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Certain paradoxes of classical electrodynamics that relate to the field angular momentum are
discussed. Explicit expressions are obtained for the first terms of the expansion of the
angular momentum flux radiated by a set of nonrelativistic charges. The consequences of
ambiguities in the definition of the angular momentum tensor in classical
electrodynamics are examined.

1. INTRODUCTION

Recent publications1'2 devoted to the angular momen-
tum of the classical electromagnetic field have rightly
noted that inadequate attention has been paid in the scien-
tific literature to this question. The result has been that
many simple matters have been either totally ignored or
accounts of them have suffered from inaccuracies. The lat-
ter seem to be due to inadequate understanding of the or-
igin of paradoxes associated with the definition of the an-
gular momentum of a field in a volume V, namely,

м,=— Г1 4тгс J у
d3r[rX[E(r,r)xH(r,f)]]. (1.1)

The simplest of these paradoxes may be formulated as fol-
lows. It is readily verified that the integral in (1.1) van-
ishes when it is evaluated over a spherical volume V for a
circularly-polarized plane wave (the vector г is measured
from the center of the sphere). At the same time, it is clear
that charged particles that are initially at rest within this
volume will revolve under the influence of the circularly
polarized wave and the field angular momentum within the
volume V will be transferred to them. This paradox is
examined in detail in Ref. 2 in a somewhat different for-
mulation (the angular momentum flux of a circularly po-
larized plane wave in the direction of the Poynting vector
is zero).

In this note, we present some useful results on angular
momenta in classical electrodynamics. Some of them may
be looked upon as extensions of statements made in Refs. 1
and 2.

2. MULTIPOLE EXPANSION OF THE ANGULAR MOMENTUM
FLUX

The intensity of electromagnetic radiation emitted by a
nonrelativistic classical source can be written in the form of
the following multipole expansion (a series in powers of
the parameter y/c<l):3

; (2.1)

where d,m, and Qtj are the usual electric dipole, magnetic
dipole, and quadrupole moments of the radiating system.
There is an analogous expansion for the flux of the /th
component of radiated angular momentum F\M) (Ref. 4)
whose first (dipole) term is3'5

(2.2)

As far as we have been able to establish, there are no
explicit expressions in the literature for the higher-order
terms of this expansion. We shall derive these expressions
in this Section and will show that the representation of
F\M) by the sum of the contributions of individual multi-
poles is not entirely correct.

The conservation of angular momentum can be de-
rived in classical electrodynamics by applying the identity
transformation to the Maxwell equations and to the equa-
tions of motion of N charged particles in a volume V (see,
for example, Ref. 6):

= _ F<"> (2.3)

where Mp is the mechanical angular momentum of the N
particles

N

[re(OXpe(0], (2.4)Mp=
0=1

M(is the field angular momentum in the volume V as given
by (1.1), and F\M) is the /th component of the angular
momentum flux vector over the surface bounding V,

(2.5)

expressed in terms of the Maxwell stress tensor a/y . If V
is a spherical volume of radius r>A (A is the characteristic
wavelength of the radiation), then (see Appendix)

>= ЛШ[гХ[Е(г,г)ХН(г,0]]/. (2.6)

The transformation to the multipole expansion for the
flux F\U) relies on the substitution in (2.6) of the expan-
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sions for E(r,/) and H(r,/) in terms of the electric (a=e)
and magnetic (a=m) multipole potentials ~BLM(r,a) for
diverging waves.6 However, this expansion is found to con-
sist of not only contributions of the individual multipoles
FlaL\ but also terms due to interference between the (eL)
and (mL±l) sources. In particular, the complete expres-
sion for the angular momentum flux F\M) radiated by a
nonrelativistic source has the following form to within
terms of order (v/c)2:

1

(2.7)

The interference term arises for the following reason.
The conservation law given by (2.3) for 'ordinary' angular
momenta of the particles (Mp) and of the field (Mf) is
transformed identically (without using any gauge condi-
tions) into the law of conservation of canonical angular
momenta of the particles (Jp) and the field (Jf) (see Ref.
2 and also Sec. 4 below):

N

a=l
[re(OxPe(0],

(2.8)

(2.9)

•=-7— <?r(iEj(T,t)(J)jkAk(T,t)), (2.10)

where J is the total angular momentum operator of a spin
1 particle

Г д]
(Ji)]k=Lfi]k-ieijk, L = - / r X ^ . (2.11)

In the general case, the /th component of the flux of the
canonical angular momentum F^ is related to F\M) by

p(M) _ £•(•» ,

' ' +47TCd?

