42)

In the case of ideal memory, in the limit | A | f> 1, we obtain
from Eq. (2.38) correspondingly

M(A)=y/Af. (2.43)

Thus when memory is switched on, the constant kernel
(2.42) is transformed into the hyperbolic function (2.43).

In this connection there arises the following question:
What will the function M(A) look like if memory is com-
plete but not ideal? This means that memory is manifested
on an infinite interval preceding the time t, but not at all
times t'. Suppose, for example, that memory is preserved

only at points of a Cantor set. It can then be expected that
its fractal dimension D will be related to the measure of
memory preservation.

Calculating the Laplace transforms of the simplest
time dependences (2.36) and (2.38) is an elementary prob-
lem. For memory operating at the points of a Cantor set,
however, the calculations are much more difficult. They
were performed in Ref. 16 and lead to the result

where the fractal dimension D is determined by Eq. (2.11)
and | is the similarity parameter, determined in Sec. 2.1.1.

It is easy to see that the obtained memory function
(2.44) satisfies the similarity condition (2.8) with the ex-
ponent D. Reducing to the fractal dimension at the Cantor
set at whose points memory is switched on, this exponent is
thus a quantitative measure of the manifestation of mem-
ory effects. For an empty Cantor set (£=0) Eq. (2.11)
gives D=0, and the function (2.44) reduces to a constant
(2.42), corresponding to complete absence of memory. As
the similarity parameter £ > 0 increases the exponent (11)
increases, and the Laplace transform (44) of the memory
function becomes an increasingly more rapidly varying
function. The limiting value £=j~l of the similarity pa-
rameter gives the dimension D=\, corresponding to ideal
memory described by the function (2.43).

Thus systems exhibiting residual memory are de-
scribed by the Laplace transform (2.44), where the expo-
nent 0< D< 1 determines the measure of memory preserva-
tion. Inverting the Laplace transform (2.40) we find for
the time dependence of the memory function16

M(f-r ' )cc
(2.45)

where T(D) is the gamma function. Substituting this ex-
pression into Eq. (2.35) we obtain

(2.46)

where we have introduced the integral

1 Г f((l-u)t)duD, (2.47)
Jo

whose fractional character is reflected by the presence of
the affix in the differential argument u.29

We employed above the integral representation of
memory effects. It is easy to show, however, that it can be
associated to an equivalent differential representation.
Thus, if we have a conserved quantity n (such as the den-
sity of atoms of a given type), then its space and time
dependence n(r,t) is determined by the continuity equation

dn
T
dt

(2.48)

where the flux J is given by Eq. (2.35). In the absence of
memory effects Eq. (2.37) holds, where the force / is given
by the relation
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/=-V/i, (2.49)

\i being the chemical potential, and the expression (2.48)
leads to the standard equation

dn
(2.50)

of the diffusion type.30 According to the analysis made
above, when memory is switched on a fractional integral
appears on the right-hand side of Eq. (2.50). Analysis of
the obtained integral partial differential equation, which is
of fractional order, is a very difficult problem.

The problem can be simplified, however, by taking into
account the fact that if the memory function M(t-t')
vanishes in some time intervals, the flux J in Eq. (2.48)
will be fixed, so that the rate дп/dt is 0. For this reason, it
is natural to assume that memory loss can be taken into
account by the fractional character not only of the flux
integral (2.35) but also for the time derivative in Eq.
(2.48). Since the form of Eq. (2.50) corresponds to com-
plete absence of memory (Z>=0) and when memory is
switched on, as is reflected by an increase in the exponent
D, the rate of change of n should decrease, it is natural to
postulate a fractional-differential equation of the form

dvn
—=V(yV/i), v=\-D. (2.51)

As should happen, the order v of this equation decreases as
the memory parameter D increases. In systems with ideal
memory (D= 1) the derivative on the left-hand side of Eq.
(2.51) vanishes and one must study the behavior of the
flux (2.34) itself, as was done above.

The foregoing considerations in favor of the specific
form v= — 1 — D of the fractional degree of Eq. (2.51)
serve only as a guide. In order to confirm them we show
that the expression (2.46) for the flux, determined in the
form of the fractional integral (2.47), agree with the solu-
tion of the fractional-order differential equation (2.51). In-
deed, it is easy to show, by substituting (1 — u)t for the
variable и in the integrand of the second integral in Eq.
(2.47), that the time dependence of the flux has the form
/cc t~~D. Substituting this function into Eq. (2.48), we find
the solution

1-я (2.52)

satisfying the equation (2.51) being tested. This confirms
finally the equivalence of the mutually complementary
concepts of a fractional integral (2.47) and the fractional
differential equation (2.51). We call attention to the fact
that the form of the geometric relation (2.5) for the length
L(l) of the coastline is the same as that of the physical
dependence n ( t ) obtained above. Hence it follows, in par-
ticular, that the time t plays the role of the size of segments
covering in the state space a D-dimensional fractal set,
whose points determine the memory of the system.

In order to interpret the equation (2.51) in fractional
derivatives, we start from the fact that in the ordinary case
D=0 the equation describes irreversible processes such as
diffusion, heat conduction, and so on.30 These processes are

characterized by the fact that microscopic memory is com-
pletely lost under time inversion: If the equation of me-
chanics of an isolated object exhibits ideal memory, re-
flected in invariance under the substitution t-*—t, then in
the thermodynamic equation (2.50) such invariance
breaks down completely. Hence it can be concluded that
the decrease of the order v= 1 — D of the derivative in Eq.
(2.51) reflects the switching on of memory channels,
whose fraction is determined by the fractal dimension D.
The remaining part v= 1 — D of the channels makes the
system irreversible. The residual irreversibility can be
taken into account in the initial form by writing the Liou-
ville equation in the fractional form16

(2.53)

where ft is Planck's constant, H is the Hamiltonian, p is the
nonequilibrium density-matrix operator, / is the evolution
time of the macroscopic system, and u=t'/t is the dimen-
sionless microscopic time, bounded by the condition и < 1.
Evidently, the condition D < 1 makes it possible to take
into account, on the basis of Eq. (2.53), irreversibility ef-
fects in the interval [0,/] which are associated with the loss
of v= 1 — D deterministic channels. This scenario of taking
into account irreversibility is, evidently, preferable to the
phenomenological method of adding to the right-hand side
of Eq. (2.53) the relaxation term —p/r, where т is the
relaxation time,30 or by introducing an infinitesimal
source.31

Besides equations of the diffusion type, the appearance
of fractional derivatives can be expected in the description
of the motion of particles colliding inelastically with one
another. Carrying out calculations of the type that led to
the expression for the flux (2.46), it can be shown16 that if
in each collision a force F acts on a particle of mass m,
then the change in the velocity of the particle

(2.54)

is determined by a fractional integral of the type (2.47).
The above example of the diffusion equation shows that in
order to switch to the corresponding fractional-differential
equation it is sufficient to operate on Eq. (2.54) with the
operator DD=dD/duD, inverse to the fractional integral
D~D. Then, in the case of an elastic force F=—AftV2r,
where A is the elastic constant and ft is the atomic volume,
we obtain16 the following generalized transport equation
for the coordinate r of the particle:

0, (2.55)

where the dimensionless time u = t'/t< 1, and we have in-
troduced the speed defined as

c2=(Aft/m)[v2(l-£)] -D (2.56)

The equation (2.55) describes a new type of wave motion,
occupying a position intermediate between ordinary diffu-
sion (D=0) and classical waves D=l. Correspondingly,
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the expression (2.56) defines the diffusion coefficient
D=c2t in the first case and the wave speed с in the second
case.

Fractional-differential equations of the type (2.51) and
(2.55) were written in application to the investigation of
the spatiotemporal behavior of conserved quantities. It is
well known32 that this is reflected in the presence of a
second derivative with respect to the coordinate on the
right-hand sides of these equations. For a nonconserved
quantity 77 this derivative vanishes, and the diffusion equa-
tion (2.51) becomes a relaxation equation of the Landau-
Khalatnikov type:

(2.57)

and the wave equation (2.49) becomes the equation for a
harmonic oscillator:

(2.58)

here, as above, и = t'/t is the dimensionless time, and the
parameters Ув,«1)ос[у5(1—^)]~° determine the relax-
ation time т/>=уд1 and the oscillator frequency COD. The
fractal dimension D is a measure of the residual memory of
the system: In the absence of memory (D=\) both equa-
tions (2.57) and (2.58) reduce to a Debye relaxation equa-
tion describing the behavior of the simplest thermody-
namic systems (here the relation y0=<<>o* is satisfied), and
in the case of ideal memory (£>=!) Eq. (2.57) degener-
ates into an identity and Eq. (2.58) becomes the ordinary
oscillator relation.

The exotic nature of the concept of fractional integra-
tion and differentiation can lead to the incorrect conclusion
that the constructs made above are of purely theoretical
interest and do not reflect the experimental situation. We
shall show that this is not so. To this end we determine the
frequency dependence of the susceptibility •% = дт]/дЬ. of a
system to the action of an external field A. When the field
is switched on the term #0(У?) A, where Xo is the isothermal
susceptibility, is added to the right-hand side of the regres-
sion equation (2.57), and after Fourier transforming we
find

Xo
(2.59)

where we have introduced the characteristic frequency
<av=(yt)l/v/t and the fractional exponent v=l — D. The
frequency dependence (2.59), well-known as the empirical
Cowle-Cowle expression, was observed in the process of
retarded (compared to the Debye exponent) relaxation of
the polarization of dielectrics,33 in spin18 and structural20

glasses, in the process of plastic strain,15 fatigue fracture,13

and so on.
2.4.2. Fractal kinetics of hierarchically coordinated sys-

tems
Consider two thermodynamic phases, one of which is

determined by the order parameter 77, (usually 77,=0) and
the other by the value 77^-. As the state parameters (for
example, the temperature T) varies, the free energy can

7/

FIG. 14. Diagram illustrating the dependence of the thermodynamic
potential on the order parameter for a sequential chain of phase transfor-
mations.

satisfy the condition {7(77,)>f/(Tjy), and a phase transition
will occur at the point T=TC. If the states 77, and 77^ are
not separated by an energy barrier, then a second-order
transformation mechanism is realized with relaxation time
of the nonequilibrium phase

г t / т/rj~l \~\ — 1 cy fj[\\

where TOO is the microscopic (Debye) time (of the order of
10~12 sec). For a first-order transition between the states
77,- and 77y there is a barrier Q, resulting in the fact that the
quantity (2.60) increases according to Arrhenius' formula

т=т0ехр(б/Г), (2.61)

where the exponential factor takes into account the prob-
ability of overcoming the barrier Q by means of a
fluctuation.34 The time dependence of the order parameter
77(0, reflecting the kinetics of the transition 77,-+77^, is
described by the very simple regression equation

(2.62)

(2.63)

(2.64)

f = — 77/T,

whose solution leads to the Debye expression

for the transition probability

=S(t)

from the initial state 77,- into an arbitrary state 77 (t).
The picture presented above is realized in the simplest

case, when the function {/(77) has only two extrema, cor-
responding to the phase 77, and 77^. Often, as shown in Fig.
14, there are many shallower minima, corresponding to
metastable phases, incommensurable structures, and so on,
are present between them.35 For this reason, if the initial
state is determined by the parameter 77,, then prior to en-
tering the final state 77^ the system passes through a suc-
cessive chain of transitions 77,-» 77! -»T)2-*•••-> 77,-. • • • -»77^
between neighboring minima. Each transition is described
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by the probability S/(t) of the transition from the /th into
the (/+1 )st minimum. The expression for this probability
is determined by the exponential (2.63) with the relaxation
time TI, given by the Arrhenius relation (2.61) with barrier
height Qi (Fig. 14). This chain of transitions is character-
ized by the fact that all barriers heights Qt are of the same
order of magnitude, as a result of which the times
Дг,=: r/+ j — r/ for overcoming the barriers will be compara-
ble. For this reason, over the time /> л/т/ the system over-
comes with probability 1— S(t) n barriers, where

S(t)= US,,

(2.65)

For и>1 the spread in the time intervals Af/ can be ne-
glected, setting Lti=t/n. Then the relation (2.65) assumes
the Debye form (2.63) with the average relaxation time
(т) given by the equation

'=4 I (2.66)
t\

Thus the chain of transitions between the metastable states
of the system has been reduced to Debye relaxation with
average time (т). The sequential character of this process
is reflected in the multiplicativity of the elementary prob-
abilities St(t) and the additivity of the inverse relaxation
times r/""1. Since according to Eq. (2.61) r/~' is propor-
tional to the probability that the interphase barrier Qt will
be overcome by a thermal fluctuation, the indicated addi-
tivity means that the fluctuations of the microscopic quan-
tities (for example, the energies of the phases) are inde-
pendent of one another.

If such a situation is realized at the macroscopic level,
then the probabilities (2.63) themselves and not the mi-
croscopic quantities r/"1 are added. This means that the
collection of parallel relaxation channels, the existence of
which was indicated at the end of Sec. 2.4.1, acts indepen-
dently. Each such channel corresponds to a statistical en-
semble a, realized with probability a)a. The probability of
transition between the channels a and 13 has, in accordance
with Eqs. (2.63) and (2.61), the following form:

(2.67)

where Qap is the height of the barrier separating the chan-
nels a and j8. The total probability

(2.68)

describes relaxation due to the entire collection of chan-
nels.

Obviously, the channels are connected in parallel, if
the probabilities for relaxation of different channels

й)аосехр(-£а/Г) (2.69)

are comparable quantities. Such a situation requires degen-
eracy with respect to the energy levels

FIG. 15. a—Form of the potential relief on different structural levels,
b—Corresponding hierarchical tree."

Ea=U(r)pa(r)dr, (2.70)

where pa(r) is the distribution of structural units (for ex-
ample, atoms) in the ath relaxation channel and U(r) is
the potential relief of the system. Since the dome-shaped
function pa(r) separates in the integral (2.70) the region
of space corresponding to the ath channel, the condition
that the energies Ea are comparable implies that minima of
the potential relief U( r), differing only insignificantly from
one another, should be associated to the different channels
a. On the other hand, the existence of a spectrum of re-
laxation times тар in Eq. (2.67) can be guaranteed only if
heights Qap of the barrier separating different minima а
and /3 are significantly different. Evidently, these condi-
tions can hold only for a hierarchical structure of the po-
tential relief (Fig. 15a): Shallower minima are superposed
on the large-scale minima of the function U(r), even shal-
lower minima are superposed on the shallow ones, and so
on. This results in the fractal function U(r) that is strongly
reminiscent of the coastline in Fig. 2. It is evident from Fig.
15 that the statistical ensembles a and /3 can be united into
clusters, each of which is characterized by a maximum
height Qap of the barrier separating this cluster from other
clusters. On the other hand, since the ensembles a and /3
correspond to nodes of a Cay ley tree (Fig. 15b), the points
a and P of the ultrametric space, which are separated by a
distance /a/3 (see Sec. 2.1.2), can be associated to them.
Thus the barrier heights Qap and together with them the
relaxation times т^ are functions of the distance Iap in the
ultrametric state space. Since the separation of clusters3' is
guaranteed by the increasing height of the barrier separat-
ing the clusters, it can be concluded that the function Q(l)
must be monotonically increasing (see below).

