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This review presents methods available for calculating transport coefficients for impurity
particles in plasmas with strong long-wave MHD-type velocity and magnetic-field fluctuations,
and random ensembles of strong shock fronts. The renormalization of the coefficients of
the mean-field equation of turbulent dynamo theory is also considered. Particular attention is
devoted to the renormalization method developed by the authors in which the
renormalized transport coefficients are calculated from a nonlinear transcendental equation
(or a set of such equations) and are expressed in the form of explicit functions of
pair correlation tensors describing turbulence. Numerical calculations are reproduced for
different turbulence spectra. Spatial transport in a magnetic field and particle acceleration by
strong turbulence are investigated. The theory can be used in a wide range of practical
problems in plasma physics, atmospheric physics, ocean physics, astrophysics, cosmic-ray
physics, and so on.

1. INTRODUCTION AND FORMULATION OF THE PROBLEM

The diffusion of a test particle (passive impurity) in a
turbulent medium has been under investigation by statisti-
cal methods for many decades (see, for example, Ref. 1),
but a complete solution is still eluding us. This is so be-
cause the problem is a complex one even in its simplest
formulation, and the situation is complicated still further
by the increasing range of applications whereby new phe-
nomena, closely related to one another, continue naturally
to emerge. This includes, above all, the interaction of
charged impurities with turbulent plasmas, and also the
diffusion, conduction, and generation of magnetic fields in
turbulent conducting media. Hence an adequate descrip-
tion of systems encountered in nature and in laboratory
experiments necessarily involves a further complication of
the original formulation of the problem as well as a con-
siderable number of special cases.

The transport of an impurity of low concentration
n(r,t) that does not affect the dynamics of the host me-
dium in the form of an unionized fluid or gas is described
by the equation2

dn
(1.1)

In a medium with hydrodynamic-type turbulence, the
Euler velocity u(r,f) is a random function of the coordi-
nates and of time. It exhibits stochastic fluctuations over
scales 1<L and times T<rc^L/u where L is the principal
(maximum) turbulence scale. In a compressible medium,
the 'molecular' diffusion coefficient x(r,t) is a random vari-
able because of fluctuations in the density of the medium.
Equation (1.1) is valid provided the turbulent pulsation
scale / is large in comparison in the transport mean free
path Л of the impurity particles.

To describe the propagation of an impurity to a dis-
tance R > L (for example, of the order of the linear dimen-
sions of the systems of a whole), we have to average (1.1)
over regions with linear dimensions exceeding L or over an
ensemble of turbulent pulsations. These two methods of
averaging are equivalent if the correlations in the turbulent
medium decay rapidly enough.3 The averaging procedure
should establish the form of the equations for the average
concentration (n(r,/)) and the coefficients of this equation
as functions of the average parameters of the turbulent
velocity field. Taylor1 was the first to show that, for times
much greater than the turbulent-velocity correlation time
тс, the transport of an impurity is asymptotically a diffu-
sion with an effective diffusion coefficient which, for isotro-
pic and homogeneous turbulence, is given by an integral of
the correlation function of Lagrange velocities

1 f«

- = 3 j 0

(1.2)

where v(a,f) differs from u(r,f) in being the Lagrange ve-
locity of an element of the medium located at a at the
initial time, and molecular diffusion is neglected. The rela-
tion between the Lagrange and Euler correlation functions
has not been rigorously established, and only approximate
expressions are available for the turbulent diffusion coeffi-
cient x m terms of the observed Euler turbulence
characteristics. 3~5

When the passive impurity takes the form of charged
particles in a plasma with a magnetic field and MHD-type
turbulence, the evolution of the impurity differs from the
above simple case in at least the following three respects:

1. In addition to transport in space, the particles may
become accelerated, so that the transport analysis should
describe not only the propagation of the particles in space,
but also their energy distribution. The evolution of the
spectra of nonthermal particles in astrophysical plasmas is
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particularly important in the context of the origin of cos-
mic rays,6 but the phenomenon is also significant in the
laser plasma7 and in tokamaks.8

2. Transport in space in the presence of a strong mag-
netic field is sharply anisotropic and takes place mainly
along the field. At the same time, anomalous transport is
observed across the magnetic field which, as a rule, is faster
than predicted 'classical' theories. This applies to the prop-
agation of heat and of impurity ions in thermonuclear
installations9"12 as well as to the diffusion of relativistic
particles (cosmic rays) in the Galaxy.13'14