(2.12)

The flux F^ out of the spherical surface of radius r>A is
(see Appendix)

1
=4^

(2.13)

The multipole potentials BLM(r,a) are the eigenfunc-
tions of the operator Jz , or J0 if we transform to the spher-
ical coordinate frame. This must be taken into account
when the expansions of E and A in terms of BiJV(r,a) are
substituted in (2.13) (it has been assumed in this problem
that the potentials q> and A that describe radiation satisfy
the standard Lorentz gauge condition). If we now use the
Wigner-Eckert theorem and the orthogonality of the mul-
tipole potentials on a sphere, we can readily represent the

flux F\n by the sum of the contributions of the individual
multipoles F\aL) (a=e,m;L>l). The surface integral on
the right hand side of (2.12), on the other hand, does not
vanish because the longitudinal components of E(r,f) de-
crease as ~ 1/r2 (the radius r of the spherical surface for
which the flux is calculated is as large as desired but finite)
and yields precisely the above interference terms.

These terms are total differentials with respect to time
and vanish on averaging. They were therefore obviously
missed in Ref. 4 in which the initial equation for the an-
gular momentum flux F\M) was averaged over time. Ex-
pressions for the flux of angular momentum Mf( 1.1) radi-
ated by a source of given multipolarity a,L,M were
obtained in Refs. 7-9. The interference terms could not, of
course, appear in such calculations.

3. TRANSFER OF THE ANGULAR MOMENTUM OF A
CIRCULARLY-POLARIZED PLANE WAVE AND RADIATION
FROM A DIPOLE ROTATOR

The paradox associated with the transfer of the angu-
lar momentum of a circularly-polarized plane wave was
formulated in the Introduction. It was shown with reason-
able generality in Ref. 2 that, for a plane wave, the angular
momentum flux across a plane perpendicular to the direc-
tion of propagation was zero and that this was not in con-
flict with the possibility that the wave could transfer its
angular momentum to the charged particles interacting
with it. In actual fact, and in accordance with the conser-
vation law given by (2.3), a change in the angular momen-
tum Mp of the particles cannot be directly related to the
absolute magnitude of the angular momentum Mf of the
field in the volume К or to the angular momentum flux of
the plane wave crossing the surface bounding the volume
V. Charged particles interacting with the plane wave radi-
ate, so that the total field on the boundary of the volume V
is a superposition of these radiated fields and the incident
plane wave. It is shown in Ref. 2 that the change in Mpi is
precisely cancelled by the terms in the flux F\M) due to
interference between the radiated and incident fields. It is
well-known that energy conservation is assured in a similar
way during the interaction of an electromagnetic wave and
a set of charges. The same phenomenon of interference
between incident and scattered waves arises in quantum
theory where we have the conservation of probability (see,
for example, the derivation of the optical theorem in the
Ref. 10).

A simple problem illustrating these ideas is examined
in our previous paper.11 Consider a circularly-polarized
plane wave propagating along the z axis. Its electric field
EO(?) forces a free nonrelativistic particle of charge e into
a circular orbit of radius r0 . The energy (intensity 7) ra-
diated by this particle per unit time and the z component of
the angular momentum (the flux F(

Z

M}) are given by (2.1)
and (2.2) (a>0 is the angular frequency):

(3.1)
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These fluxes are exactly compensated by terms due to
interference between the incident plane wave and the field
radiated by the particle (since the problem is time inde-
pendent, the energy and the angular momentum of the
particle and the field are constant within the spherical vol-
ume F). We note that this is a natural result from the
standpoint of the correspondence principle. In quantum
theory, a circularly polarized wave constitutes a flux of
photons polarized parallel or antiparallel to their momen-
tum. The absorption of и photons of total energy
лйй>о=2е2й)<)'о/3с3 should be accompanied by the transfer
of angular momentum n^=2e2<o3/2/3c3 to the scattering
target.

