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The linear Stark effect is investigated, using the old quantum theory and the equations of
motion of the electron in orbital variables. In contrast to the well-known solution in terms of
parabolic coordinates, the new form has a simple geometric interpretation, namely,
perturbation by the uniform electric field leads in the first approximation to a slow regular
precession of the electron orbit around the direction of the field (subject to a single
additional condition). This geometric picture outwardly resembles electron orbits precessing
around a uniform magnetic field in the normal Zeeman effect.

Atomic physics textbooks, especially chapters devoted
to the old quantum theory, with their classical ideas on the
trajectories of mass points, traditionally present two of the
simplest examples of space quantization of electron orbits
in the hydrogen atom placed in uniform electric or mag-
netic fields (linear Stark effect and normal Zeeman effect).
This provides a clear demonstration of the quantization of
perturbed energy levels of the atom and the corresponding
picture of spectral-line splitting in simple cases.1"4 Both
problems are investigated by the methods of classical me-
chanics, but the approaches to them differ by the choice of
the coordinate frame (based on the properties of the per-
turbing field), and the consequence of this is that the form
of the solutions obtained for the electron orbit parameters
is also different. In the case of the electric perturbing field,
the parabolic coordinates, one of which is the equatorial
angle measured from the direction of the field, is particu-
larly suitable (because of the convenience of the separation
of variables), whereas in the case of the perturbing mag-
netic field, the most suitable are spherical coordinates be-
cause they ensure the simplest transformation to orbital
variables (and, as a consequence, to orbital quantum num-
bers) relative to moving coordinate axes that undergo, to-
gether with the plane of the perturbed orbit, a regular sec-
ular precession about the direction of the field. '~* This
remarkable property of the solution of the second problem
(which, in modern treatments, is a consequence of the gen-
eral symmetry properties of the magnetic and rotation
fields) has led, firstly, to an exceptionally simple and clear
geometric interpretation of the perturbed motion of the
electron in terms of the familiar terminology of orbital
mechanics and, secondly, it enables us to use (by virtue of
the adiabatic principle) the usual quantization scheme for
elliptic orbits in precessing coordinate planes when we es-
timate the electron level shifts. On the other hand, the first
problem is not amenable to a comparably simple interpre-
tation despite its mathematical convenience. It leads only
to general conclusions about the nature of the perturbed
orbit between certain particular limits.1

In their classical form, both problems are, of course,
part of history (although they are still of pedagogic value
to students of atomic physics). From purely methodolog-
ical and general points of view, it is natural to try to ex-
amine both problems in terms of orbital variables because

it may then be possible to compare and contrast the solu-
tions thus obtained with known solutions.

Our interest in this topic has been stimulated by a
paper by one of the present authors5 ('Evolution of a sat-
ellite orbit under the influence of a small perturbing force
that is constant in magnitude and direction') in which a
basically similar problem in celestial mechanics was exam-
ined in terms of orbital variables. The point is that the
general solution of this problem includes two exceedingly
simple special solutions (that are of direct interest here) in
which, when certain initial conditions are satisfied, the per-
turbed orbit of the satellite (and, in our case, that of the
electron) retains its form in the first approximation (i.e., to
within secular perturbations of the second order of small
quantities) and executes a regular secular precession
around the direction of the perturbing field (in our case,
the electric field). We have thus established an interesting
fact: the orbit of a hydrogen electron in a uniform electric
field behaves outwardly (i.e., in the geometric picture) in
the same way as in the normal Zeeman effect (but with
certain differences). We have also found that, when these
remarkable solutions are applied to the quantization of per-
turbed allowed electron orbits on the basis of the adiabatic
principle (i.e., by analogy with Ref. 1 and other references
in the case of the normal Zeeman effect), we are led to an
unexpected and useful result, namely, that the quantization
and selection rules for the equatorial quantum number и^
relative to the precessing orbital axes are somewhat differ-
ent from the usual rules relative to fixed coordinate axes
(this is explained below in greater detail). This fact (es-
tablished by comparing the new form of the solution with
'standard', i.e., existing, solutions) has in its turn taken us
back to the second problem (in which the 'old' quantiza-
tion and selection rules for и^ are used relative to the pre-
cessing axes), which has led us to a still more unexpected
result: both in Sommerfeld's1 and in many other textbooks
that discuss the old theory of the normal Zeeman effect, the
expression for the change in the total energy of the electron
does not for some reason take into account the potential
energy of the interaction between the magnetic moment of
the atom and the perturbing magnetic field (which is un-
doubtedly taken into account when this problem is exam-
ined in wave mechanics). When this inaccuracy is re-
moved, we are led to the 'modern' rule for the quantization
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со, and the semimajor axis of the orbit subsequently remain
constant, i.e.,