3. In cosmic media, the sources of turbulence are often
shock waves, and the turbulence itself can assume ultra-
sonic character, so that it contains an ensemble of shock
fronts with a certain distribution over the shock amplitude
or values of the Mach number.16 It was explained quite a
long time ago17"20 that strong shock fronts in a turbulent
medium are efficient accelerators of charged particles. This
means that studies of the transport of charged particles in
turbulent plasmas containing shock fronts is a topical mod-
ern problem in high-energy astrophysics. Many problems
that involve the above properties of impurity charged par-
ticles in plasmas with large-scale MHD-type turbulence
can be solved on the basis of the transport equation21

dN

~dt'~

д

~"д7„
dN dN pdNdua

(1.3)

where N(r,p,t) is the isotropic part of the particle distri-
bution function normalized by the condition

| N(r,p,t)p2dp=n(r,t),
Jo

where x^r,!) is the local tensor describing the diffusion of
particles due to small-scale electromagnetic fields and Cou-
lomb collisions, u(r,f) is the Euler turbulent-velocity field
whose inhomogeneity scales exceed the local transport
mean free path Лц of the particles which determines the
values of the tensor x^. Equation (1.3) describes particle
diffusion and convective transport, as well as changes in
particle energy due to changes in the density of the me-
dium (dua/dra=£Q). In other words, we may say that the
effects of changes in energy can be described by explicitly
introducing the electric field vector E= — uXB/c where В
is the magnetic field. Incompressible motion (div u=0) of
the turbulent plasma also leads to particle acceleration, but
the contribution of this is smaller than that due to the
adiabatic effect represented in (1.3) by the factor (Лц /L)2

(Ref. 22) where L is, as above, the principal (energy bear-
ing) turbulence scale. If we integrate (1.3) over the entire
momentum space, assuming that the diffusion tensor is
independent of particle momentum (or if we replace it by
its average over the spectrum), we obtain (1.1).

We note that (1.2) describes particles that have al-
ready been injected into the acceleration regime. Their ve-
locities are v^u, and their energy losses in collisions with
particles of the host plasma can be neglected. On the other
hand, the majority of impurity particles with thermal en-
ergies is not involved in the acceleration process because of

losses, and the transport of these particles is described by
(1.1) (with an anisotropic diffusion coefficient).

The averaging of (1.3) with arbitrary turbulence pa-
rameters, especially those that are typical for astrophysical
objects, encounters considerable difficulties because the
turbulence is strong and the quasilinear theory23"25 that
successfully describes weakly turbulent states ceases to be
valid for the problems outlined above.

The theory for the turbulent dynamo26"28 is another
important modern aspect of the problem of passive-
impurity diffusion. Such studies became particularly topi-
cal after Steenbeck et al. ,26 discovered the mechanism re-
sponsible for the generation of a magnetic field by
gyrotropic turbulence (the a-effect). The theory of this
effect is usually based on an examination of the induction
equation

ЭН

~dt
;=curl[uXH]+vmAH, (1.4)

where vm=c2/4ircr is the magnetic viscosity (magnetic-
field diffusion coefficient). In the linear formulation, the
turbulent velocity field u(r,/) and its static characteristics
may be assumed to be given, so that the problem reduces to
the derivation from (1.4) of the average equations for the
large-scale magnetic field and its highest moment, followed
by an examination of special cases. Evaluation of the coef-
ficients of the average equations is subject to difficulties
similar to those mentioned in connection with (1.1).

The aim of this paper is to provide a review of the
methods available for averaging the above equations and
for the evaluation of the transport coefficients without im-
posing restrictions on the amplitudes of the turbulent ve-
locity and the magnetic-field pulsations, or on the correla-
tion lengths and times, i.e., we shall be dealing with strong
turbulence. In this respect, the material presented here dif-
fers from most published papers in which these limitations
are employed in one form or another. Most of the results
presented in this review refer to the transport description
of the behavior of ensembles of particles in three-
dimensional systems with statistically homogeneous
MHD-type fluctuations that can be described in terms of
low-rank correlation functions. It is also assumed that field
correlations decay sufficiently rapidly. An important ex-
ception to this restriction is encountered in systems with
ensembles of shocks (shock waves) in which intermittency
effects are significant and require more detailed statistical
information. Such systems are examined in detail in Sec. 7.