Thus it can be concluded that different relaxation
channels are guaranteed to operate in parallel only if the
corresponding set of statistical ensembles is hierarchically
coordinated. This situation is realized in strongly nonequi-
librium thermodynamic systems such as spin and struc-
tural glasses,18'20 strongly deformed materials,12'15'21'22
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FIG. 16. Diagram illustrating the dependence of the thermodynamic potential on the order parameter for a sequential chain of phase transformations.

polytypic and martensite structures,23 26 and so on. In a
hierarchical system the fastest processes, corresponding to
overcoming barriers of minimum height Qap, proceed first.
In the process, the smallest statistical ensembles merge,
and the system passes into a higher hierarchical level of the
Cay ley tree (Fig. 15b). Next, barriers of large height Qap
are overcome, as a result of which the obtained superclus-
ters merge into larger formations, corresponding to the
next hierarchical level. This process can continue without
bound. Its hierarchical character is expressed in the fact
that so long as channels with fixed relaxation time т/ have
not yet been activated, the parallel network of channels of
the next level, with relaxation times т/+1 >т/, will not come
into play. This hierarchical coordination is responsible for
the critical retardation of relaxation, resulting, as we shall
see below, in transformation of the Debye exponential
(2.63) into a more slowly decreasing function.

As already indicated above, the fractal character of a
hierarchically coordinated system is manifested in the co-
ordinate dependence of the potential energy U(r) of the
system. This apparently means that the set of clusters of
statistical ensembles, represented by points of an ultramet-
ric state space, will also exhibit fractal properties. As is
evident from Fig. 16, the above-described stagewise merg-
ing of clusters results in growth of the overlap parameter36

1
(2.71)

where *, is the hydrodynamic variable at the point /•,-, giv-
ing on averaging over the ath cluster the order parameter
i]a= (x)a, and N is the number of structural units. Hier-
archical merging of clusters is graphically represented by a
gradual merging of lagoons filled with liquid with increas-
ing level qap in a vessel whose bottom relief is determined
by the function U(r). Evidently, as the relaxation channels
come into play successively (see Fig. 14) the clusters do
not overlap at all, and the liquid spills successively into
increasingly smaller depressions.

In Sec. 3.3.3 we shall show that the set of clusters
formed in the state space of the hierarchical system has a
stochastic character. This means that, in particular, the

parameter (2.71) describing the overlap of clusters will be
a random quantity, whose distribution is given by the func-
tion

P(q) = (2.72)

Then it is easy to see from the definition (2.68) that the
probability S(t) for the system to remain in the initial state
is expressed in terms of the first moment of the overlap
parameter (2.71) as follows:

5(0 = 1- Г qP(q)dq=\- Г q(Y)dY.
Jo Jo

(2.73)

Here we introduced in the second equality the probability

Y(q) = Г P(q')dq'
J a

(2.74)

that overlappings q' exceeding a prescribed threshold q are
realized.

In order to determine the explicit form of the functions
(2.68) it is necessary to find the probability distributions
wa = wa(l)> Qa0—Qap(ft f°r tne realization of the ensem-
bles a and 0 and the barrier between the ensembles as a
function of the distance / in the ultrametric space. Within
the phenomenological approach, we focus our efforts on
investigating the possible forms of the time dependence
S(t) for different majorants of the distributions w(l) and
Q(l). We approximate the decaying probability distribu-
tion by the functions

ww(/)ccexp(-///0), (2.75)

the first one describing weakly hierarchical systems and the
second one describing strongly hierarchical systems (/0 and
D are positive parameters). This is connected to the fact
that the exponential function wv(l), decaying over dis-
tances /~/0, couples only a small number of hierarchical
levels, and the slowly varying power-law function ws(l)
takes into account virtually the entire set of levels. As far
as the barrier-height function Q(l) is concerned, we shall
approximate it by the three basic forms of increasing func-
tions:
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TABLE I. Possible asymptotic forms (f-> a>) of the correlation function S(t) -.

S(t)

Qf(l) = Qla, Qe(l)=Qel, (2.76)

where Q is the characteristic height and a > 0 is an expo-
nent.

Substituting the functions (2.76) into Eq. (2.67) and
the result obtained and Eq. (2.75) into the definition
(2.68), we find by the saddle point method the asymptotic
expressions, presented in Table I, for the limit t-> oo. Ac-
cording to this table, for any combination of approxima-
tions (2.75) and (2.76) the relaxation law S(t) loses its
Debye form. The weakest retardation is observed for log-
arithmic growth of heights of the fractal relief in weakly
hierarchical systems (so-called Kohlrausch's law, repre-
senting an extended exponential due to the exponent
/3 < 1). As the hierarchical coupling increases or a transi-
tion occurs to power-law growth of the heights of the re-
liefs, the function S(t) starts to decay in a power-law fash-
ion. If, however, exponential growth of barriers in weakly
hierarchical systems or power-law growth in strongly hi-
erarchical systems is realized, then the relaxation becomes
logarithmic. Finally, for strongly hierarchical systems in
which the barrier heights grow exponentially, we obtain a
double logarithmic delay, i.e., the relaxation process virtu-
ally stops.

3. MULTIFRACTALS

A distinguishing feature of the manifolds considered
above is that they are represented by a scale factor | and a
branching j, the set of values of which is characterized by
the averages {£) and ( j ) characteristic of the given frac-
tal. Correspondingly, Eq. (2.11) leads to a unique value of
the fractal dimension D, which is why the term monofrac-
tal is employed. In the present section we consider the
more general case of a multifractal, representing a super-
position of several monofractals, characterized by different
values of the probabilistic factor p=j~l and geometric
factor £. The approach employed in Sec. 3.1 is based on the
geometric aspect, associated with the distribution of £. In
Sec. 3.2 we present a thermodynamic method based on
analysis of the probabilistic factor p. The relation between
these factors is described at the end of Sees. 3.2.1 and 3.2.2.

It is easy to see the difference between the geometric
and thermodynamic approaches by comparing the method
described in Sec. 2 for constructing a fractal and the so-
called curdling method, presented below. The first method
is of a purely geometric character—the entire construction
reduces to a sequence of и -»oo cycles of partitioning of the

initial fragment into /blocks, subsequent discarding ofi—j
of them, and deformation £ of the remaining j blocks. The
curdling method, reminiscent of the real process of the
curdling of milk, is characterized by a physical aspect, as-
sociated with a change in the probabilities of the realiza-
tion of different fragments of the set.

The crux of the curdling method is most easily repre-
sented as follows.3 Consider a rod of unit length /0= 1 and
mass m0=l. Correspondingly, the density p=m/l will
also be one (p0= 1). Next, we cut the rod in half, so that
the masses of the segments are wI = /w{1)=m{2) = l/2.
Without changing them, we plastically deform (forge) the
obtained pieces, shortening the rods to the same length
/i=/iU=/i2) = l/3. As a result the density increases to
/D! = m!//] = 3/2. Repeating the procedure n times, we ob-
tain N„=2" rods of length /„=3~" and mass т„=2~",
such that their total mass Nnmn= 1 does not change. The
dependence of the physical characteristics т and p of an
elementary rod on the length / of the rod (we drop the
index и)

т = Г, p = l°-1 (3.1)

is determined by the value of the exponent a=ln 2/ln 3.
It is easy to see that the construction made above is

reminiscent of the formation of quantum dust, studied in
Sec. 2.1.1. The difference can be expressed graphically by
modifying the Cantor construction (see Fig. 6a), increas-
ing the height of the rod fragments so that on each step л
the total area would remain constant (see Fig. 6b). Besides
this circumstance, which corresponds to the law of conser-
vation of mass, the switch to the convolution procedure is
also reflected in a formal manner: instead of the relations
(2.7) and (2.5), determining the geometric characteristics
of the fractal, we obtain scaling of the dependence (3.1) of
the physical quantities, the character of the scaling being
determined by the exponent a corresponding to the fractal
dimension (2.10).4)

The convolution procedure described above makes it
possible to construct the so-called devil's staircase, shown
in Fig. 17. It represents a plot of the mass

m(x) = Г p(x')dx'
Jo

(3.2)

of the elementary rods, located in the interval [0,x], versus
the length x of the rod. Since the density p=0 outside the
rods and p = oo at the points of the Cantor set, which
correspond to the arrangement of the rods, the integral
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FIG. 17. Mass M of a Cantor rod, shown in Fig. 6b, as a function of the
coordinate x measured from the left end.3

(3.2) increases only at these points and off these points the
integral is constant. A distinguishing feature of the stair-
case is that the function m(x), while remaining constant at
most points of the continuous set [0,1], increases from 0 to
1 due to sharp jumps at the points of the counting edges of
the set, whose size is negligibly small compared to the
continuum.

3.1. Geometric approach

Before presenting the formal scheme of the represen-
tation of multifractal sets (Sec. 3.1.2), we examine the
simplest examples of Cantor sequences, which make it pos-
sible to demonstrate this scheme graphically.

3.1.1. Cantor multifractals
Monofractal Cantor dust, studied in Sec. 2.1.1, is dis-

tinguished by the fact that the segments obtained from
each step л-> oo of division of the initial fragment have the
same lengths /„ = 3~" and are realized with the same prob-
ability p= 1 (this is indicated by the fact that they have the
same measure p). We shall now consider the changes re-
sulting when these restrictions are removed.

If we assume that the lengths |, and £2 of the left- and
right-hand segments are different, then the Cantor set ac-
quires a two-scale character of the type shown in Fig. 18.
In order to determine the fractal dimension we must de-
termine the generating function (2.26). Since after n steps
we obtain a collection of /<n segments of length |t and
n — i segments of length £2> the quantity /? must be under-
stood to be the product Pn = ̂ ^i~i)q contained in the sum

(2.26) a number of times equal to the number of combi-
nations

cl=-
и!

'" iK/i-i)! '

The obtained expression

= 0,1,...,л. (3.3)

(3.4)
/=о

reduces to Newton's binomial. It assumes a finite value in
the limit n -> oo if

!!+!?= i. (3.5)

For prescribed lengths £t and |2 it determines a unique
value q=0 of the fractal dimension (for example, for
£1== 1/4 and £2 = 2/5, corresponding to Fig. 18, we obtain
D=0.611, less than the value D=0.631 for a single-scale
set). Thus it can be concluded that the nonuniformity in
the distribution of the scales £ only reduces the fractal
dimension, leaving it unique and thus not leading to trans-
formation of the monofractal into a multifractal.

We now consider what happens when the measures P,-
of the realization of different segments of the set are not
constants. To this end, we consider the binomial multipli-
cative process. The crux of this process reduces to the fact
that after each division of the initial segment into two parts
a measure p < 1 is assigned to the left-hand part and a
measure q=\— p is assigned to the right-hand part. In
other words, the above-indicated curdling process multi-
plies, but each half-rod, obtained after cutting the initial
rod, deforms with different powers p and q=\—p. It is
easy to see that after the second step the distributions P '„ of
the measure corresponding to a physical quantity, such as
the mass, will have the form

P>2:pp;pq; qp; qq; i= 1,2,...,2", л = 2, (3.6)

where the commas separate values of measures of different
segments. Correspondingly, after the third step we obtain

'-PPP; РРЧ\ POP; ЧРР; ; РЧЯ; ччч;
(3.7)

Figure 19 displays for p= 1/4 and q=3/4 the distribution
of measures Pi

n after и = 11 steps and the corresponding
integral measure

2"*

(3.8)

on the segment [0,дг], х<1. It is easy to see, similarly to the
derivation of Eq. (3.4), that we obtain hence explicitly

I •
II II
II IB

II II
HI t i l l

II II
IID Illl

FIG. 18. Construction of a Cantor set with scales

II
III! II II
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FIG. 19. Distribution of the density of measure (a) and the total measure
(b) for a binomial multiplicative process (the number of iterations и= 11,
the probability p= 1/4, ?=3/4).13

Mn(x) = (3.9)
i=Q

Taking into account the condition p+q=l for the total
length x=l, as should happen, we obtain

It is easy to see from relations of the type (3.6) and
(3.7) that after и-» oo steps we obtain a set of 2" binary
numbers with the values p and q. It is convenient to sepa-
rate these numbers into groups, each of which contains Cn

numbers, having / values p and n—i values q [in the se-
quences (3.6) and (3.7) these groups are divided by a
semicolon]. Assuming that the segment of length /,~»0 cov-
ers only one group of и-digit numbers, containing /' values
of p, we obtain from Eq. (2.26) the generating function

(3.11)

(3.12)

Using in Eq. (3) Stirling's formula

и!=;ехр[ — п(\— In и)],

we find that the expression (3.11) assumes a finite value if
q=f(s), where the function f ( s ) of the argument s= \/n,
determining the fraction of p values in the /th group, has
the form

— s)

Ы2
(3.13)

o,a

0,6

o,*
о,г

о о,г о,* о,б о,в з

o,e
0,6

o,t
0,2

О 0,S 1,3

FIG. 20. Spectral function of a multifractal, generated by a binomial
multiplicative process, represented in Fig. 19 as a function of the param-
eter s determining the fraction of the numbers p in the binary represen-
tation of points of the set (a) and as a function of the exponent a deter-
mined by Eq. (3.17) (b).3

Thus the fractal dimension of the binomial Cantor set,
corresponding to a finite value of the generating function,
has the form

D(s)=f(s). (3.14)

Since this value corresponds only to the group of «-digit
sequences, which is fixed by choosing the number 0<s< 1,
the entire collection of the sequences is characterized by
the set of quantities D(s), corresponding to different values
of s. In other words, the binomial Cantor set is a superpo-
sition of monofractals, corresponding to the complete spec-
trum of dimensions (3.14). This is why the multifractal is
employed. Each of the constituent monofractals enters
with weight

7VJ

n=C=exp(m 2 • (3.15)

The function f ( s ) determining it evidently is the spectral
distribution of the monofractals over a given multifractal.
It is evident from the plot of the function f ( s ) , presented
in Fig, 20, that the maximum values D=\ and N„=2"
obtained for the group of sequences that corresponds to
topological dimension d= 1, i.e., for the ordinary, nonfrac-
tal set of identical segments of length ln=2~n.

The inconvenience of this scheme lies in the fact that
the parameter s is not an observable quantity. For this
reason, it is necessary to switch to the exponent a, defined
as the equation

P(l)=P, (3.16)

reminiscent of the scaling relations (3.1) for physical
quantities. It is obtained from the chain of relations

P(s) =M(x(s) + /) -M(x(s)) =/", (3.17)

following from the definition (3.8). For the case of the
binomial Cantor set, under consideration here, the switch
from the parameter s to the parameter a can be made
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FIG. 21. Spectral function for the two-scale Cantor set of constant
length.1 0

explicitly, by using the expression for the measure of the
binomial distribution [see Eqs. (3.8) and (3.9)]

Pn(s) = (psq(l-s))" (3.18)

and the equality /„ = (1/2)". As a result, the expression
(3.16) gives the linear function

be transposed. This is why the limiting set does not reduce
to a point and according to (3.14) /(amin)^o.

3.1.2. Formalism of the geometric description of multi-
fractals

Bearing in mind the examples of the simplest Cantor
multifractals considered above, we now present the general
scheme of the geometric description of an arbitrary fractal
set.3'8'10 The set is formed as a result of и-> оо divisions of
the initial set, leading to the formation of Nn fragments of
length /, ( -»0), = 1,2,. ..,7V,,. The probability of realization
of each fragment is determined by the formula [compare
with Eq. (3.17)]

Pi=lT. (3-20)

where a is the scaling parameter. As in the case of a
monofractal, the starting construct is the generating func-
tion of measure of the type (2.26):

(3.21)

a= •
s\np+(l—s)ln(l — p)

' m ~ 2

1=1

(3.19)

Thanks to this, the form of the function /(a) is the same
as that of f ( s ) (see Fig. 20). Nonzero values of / are
concentrated in the interval from am i n=—ln(l—p)/ln 2
to amax = — ln/7/ln 2, where/?< 1/2. The lower limit corre-
sponds to the case s=0—the binomial sequence consists
only of numbers q and the upper limit corresponds to the
opposite case s=\, for which the sequence reduces to a
collection of numbers p. At the limit points we have d//
da = ± oo, and the maximum value /= 1, corresponding to
d//da = 0, is reached at a= — [lnp + ln(l— p)]/ln 2.