Thus, the fact that the vector Mf given by (1.1) is
equal to zero within the volume V is not in conflict with
the ability of a circularly polarized plane wave to transport
angular momentum and transfer it to charged particles
within the same volume V. The energy and the angular
momentum transfers, 8Ef and AMfz calculated in classical
theory are then related by

(3.2)

which is also valid in quantum theory. The source of the
apparent paradoxes here is the implied simple-minded
treatment of the vector Mf as an angular momentum 'con-
tained' within the volume V. According to (2.3), the phys-
ical significance must, however, be assigned only to
changes in the vector Mf within the volume V and not to
the absolute values of these vectors, and also to the integral
fluxes of angular momentum across the surfaces bounding
V. In the same way, only the integral flux of the Poynting
vector across a closed surface and not the Poynting vector
itself can be physically meaningful.12

We shall now show that an apparent paradox similar
to that examined above arises in the case of radiation from
a dipole rotator.1 In accordance with (1.1) and (2.6), the
/th component of the flux of radiated angular momentum
F\M) is equal to the /th projection of the angular momen-
tum dM(i of a spherical layer of thickness dr divided by the
time dr/c taken by the wave front to cross this layer:

dMf,

dr/c'
(3.3)

In its turn, the field angular momentum within the volume
К=лМдШ is given by the following expression in the di-
pole approximation:

1
dMf,=dr/cdn T—j(nd)[nxd],. (3.4)

lire

Substituting (3.4) in (3.3) and integrating with respect to
П we obtain formula for F^ given by (2.2). The formula
given by (3.4) is interesting in that it is obtained only if we
take into account the terms in the electric field E(r,f) that
fall as ~l/r2. This point is usually the subject of
discussion.3'5

Another feature of (3.4) was also noted in Ref. 1.
Suppose that the radiator is a nonrelativistic charged par-
ticle revolving at the end of a spring on a circle around the

z-axis. The polarization of the radiation emitted by this
particle is a function of the polar angle -Э between the z-axis
and the direction M of an element of the wavefront within
the solid angle dft. In general, this is an elliptic polariza-
tion that becomes linear when d=ir/2 and circular when
d=0 or тт. It is clear from physical considerations that the
angular momentum is transported by the circularly polar-
ized waves propagating along the z-axis. Moreover, as was
shown in Ref. 1, the differential angular momentum flux is
a maximum for d = ir/2 and 0 for d=0 or TT. In point of
fact, in accordance in (3.4), the average angular momen-
tum (dMfz) [i.e., the differential flux, see (3.3)] averaged
over time is proportional to sin3 ddd. This paradox can be
avoided if, in accordance with the foregoing, we consider
that it is only the integral angular momentum flux that is
physically meaningful.

4. CANONICAL ANGULAR MOMENTUM OF PARTICLES AND
FIELD

In Sec. 2, we gave a formal transformation from the
conservation law (2.3) for the 'usual' angular momenta
Mp and Mf to the conservation law (2.8) for the vectors Jp

and Jf. On the other hand, this transformation relies on
the well-known ambiguity (see, for example, Refs. 13 and
14) of the energy-momentum tensor and the field angular
momentum tensor in classical electrodynamics. In accor-
dance with the Noether theorem, the in variance of the field
Lagrangian Lf under 4-translations and 4-rotations leads
to

_д_
fat (4.1)

where 77" is the canonical energy-momentum tensor and
M^aa is the angular momentum tensor (tfpa is the spin
tensor)

In general, the canonical energy momentum tensor T%v is
screw-symmetric. For example, this is so with the usual
choice of the Lagrangian for the free-electromagnetic field:

Classical electrodynamics usually employs the sym-
metric energy-momentum tensor T^sym) and the angular
momentum tensor Щ^т) expressed in terms of
(see, for example, Ref. 3)

The tensors T%sym} and Щ^ differ from 7?" and
AfJ''*7 by total 4-divergences such that (the field is consid-
ered free)

(4.4)

In accordance with this ambiguity, there are two ways in
which we can introduce the angular momentum (more
precisely, the pseudovector):
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(4.5)