FIG. 1. Coordinate frames and orbital variables.

of the equatorial quantum number relative to the process-
ing axes that was 'discovered' in the first problem.

Thus, by comparing two different forms of the solution
for a simple special case we are led to a modified quanti-
zation rule for the equatorial quantum number relative to
moving coordinate axes that precess about a special direc-
tion (e.g., in spatial problems in which the adiabatic prin-
ciple is employed). This conclusion may appeal to physics
teachers and to others interested in atomic physics and its
history (it may give rise to discussions that would also be
exceedingly interesting).

1. Let us therefore consider (in the nonrelativistic for-
mulation) the motion of an electron as a mass point in the
central-force field of the nucleus in the hydrogen atom (or
the nucleus of a hydrogen-like atom of charge Ze) in the
presence of a perturbing acceleration f=(—Ee/m0)£0

which is constant in magnitude and direction and is due to
a uniform electric field E (e, mQ are the electric charge and
the rest mass of the electron and f0 is a unit vector in the
direction of the 0£ axis of an inertial Cartesian set of co-
ordinates 0|i?£ with origin at the center of the nucleus; see
Fig. 1). If, by analogy with Ref. 5, we take the small pa-
rameter e of this problem to be the ratio \f\/fk where fk is
the acceleration due to the Coulomb force of attraction
between the electron and the nucleus at a distance equal to
the orbital semiaxis a(e=Ea2/Ze), then it follows from
the general solution of the analogous problem in celestial
mechanics5 that, in the first approximation (i.e., to within
second-order secular perturbations in the parameter e), the
eccentricity e0, the focal parameter p, the inclination /, and
the angular separation a> between the pericenter and the
node (see Fig. 1) will in this case execute synchronous
long-period oscillations (with period corresponding to the
number of revolutions of the electron, of the order of l/£)
for which the semimajor axis of the orbit, 2a, remains con-
stant and the plane of orbit executes slow monotonic pre-
cession (in the angle П; see Fig. 1) about the direction of
the perturbing field (the 0^-axis).1' However, the most
interesting of this family of solutions are the two special
'quasistatic' solutions, corresponding to the initial condi-
tions sin /0

=eo> °>o= ±90° for which the parameters /, e^

sin /=£0=£0=sin

co = o)0= ±90°,
(1.1)

and the plane of the orbit executes regular precession
around the £-axis with constant mean (over the period TI
of one revolution in orbit) angular velocity
d(l/dt= ± ( 3 / 2 ) ( E / T I ) sign(cos /0) or, when the param-
eters of the electron are taken in the Gaussian system of the
units,

dfl/dt = ± (3/2)E(a/moZ)ш sign cos /0, (1.2)

in which the signs ± correspond to initial values

These quasistationary orbits outwardly resemble anal-
ogous perturbed orbits in the normal Zeeman effect, but
with the fundamental difference that here the eccentricity
and the inclination are not independent of one another
(they are related by e0=sin /) and, in addition, the preces-
sion angular velocity of the orbit depends on its semimajor
axis a (in the normal Zeeman effect it is the same for all
orbits1^).