It should be noted that the upper limit amax corre-
sponds to the sequence consisting only of the numbers p,
and for this reason /=0 always on it. According to Eqs.
(3.14) and (3.15), this means that there exists a unique
zero-measure set, which is taken as the initial set. At the

Substituting Eq. (3.20) into Eq. (3.21) we obtain the def-
inition

(3.22)

which differs from the generating function (2.26) of the
monofractal by the presence of the variable factor a. From
the entire set of Nn fragments a given value of a is realized
for

i _/-/(<*> (3.23)

fragments, where the function /(a), which determines the
spectrum of values of a, gives the dimension of the geo-
metric set [the collection of segments /, on which the dis-
tribution of the measure (3.20) is realized]. Using Eq.
(3.23) in Eq. (3.22) we obtain the expression

lower limit amin a sequence consisting of only the numbers *, ta\— Y /?«
q is realized. For a binomial Cantor set this sequence also
reduces to a point (Z)(amin)=0) and it is unique
(7V~(amin) = 1). If, however, at the upper limit, correspond-
ing to the initial sequence, this situation is natural, then
this is not always the case at the lower limit.

For proof, we consider the case when the initial seg-
ment is divided into two segments of length £2 and one
segment of length |̂ , and no segment is discarded. The
probability p2 is assigned to the first two segments andpi to
the remaining segment. Due to the normalization condi-
tions |'1 + 2|2=1. Pi+2p2=l. In addition, it is assumed
that |2<£i and р2/%2 >P\/£i- The calculation performed
in Ref. 10 on the basis of the indicated assumptions gives
the spectral distribution /(a) shown in Fig. 21. The char-
acteristic feature of this distribution is that /7^0 at the
lower limit. This means that the sequence corresponding to
the condition s=0, reducing it to an infinite series only of
the numbers p2, is not the only possible sequence. Evi-
dently, this is connected with the fact that, in contrast to
the single-scale Cantor set, here not only the numbers PI
and p2 but also segments of different length |j and £2

 can

(3.24)

Taking into account the dimension of the distribution of
the values of a, it is convenient to rewrite Eq. (3.24) as an
integral

(3.25)

where the function p(a) describes the distribution of seg-
ments /„ over the parameter a.

Since the length /„ is very small, the values of a cor-
responding to the minimum exponent in the integrand will
make the largest contribution to the integral (3.25). Hence
there follow the relations

d/
da da (3.26)

= a(q)

which make it possible to find, from a given spectrum
/(a), the relation a(q) for the scaling exponents. The
integral (3.25) itself can be reduced, by the steepest-
descent method, to the form
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(3.27)

The obtained measure M(q) enables finding the spec-
trum of dimensions D(q) of the multifractal. In order to
find the relations relating these quantities, we consider the
monofractal measure P= I1, defined in a Euclidean space of
dimension d. Dividing it into N=l~ti cells of volume /"*->0,
we obtain from the definition (3.21)

N

M(q) = (3.28)

Since for the simple case at hand the fractal dimension
D(q) reduces to the topological dimension d, the obtained
result (3.28) makes it possible to introduce the following
definition

1
(3.29)

1-1 In/

It can be written in an exponential form of type (3.28)

/-0. (3.30)

Comparing this result to Eq. (3.27), we obtain an expres-
sion for the fractal dimension in terms of the spectral func-
tions a(q) and f(a(q)):

= (q-)-\qa(q)-f(a(q))). (3.31)

On the other hand, if the spectrum of dimensions D(q) is
known, then the spectral function can be easily found with
the help of Eqs. (3.26) and (3.31):

(3.32)

The definition of measure (3.21), introduced above,
has the deficiency that it takes into account only the prob-
abilistic aspect, based on the curdling procedure, and com-
pletely ignores the geometric features of a multifractal. In-
deed, calculation of the measure according to Eq. (3.21)
presupposes that the carrier space is partitioned into blocks
/', to each of which the probability P, is associated. As is
evident from the example with the coastline (see Fig. 2),
however, some fragments of the fractal can appear in the
fth block N/ times, and in Eq. (3.21) the product Nf,
should appear instead of P/. For this reason, if the scaling
relation Лг,-ос/|~

т, where т is a corresponding exponent, is
assumed, then the definitions (3.21) and (3.22) assumes
the form

(3.33)

Hence we obtain, as done when switching from Eq. (3.22)
to Eq. (3.27), the estimate

Mn(q,T)zzfZ>-f(a)-r. (3.34)

As the fragments decrease in size /„-»0, the measure (3.34)
assumes finite values if the exponent т reduces to the quan-
tity r(q) given by the condition

r(q)=qa(q)-f(a(q)),
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FIG. 22. Distribution of the exponent of the measure (3.33), correspond-
ing to the spectrum of the binomial multiplicative process (see Fig. 20 ).3

where the function a(q) is determined by the relation
(3.26). Using Eq. (3.31), we find hence the relation to the
fractal dimension

r(q) = (q—l)D(q). (3.36)

Substituting Eq. (3.36) into Eq. (3.32) in turn gives the
relation

(3.37)
Aq

The system of equations (3.35) and (3.37) can be re-
garded as a Legendre transformation, making it possible to
switch from one pair of independent variables a, f to an-
other pair q, т (or vice versa). An arbitrary multifractal is
described completely by the spectral function /(a) or by
the equivalent function r(q), determining, according to
Eq. (3.36), the spectrum D(q) of fractal dimensions. In
thermodynamics the equation of state of the system corre-
sponds to the functions of/(a) and r(q).

3.1.3. Characteristic features of the functions f(q), -r(q),
and D(q)

In Sec. 2.1.1 we examined, for the example of a bimo-
dal Cantor sequence, the characteristic features of the
dome-shaped function /(a). As is evident from Figs. 20
and 21, the function /(a) assumes positive finite values in
the bounded interval [a^n, amax], at whose limits the de-
rivative of the function is infinite while inside the interval
the derivative vanishes, thereby determining the maximum
of the function /(a). For convenience, Figs. 22 and 23
display the form of the functions r(q) and D(q), corre-
sponding to the spectral curve /(a) in Fig. 20 for a Cantor

Я

0,6

a, б

0,4

0,2
-6O - ЧО - 20 20 40

FIG. 23. Spectrum of fractal dimensions for a two-scale Cantor set shown
in Fig. 18.3
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multifractal. It is evident that the exponent r(q) grows
linearly for large \ q \ , taking on negative values as q-> — oo
and positive values as q~> + oo. Since the multifractal di-
mension 0<Z>(<?)< o o , i t i s evident from Eq. (3.36) that
the exponent т(д) changes sign at the point q= 1. As far as
the function D(q) is concerned, it is evident from Fig. 23
that it decays monotonically from the maximum value
D_x, corresponding to q= — oo, to the minimum value
Dx = D(q= + oo), and the region where the function
D(q~) changes most rapidly is concentrated near the value
q=0.

We now give a more detailed analytical description of
these functions. We start with the spectral function /(a).
As one can see from Eq. (3.26), the derivative d/(a)/da
= ± oo at the limits amin and amax of the domain of the
function /(a), where the parameter q assumes the limiting
values q= ± oo. The right-hand limit, where this derivative
is negative, corresponds to the initial value q= — oo and
the left-hand limit, where the derivative is positive, corre-
sponds to the final value q= + oo. Then, using the relation
(3.31) it is easy to see that the value of amax reduces to the
maximum dimension D_ x , corresponding to the initial
value of the parameter q, and amax corresponds to the min-
imum dimension D+ x , corresponding to the final value of

4-

&-<*,= «max. (3.38)

Besides the limiting points, the spectral distribution
/(a) gives a number of physical values of D(q) inside the
interval. Thus if we set 9=0 in the definition (3.22), then
summation over all segments / yields the value M(0) =Nn.
Comparing it to the result (3.30) for q=0, we arrive at the
relation

\ D0=D(q=0), (3.39)

determining, similarly to Eq. (2.7), the total number of
segments /, on which the measure P/ is given. Thus for q=0
the distribution D(q) gives the fractal dimension of the
geometric set, which is the carrier (domain) of the physi-
cal quantities Pt. According to the definition (3.31) at the
point q=0 we have D(q=0)=f(aQ), where the value
a0=a(<7=0) is fixed by the condition d//da=0, follow-
ing from Eq. (3.26). This means that the fractal dimension
D0 corresponds to the ordinate of the maximum of the
spectral function /(a) (Fig. 24).

We now determine the meaning of the value
Dj=D(q=\). Since the denominator in Eq. (3.29) con-
tains the factor q— 1, great care must be exercised in per-
forming the calculation, because one cannot set immedi-
ately q=\. Taking q— 1 +8, <5-»0, we rewrite the definition
(3.29) in the form

6-0,
/-o

Writing the chain of obvious relations
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FIG. 24. Diagram showing how to determine the dimension D0 of the
geometric carrier set from the spectrum of the multifractal.8

= £/»,( 1+6 In P,)-

where the normalization condition

is taken into account, we arrive at the expression

where

£=-!>,• In/3,

(3.41)

(3.42)

is the ordinary entropy.34 If the iteration process for the set
under study reduces to having the segments in steps, then
the elementary length /„=(1/2)", and Eq. (3.41) assumes
the form

>i =s/ln 2 (3.43)

where s=S/n is the entropy per iteration. Since the de-
nominator represents 1 bit = In 2 of information, it can be
concluded that the fractal dimension Z), , corresponding to
the parameter q=\, reduces to the information entropy.

In order to obtain a geometric interpretation of the
dimension Z>] we set q= 1+6, 5-»0, in the definition
(3.31):

(3.44)

where a=a(q=\), a'=da/dq\q=l, /'(a)=d//
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FIG. 25. Diagram showing how to determine the information entropy
from the spectrum of the multifractal.8

In order to prevent the expression (3.44) from diverg-
ing in the limit 8->Q we set

a(q=l)=f(a(q=l)). (3.45)

On the other hand, the second term in Eq. (3.44) also
disappears, since, by virtue of Eq. (3.26),

d/
da

= 1.
a=a(?=l)

As a result, we obtain

(3.46)

1). (3.47)

According to Eqs. (3.45)-(3.47), in order to determine
the dimension D\ we must construct the tangent to the plot
of/(a), passing through the origin (Fig. 25). Then the
abscissa and ordinate of the point of tangency determine

A-
The fractal dimension D2=D(q=2) is important. It

determines the behavior of the correlation function5}

(p(r+r')p(r'))
(3.48)

where the fact that the dimension d of the physical space
reduces to the fractal dimension D0 has been taken into
account; p ( r ) is the coordinate distribution of the particle
density; and, the brackets indicate averaging over the frac-
tal set. The physical meaning of the function (3.48) is that
this function determines the conditional probability that a
particle has the coordinate r'+r if another particle is lo-
cated at the point r'. It is easy to show that the Fourier
transform of the function (3.48) has the form S(k)
<x k~°T- and thus it reduces to the distribution (2.32) of the
intensity of the transmitted radiation.

In order to determine the exponent D2 we integrate the
function (3.48) over a sphere of radius / centered at the
point r'. The obtained measure

M2(/)oc/I)2 (3.49)

determines the joint probability that both particles are lo-
cated in the sphere. It can be calculated independently by
partitioning the entire space into N spheres of radius / and
taking into account the fact that the probability that two
particles are simultaneously present in the rth sphere is Pj.

arfm)

FIG. 26. Diagram showing how to determine the dimension Dm of the
exponent т of the partial correlation function.

Then, summing over all spheres, we obtain the desired
quantity Af2(l), which, evidently, reduces to the general
definition of measure (3.21) with q =2. Comparing the
result (3.49) obtained above to the expression (3.30) gives
the equality D2=D(q=2), indicating that the correlation
exponent Z>2 corresponds to the value q= 2 in the spectral
distribution D(q).

Evidently, the procedure performed above can be ex-
tended to a correlation function of arbitrary order w>2, if
r in an equation of the type (3.48) is the maximum dis-
tance between т particles:

S(ri,r2,...,rJ I П P(rt) }
\ 1=1 /

(3.50)

where /•=max|r,— r;|, i,j = l,...,m. Thus the collection of
exponents Dm, which correspond to integer values q= m,
m=2,3,..., determines the rate at which the w-particle spa-
tial correlations decay.

In order to determine the quantities Dm graphically,
we start from Eq. (3.31) written for q=m:

(m-l)Dm=ma(m)-f(a(m)). (3.51)

Using the condition

m=df/da\a=a(m), (3.52)

following from Eq. (26), we can see that in order to de-
termine Dm we must construct the straight line f=ma,
and then displace it parallel to itself until it is tangent to
the dome of the spectral function /(a). According to Eq.
(3.52) the point of tangency gives a(m), knowing which
we determine from Eq. (3.51) the exponent Dm (Fig. 26).
The decreasing character of the function D(q) (see below)
indicates that the rate of decay of the correlation function
(3.50) increases with increasing order m. In the limit
m-» oo the correlation exponent in Eq. (3.50) reaches the
final value D0—DX, which, as should happen, does not
exceed the dimension D0 of the space itself in which the
correlation is observed.

We now describe the behavior of the function r(q).
Since the values of the parameter a are limited to the pos-
itive values (3.38), it follows from Eq. (3.37) that the
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function r(q) is monotonically increasing (see Fig. 22).
For |?|>1 we can take a(q)~D±x , and integrating the
expression (3.37) gives the linear function

aq, j-.±oo, (3.53)

where C± are constants. The behavior of r(q) for small
values of q is characterized by the fact that т vanishes for
q=\. This result follows from Eq. (3.36), if we take into
account the fact that the dimension D(q) is always finite.
At the point 0=0 we have т= — D0.

Finally, we describe the spectrum of dimensions D(q).
Substituting the relation (3.36) into Eq. (3.37) and per-
forming the differentiation, we obtain, using Eq. (3.31),

dZ> d-f(a)
(3.54)

As one can see from Fig. 25, the first term in the numerator
of Eq. (3.54) as a function of the parameter a is greater
than the second term at all points, except a=a(q=l),
where they become equal to one another. Then, however,
the denominator of Eq. (3.54) also vanishes, so that AD/
d«7<0 always and the function D(q) is monotonically de-
creasing. According to Eqs. (3.36) and (3.53), for large
| q | the dimension D approaches the limiting values D± ж

according to the relation

\q\>\. (3.55)

Correspondingly, for \q\<l Eq. (3.31) yields the linear
function

0). (3.56)

An example of the dimension D(q) is shown in Fig. 23.

3.2. Thermodynamic description of multifractals

In this section we show that the formalism developed
above can be expounded by analogy to the standard appa-
ratus of thermodynamics.34 In Sec. 3.2.1 we consider the
case when the probability P, in Eqs. (3.33) is constant. The
conjugate curdling method in Sec. 3.2.2 will make it pos-
sible to extend the results to an arbitrary distribution P{

over fragments in the set.
3.2.1. Multif racial with constant probability distribution

of the measure
Taking into account the normalization condition

"n

we set in Eq. (3.33)

Pt:=const=N~\ (3.57)

where Nn is the total number of fragments in the set, ob-
tained after и -> oo division steps. Then the condition
Mn(q,r) = l gives

N9

n= 2 l~r- (3.58)
i

This equation can be put into the canonical form by intro-
ducing a parameter of the type inverse temperature

/3= -r

and the analog of the partition function

where the effective energy levels

e=-ln/,

(3.59)

(3.60)

(3.61)

are given by the distribution of lengths /; of the segments in
the set. The thermodynamic potential g=g(/3) for one of
the и iterations has the form

g= — In Z= — In
n n

(3.62)

where g is measured in units of the temperature /? '.
We introduce, in addition, the parameter ^ according

to the equation

Nn=fj,n. (3.63)

Then, using Eq. (3.62), the condition (3.58) gives the ex-
pression

g=—q\nn, (3.64)

where the presence of the logarithm indicates that the pa-
rameter /i is an entropy.