In all the above systems, physically different processes
can be described by a unifying formalism, namely, the
renormalization method. On the other hand, descriptions
of systems with special realizations, which rely on perco-
lation and statistical topography techniques, are described
in detail in a number of other reviews,11'29'54 (see, in par-
ticular, the recent detailed review by Isichenko29) and are
mentioned here only in passing.

The structure and content of this review are as follows.
In Sec. 2 we examine the simplest methods for averaging
equations (1.3)-(1.4) that do not require renormalization.
They are valid for sufficiently small turbulent pulsation
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amplitudes and for sufficiently rapid (in the limit, infinite)
destruction of correlations between turbulence variables.
These conditions are not satisfied in many real systems, so
that nonperturbative approaches to these problems have to
be developed.

In Sec. 3 we briefly describe, the most productive ap-
proaches used by different authors to the evaluation of the
transport coefficients for impurity particles in systems with
strong MHD-type turbulence. We have tried to cover all
published papers in which the transport coefficients have
been calculated in some particular approximation and the
corresponding transport equations were constructed. Gen-
eral treatments are mentioned only in passing.

We emphasize that particular attention is devoted in
this review to impurity particle kinetics, so that we cannot
pretend that we have provided a presentation of the renor-
malization method for the investigation of strong turbu-
lence dynamics, in which there have been considerable re-
cent advances and which has been the subject of several
recent reviews.50'51 This topic is briefly examined in Sec. 3,
but only to establish the relation between strong turbulence
theories and theories of turbulent transport.

Most of this review (Sees. 4-8) is devoted to the pre-
sentation and application of the method developed by the
authors in recent years for the description of spatial trans-
port and acceleration of charged particles in plasmas with
strong MHD-type turbulence. We hope that this will be of
particular interest because this approach provides us with a
unified method for solving a number of difficult problems
whose solution is essential for the understanding of the
physics of nonequilibrium processes in tenuous plasmas
(especially in astrophysical studies) and which, as far as
we know, have not been solved before.

In Sec. 4 we consider the fundamentals of the method
and examine calculations of transport coefficients in sys-
tems with strong turbulence without shock fronts. We go
on to analyze different special cases, including the process
of strong acceleration of particles within the correlation
length, which can be described by equations other than the
Fokker-Planck equations.

In Sec. 5 we apply our method to the derivation of the
equations for the large-scale magnetic field in the theory of
the turbulent dynamo. We find that it is possible to calcu-
late the renormalized turbulent viscosity and the coefficient
of magnetic-field generation (a effect) without resorting to
perturbation theory or the 6-correlated turbulence model.

Section 6 is devoted to an analysis of the transport of
particles across a large-scale magnetic field when there are
stochastic magnetic-field fluctuations and velocities of ar-
bitrary amplitude in the medium. It is precisely such con-
ditions that are typical for the Galaxy. The transverse dif-
fusion coefficient had not been previously considered for
arbitrary fluctuations amplitudes.

Section 7 examines turbulent systems in which random
ensembles of shock waves with arbitrary Mach numbers
are excited. They can be looked upon as systems with
strong intermittency. Studies of particle transport in such
systems are important because they are commonly encoun-
tered in astrophysics. Our Galaxy as a whole and its indi-

vidual active regions in particular are plasma systems with
strong turbulence and ensembles of random shocks.

Finally, in Sec. 8 we give a brief resume of the method
and discuss the advantages and disadvantages of our the-
ory as well as possible future developments and more rig-
orous derivations.

2. IMPURITY TRANSPORT IN A MEDIUM WITH LONG-WAVE
TURBULENCE

In this Section, we examine the conditions under
which the averaging of the initial equation can be accom-
plished by simple methods.

2.1. Perturbation theory

We begin with the incompressible motion (divu=0)
with zero average velocity: <u)=0. To average (1.3) over
the ensemble of turbulent motions, we take the distribution
function in the form

F(r,p,t) +SF(r,p,t),

\&F\<F. (2.1)

The inequality in (2.1) is the condition for the validity of
perturbation theory. In this case, the acceleration effect is
absent and the local diffusion tensor xap can be regarded as
given and nonfluctuating. Substitution of (2.1) in (1.3)
yields the following set of two equations:

dF д dF I d8F\

dSF д 38F dF

(2.2)

(2.3)

The latter equation has been linearized in the fluctuating
quantities ua,8F.