2. The solutions given by (1.1) and (1.2) enable us to
calculate in a simple elementary manner the shifts of the
total energy levels of an electron. This is based on the
adiabatic principle and on the analogy with the usual pro-
cedure adopted in treatments of the normal Zeeman effect
in the old quantum theory. '~3

Let us therefore introduce moving coordinate frames
that precess around the £-axis of the fixed frame Of т/£
together with the allowed orbits in the family (1.1), (1.2),
so that the equatorial angular coordinates of the electron
(% in the fixed system, ф in the moving system) are related
by x=rl>+fl (Fig. 1). We can now set up in the usual way
the expressions for the kinetic energy Т of the electron in
the absence of the electric field [Т(г,в,г,ё,<ф) or ДО)] and
in the presence of the field [Т(г,в,г,в,х) or T(E)\, so that,
to within second-order terms in dft/dt, we have

= T(E) - T(0) = (2.1)

where рф is the electron momentum corresponding to the
coordinate iji in the processing frame. If we use (1.2) for
dfl/dt, and also the quantization conditions for the mo-
mentum рф and the semimajor axis a of the orbits
[рф= (Н/2тг)Пф,а=И2п2/4/п2т02е2, where n and Пф are the
principal and equatorial quantum numbers and h is the
Planck constant), we obtain [according to (2.1)], the fol-
lowing expression for the change in the kinetic energy:

Д T= ± 3h2En \пф (2.2)

where the signs ± correspond to the initial values
o)0= + 90° and u>0= -90°.

The change in the potential energy of the electron, ДК,
can be calculated either by taking a time average of the
expression AF=£ef (over an interval corresponding to
one revolution of the electron in orbit) and using the equa-
tions of perturbed motion. Alternatively, and this is sim-
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pier but gives the same result, it can be found by evaluating
the scalar product Д V= — Е- Р of the electric field E and
the electric dipole moment P whose magnitude is1

(3/2)ее^а and whose direction lies along the line drawn
from the 'center of gravity' of the electron in its elliptic
orbit and the nucleus. Since sa^i=eL

0=\ — (m<p/n)2=\
—cos2/=l — (Пф/Пф)2 and since, as a consequence,
п^=п\пф\ (nv is the azimuthal quantum number), we fi-
nally obtain

TABLE I. ir-components of Ha (n, = 3,n2=2).

\-1 (2.3)

where the sign of the increase is opposite to that of the
initial value of co0.

We note particularly the case of the circular orbit
(e0=0, /o=0 or /0= 180°) which is stable5 against the per-
turbing field and in the first approximation (i.e., to within
the second-order secular perturbations) does not change
its energy (ДГ=ДГ=0; see also Ref. 2). We also note
that it is only in this case that the equatorial quantum
number reaches is maximum numerical value |л^| =л.

Thus, when (2.2) and (2.3) are taken into account
and е„=0, the change in the total energy of the electron is
given by

Д^=±Зл2л(л-2|л^,|)(81Г2т0ге)-1 for \пф\<п,

=0 for \пф\=п, (2.4)

where the positive sign corresponds to the case where the
geometric center of the elliptical orbit lies above the equa-
torial plane O£rj(a)0= —90°) and the negative sign corre-
sponds to the situation where it lies below this plane
(<a0=+90<>;seeFig. 1).

3. If we now try to use (2.4) to calculate the frequency
shift ДУ for the Balmer lines of hydrogen
[Ду=(Д W\ — &W2)/h], using only integral values of \n^\
and the traditional rules for quantum transitions (Дл1(,=0
for the тг-components and Дл ^= ± 1 for the
a-components), we find that the results do not agree with
the classical picture of line splitting.1"3 Complete agree-
ment is achieved only if we use in (2.4) both integral and
half-integral values of л^(1/2<|л^|<л) and also modify
the selection rules for n.

Д|л^,|=0 for ir-components,

Д | пф= ± 1/2 for a-components.
(2.5)

As an illustration, Tables I and II list values of the
frequency shift Д for the Balmer line Ha, calculated in
accordance with these rules in units of the constant
^ = 3/j£/8ir2m0e (the asterisk marks the value Д^2=°
that corresponds to a circular orbit in the л = 2 final state).