For further clarification, we assume that all segments
of the set at the nth iteration step have identical lengths

determined by the scale

(3.65)

(3.66)

whose magnitude is set by the Lyapunov exponent A. In
order to clarify its thermodynamic meaning, we determine
the partition function (3.60)

Zn=Nnl^=[4ne~^=exp[n(lnn— ДА)], (3.67)

where Eqs. (3.63), (3.65), and (3.66) are taken into ac-
count. Substituting Eq. (3.67) into Eq. (3.62) we obtain
the following expression for the specific free energy:

g=j3A — ln^. (3.68)

This reduces to the standard definition G=E—TS, if the
quantity (n/(i)g is taken to be the total free energy G and
the quantity E=nA. is taken to be the energy, and finally
the entropy is

S=ns, s=ln/i. (3.69)

Thus the fractal set can be described in thermody-
namic language, if it is assumed that the number of itera-
tions n -> oo plays the role of the number of particles, the
parameter /3 is the inverse temperature, the Lagrange mul-
tiplier A is the specific energy, and i is the entropy. Their
values are determined by Eqs. (3.59), (3.66), and (3.69),
and the energy spectrum e, is given by the distribution of
the segment lengths (3.61). In this approach the quantity
j8 is a free parameter, and the equation of state establishes
the function g((3). Using the thermodynamic identity
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A=dg/dJ3, (3.70)

we can switch from the parameter /? to the conjugate field
A.34 Then Eqs. (3.68) and (3.69) give the expression

g'=dg/d!3 (3.71)

for the entropy, whose value is determined by the energy A.
In order to establish the relation between the geometric

and thermodynamic approaches the quantities т, q, a, f,
and D, introduced in Sec. 3.1, must be expressed in terms
of the parameters /3 and g employed here. The definition of
the first parameter т is given by the identity (3.59). The
expression for the second quantity

(3.72)

follows from Eqs. (64), (69), and (71).
For the exponent a we obtain from Eq. (3.47), using

Eqs. (3.63), (3.69), (3.65), and (3.66), Р„=#л. Compar-
ing this result to the definition (3.20) we arrive at the
desired equality

where Eqs. (3.70) and (3.71) are taken into account. Us-
ing the definition (3.20) and (3.23) it is easy to see that the
condition (3.57) means that

<*=f, (3.74)

so that Eq. (3.73) also gives /. On the other hand, substi-
tuting Eq. (3.74) into the definition (3.31) we arrive at the
last of the required geometric characteristics:

Z>=/=o=0- (3.75)

where Eq. (3.73) is taken into account.
3.2.2. Thermodynamic description of a multifractal on

the basis of the curdling method
A well-known feature of the thermodynamic scheme is

that a dual representation of the system is possible—
depending on the character of the external condition,
within one approach the temperature dependence can be
studied and within the conjugate approach the entropy de-
pendence can be studied (in the first case the thermody-
namic potential is the Gibbs or Helmholtz free energy and
in the second case the thermodynamic potential is the in-
ternal energy or enthalpy).34 Obviously, such a situation
can be expected in our case also: in Sec. 3.2.1 the indepen-
dent parameter reduced to the inverse temperature /3,
whereas here the independent parameter is the energy A,
which, according to Eq. (3.70), is the conjugate field with
respect to the parameter /?. The equation (3.70) itself
makes it possible to find, for a given value of A, the param-
eter /?(A), substituting which into the relations (3.71)-
(3.75) will lead to their expression in terms of the energy
A. In so doing, the entropy s(A) as a function of the energy
must play the role of the equation of state, replacing the
relation g((3) employed above.

With regards to the geometric aspect of the approach
expounded, it should be noted that in Sec. 3.2.1 the prob-
ability Pj of filling the fragments was assumed to be con-

stant and the dependence of the measure (3.67) on the
character of the distribution of fragments, determined by
the inverse temperature /?, was investigated. The measure
determined the free energy (3.62). In the present section,
we employ the conjugate curdling method, in which impo-
sition of the condition r=0 in Eq. (3.33) leads to a uni-
form distribution of fragments, and the probability distri-
bution is postulated in the form

Pi=Z-*$, (3.76)

where the normalization condition gives the partition func-
tion (3.60). Evidently, here the quantity (3.21) plays the
role of measure.

Using Eqs. (3.20), (3.65), (3.66), and (3.62) we ob-
tain from the definition of the probability (3.76) the basic
thermodynamic relation of the approach employed:

*=A0-s(A), (3.77)

replacing the relation (3.71). From this equation it is easy
to obtain the entire collection т, q, a, f, and D of geomet-
ric characteristics of the multifractal. Since the calculations
employed here are identical to the calculations described in
the preceding section, we present only the results:

(3.78)

a=/=Z>=s(A)/A.

Replacing A with /3 and using the relations (3.70), the
relations (3.78) reduce to the equalities (3.59) and
(3.72)-(3.75). The last expression in Eqs. (3.78) indicates
that on the basis of the thermodynamic approach the dome
of the spectral function /(a), characteristic of the geomet-
ric picture, is straightened (see Fig. 25). However, accord-
ing to the second relation in Eqs. (3.78), the parameter q
then becomes dependent on one of the thermodynamic
quantities A and /3.

3.3. Examples of application of the concept
of a multifractal

In this section it will be shown that the concept of a
multifractal makes it possible to construct a unified picture
of phenomena such as turbulent motion of a liquid and
fatigue fracture of materials (Sec. (3.3.1), formation of
incommensurate structures and quasicrystals [Sec.
(3.3.2)], phase transitions (taking into account critical
fluctuations), and formation of hierarchically coordinated
structures (Sec. 3.3.3). In this exposition we start from
considerations of symmetry of the mapping function, the
successive action of which generates the set of points of the
multifractal set. Thus, Sec. 3.3.1 is based on the use of a
parabolic function, which is the simplest example of a sym-
metric function. Correspondingly, quasiperiodic sequences,
generated by antisymmetric functions, are studied in Sec.
3.3.2. A characteristic feature of the maps employed in
Sees. 3.3.1 and 3.3.2 is that at each step of the generation of
a fractal set only the two closest levels are coupled. In
contrast to this, in Sec. 3.3,3 a non-Markovian chain of
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^•r

<//x/ ч
FIG. 27. a—Construction of the logistic sequence
(3.79). b—Values xt ,x2,...,xn of the coordinates of
the logistic sequence which are given by the inter-
section of the perpendiculars to the axes х„ and
лг„+1 with the parabola (the dashed line indicates
the point of intersection of the parabola with the
bisector).40

7 2 J * 5 К п

linear maps, which couples the three nearest levels, is em-
ployed. Evidently, the Markovian sequence corresponds to
first-order differential equations reflecting dissipation pro-
cesses, while the non-Markovian chains correspond to
second-order equations of the Schrodinger equation type.

3.3.1. Logistic sequence
In the present section we describe processes that can be

represented by a chain of bifurcations, each of which, by
dividing the initial fragment in two pieces (see Fig. 7a),
represents the simplest mechanism of formation of a fractal
set. A well-known example of a physical process that can
be described with the help of a chain of bifurcations is the
transition to turbulent fluid flow by means of period
doubling.37 The reverse process of pairwise merging of mi-
crocracks can be regarded as a possible mechanism of fa-
tigue fracture of solids.13

The simplest relation modeling bifurcation of the co-
ordinate xn+l into a pair of values x^ is the quadratic
function

xn+i = l-ax2

n, (3.79)

which generates a logistics sequence, characterized by the
parameter a. Iterating it with the help of the graphical
procedure shown in Fig. 27a, we obtain the limiting coor-
dinate

x00 = [(l+4a)1/2-l]/2a. (3.80)

A plot of the iteration process is shown in Fig. 27b. The
value of the parameter a is chosen so that the iteration
process would be similar. This means that the form of the
function (3.70) must not change on passing from n+1 to

In order to determine the value of a we point out that
the initial equation (3.79) has real solutions xn+l=xn for
a^A ] , where A : is given by the condition dxn+ \/dxn = — 1 .
Hence we find ^4j = 3/4. In order to determine the next
value A2 we iterate the map (3.79) twice. It is easy to see
that, to within quadratic terms in xn, the function
xn+2(xn) obtained can be put into the form (3.79), by
making the scale transformation

xn-+(\-a)xn
(3.81)

Repeating this operation / times we arrive at a series of
successive maps of the form (3.79):

) . (3.82)

As a result we obtain the chain of equations

Л, = 9(Л2), А2=(р(Аъ),..., Aj^^Aj) (3.83)

for determining the limiting parameter A x . A graphical
solution of this chain is obtained by the construction
shown in Fig. 28. Using the definition (3.81), we find the
limiting value Ax = (l+\/5)/2zsl.37. It is evident from
the chain of equations (3.83) that as /-» oo we can write

(3.84)

Using Eq. (3.81), we obtain hence the limiting value
6s600=4+V3^5,73. Thus the condition of self-similarity
of the logistic sequence requires that its parameter assume
at the step /-»oo a value a not less than Ah varying ac-
cording to the law

Ax-A,ocS'=ennS. (3.85)

The analytical procedure presented above for studying
the logistic sequence reflects the basic characteristics of the
process—the presence of a chain of bifurcations, occurring
for different values of Ah and the similarity property, char-
acterized by the exponent In 5. For all its convenience,

А. Аю

FIG. 28. Graphical solution of the chain of equations (3.83) for the
parameter a of the logistic sequence [the function <p(a) is given by Eq.
(3.81)].37
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FIG. 29. The spectrum of fractal dimen-
sions (a) and the spectral function (b)
for a multifractal set generated by the lo-
gistics sequence.10

O,2 0,4 О,в О,в a

however, this procedure gives only approximate values of 6
and A x . This is evidently connected with the fact that the
terms **, k>2, are dropped when the map (3.79) is iter-
ated. The exact values obtained by repeated iteration on a
computer are38

5=4.669, Л =1.401. (3.86)

In Ref. 10 a set of values of xt, obtained as a result of
11 iterations of the logistic sequence (3.79) with the pa-
rameter a=Ax , was investigated numerically. To this end,
the measure (3.33) was calculated, and the function r(q)
was then found from the condition Mu(r,q) = l. Hence
the functions D(q) and /(a), presented in Fig. 29, were
obtained using the relations (3.35)-(3.37). It was found
that the spectrum of fractal dimensions is bounded by the
values

Л =0.378, D_n =0.756, (3.87)

which are related by the relation D_X/DX=2. Using the
definition (2.11), where for the bifurcation parameter
7=2, we see that for q= ± oo the scale factor
£- oo =Av -1» £«, = U«, -1 )2- In other words, if in divid-
ing the initial fragment the scale / is obtained, then the
logistic sequence generates a multifractal also containing
the scale /1/2. The first one corresponds to the densest re-
gion of the fractal set, lying near the apex of the parabola
(3.79). On shifting to rarefied regions near the points
*„=0 and 1,-the quadratic function х„+1(х„) becomes a
linear function, and this is what leads to the appearance of
the square root £1/2. We shall use this fact extensively be-
low.

The description presented above was of a geometric
character. We now describe the corresponding formalism.
To this end, just as in Sec. 3.2.1, we assume that the prob-
ability PI of realization of measure on the /th fragment is a
constant. Then it is easy to see that for the logistic se-
quence (3.79) the probability density must have the form

~fv\ ~ — l r » - M v ^ l — 1 / 2 (1 SQ\p\X)^TT [X\l—X)\ , (j.oo)

where the factor ir~l takes into account the normalization
condition. On a qualitative level this is evident from Fig.
30, which displays the distribution of the coordinates x. In
accordance with the distribution (3.88), the branches of
the bifurcation chain bunch up on the limits of the interval
[0,1]. If the fragments [0,/], [1— 7,1] of length 7-0 are sep-
arated here, then according to Eq. (3.88) the probability of
realization of each of them is

= Г р(х)йх^тг-1 Г х-шйх=(2/тт)1ш. (3.89)
Jo Jo

For the segment /,, lying in the interval [1,1—1], we have,
correspondingly,

I'Cxi+li
,=

JX

(3.90)

By virtue of the equally probable character of the distribu-
tion P,=P0.

 and ЕЧ8- (3.89) and (3.90) lead to the fol-
lowing distribution of the segment lengths

7 Л /1/2 Г Y M V ^ 1 ^/^ ( Ч 91 ^

according to which the minimum values 7, are realized at
the limits of the interval [0,1], and the maximum values are
realized at the center.

This result is easy to imagine, if the values of x/ are
taken to be the coordinates of the nodes of the Cayley tree
corresponding to the logistics chain of bifurcations (see
Fig. 30). Then the lengths /, reduce to the distance between
the nodes / and /+1.6) It is evident from Fig. 7 that if
neighboring nodes of the Cayley tree are located at the
periphery of the tree, then their nearest ancestor is not
significantly removed from them, and at the center it ap-
proaches the vertex of the tree. This means that the dis-
tances 7,- increase as the coordinate x, of a node approaches

7

x

1 0,5 0, 25 70-* 0, DS 0,025 10-* 0, DOS 0, 002S

FIG. 30. Chain of bifurcations generated by the logistic sequence (3.79)
(the values of the control parameter a are plotted along the abscissa; the
vertical lines correspond to the critical values of А„).ю
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the center of the segment of the ultrametric space corre-
sponding to the initial interval [0,1] in ordinary space. It is
this behavior that is provided by the distribution of lengths
(3.91). Since it follows from the probability distribution
p(x), the indicated correspondence justifies the choice of
the function (3.88). On the other hand, and more impor-
tantly, we can draw the following conclusion: In order to
switch from the analytic description of the sequence of
reflections of the type (3.79), which gives the coordinates
х, of the set obtained in ordinary space, to the geometric
representation, determined by the distribution of the
lengths /, of the elementary fragments, it is necessary to
switch from the ordinary space to the ultrametric space. As
shown in Sec. 2.1.2, this transition is achieved formally by
switching from the ordinary decimal representation of the
numbers xt [with the help of the series expansion (2.13) ] to
a y'-adic system, where in the continuous space x we pass to
the limit j -»oo. Since the system of computer computa-
tion, where j = 2, is based on such a transformation, it is
easy to understand why computer modeling is the main
tool for investigating different maps.

In order to achieve a comprehensive representation of
the logistic sequence (3.79) it is necessary to construct a
thermodynamic description, the scheme of which is devel-
oped in Sec. 3.2. First we employ the approach (see Sec.
3.2.1) in which the free parameter is the inverse tempera-
ture P. The value of /? determines the thermodynamic po-
tential g=g(&), and the entropy 5 and energy A are as-
sumed to be given.

In order to determine the function g(/3) the distribu-
tion of lengths (3.91) must be substituted into the defini-
tion (3.62). The expression obtained in so doing reduces
to a nonanalytic ratio of у functions F(l+j3/2)/
F(3/2+/3/2).39 It is more convenient to use a simplified
scheme in which the continuous distribution of segment
lengths (3.91) is replaced by a two-scale approximation.
On the basis of the arguments presented after Eqs. (3.87),
we assume that at the nth step of the logistics map (3.79)
the entire set separates into two classes of fragments, whose
lengths are /„ = £" and ll

n
/2 = ̂ n/2, and the number of frag-

ments in each class is 2"~1~2", where л-»оо. Then the
partition function (3.60) is estimated to be

(3.92)

where the first term is determined by the contribution of
short lengths /,, corresponding to the edges of the interval
[0,1], and the second term is determined by the inner part
of this interval. Substituting the exact distribution (3.91)
into Eq. (3.60) shows that the ends of the interval can
make a determining contribution only for significant neg-
ative values of the parameter /?. For this reason, it is more
natural to put the estimate (3.92) into the form

(3.93)for0>-2,

gence of the exact expression Z(/?) <x (Г(1+/?/2))л. Sub-
stituting Eq. (3.93) into Eq. (3.62), we find an estimate of
the thermodynamic potential

~A0-ln2 forj8<-2,

(A/2)/?-In 2 for/?>-2. (3.94)

The entropy (3.71) then assumes the characteristic value
s=ln2, and the definition (3.75) leads to the following
geometric characteristics:

D=f=a~\n 2/A for /3< -2,

~ln2/(A/2) for/3>-2. (3-95)

Thus the two-scale approximation of the distribution
(3.91) gives, instead of a continuous set of values of D, f,
and a, two discrete values, corresponding to the limits
q = ± oo. Taking into account the existence of a break in
the temperature dependence (3.94) of the potential g(/3), a
jump in the fractal dimension (3.95) can be interpreted as
a unique first-order phase transition, indicating bunching
up of the fractal at the point /?= — 2. As the functions
D(q) and /(a) in Fig. 29 show, this transition is actually
not sharp, but diffuse. This means that the real multifractal
reduces to a continuous set of monofractals with the pair
(3.95), corresponding to the limits of the spectrum /(a).