In 'three-dimensional' notation, the vector Jf is given by
(2.10) and Mf by (1.1). Since the second term under the
integral sign in (2.10) is expressed in terms of the spin
tensor Of?p<7, the vector

Sf=(l/4re) Г d3r[ExA]
J v

is sometimes referred to as the spin angular momentum of
the field.15'16

When charged particles are present, the transition
from the 'usual' field angular momentum Mf to the canon-
ical angular momentum Jf is accompanied, as we have seen
in Sec. 2, by the transition from the 'usual' angular mo-
mentum Mp of the particles to the canonical angular mo-
mentum Jp expressed in terms of the canonical momenta
Pa of the particles in the external field. Although this entire
argument can be applied to the conservation law (2.8) for
the canonical angular momentum, as it was in the case of
(2.3), and, accordingly, only changes in Jf and in integral
fluxes F\^ can be given physical meaning, we cannot ig-
nore the following well-known fact (see, for example, Ref.
16). When we evaluate the canonical angular momentum
of a circularly-polarized plane wave, described in the Cou-
lomb gauge by the vector potential

A(r,t)=ReA0(ex±iey)e\p[ — /(of—kr+a)],

we obtain

(4.6)

where К is a spherical volume with center at the origin.
Since the energy of a plane wave within V is

Ef=— Г </3r(E2 + H2)=—
О1Г J v ^Я

the relationship between Jfi and Ef is

(4.7)

(4.8)

so that J{ is effectively the classical pressure original of the
angular momentum of the quantized electromagnetic field.
This is meaningful for the following reason. The classical
analog of the orbital angular momentum operator

is the canonical angular momentum Jp since it is the ca-
nonical momenta Pfl that are replaced with the operators
(see, for example, Ref. 17) —Щд/дга). This is why Jf,
which appears together with Jp , is naturally associated
with the angular momentum of the quantized electromag-
netic field.

To conclude this Section, we reproduce the formula
that relates the vectors Mf and the Jf for the free classical
electromagnetic field:

f=Jr-^ §
(4.9)

This relation was first obtained in Ref. 18 where it was also
applied to the analysis of the angular momentum Mf of a
'packet' of a circularly-polarized field localized in space. If
we suppose that the surface integral in (4.9) must vanish
because of localization, we would expect that for a 'packet'
propagating along the z axis, the projection of the angular
momentum Mfz and the energy E{ should be related by
(4.8). This idea is developed in detail in Ref. 2.

5. ANGULAR MOMENTUM OF A CHARGED PARTICLE IN A
MAGNETIC FIELD

The difference between the 'usual' and the canonical
particle angular momenta of particles and fields becomes
explicit when an external magnetic field is present (A^O).
It is not fortuitous, therefore, that it is precisely in a mag-
netic field that we immediately encounter angular momen-
tum paradoxes (when the formulas are not properly un-
derstood, of course). Here is one of them (other examples
can be found in Refs. 19 and 20). A nonrelativistic particle
of charge e and mass т travels on a circle of radius r0,
centered on the origin of coordinates in a uniform mag-
netic field H0 which points in the direction of the negative
z-axis, so that the angular momentum of the particle points
along the z-axis (the angular frequency й)0=еЯ(/тс is in-
dependent of the radius). In the dipole approximation, the
energy lost by the particle (in a magnetic field, this is only
the kinetic energy) and the z-component of the angular
momentum would appear to be given by (3.1):

d

-

(5.1)

(5.2)

However, these two equations for r0(f) are clearly incom-
patible. Such complications do not arise for a particle ro-
tating, for example, on a spring in the absence of a mag-
netic field: its total energy is greater by a factor of two than
its kinetic energy (due to the potential energy), so that
equations (5.1) and (5.2) have the same solution r0(t).

A paradox arises because the law of conservation of
angular momentum as given by (2.3) is incorrectly used.
On the left-hand side of the equation we must have the
angular momentum of the field that arises when we cross
the Coulomb field of the charged particle
E(r,0=e(r-r0(f))/|r-
netic field H= — /70ez

1 Г
^ \y

-r 0(f) | with the constant mag-

(5.3)
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This is precisely the case in which the field angular mo-
mentum Mf( 1.1 ) within the volume V does not depend on
time and the physically meaningful quantity is the deriva-
tive and not the absolute magnitude of the vector Mf .