As can be seen, these data agree completely with ex-
isting results1 (this also applies to the Hp line). It is inter-
esting that, beginning with the Hy line, the selection rules
given by (2.5) must be extended, i.e., the Д|л^ | =0 tran-
sitions for the ir-components must be augmented by
Д|л^,| = ±1,±2,...,±[( |л! —л2| —1)/2], transitions and
the A | п ф \ = ± 1/2 transitions for the a-components must
be augmented by Д|л^ | = ±3/2,±5/2,...,±([( |л,-л2|
— l)/2]+l/2) transitions. We thus see that the 'missing'

l«*il -» M

1/2 -» 1/2

1 -+ 1

3/2 -» 3/2

2-» 2

±3(3 - 2K,|)

±6

±3

0

T3

±2(2 - 2M)

±2

0

=F2

0*

A

±4, ±8

±3

±2

T3

ir-components of Hy with Д = ± 2 and the ir-components of
Hs with Д=0,±4,±8 appear for Д|л^|=1, whereas
a-components of Hs with Д= ± 1/2 that are 'missing' for
Д |пф\ = ± 1/2 appear for Д |пф\ =3/2 (no new splittings
occur under these conditions).

4. Our investigation and the comparativie analysis of
the two alternative approaches to the solution of this par-
ticular problem have enabled us to establish a fundamen-
tally important fact: if we use moving coordinate axes with
an additional degree of freedom relative to a given direc-
tion (precession angle ф) in problems involving space
quantization, we find that, in general, this involves addi-
tional half-integral quantization of the equatorial quantum
number Пф and a corresponding modification of the selec-
tion rules (in general, Дл^,=0±1,±2,... for the
ir-components and Дл^,= ±1/2, ±3/2,... for the
a-components of the spectral lines). On the other hand, it
is well-known that the normal Zeeman eflFect is discussed in
the old quantum theory relative to moving coordinate axes
that precess about the direction of a uniform magnetic
field. This involves the usual quantization and selection
rules for the quantum number Пф, which is in clear conflict
with the fact established above. By re-examining this clas-
sical problem we found one further significant error that
has crept into the publications quoted above1"8 and else-
where in the literature when the expression for the change
in the total energy of the electron is established. For some
reason, the potential energy of the interaction between the
magnetic moment of the atom and the perturbing uniform
magnetic field is ignored (this energy is numerically equal
to the increase in the kinetic energy, ДГ, due to the pre-
cession of the orbital plane of the electron,
&.Т=НпфеН/4тгтйС where H is the magnetic field1"3).
When this error is corrected, the increase in the total en-
ergy, Д W, of the electron becomes greater by a factor of
two, in which case the application of the new quantization

TABLE II. a-components of Ha.

KI| -• l"«l

1/2 -. 1

1-1/2

1-3/2

3/2 -.1

3/2-2

2 -» 3/2

5/2 — 2

±3(3 - 2Ы)

±6

±3

±3

0

0

=F3

=F6

±2(2 - 2|п*|)

0

±2

T2

0

(Г

T2

0*

Д

±6
±1,±5

±5,±1

0

0

=Fl,=F5

=F6
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and selection rules for the equatorial quantum number rel-
ative to processing axes reproduces the classical picture of
spectral line splitting (Av=0 for ir-components,
&v=IeH/4irm(f for a-components). This is a further
demonstration of the validity of the conclusions drawn
above.2)

"The evolution of an orbit is investigated in Ref. 5 interns of the equa-
tions of celestial mechanics averaged over the interval 0, 2ir with the
independent variable taken to be the angular separation v measured in
the plane of the unfolding orbit of a mass point and given by the ex-
pression dv/dt=kl/2p~3/2( \ +е„ cos d)2, where / is the running time, k
is the product of the gravitational constant and the mass of the central
attracting body (in the case of an electron k=Ze2/m0, p=a(\—eL

0) is
the focal parameter of the orbit, and d is the true anomaly). The use of
this variable enables us to treat motion in the central force field as
rolling of the orbital plane (with the angle d measured from a fixed line)
on a conical surface traced out by the position vector of the mass point
with origin at the center of attraction O.

2)It is interesting to note that if we apply the above 'extended' selection

rule to the normal Zeeman effect (A|n^| =0,±l,±2,...,±max(n1,n2)
for the ir-coniponents and Д|"*| = ±1/2, ±3/2,...,
± (max(n,,n2) —1/2) for the cr-components, then we have the theoret-
ical possibility of a wider picture of line splitting: for example, for the Ha

line we have (in units of the constant Ьн=НеН/4ищр),
Д#= {0, ± 2, ± 4} for the тг-components and Д#= {±l,±3,±5}for the
cr-components. The number of splittings increases by unity (in the same
step of ±2) for each subsequent line.
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