Finally, we determine the quantities /, a, and D
within the conjugate approach, where the energy A. is an
independent parameter, determining the entropy s(A), and
the quantities /? and g(f)) are given (see Sec. 3.2.2). Inte-
grating the relation (3.70), we obtain the result g=/3A
+ const, substituting which into Eq. (3.77) gives, as above,
the constant value s(A) = — const = In 2. On the other
hand, the two-scale model adopted means that the energy
domain is exhausted by the values A and A/2. Then the
latter equality (3.78) leads, as should happen, to the spec-
trum (3.95). The second equality in Eq. (3.78) in turn
gives the parameter q as a function of the energy A:

for/3<-2,

forj8>-2.
(3.96)

3.3.2. Quasiperiodic sequencies. In the preceding sec-
tion we studied for the example of the simplest parabolic
function the class of symmetric maps

xn+i=a+xn+f(xn), (3.97)

where the relations (3.65) and (3.66) were used, and the
critical temperature /?c=—2 is determined by the diver-

whose generating function has the property f ( x )
=f(—x), a = const. In this section we investigate anti-
symmetric sequences: f ( x ) = —/(—x). Since an arbitrary
function can be represented as a superposition of symmet-
ric and antisymmetric components, it can be expected that,
together with the results of Sec. 3.3.1, such an analysis
exhausts the description of possible features of multifractal
sets generated by chains of bifurcations.

Another feature of the generating function f ( x ) that
makes this function exceedingly important in applications
to condensed-matter physics is the condition of irrational-
ity of the ratio Q=l/fe< 1 of the length of the interval
[0,1], on which the values of x are defined, to the period
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FIG. 31. Scale transformation for a quasiperiodic sequence of atoms of two types (the initial periods a and b are shown at the top; the values of the
periods reduced by a factor of т are shown at the bottom).11

b>\ of the function f(x)=f(x+b). Physically this
means that the characteristic scale b of the response func-
tion f(x) is incommensurable to the initial scale 1 of the
action of x on a given system.7' A classical example of such
a situation is the mechanism of appearance of turbulence,
in which each bifurcation corresponds to a transformation
of a circular trajectory of fluid flow into quasiperiodic mo-
tion on the surface of a torus, formed by "swelling" of the
initial circle.37

In solid state physics this situation arises in the study
of long-period structures, whose period b is incommensu-
rable to the period a of the initial lattice. On the basis of
the simplest FrenkeF-Kontorova model the map (3.97),
which takes into account the main features of the behavior
of incommensurable structures,41 assumes the form

хп=(п + а)а-(К/2тт)$т[21гп(а/Ь)+р], (3.98)

where и=0,1,... is a series of integers, and a and b are
periods, whose ratio ft=a/6<l is an irrational number;
the constants a and f) play the role of initial phases of the
short-period distribution and its long-period components;
and, AT is a coupling constant.

A nontrivial extension of the periodic sequence
xn=(n+a)a, having period a, is obtained if the integer
part [x] of the variable x (or its fractional part {x}=x
— [x]) is taken as the generating function f(x) in the map
(3.97). Then the quasiperiodic sequence obtained has the
form11

х„= (п+а)а+ [ (и/ст) +/3] (a/p), (3.99)

where a and /3 are the initial phases, and p and a are
positive irrational numbers. A characteristic feature of this
sequence is that the distances &х„=х„—х„_^ between
nearest neighbors can assume only two values

Ддс„=а for

=b for
(3.100)

where the period b, irrational with respect to the initial
period a, is set by the parameter p according to the equa-
tion b=(l + p~l)a. On the other hand, it is easy to show
by direct calculation that for each value of и for which the
upper condition (3.100) holds there are, on the average,
(7— 1 values of л satisfying the lower condition. Thus the
quantity 1— <r~l determines the frequency of appearance
of the period b.

Given arbitrary irrational values of the parameters a
and p it is easy to construct a sequence of segments a and
b corresponding to Eq. (3.99). The most important feature
of this sequence is that without the periodicity property it,

by definition (3.99), is not random. By varying the param-
eters p and a it is possible to obtain any irrational values of
the ratio of the periods b/a=l + p~l and frequencies of
appearance of the long period 1 — a"1. From this set, cor-
responding to different values of p and a, we can separate
a Fibonacci sequence, which has the property of self-
similarity. As explained in Sec. 2.1.1, only such a set ex-
hibits fractal properties, and we must determine next the
values of p and a which give these conditions.

They mean, first, that by a simple scale change the
Fibonacci sequence can be transformed into a self-similar
sequence. For example, by decreasing the periods a and b
it is possible to obtain a situation when the length of the
period b of the initial sequence transforms into the set of
segments a+b and the short period a transforms into b
(Fig. 31). This is achieved under the condition

a+b b'

which, substituting the relation
the form of a quadratic equation

=(l + p~l)a, assumes

(3.101)

Thus local self-similarity is achieved for values of the scale
factor p equal to the so-called golden mean8'

л/5+l
т=-Ц—= 1-618. (3.102)

In addition, the segments a and b must make the same
contribution to the total length of the sequence. Evidently,
this requires that the average lengths a/a and 6(1—a"1)
of these segments, alternating with frequency cr"1 and
1 —ст"1, must be equal. From Eq. (3.101) we can see that
this condition is satisfied with the frequency factor a=r.
As a result, the Fibonacci sequence, following from Eq.
(3.99), assumes the form

*„= (n+a)a+ [ (и/т) +0] (a/r). (3.103)

This sequence was first obtained by the Pisan mathe-
matician Leonardo Fibonacci, who was studying the fol-
lowing graphic situation. Let an adult rabbit a give birth
each year to a rabbit b, which during the year reaches
reproductive age and transforms from b to a, and then
bears progeny similar to his ancestor. Then the chain of
multiplication of rabbits can be represented by the Cayley
tree presented in Fig. 8. It is evident from Fig. 8 that at
each level n one observes an aperiodic sequence

abaababaabaab..., (3.104)
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whose length Nn is determined by the Fibonacci numbers
Fn. The first few numbers are: F0=0, Рг=1, F2=\,
Fj=2, /V=3, Fs=5, ^=8, F7=13,... . It is easy to see
that the entire collection {Fn} can be obtained from the
rule

Fn=Fn_l+Fn_2. (3.105)

On the other hand, the pair of nearest Fibonacci numbers
is related by the relation

as • oo, (3.106)

substituting which into Eq. (3.105) leads to Eq. (3.101),
giving the golden mean (3.102). Writing out the sequence
of ratios (3.106) from a given value n> 1 down to n = 1 and
eliminating the numbers Fn_l, Fn_2,...,F2, it is easy to
obtain the equality

Рп~т", n-x», (3.107)

determining the fractal dimension of the Fibonacci se-
quence. Indeed, since Fn is the number of points of the set
Nn, we obtain, taking into account the definition (3.63) for
the entropy s=ln/i, s=lnr. Substituting this value into
the last equality in Eq. (3.78), taking into consideration
the definition (3.66) for the energy A, we find

/>=1пт/1п£~'. (3.108)

Since the length £ actually reduces to the scale factor in Eq.
(2.11), the equation (3.108) obtained above and this for-
mula must be identical. Therefore the golden mean (3.102)
determines the effective branching ratio j = rof the Fibon-
acci tree (see Fig. 8).

By going through the values и=0,1,... in the relation
(3.103) it can be shown that it generates the Fibonacci
sequence (3.104) of alternating segments of lengths a and
b. The form of the corresponding hierarchical tree, pre-
sented in Fig. 8, predicts that at the nth step the sequence
(3.103) can be obtained by operating n times with the
operator

1 1

1 0
(3.109)

on the column vector, constructed from the segments a and
b, as projections:

(3.110)

Evidently, the operator (3.109) is the generator of a new
level of the hierarchical Fibonacci tree.

In the last ten years it was discovered that the sequence
(3.103) is not only a curious mathematical construct, but
it is also realized in nature in the alternation of atoms of a
quasicrystal along a distinguished direction.'' Such a series
is most simply modeled as a projection of the nearest nodes
of a rectangular grid with sides a,b=ra on a straight line,
making an angle of 45° with respect to the axes (Fig. 32).
From this construction it is evident, in particular, that in
the reciprocal space the sequence (3.103) is a superposi-
tion of wave vectors which are multiples of the periods
ITT/a and 2-rr/b, 6/0 = т, each of which corresponds to the

t
У

FIG. 32. Diagram showing how to construct the one-dimensional quasip-
eriodic sequence by the method of projection of the nodes of a rectangular
lattice (the nodes lying between the parallel lines, separated along the у
axis with period b, are projected)."

projection of one of the lattice axes on the distinguished
direction. Thus the points of the reciprocal space of a one-
dimensional quasicrystal are given by the equation

2tr/a
(3.111)

where / and т are integers. We shall show that from their
set the values l=Fn and m=Fn_l, determined by the Fi-
bonacci numbers, are distinguished.

To this end, we rewrite Eq. (3.103) in the form

д:„=(1+т-2)/ш-{(1+т-2)л/д/5}(а/т); (3.112)

here we introduce the fractional part {x}=x — [x] of the
number x; the phases a and /3 are assumed to be zero; and,
the fact that т(1+т~2) = V5 was used. The form (3.112) is
more convenient than the form (3.103) in the sense that
the coordinate xn is represented as a sum of the sequence
(1 + т~2)па = ^/5и(а/т) with period a/rand a periodic
function (subtracted) with period a. Since the Fourier rep-
resentation of periodic functions reduces to a collection of
delta-like functions, taken at the points of the reciprocal
space (3. 1 1 1 ), we can write the amplitudes / of scattering
of penetrating radiation with wave vector k by the quasic-
rystal as

N

flm=\imN
n=0

exp(-rg;mxn).

(3-113)

(3.114)

In order to calculate the form factor f/m we rewrite the
argument of the exponential inEq. (3.114), regrouping the
terms in the series (3.112) and using the definition
(3.111):
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FIG. 33. Devil's staircase, reflecting mode-locking for the quasiperiodic sequence (3.119) (the ratio of the characteristic frequency of the system to the
response frequency is plotted along the ordinate: the ratio of the characteristic frequency to the frequency of the external field is plotted along the
abscissa).10

n = 2ir(ln+m[n/r]) + (2irm-(gtm/T)){n/T}.

(3.115)

Since the first term is a multiple of 2тг, it can be dropped,
and when calculating the contribution to Eq. (3.114) cor-
responding to the second term (3.115), it is necessary to
take into account the fact that as n varies, the fractional
function {п/т} uniformly fills the interval [0,1]. For this
reason the sum N~*I.n in Eq. (3.114) can be replaced by
an integral over this interval, as a result of which we obtain

= exp(-/<p/mx)dx

sin(y/m/2)
exp(-/<p/m/2), (3.116)

where we have introduced the characteristic phase

T-l). (3.117)

The interference function (3.116) assumes maximum val-
ues near the phase <pim=0. Then it follows from the ex-
pression (3.117) that the indices / and m, determining the
coordinates (3.111) of points in the reciprocal space must
be related by the relation 1/т=т, which reduces to
(3.106). It can thus be concluded that the maxima of the
diffraction pattern of the quasicrystal correspond to points
of the reciprocal space

_ — -

_ _, Ip -). "~M~—р„,
1+T \ т ) a

where the second equality was written out for large values
of n. In contrast to the diffraction pattern of an ordinary
crystal, where the reflections are arranged strictly period-
ically, here their position is completely aperiodic, though
regular.

We now discuss the more general maps

х„+1=х„+а- (К/2тг)$т(21тх„),

where, for simplicity, the period a is taken to be one. In
comparison to the similar relation (3.98), representing a
map of a periodic sequence na into a quasiperiodic se-
quence х„, here there is only the stochastic variable

1, whose values х„ and xn+l at the nearest levels are
related by Eq. (3.119). For transcritical values of the cou-
pling parameter K> 1 the right-hand side of Eq. (3.119)
becomes a nonmonotonic function of х„; this means that
bifurcations appear and therefore chaos is possible. Bearing
this circumstance in mind, we assume below that the cou-
pling constant has the critical value Ke= 1.

We consider first the appearance of mode-locking,37

corresponding to the map (3.119). It consists of the fact
that if a field with frequency o>i acts on the system having
a characteristic frequency co0, then as the ratio
а=й>о/й)] < 1 changes, the frequency со of the response will
not change continuously but rather in a manner so that the
ratio ft=u)o/u><! assumes a series of rational values.9' As
one can see from the corresponding devil's staircase in Fig.
33, the interval of the seed frequency co{, in which the
response frequency со is locked with the characteristic fre-
quency COQ by fixing the rational number ft=COQ/CO, will be
all the wider the "better" this number is: The widest steps
correspond to values ft=0,1; then follow steps with
ft =1/2, then the pair with ft =1/3, 2/3, and so on. Ac-
cording to Ref. 10 the devil's staircase in Fig. 33 is con-
structed so that its steps are distributed most sparsely near
the values of ft corresponding to the inverse Fibonacci

(3.118) numbers F~l [see Eq. (3.107)] and most densely near the
values П = 1/л, л = 1,2,..., corresponding to a harmonic
sequence. In application to spatial structures, where the
parameter £l=k/k0=a/b<,\ determines the ratio of the
short period a to the long period ft,10' this fact explains
why, on the one hand, quasicrystals, whose characteristic
wave numbers k are given by the values (3.118) propor-
tional to the Fibonacci numbers, are so rarely realized, and
on the other why «-type long-period structures with wave

(3.119) numbers
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FIG. 34. Spectrum of fractal dimensions (a)
and spectral function (b) for a multifractal set
of mode-locked frequencies corresponding to the
sequence (3.119).10

kn=ko/n=2ir/na, n = 2,3,...

are encountered so often. In other words, the spatiotempo-
ral structure obtained as a result of the external action,
prescribed by the parameters eol and k, on the initial struc-
ture, characterized by the scales ы0 and &0, is a (d+l)-
dimensional multifractal, whose free parameters reduce to
the set of ratios ft=u>oAy; П,-=Л/Л0, /= 1 d. The Fibon-
acci sequence studied above and the harmonic sequence are
limiting sets among all monofractals forming the given
multifractal.

The foregoing analysis was based on numerical inves-
tigation of the devil's staircase on a set containing 2",
n= 10, values of the parameters a and ft. The differences
Да, and ДП,- were measured for each pair / of nearest
points. Since the first differences determine the distances /,
between the points of the set and the second differences
determine the probabilities Pt of the realization of measure
on them, substituting Да, and ДП, into the definition
(3.33) we find from the condition Mn(r,g) = l the spec-
trum of fractal dimensions D(q) presented in Fig. 34. Its
upper limit Z>_M= 0.924 corresponds to the Fibonacci se-
quence, for which, according to Refs. 42 and 43, the ele-
mentary length 1„~Р~ь~т~п& is determined by the pa-
rameter 6^2.164 and the probability has the form

Я+1

where the estimate (3.107) is taken into account. The last
equality of Eq. (3.78) shows that for the given monofractal
the dimension D_ x reduces to the exponent a in the def-
inition (3.20):

Using this relation we find

D_x = 2/6 =0.924.