It is readily seen that no paradox will arise if we ex-
amine the compatibility of the law of conservation of en-
ergy (5.1) and the law of conservation of the canonical
angular momentum (2.8). Substituting the explicit expres-
sion for the vector potential of the uniform magnetic field
in (2.9) and (2.10) (p is the distance from the z-axis and
e$ is the azimuthal unit vector),

А(г)Ц

we obtain

— (5.4)

/&=0. (5.5)

The particle canonical angular momentum /pz is now none
other but the generalized momentum that is the conjugate
of the azimuthal angle ф. If we neglect radiation, this gen-
eralized momentum is conserved, because the charged-
particle Lagrangian

(5.6)

is independent of the azimuthal angle if>. Accordingly

(5.7)

The conservation of/pz is used in the analysis of the motion
of charged particles in axially symmetric time-independent
magnetic fields.21

We shall now show that (5.3) is in fact compatible
with (5.1). Suppose that a uniform magnetic field exists
only in limited portions of spaces, e.g., inside a long sole-
noid (R<L where R,L are the radius and length of the
solenoid) or inside a rotating sphere that is uniformally
charged on its surface. In any case, the static magnetic field
can be described throughout space by potentials satisfying
the following gauge conditions:

<p(r)=0, divA(r)=0, A(r)-0 forr-oo. (5.8)

The vector potential A(r) then falls as 1/r2 at infinity.3

With this gauge, the field angular momentum Mf due to
crossed Coulomb field of the charged particle and the ex-
ternal constant magnetic field of arbitrary reconfiguration
is given by

Mf=J~ Г4тс J^c

d3r rX
e(r-T0) Xrot A(r)

=-[r0XA(r0)]. (5.9)

Comparing this result with (2.4) and (2.9), we see that, in
the gauge defined by (5.8), the choice between the 'usual'
(Mp) and the canonical (Jp) angular momentum of the
relativistic particle is equivalent to the choice to between

two possible ways of taking into account the angular mo-
mentum due to interference between the Coulomb field of
the particle and the external magnetic field. In the one
case, this is the angular momentum of the field whereas in
the other it is part of the canonical angular momentum of
the particle. It follows that, on the left-hand side of (5.3)
the time differentiation symbol is followed by Jpz which in
turn is given by (5.5) in the region of space in which the
field is uniform; as we have already established the varia-
tion of Jpz is compatible with the variation in the particle
energy.

Similarly, the crossed particle field and external static
magnetic field generate additional momentum that has the
following form in the gauge (5.8):

1
Pf=-r-

g(r-r0)

|r-r0|
3

XrotA(r)

=-A(r0). (5.Ю)

It is precisely this quantity that is the difference between
the 'usual' (p) and the canonical (P) momenta of the
particle in the field [see (2.9)]. In contrast to (5.9), this
result can be found in some textbooks (see, for example,
Refs. 22 and 23). The formula given by (5.9) appears to
have been given for the first time in a paper on the
Aharonov-Bohm effect.24

To complete the picture, we must mention that the
paradox formulated at the beginning of this Section can
also be resolved in a completely different way. The total
tune derivative of the mechanical angular momentum of
the particle is equal to the total moment of forces acting on
the particle. Consequently, equation (5.2) can be corrected
by adding to its right hand side the moment of the Lorentz
force

XH]]Z (5.11)

and then integrating the first term on the right-hand side in
its role as the moment of the force of radiative friction. The
moment of the Lorentz force is not zero because a radiat-
ing particle travels on a spiral and not a circle. Since
r(OH=0 and H=—Я0ег, we now transform (5.11) to
the form

d/ /

4M<*-
(5.12)

which is compatible with conservation of energy (5.1).
This method of resolving the paradox is actually

closely related to what we have done before. To see this,
consider the similar problem that arises in electrostatics.
The change in the kinetic energy _Ep=mv2/2 of a radiating
nonrelativistic particle moving in the static electric field
E(r) = — grad<p(r) in a time dt is equal to the total work
done by forces acting on the particle during the time dt.
Hence,
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d

d/
— Ep= -er(r)grad<p(r) -/,. (5.13)

where the radiation intensity / is interpreted as the work
done by the radiative friction force per unit time. However,
(5.13) can also be written in the form