As far as the lower limit D^ is concerned, it corre-
sponds to the harmonic sequence for which, according to
Ref. 44, the relation Pn^l\/2 is realized. Then Eq. (3.122)
means that

D=\/2.

(3.120) The spectral function /(a), determined from the con-
dition Mn(q) = \ for the measure (3.22), has the form
shown in Fig. 34. Compared to the corresponding function
in Fig. 29 for the logistic sequence (see Sec. 3.3.1), the
strong asymmetry of the spectrum /(a) is interesting. The
gentle slope, bounded by the value Dx, corresponding to
the harmonic sequence, indicates the large content, already
mentioned above, of the long-period structures compared
to quasiperiodic structures, which correspond to a sparse
upper end of the spectrum D_ ж .

In conclusion, we now consider the multifractal set
generated by the map (3.119) with the critical coupling
K= 1 and response frequency со corresponding to the
golden mean «BO/OSП = т~1.и' Using the numerical pro-
cedure of Ref. 10, an initial value of the phase xl was
chosen, and then the series of values л,-1', i=l,2,...,Fl7 of
the initial level n = 1 on the set of points /', whose number
is equal to the Fibonacci number /1

]7=2584, was deter-
mined from Eq. (3.119). It was assumed that these points
are equally probable: P,-=Fn1. As far as the elementary
lengths /, are concerned, since the frequency with which
the new level of iteration n appears is bounded by the
condition U)=T (we use the characteristic frequency
UJQ= 1), for the nearest levels we have x\n+ ° =x\^r and on
iteration the distance /" must be determined by the equa-
tion I" = jtjjV,, - *,-П. РП-Т", n - <*> (in Ref. 10 the value
n= 16 was reached). The measures (3.22) and (3.33) were
found on the basis of the distributions Pt and I" obtained,
and the functions D(q) and /(a), characterizing the mul-
tifractal set, were calculated from the condition that the
measures are equal to one. The form of these functions is
shown in Fig. 35.

(3.122) On a qualitative level the basic features of the functions
D(q) and /(a) can be determined by analogy to the de-
scription of the logistic sequence (3.79) at the beginning of

(3.123) Sec. 3.3.1. It is evident from the plot of the function
(3.119), presented in Fig. 36, that the region where the
values of xn+\ are most sparse is concentrated near the
point xn= 1/4, wherexn + l~a+ (2^/3)^. Thus the tran-
sition from the maximally rarefied fractal to the maximally
bunched fractal corresponds to transformation of the linear

(3.124) function xn+1 (*„) into a cubic function, in connection with

(3.121)
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FIG. 35. Spectrum of fractal di-
mensions (a) and the spectral func-
tion (b) for a multifractal set of
mode-locked phases corresponding
to the sequence (3.119).10

which the role of the scale factor switches from £ to £3.
According to the relation (3.108) this gives a minimum
dimension .0^=0.633 three times smaller than the maxi-
mum dimension Z>_ x = 1.898. It is evident from the plot of
the spectral function in Fig. 35 that in contrast to the
mode-locking picture the rarefied Fibonacci sequences
make the greatest contribution to the formation of the mul-
tifractal. This fact can be trivially explained if it is assumed
that the density of points of the multifractal set is approx-
imately constant: the sparser the distribution of the monof-
ractal points, the more such points are required in order to
form the resulting multifractal.

3.3.3. Multifractal representation of nonergodic systems
It is well known that experimentally measured macro-

scopic quantities are time averages, while the theory gives
averages over a statistical ensemble of microscopic states,
simulating real states at different times. Since in ergodic
systems all microscopic states are in principle reachable,
the two types of averages can be identified with one an-
other, and this is what makes it possible to compare exper-
imentally observed and theoretically determined macro-
scopic quantities.

In the last few decades, however, interest in disordered
systems has increased. Typical examples of disordered sys-
tems are Anderson's model45 for the transition of a charge

FIG. 36. Plot of the function (3.119) corresponding to a quasiperiodic
sequence (the initial phase a=0.1; the coupling constant K=0.3ir).

carrier from the localized into a delocalized state and the
model of quenched disorder for spin-glass systems (see
Ref. 18). A characteristic feature of disordered systems is
the hierarchical distribution of microscopic variables:
Thus, for example, in a spin glass, on the one hand, a
collection of ordinary (hot) variables is realized, the role
of which play the spins a,= ± 1, distributed over sites / in
accordance with the temperature T; on the other hand, a
superensemble of cold variables, describing frozen distri-
butions {/} and {h} of overlap integrals / of wave func-
tions of the nearest sites and the fields h, exerted by the
external medium, is superposed on this distribution. The
different nature of hot and cold variables is expressed in the
fact that the change in temperature Т affects the distribu-
tion of the former and has no effect at all on the latter
quantities. Evidently, such a situation can be realized only
for the case of strongly nonequilibrium systems, in whose
state space the regions corresponding to different sets {./}
and {h} of cold variables are separated by barriers of
height g> Т.

Thus it can be concluded that separating the variables
of a disordered system into hot and cold results, on the one
hand, in nonequilibrium and, on the other hand, noner-
godicity. Obviously, comparing physically observable
quantities to the statistical theory is a very nontrivial prob-
lem. This nontriviality is associated with the complicated
character of the separation of the state space into many
regions in which the real values of the microscopic vari-
ables are concentrated. It will be shown below that the
super-ensemble of these regions forms a multifractal set.

The relative simplicity of Anderson's model is con-
nected with the fact that each region corresponds to a set of
pure quantum states of an electron, which are realized at
zero temperature T. Thus all hot degrees of freedom are
frozen out, and the complete collection of microscopic
variables reduces to the ensemble {h} of fields acting on
the electron. The fractal set is completely deterministic. In
the case T^O, realized, for example, in spin glasses, in-
cluding the hot variables transfers the pure states, corre-
sponding to this region of allowed values, into mixed
states.34 This means, in particular, that the multifractal set
consisting of these regions becomes stochastic—because of
the degeneracy of the system different regions a are real-
ized with different probabilities wa, and averaging over the
corresponding states results in a random set r]a of order
parameters (see Sec. 2.4.2).

Bearing this circumstance in mind, we consider first
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the multifractal set corresponding to Anderson's model.45

To this end we write the Schrodinger equation for a system
of noninteracting electrons with overlapping / of the site
wave functions:

— (zJ/2)i{>"+ fnl>=Ei(>. (3.125)

Here \f> and E are the wave function and energy of the
electron; h is the potential acting on the electron, the mag-
nitude of the potential being distributed randomly in the
interval [— W/2,W/2]; z is the coordination number; the
prime indicates differentiation with respect to the coordi-
nate r, and, the Hartree system of units (#=m = l) is used.
Numerous investigations of Eq. (3.125) have shown45"49

that at the center of the band (E=Q) with a spread of the
potential W<WC, where Wc<zJ is the critical value, the
electron state is delocalized, and the wave function i/»(r)
reduces to a Bloch wave. Correspondingly, for W> Wc it
has the localized form

^~exp( — r/g), (3.126)

where £ is the correlation length, characterized by the val-
ues £~' =0 in the delocalized state and 0 < £~' < oo in the
localized state. Thus the transition into a localized state
can be associated to the appearance of finite values of the
inverse correlation length

у, w=W/Wc-l>Q, (3.127)

where v is the corresponding exponent. Away from the
center of the band £Ц£0 the localization threshold Wc

drops, assuming the value WC=Q at the boundaries
Ec=±zJ. According to Ref. 49 the Anderson transition
can be represented in the mean-field approximation as a
(2+ 6)-order phase transformation, where <5->0 is a cor-
rection corresponding to a logarithmic factor. On the basis
of this approach the width W of the potential plays the role
of the temperature of the cold variable h, and the displace-
ment of E from band center is the field conjugate to the
delocalization parameter. The value of the critical expo-
nent v in Eq. (3.127) turns out to be 1/2.

Thus on the basis of the mean-field approximation for
W> Wc the system can be represented by a collection of
identical clusters of localized states of size ~£<xu;~1/2. In
reality, of course, the situation is not so simple, since even
with w=const a collection of clusters of the most diverse
sizes is realized. This means that the behavior of the system
is determined not by a single value of the critical index v,
but rather by an entire collection of values of v. In order
words, we conjecture that the clusters of localized states
form a multifractal set, whose spectrum determines a series
of possible values of v.

In order to clarify the situation we write Eq. (3.125)
for a one-dimensional lattice model, in which 2=2, and the
second derivative of the wave function if>t at the site / is
determined by the equation ф" = (if>i+i — r/tj) — (if>f

— if>i-\)- Substituting it into Eq. (3.125) and introducing
the random variable y,= —2h/zJ, which lies in the interval
[-W/zJ,W/zJ], and the effective energy e=2[\-(E/
zJ)], defined in the zone 0<£<4, the Schrodinger equation
assumes the form of a second-order map:

eipj. (3.128)

In contrast to previously investigated first-order nonlinear
sequences [see Eqs. (3.79), (3.97)-(3.99), (3.103),
(3.112), and (3.119)] the linear equation (3.128), like the
Fibonacci sequence (3.105), couples not two but three
nearest sites. Introducing the operator Sf and the vector
Ф,-, defined as

S,=
£ — U,

1

-1

0 */= (3.129)

the equation (3.128) can be put into the form of a recur-
sion relation

*,•+,=$,*,.. (3.130)

We also introduce the response to the nth action of the
operator S on the initial function Ф,

where Sp is the trace operator. Being a random number, it
characterizes the moment of order q

>= lim
N-ao

N

(3.132)

Suppose that the eigenvalues of the matrix (3.129)

{[(£-t;)2/4]-l}1/2 (3.133)

after averaging (3.132) correspond to the quantities
exp(— A 1 2 ) . Let the maximum eigenvalue be e~A'. Then
the definition (3.132) can be put into the form

ZB(?);=;exp(— (3.134)

Since the expression (3.131) determines the manner in
which the wave function $i+n decays as n-» oo away from
the initial site i, the obtained result (3.134) means that for
q= — 1 the exponent regime (3.126) is realized with the
correlation

£= |Ai | ~ '<xu;~ v , (3.135)

where the relation (3.127) and the condition A t < 0 (see
below) are taken into account.

From the set-theoretic standpoint, the definition
(3.132) gives a measure of the type (3.60), whose value Zn

determines the analog of the thermodynamic potential

g= — lim (n~ ! In Zn). (3.136)
П —» 00

The simplest approximation (3.134) corresponds to the
linear function

£0>0, (3.137)

comparing which to Eqs. (3.64) and (3.69) shows that, to
within a sign, the exponent A,= — s<0 reduces to the en-
tropy s, determining the increase in information at each
step of the map (3.130). In the general case the measure
(3.132) can be defined by the expression (3.30), compar-
ing which to Eq. (3.136) leads, using Eqs. (3.65) and
(3.66), to the relation

(3.138)
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FIG. 37. Effective potential (a) and spectrum of fractal dimensions (b)
for a set of clusters of localized states in the Anderson model.

where the parameter Я < 0 determines the effective energy
of the set (see Sec. 3.2.1). The equality (3.138) passes into
the linear relation (3.137) only for large values of \ q \ ,
when D(q)zzD±x=A.l/A<xg~l. Since in the delocalized
state |"~'=0, we arrive at an important conclusion: The
lower value of the dimension of the fractal set of clusters of
localized states is

Dx=0. (3.139)

Substituting the upper value 0 < D_ x<d, as expected,
transforms Eq. (3.138) into the linear relation (3.137),
where A 1 =AD_ 0 0 .

In order to determine the function g(q) for moderate
values of the parameter q we approximate the monotoni-
cally decreasing function D(q) by the linear function

D=a~bq, (3.140)

where a and b are positive parameters. Substituting Eq.
(3.140) into Eq. (3.138) gives a parabola with a minimum
at the point q0= (a + b)/2b and curvature 2b. Evidently, it
is this minimum that corresponds to the delocalized state,
in which D=0. It can therefore be inferred that the min-
imum q0= (a+b)/2b is also the point <f*—a/b where the
function (3.140) vanishes, so that a = b, q0=q°=\. As a
result the function Eq. (3.138) assumes the final form

g=-aA(g— I)2, A<0, a>0. (3.141)

Thus the effective thermodynamic potential g(q), rep-
resenting the multifractal set of localized states of an elec-
tron, has the form shown in Fig. 37a. In the interval
( — 00,0*) the function g(q) has a linear section (3.137),
and a break is observed at the point

2a
1- 1—;

l + (gp/gA) 1/2

(3.142)
after which a parabolic law (3.141) is realized in the in-
terval (tf*,l)- Finally, the segment ( l ,oo) corresponds to
the delocalized state in which by definition D(q)=Q, so

that in agreement with Eq. (3.138) and g(q) =0. The spec-
trum of fractal dimensions D(q), corresponding to the
function g(q) is described above, is displayed in Fig. 37b.

As the parameter w = W/ Wc — 1 decreases, the system
shifts into a delocalized state, reflected by a decrease in the
dimension D(q). According to the calculations of Refs. 47
and 48, performed for the band edge e = 4, the parameter in
the functions (3.137) and (3.141) change as follows:

А, оси;172, £0ccw273,

a ecu;273, A=const.

Correspondingly, the maximum dimension

\ (3.144)

(3.145)

and the characteristic value of the exponent q

q* о: ш1/6.

This is expressed as a decrease in the height and rate of
change of the functions g(q) and D(q) in Fig. 37 as the
system approaches the delocalized state. According to the
relation (3.144), for large values of \q\ the function
Dw(q) is characterized by a root singularity, which trans-
forms in the interval (q*,\) into the relation

which follows from Eqs. (3.138), (3.141), and (3.143).
Using Eqs. (3.136) and (3.138) it is easy to see that as

o-»0 the response (3.132) can be put into an exponential
form (3.126), where the node number n-> oo plays the role
of the coordinate r and the correlation length £ is deter-
mined by the equality

As a result Eqs. (3.144) and (3.146) lead to the following
values of the critical exponent v in the expression (3.135)

_ =1/2, v =2/3. (3.148)

Thus the multifractal representation of Anderson's
transition shows that as the "temperature" W changes, an
exponent 2/3, characteristic of the scaling region of the
phase transformation, is realized at the lower limit of the
dimensions D+a>=0 and the exponent 1/2, characteristic
for the mean-field approximation employed far from the
transition point,34 is realized at the upper limit D_x . Ev-
idently, the approximations (3.137) and (3.141) give only
the limiting values (3.148) of the exponent v. The com-
plete spectrum, however, is described by the function v(q)
which increases monotonically between these values, the
main change in v occurring in a quite narrow interval of
values of q, concentrated in the region of small values of q.

In the discussion above we had in mind only the be-
havior of the critical exponent v, determining the temper-
ature dependence (3.135) of the correlation length. It was
shown that rarefaction of the fractal set of localized states,
reflected by a decrease in the dimension D of the set with
increasing parameter q, results in intensification of fluctu-
ations of the delocalized phase, which is what indicates an
increase in the exponent v, resulting in anomalous growth
of the correlation length (3.135). Evidently, this intensifi-
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TABLE II. Values of the critical indices at phase transitions.

--~^Crnical state
Method of -̂ ^_^
determination -~-- ̂ ^

Mean-field theory

Wilson's method

Approximation a. b' = 0

a

0

0,08

0

ft

1/2

0,33

1/3

7

1

1,26

4/3

S

3

4,80

5

e

0

0,05

0

M

1/3

0,40

2/5

V

1/2

0,64

2/3

С

0

0,04

0

Dimension of

the fractal set

£>_oo = Д»в

£ ) „ < £ » < £>_„,

Deo = A»ta

cation of fluctuations will also affect the values of other
critical exponents whose set is determined by the following
temperature-field relations34

C<x W oc ц>

at w = 0.

(3.149)
Here u; is the dimensionless temperature, measured from
the critical point; E is the field conjugate to the localization
parameter 77; с and % are the susceptibilities to the temper-
ature w and field e; £ is the correlation length; S(r) is the
correlation function field rj(r); and, d is the dimension of
the physical space. The values of the critical exponents a,
/3, y, 8, £, ц, v, and f are given in Table II. It is evident that
the entire collection separates into three groups. The first
group consists of the exponents 7, [i, and v (the dynamical
exponent z of Ref. 50 also belongs here), whose values
grow monotonically with increasing q between the limits
indicated in the first and third rows of Table II. As men-
tioned, this growth is due to the anomalous intensification
of fluctuations of the disordered (delocalized) phase; this
intensification is expressed in the decay of the dimension
D(q) of the multifractal set of localized states. It is com-
pletely clear, however, that such fluctuations should result
in a decrease of the localization parameter 17, thanks to
which the values of the corresponding exponents j3 and
1/6, which form the second group, decrease. The third
group consists of the small exponents a, e, and £. Calcu-
lations of their values by Wilson's renormalization group
method51 shows that the critical fluctuations, reflected by
the decay of the function D(q), result only in an insignif-
icant growth of a(q), e(q), and £(<?). Ignoring specific
values, the first and third group of exponents, character-
ized by monotonically increasing functions 7(9), (г(д),
v(q); a(q), e(q), £(<?), can be combined.

Evidently, the results presented above can be extended
to an arbitrary system undergoing a continuous phase tran-
sition. Indeed, although our analysis concerns Anderson's
model, it is easy to see that the conclusions concerning the
behavior of the critical exponents are based only on the
properties of the fractal set of clusters of rarefied states of
the system near the transition point. In other words, the
picture described is realized for a nonergodic system, clus-
ters of whose states form a self-similar set, where scale
invariance is realized.52 As shown in Ref. 53, even for tran-
sitions of the displacement type ergodicity is lost near the
transition point (for a system of the order-disorder type

ergodicity breaks down at the outset35). For this reason, in
the critical region, where scale invariance is realized, all
systems are nonergodic and thus all conditions on which
the picture presented above is based hold.

We now describe a more complicated case, realized in
hierarchically coordinated systems of the spin-glass type
(see Ref. 18). The simplest Hamiltonian of such a system
has the form

N

HN= - (3.150)

where the spins cr,= ± 1 consist of a collection of N-> oo
hot variables, while the randomly distributed values J^ of
the overlap integrals of the sites i and j and the field hi are
the cold variables. Here the partition function

(3.151)

where the averaging is performed over the set {a} of hot
variables with fixed values {J} and {h} of the cold vari-
ables, plays the role of the measure (3.21). The free energy
per spin has the form

\ = -Tlim(N-l\nZn(T;{J},{h})), (3.152)

where the overbar means averaging over the sets {/} and

A characteristic feature of the expression (3.152) is
that the logarithmic function In Z must be averaged, which
is very inconvenient to do. For this reason, using the limit

lnZ=lim (3.153)

Eq. (3.152) is usually rewritten in the form

lim
1

M?
(3.154)

where the averaging is now performed over the powers q of
the partition function Z. This means that in the presence of
quenched disorder, instead of a single statistical ensemble,
a collection of q identical replicas of this ensemble is stud-
ied and the averaging is then performed over this ensemble.
Setting aside questions associated with the breaking of the
symmetry of the replica space in the limit q->0 (see Ref.
18), we point out that physically the existence of the rep-
licas corresponds to partitioning, owing to the nonergodic-
ity, of the state space into isolated regions of allowed values
of the variables (these regions are called states,54 valleys,19

1121 Physics - Uspekhi 36 (12), December 1993 A. I. Olemskoi and A. Ya. Flat 1121



or components55). As already mentioned at the beginning
of this section and in Sec. 2.4.2, they form a stochastic
hierarchically coordinated system of statistical ensembles
realized in each valley.

We show first how the set of such ensembles can be
generated. To this end we employ the one-dimensional
model with overlapping of the nearest sites, for which the
Hamiltonian (3.150) assumes the form

(3-155)

Correspondingly, the partition function (3.151) can be ex-
pressed in the form of a recursion relation of the type
(3.132)

/ N

ZN(T,q;{J},{h}) = ( П
\ 1=1

whose generator has the form

(3.156)

(3.157)

The product of N matrices (3.157), enclosed in the aver-
aging brackets in Eq. (3.156), generates the multifractal
set of statistical ensembles corresponding to different val-
ues of N. Since its points depend on the choice of cold
variables {/} and {h}, this set, in contrast to ordinary
systems of the Anderson model type, will be stochastic. An
important feature of this set is the self-averaging property.
It consists of the fact that if, in the spirit of Eq. (3.152), we
defined the random variable

= - ( T/N)\n Zn

then its limiting value

f(T) \im fN(T,q=\;{J},{h})
JV-OO

(3.158)

(3.159)

will reduce the free energy (3.154), obtained as a result of
averaging over the cold variables. In other words, the sys-
tem of ensembles is ergodic with respect to these variables.

On the other hand, the quantity / can also be deter-
mined on the basis of the thermodynamic representation of
the obtained set of statistical ensembles (see Sec. 3.2). To
this end, we introduce an effective potential of the type
(3.136)

g(T,q) = - lim [(T/N)\nZn(T,q-{J},{h})}.

*"*" (3.160)

Then it follows from Eqs. (3.158) and (3.159) that

dg(T,q)
f(T)=-

dq
(3.161)

Hence one can see, taking into account (3.138), that the
free energy / reduces, to within a factor, to the value of D0

of the spectrum of fractal dimensions D(q) at q=Q. Since
according to the analysis performed in Sec. 3.1.3, the value
of D0 corresponds to the maximum of the spectral function
/(a), this means that the observed value of the free energy

corresponds to the component of the multifractal of statis-
tical ensembles that has the maximum content. Evidently,
this fact is an expression of the property of self-averaging,
expressed in the fractal representation.

The method presented above indicates the possibility
of describing hierarchically coordinated systems in a man-
ner such that there is no need to employ the replica trick
and therefore the difficulties associated with the breaking
of the symmetry of the replica space do not arise (see Ref.
18). The crux of the method56 is that instead of the true
free energy (3.152) first the quantity

f ( T , q ) = - lim [(T/N)\nZn(T,q;{C}a)], (3.162)
JV-OO

is defined, where {C}a denotes sets, enumerated by the
suffix a, of cold variables (in Eq. (3.160 they reduce to {J}
and {h}). Averaging over these variables is performed in
the argument of the logarithm, and for this reason it does
not present any difficulties. Next, we introduce the effective
potential

(3.163)

ca=N~l I q,

which depends on the fields fia conjugate to the cold vari-
ables C\. Just as Eq. (3.61), their stationary values /Za are
determined by the condition

=ca, (3.164)

where the effective potential is given by the equation [com-
pare to Eq. (3.162)]

= - lim (T/N)

(3.165)

Substituting the fields na=fj,a(T,q), found from Eq.
(3.164), into Eq. (3.163) we obtain the stationary value

g(T,q-{fla(T,q)})=g(T,q), (3.166)

which is identical to the potential (3.160). Finally, Eqs.
(3.166) and (3.161) give the free energy (3.152). In Ref.
56 it was shown that the use of this transition for the Ising
model (3.150) with a random field A, yields results that are
identical to the exact calculation. In application to Ander-
son's model the effective potential (3.165) was found in
Ref. 49, where the condition (3.164) determined the dis-
placement Д from the center of the band of localized states
as a function of the impurity concentration C.

The effective potential (3.165) at fixed temperature Т
describes completely the stochastic multifractal set of the
statistical ensembles of the hierarchically coordinated sys-
tem. Indeed, substituting Eq. (3.165) into Eq. (3.75), tak-
ing into account Eq. (3.72), we obtain the spectrum of
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FIG. 38. а—Distribution of the spectra of the fractal dimensions of a hierarchically coordinated system of statistical ensembles of a spin glass, b—Section
describing the probability of fluctuations of a monofractal with g=0.

fractal dimensions D(T,q;{fj,a}), determined by the depen-
dence on the_parameter q. According to Eq. (3.164) the
component DT(q) = D(T,q,{p,^), corresponding to sta-
tionary values {jia} of the cold fields, is realized with max-
imum probability. The distribution of the spectra D(q)
near this component is described by the functional of prob-
abilities

P{D(q)}<x.exp( — g(T,q;{jj,a})), (3.167)

where the function D(q) is expressed by Eq. (3.72) and
(3.75). Figures 38 display the form of this distribution.

The description of the stochastic multifractal set of
statistical ensembles on the basis of the relations (3.162)-
(3.167), though it is, in our opinion, most natural, has still
not been realized. This is because the description of such a
set was first obtained by Parisi with the help of the replica
representation.57 We shall present the corresponding
scheme.

As we have already indicated, the stochasticity arising
due to the spread in the cold variables is expressed in the
random character of the probability wa of the realization of
the ath ensemble and the overlap parameter qap of the
ensembles a and /3 [see the definitions (2.69) and (2.71)].
As a result of this, the function (2.72) of the probability
distribution P(q) of the overlap parameters q and the prob-
ability Y(q), given by Eq. (2.74), of having overlap q'
exceeding a prescribed level q are random functions. The
total probability

W=^wa (3.168)
a

of realization of statistical ensembles with overlapping
qap> q is also of a random character. Parisi's method made
it possible to find the corresponding distribution functions
ГуГ) andfq(W) of the quantities (2.74) and (3.168) for
fixed value of q. Their form is determined by the average
value

= Y(q)H,(Y)dY (3.169)

of the probability of having overlap of ensembles qa&=q(y)
not less than q. The distribution П?( Y) is bimodal with

maxima at Уг;0.5 and Y= 1. The presence of a singularity
П9( Y) oc (1 — Y) ~y near the second of these points has the
result that the most probable value Y= 1 is different from
the average probability у < 1. The average distribution

fq( W} over clusters of ensembles with a bounded overlap
level is also bimodal:

•> y=y(q)- (3.170)

According to Eq. (3.170) the largest number of clusters is
concentrated near the values W=0 and W=l, and espe-
cially near the first value. As the overlapping q increases,
the probability y(q) decreases monotonically, as a result of
which there is a concentration of the number of clusters
with zero probability W of being realized. The form of the
inverse function q(y) for the overlap parameter q and the
nonergodicity parameter Д, representing the difference of
the static and dynamic susceptibilities (see Ref. 15), is
displayed in Fig. 39. The function q(y) is characterized by

FIG. 39. Distribution of the probability of the overlap parameter q and
the nonergodicity parameter Д.
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the presence of two plateaus, lying near the limiting values
of the probability y=0 and y=l, and a monotonic decay in
the intermediate region. The nonergodicity parameter de-
creases monotonically from A0sA(j>=0) to
Д, = Д(_у=1)=0. Physically, the maximum values q0 and
Д0 are determined by processes occurring in the minimal
regions of the allowed values of the variables. This means
that the points of the fractal set correspond to pure statis-
tical ensembles, whose collection is characterized by the
maximum dimension D_x. The minimum values of the
overlapping of the ensembles q{ and the nonergodicity pa-
rameter Д) correspond to the static limit in which all en-
sembles are united, so that the fractal set reduces to a point
and has the minimum dimension DK =0. Thus within Pa-
risi's method57 the monotonically decaying functions q(y)
and ДО») correspond to the spectrum of fractal dimensions
D(q), which also has a decaying form. Since At=0 and
DX—Q, but q\=Q does not always hold (see Ref. 15), the
correspondence of the functions Д(>>) and D(q) is more
complete than for the pair q(y) and D(q), and the fractal
dimension of the set of statistical ensembles can be inter-
preted as the nonergodicity parameter.

The physical significance of the stochastic scheme pre-
sented above lies in the fact that a hierarchical system
should be represented not by one statistical ensemble but
rather by a collection of such ensembles. The peculiarity of
this collection is that the ensembles are not independent
but rather overlap with one another with degree qap, char-
acterized by Parisi's parameter (2.71). In a hierarchical
system stochasticity is manifested not only in the behavior
of structural units belonging to a given ensemble but also in
the behavior of the ensembles themselves, whose realiza-
tion probability is given by the distribution wa. However, if
the distribution of structural units in an ensemble is of the
ordinary, canonical character,34 then the distribution of
ensembles is determined by the random character of their
union into hierarchical clusters—ensembles with maxi-
mum overlapping q unite with highest probability, and this
probability decreases with q. The character of the hierar-
chical stochastization is reflected by the distribution P(q)
given by Eq. (2.72). Since the latter itself contains the
random quantities wa and Wp, the distribution function
P(q) over clusters of the ensembles is also random. Thus
hierarchy in the behavior of structural units leads to hier-
archy of stochasticities. The ultimate reason for such a
situation is that ergodicity in the behavior of the ensemble
of structural units breaks down.55

The method developed by Parisi,57 based on the fact
noted above that the ensembles correspond to points of an
ultrametric space,17 has made it possible to describe com-
pletely hierarchical stochasticity. It is characterized by
truncated (with respect to the overlap parameter q) mo-
ments Y(q) and W of lowest order [see Eqs. (2.74) and
(3.168)] for the distributions P(q) and wa, respectively.
The first moment gives the probability of overlapping of
ensembles with overlapping not less than a prescribed
value q and the second moment gives the total probability
of realization of such ensembles. Clusters with high degree
of overlapping q are distinguished because ordinary er-

godic systems correspond to the limiting case of the real-
ization of a single ensemble with maximum overlapping
q= 1. A characteristic feature of hierarchical stochasticity
is that in a nonergodic system the most probable value of
the probability of overlapping of ensembles will be not only
the maximum value Y(q) = \ but also the intermediate
value Y(q) zzQ.5. In other words, the distribution П?( Y) is
bimodal, and is determined by the average probability
(3.169). Physically, this indicates a significant probability
of realization of ensembles which are weakly dependent on
one another even in the statistical sense (for example, dis-
locations belonging to different small-angle walls belong to
practically different nonoverlapping statistical ensembles).
On the other hand, if we talk about the number of different
clusters of ensembles characterized by the distribution
(3.170), then the fact that the integral of (3.170) over all
values W diverges means that the total number of possible
variants of unification of ensembles into hierarchical clus-
ters is infinite. However, they are formed mainly from en-
sembles with low realization probability W. This means
that rarely realizable structures, belonging to large-scale
levels (disorientation boundaries, blocks, grains, and so
on) are most prone toward hierarchical coordination. On
the other hand, the region of large values of W will make
the main contribution to the average value of W with
weight fq( W). Thus, although most structural units enter
into statistical ensembles characterized by significant prob-
abilities W, hierarchical structures are formed only by the
most rarely realized structural units.

With regard to the distribution of the energies E of the
clusters of states, we note that it has a quasi-Gibbsian
form, reflecting the independence in the spread in the val-
ues of E. If, however, for a minimum cluster corresponding
to maximum overlapping q= 1 we have a purely Gibbsian
distribution ni(E)=exp[— (E—Ф)/Т], where the energy
E is measured from the thermodynamic potential Ф, then
as a cluster grows with decreasing overlapping q < 1 we
arrive at the nonequilibrium distribution

(3.171)

Here the minimum energy Eq of a cluster is higher than its
thermodynamic value E\ = Ф.