-(Ep+e<p(T(t))) = -I, (5.14)

which describes the change in the total energy of the par-
ticle as it radiates. It is well-known3 that the quantity
eq>(r(t)) in the usual gauge employed in electrostatics:

for r-.oo, A(r)=0. (5.15)

It can be interpreted as the potential energy of the particle
and is equal to the part of the field energy Ep which is due
to interference between the Coulomb field of the particle
and the external electric field E(r). We thus see that there
is a clear analogy between the transition from (5.13) to
(5.14) and from (5.11) to (5.12). Consequently, the ad-
ditional term that arises under the time differentiation sign
on the right-hand side of (5.12) can be interpreted as the
'potential' angular momentum of the charged particle in
the time-independent uniform magnetic field, which is nu-
merically equal, as we have seen, to the field angular mo-
mentum Mf (5.9) due to interference between the Cou-
lomb field of the particle and the external magnetic field.

6. CONCLUSION

We can now summarize our results in the form of the
following two propositions.

First, the angular momentum arises in the theory as a
quantity that satisfies a particular conservation law. This
law relates the total derivative of the angular momentum in
the volume V and the integral angular-momentum flux
across the surface bounding V. To avoid paradoxes, we
must take as physically meaningful only changes in the
field angular momentum in the volume V and not its ab-
solute magnitude, and only the integral flux of the angular
momentum across the surface V and not the differential of
this flux.

Second, the theory contains both the conservation of
the 'usual' angular momentum (2.3) and the canonical
angular momentum (2.8). This duality gives rise to an
ambiguity in the choice of the energy-momentum tensor
and the angular momentum tensor of the classical electro-
magnetic field. None of the terms in the conservation law
(2.8) are formally gauge invariant, so that they are not
directly physically meaningful. The point is that in prob-
lems solved under particular gauges, the canonical angular
momenta may acquire explicit physical significance (see
Sees. 2, 4, and 5). It is also appropriate to recall here that
e<p(r) is also formally gauge noninvariant, but this does
not prevent us from widely using the expressions for the
potential energy of a particle in an electric field by fixing
the gauge condition (5.15). In a constant magnetic field
(5.8), the canonical angular momentum (2.9) of a nonrel-
ativistic charge can be interpreted as the total angular mo-

mentum of the system in precisely the same way as the
generalized momentum of the charge is equal to the total
electromagnetic momentum.

The author is indebted to S. V. Romanov for numerous
useful discussions.

APPENDIX

Substituting the explicit expressions for the stress ten-
sor <rkl (Ref. 3) in (2.5) and (2.12), we obtain the follow-
ing expressions for the fluxes F\M\ F^ of the /th compo-
nents of the 'usual' and the canonical angular momenta
across a spherical surface of radius r (n=r/r)

=— <j> Лт([НХг],(пН)-[гХЕ],(пЕ)),

(Al)

—

[[HXn]xA],.). (A2)

In the integral expressions we must, of course, retain
only those terms that do not decrease in the wave zone (for
r-> oo ). Since n • H and n • E can be nonzero only because
of components that decrease as ~ 1/r2, it is sufficient to
take into account only the components of H and E that
falls as ~ 1/r in H X r and rXE. However, for these com-
ponents,

H(r,/)«[nxE(r,0],

Е(г,0«[Н(г,Г)Хп].

Hence, we have

F<-M)=— & ЛШ[ГХ[ЕХН]],..

(A3)

(A4)

instead of (Al).
Similarly, since the operator Lt in (2. 1 1 ) operates only

on the angular variables, and only components that de-
crease as ~ 1/r in (2.11) operates only on the angular
variables, and only components that decrease as ~ 1/r
need to be taken into account in the quantities <p,A,E,H
that appear in the integral relation (A2). However, we
then have

(A5)

These can be given clear significance if we multiply and
divide (A4) and (A5) by dr/c: the fluxes F\M) and F,(fl

are thus found to be equal to the projections dM{i ,dJfi of
the angular momentum (1.1) and (2.10) of the field in a
spherical layer of thickness dr, divided by the time dr/c
taken by the wave front to cross this layer.
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