Having described the distribution of clusters of statis-
tical ensembles, we now return to the description of the
distribution of the structural units, forming these ensem-
bles, themselves. This means that we must, on the one
hand, find the distribution F(rj) of the order parameter щ
and, on the other, the distribution Nq(h) of the conjugate
field h, acting in a cluster with overlapping exceeding q.*4

The nodes / at which the field A, assumes a value in the
interval from h to h + ДА form a cell Ch, whose volume for
given overlapping q is \Ch\ =NNq(h)kh. In this cell en-
sembles with overlapping exceeding a given value q behave
independently and are characterized by the same distribu-
tions

1

\ch
-<*,-><,), (3.172)
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where x, are spin-type variables [see Eq. (2.71)]. Then the
desired distribution of the order parameter has the form

= t (3.173)

The average value 17 and the overlap parameter q are ex-
pressed in terms of the value rjq(h) of the order parameter
in a cluster with overlapping q and field h:

rj=

q=

= Г

(3.174)

= J

As we have already noted, the conditional distribution
(3.172) represents the contribution made by structural
units which are acted upon by the field h in clusters of
states with overlapping not less than q. These clusters are
singled out because the ordinary ergodic representations
can be employed in them. The equation (3.173) makes it
possible to switch, if the distribution Nq(h) of clusters over
values of the field h is known, from the conditional distri-
bution Fq(rj,h) to the complete distribution F ( i j ) . They
differ in that the latter distribution gives, as the first-order
moment (3.174), the average order parameter 77, while the
first one gives the contribution ту ? (А) owing to clusters in
the field h with overlapping q [see the last equation of Eqs.
(3.174)]. Once the field distribution Nq(h) is known, the
specific value r)q(h) makes it possible to find the quantities
77 and q according to the first of the relations in Eq.
(3.174).

As far as the function Nq(h) is concerned, for a given
spread in the interaction of structural units it can be de-
termined by the method of Ref. 58, developed for amor-
phous solid solutions. The crux of the method, which is a
natural generalization of the standard mean-field theory,
consists of establishing a relation not between the field h
itself and the interaction parameter of the structural units,
but rather between the distribution functions.20

We now describe, in conclusion, the evolution of a
hierarchical ensemble of structural units. To this end, we
take into account the fact that on transferring to a higher
degree of overlapping q'>q the cell Ch fragments into
parts Chhi. The probability that a node i is present in the
subcell Chh>

\Снн>
= <7„,(Л,А')ДЛ''99'

(3.175)

gives a relation between the distributions of the order pa-
rameter in the cell and the subcell

'-/'
whose volume is

\C'h, =

(3.176)

(3.177)

The operator Gqq>(h,h') of evolution of the hierarchical
structure gives complete information about the distribution
of the clusters of states:

(3.178)

J
= G,i(A,A')5(4-tanh(A'/r))dA',

= f G,,(A,A')tanh(A'/r)dA'.

(3.179)

(3.180)

According to Eq. (3.178), giving the distribution function
Nq(h) of the field in clusters is equivalent to determining
the evolution from a collection of isolated ensembles into a
cluster characterized by overlapping q and field h. The
existence of the factor tanh(h/T), characteristic of the
ordinary mean-field theory, in Eqs. (3.79) and (3.180)
means that a pure statistical ensemble, in which the order
parameter is determined by the standard self-consistency
condition35

77 = tanh[(T7 + A)/7'], (3.181)

is realized in the cluster with maximum overlapping q=\.
The relation (3.179) means that the conditional distribu-
tion function Fq(rj,h) is obtained by smearing the delta-
function-like distribution corresponding to the condition
(3.181), on transferring from a pure statistical ensemble to
a collection of clusters characterized by a degree of over-
lapping not less than q. According to Eq. (3.180) the order
parameter then transforms from Eq. (3.181) into the con-
ditional value rjq(h), determined by the contribution of the
indicated collection of clusters.

Thus once the operator Gqq>(h,h'), representing the
evolution of a hierarchical system, are known, the ordering
process determined by this evolution can be completely
described. The restructuring itself is represented as a Mar-
kovian diffusion process on a Cayley tree.54 This means, in
particular, that the binary evolution operator gives a dis-
tribution over the number n>2 clusters, containing
ensembles

т .

= П dA«G 1,e(Aa_,,Aa)^a(4a,Ae). (3.182)
a=l J

where q0=0, Gqq(h,h')=8(h — h'), and the parameter qa

gives the overlapping of the states a and a+1 (since some
pairs of states can have the same overlapping qa, the num-
ber of n of such states can be less than the number of
ensembles m).

If the structure is multilevel, then the corresponding
discrete ultrametric space can be regarded as being contin-
uous, and transitions between levels are continuous. Then
the evolution operator is determined by the Fokker-Planck
equation54

dG \d2G dlnZdG
(3.183)
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where the overlap parameter q and the field h play the role
of the time and the coordinate, and the auxiliary function
Z=Zg(A) satisfies the equation

az
W

N,(h)
2d

ZlnZ (3.184)i-X?)
with the initial condition Z^A^tanh A. If, however, the
number of structural levels is small, then transitions be-
tween them acquire a discrete character, and the differen-
tial equation (3.183) must be replaced by a more compli-
cated kinetic equation59

«о?(А0,А)

dq
= ((Ggo9(h0,h')w(h',h)

(3.185)

where w(h,h') is the probability that the field changes
from A to A' with a unit change in overlapping q. In order
to determine the function ш(А,А') it is necessary to con-
sider specific models of the formation of the macrostruc-
ture of the ordered phase.

4. CONCLUSION

Following the situation that has evolved in the scien-
tific literature, we have constructed the review so that it
would contain all necessary information on fractals. This,
naturally, resulted in a long review. From the table of con-
tents one could get the erroneous impression that the gen-
eral information, to which all sections are devoted, except-
ing Sees. 2.4 and 3.3, occupies a special place. In reality,
however, this is not so: only part 3 of the review contains
material that can be found in the difficult-to-obtain reviews
Refs. 8 and 9 and the book Ref. 3, which immediately
became a bibliographic rarity; the main volume of the re-
view contains original material on the application of frac-
tals in the theory of condensed media. In expounding the
general theoretical questions we strived, keeping in the
mind the abstractness of the concept of a fractal, primarily
to introduce the new concept and demonstrate it in a clear
manner or with a straightforward physical examples. This
resulted, naturally, in an abundance of figures, but given
the nature of the object being described it would probably
be naive to expect to achieve a clear representation of the
geometric image of a fractal without a graphic image of the
fractal.

With these prerequisites, we described in detail a
scheme for constructing the simplest Koch and Cantor
fractal sets. Throughout the review the Cantor sets play the
role of the initial geometric image, by generalizing which it
is possible to introduce the basic characteristics of a mul-
tifractal (see Sec. 3.1.1). Another central concept, repre-
senting the metric of a fractal set, is the Cayley tree de-
scribed in Sec. 1.1.2. The Cayley tree gives a graphic
representation of an ultrametric space. We note that the
relation between fractal sets and the space of ultrametric
topology has not been discussed at all in the literature
available to us on fractal sets. We not only describe this
relation in detail, but we also introduce the concept of

fractal and multidimensional hierarchical trees. The prob-
lem of determining the main characteristic of a set—its
fractal dimension—is studied from both the theoretical
(Sec. 2.2) and experiment (Sec. 2.3) points of view. In
describing the first aspect, we started from the convenient
example of determining the area of an ordinary surface: by
covering it with a broken line, squares, or cubes and count-
ing the corresponding total length, area, and volume, we
introduce the important concept of the measure of a fractal
set. As far as the representation of experimental methods
for determining the fractal dimension is concerned, here
we confine our attention only to listing the best known
methods, presenting for each method the basic working
formula. The description of multifractals is given on the
basis of both the geometric method (Sec. 3.1), where the
distribution of measure over points of the set is assumed to
constant, and on the basis of the thermodynamic formal-
ism (Sec. 3.2), which is formally identical to the apparatus
of ordinary thermodynamics. The use of the latter appara-
tus opens up, besides the familiar description, the possibil-
ity of representing the evolution of the set as a fractal phase
transition. This observation makes it possible, in particu-
lar, to solve a well-known problem arising in the descrip-
tion of the evolution of the defect structure of a solid dur-
ing plastic strain (see Ref. 12): By observing the pattern of
restructuring of one type of distribution of defects into
another (see, for example, Fig. 4) it became completely
clear that a unique phase transition occurs, but it was im-
possible to define in the standard manner the correspond-
ing order parameter, thermodynamic singularities, critical
exponents, and so on.35 The formalism described in Sec. 2.2
shows that restructuring of the defect structure is a trans-
formation of one monofractal into another with different
dimension D.

As we have already mentioned, in this exposition we
concentrated mainly on the use of the concept of a fractal
in problems of condensed-state theory, which have been
studied in recent years. Thus in Sec. 2.4.1 it was shown
that if a medium has partial memory, then it can be rep-
resented as a chain of parallel processes, some of which
proceed in accordance with the principle of mechanical
reversibility and for this reason preserve the memory of the
system, while others are realized according to a thermody-
namic scenario, where dissipation leads to complete loss of
memory. It turned out that such a system can be repre-
sented by a fractal set of statistical ensembles, the descrip-
tion of which leads to the concept of a fractional integral
(derivative as a result of the change in the ratio of the
fractions of the mechanical and thermodynamic channels,
diffusion-type equations transform into wave-type equa-
tions. Section 2.4.2 is devoted to investigation of the tem-
poral behavior of the observed quantities in the indicated
systems. Their characteristic feature lies in the hierarchical
coordination of the statistical ensembles, until equilibrium
is reached in clusters with maximum overlapping; groups
of ensembles with smaller overlapping are not included in
the structural relaxation process. It is shown that as a re-
sult of such hierarchical ordering the Debye relaxation law
transforms into more slowly decaying extended Kohl-
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rausch exponential, power-law, logarithmic, and double
logarithmic functions.

These systems are described on the basis of a monof-
ractal presentation. More complicated examples, requiring
the use of the concept of a multifractal set, are studied in
Sec. 3.3. Thus a scenario of appearance of turbulent fluid
flow via period doubling is studied in Sec. 3.3.1. It is shown
that the corresponding set is engendered by a logistic chain
of bifurcations, whose mapping function has the simplest
parabolic form. The simplest analytical investigation of
this mapping makes it possible to establish the character-
istic values of the spectrum of the fractal dimensions. It
turns out that its main feature is determined by the pres-
ence of two characteristic similarity scales, which are con-
nected in a root manner. The exact form of the spectrum of
fractal dimensions D(q) and the spectral function /(a) is
established on the basis of numerical methods of modeling
of the map. The thermodynamic method of description of
a given multifractal makes it possible to represent the tran-
sition from one scale to another as a first-order phase tran-
sition, accompanied by a jump in the information entropy.

In Sec. 3.3.2 we examined quasiperiodic sequences,
generated by an antisymmetric map function. Physical ex-
amples of such sets are incommensurable and long-period
structures as well as the important case of quasicrystals. It
is shown that the long-period structures correspond to
points of a monofractal set maximally contained in the
given multifractal. The quasicrystalline sequence, on the
other hand, is realized least often and is represented by the
well-known Fibonacci sequence. A regular method for con-
structing this sequence was described and the distribution
of wave vectors, at which the maxima of the diffraction
pattern for radiation penetrating through the quasicrystal-
line lie, was found. In concluding the section the charac-
teristic values of the fractal dimensions were found and the
spectral functions D(q) and /(a) were constructed. Both
the case of locking of phases, which represents the spec-
trum of frequencies of one of the scenarios for the appear-
ance of turbulence and the case of representing the phases
themselves were studied.

The final section, Sec. 3.3.3, is devoted to multifractal
representation of nonergodic systems. The analysis is given
for the examples of Anderson's model and a spin glass. The
relative simplicity of the first example is associated with the
fact that even though the multifractal set of clusters of
localized states is nonergodic, hierarchical coordination
does not arise. The existence of a nontrivial spectrum of
fractal dimensions means that far from the transition point
an ensemble of clusters that has the minimum dimension
behaves in accordance with the mean-field approximation.
As the transition point is approached, critical growth of
fluctuations of the delocalized phase occurs, indicating a
decrease of the fractal dimension. The values of the critical
exponents change accordingly. The described picture, evi-
dently, corresponds not only to Anderson's transition, but
also to any phase transformation. Thus the fact that the
critical exponents are different from the values given by
Landau's theory is represented as the existence of a spec-
trum of fractal dimensions of a set of fluctuations of the

new phase. The characteristic feature of spin glass is that
the ensemble of variables is divided into hot variables
(spin) and cold variables (overlap integral and local values
of the field conjugate to the spin). Accordingly, the system
becomes not only nonergodic but also hierarchically coor-
dinated. It was found that the uniquely determined spec-
trum of fractal dimensions is smeared into a stochastic
collection of such spectra. An original method for describ-
ing the ensemble of spectra as a generalization of the ther-
modynamic representation of a multifractal is developed.
The method is compared to Parisi's well-known replica
representation. In conclusion the stochastic picture of the
description of the system based on the Fokker-Planck
equation is presented.

Of course, the examples considered in this review do
not cover all static systems that can be understood on the
basis of the concept of a fractal. Such systems include,
evidently, models of associative memory, which are cur-
rently under development (see Ref. 60). It is easy to give
other possible applications, but we hope that the material
described in this review is sufficient to convince the reader
that the concept of a fractal plays a central role in the
description of the collective behavior of complicated sys-
tems.
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1 ̂ Topological equivalence of two figures means that one can be trans-
formed into the other by means of a continuous change of the charac-
teristic dimensions. Thus, for example, a ring can be transformed into a
topologically equivalent circle by decreasing the thickness of the ring.

2 *A. V. Paul' pointed out this method to us.
3)In order to avoid misunderstandings, we note that we have in mind

clusters of statistical ensembles in an ultrametric space. They do not
necessarily correspond to clusters of structural units in r space.

4)Evidently, the relation j = £~l is satisfied under curdling, and Eq.
(2.11) gives D=\. Similarly, a=l was used for a monofractal within
the geometric approach [see Eq. (2.27)].

5)In similarity theory the exponent f, defined by the relation
C(r) ос г-(<1~г-£\ is usually employed.34 Comparing it to Eq. (3.48), we
obtain the relation Z>2 = 2 —f. As a rule, f is small: Thus, for thermo-
dynamic systems undergoing a phase transition (see Table II and Sec.
3.3.3), we have f <0.1 and therefore D2~2.

6)As shown in Sec. 2.1.2, they represent the distance between different
points x of the ultrametric space.

7)The role of such an action does not necessarily reduce to an external
field. It can also be a self-consistent field, arising as a result of self-
organization processes inherent in the system itself.40

8)In the English terminology the term golden mean is used. It is well
known that the proportions of Hellenic temples determined the golden
mean.

"On the basis of synergetic ideology, mode-locking is associated with the
nonequilibrium system falling into metastable minima of the synergetic
potential V(a) as a function of the frequency.40 The corresponding
analytic analysis can be found, for example, in Sec. 3 of Ref. 37. The
devil's staircase, presented in Fig. 33 and reflecting mode-locking graph-
ically, is obtained numerically in Ref. 10.

10)We call attention to the fact that the parameters a and П for the
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temporal and spatial sequences (3.119) are defined differently (in the
first case the index n determines discrete points on the time axis and in
the second case it determines discrete points on the spatial axis). For
the temporal sequence the quantities a and fl represent the ratios of the
characteristic frequency (00 to the frequencies <ai and (a of the external
action and response, respectively. For the spatial structure, however,
these ratios must be inverted, and the quantities a and П are found to
be proportional to the wave numbers k\ and k of the external action
and response (of course, in a self-organizing long-period structure the
scale ki may not appear).

"'Since we investigated the same map (3.119) previously, in order to
avoid misunderstandings it should be noted that the set presented
above characterized the spectrum of the spatiotemporal structure,
while in what follows the distribution of phases x realized on this
spectrum will be investigated.
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