If we look upon (2.3) as the inhomogeneous diffusion
equation, we can write its solution in terms of the Green
function G(r,r',t,t') which contains the local diffusion ten-
sor

r dF(r',p,t')
SF(r,p,t) = G(r,r',t,t')ua(r',t') -f dVd/'.

J '"a

(2.4)

Substitution of (2.4) and (2.2) gives the average transport
equation that takes into account turbulent diffusion in the
incompressible medium:

dF d dF d8F д dF д Г

-д7=д7а^д^+д7а J 0(г'т''<'
3_

~д7„ '. (2.5)

If the medium is stationary and homogeneous, the Green's
function and the correlation tensor of the Euler velocities
depend only on the differences between the arguments, and
equation (2.5) reduces to
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sr" f*

—- G(r-r',r-f')

(2.6)

Averaging over the ensemble of turbulent motion is
thus seen to lead to an integrodifferential equation with a
nonlocal interaction within the correlation length L and
correlation time тс, which are determined by the properties
of the correlation velocity tensor (uau'p}. If we are inter-
ested in the behavior of the distribution function over times
and distances that are significantly greater than the turbu-
lence correlation time and length, then (2.6) can be sim-
plified. According to the ergodic theorem for homogeneous
stationary random processes,3 averaging over the ensemble
is then equivalent to averaging over time or over space. The
average distribution function F then varies slowly within
the range of integration, and equation (2.6) assumes the
differential form

dF d2F
(2.7)

=**+ f d'p f •
J Jo

with the effective diffusion coefficient given by (2.8) in
which Кар(~р,т) represents the turbulent velocity correla-
tion tensor.

If we estimate the second correction to the distribution
function and compare it with the first correction in (2.4),
we find that the expansion parameter depends on the na-
ture of the turbulence. For strong turbulence in an incom-
pressible medium (vortices), the expansion parameter is
the Peclet number (3=uL/x (where u=(u2)l/2 and local
diffusion is isotropic, ^a,^—x^ap- When a sufficiently
strong magnetic field is present, so that cA%>x/L where
сА = В(4ттр)~1/г is the Alfven velocity, the expansion pa-
rameter is U/CA (weak Alfven waves). The equation (2.7)
and (2.8) are therefore valid with one of the following two
inequalities is satisfied:

uL<£x, M^CA. (2.9)

The correction in (2.8) to the local diffusion tensor is qua-
dratic in one of the above small parameters.

For compressible motion of a turbulent medium
(divu^O), the averaging of (1.3) is a more complicated
task because we then have to take into account the accel-
eration term containing ЭМ/dp and also the fluctuations in
the local diffusion tensor xap. We shall assume that these
fluctuations are due to changes in the particle number den-
sity n(r,t) in the turbulent medium. In perturbation theory

— —йл
3=—~— Л

dn
(2.10)

If we adopt the above procedure, we obtain the following
average equations for a statistically homogeneous medium:

dF d2F 1 д d2

dF 2 д ... d2F
(2.11)

where

(2) , v(3)

-;• (2.12)

d2G(p,r) (8n8nf)

(2.13)

(2.14)

(2.15)

(2.15a)

in which all the correlation functions depend on р=т—г'
and r=t—t'. The quantities v and 5л are related by the
continuity equation

- p2 Г з

= ~~9 J

= -- fdV Г
18 J FJ0

d2G(p,r)

8n(r,t)
div u(r,T)dr. (2.16)

"0 ^ -00

A clearer picture of the transport coefficients emerges
if written in terms of the Fourier transforms of the corre-
lation functions. Let

(2.17)

(2.18)

where for homogeneous and isotropic turbulence

+S(k,o,)kakek-2.

We now specify explicitly the dependence on frequency
by introducing the correlation time for the harmonics

1

We have chosen the Lorentz or the dispersion form of the
frequency dependence of the spectral function because it is
universal and simple.

Transforming to the spectral functions in (2.12)-
(2.15) and integrating with respect to frequency, we obtain
an expression for the transport coefficients in the form of
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single integrals of the spectral functions T(k) and S(k).
The diffusion coefficient in momentum space is given by

(2.19)

The expression given by (2.19) shows that there is a
significant dependence on both the correlation time (or the
broadening of the resonances Tk) and on the spatial diffu-
sion coefficient x. As Г\-»0 and ea0(k) = vphk (weak acous-
tic or magnetoacoustic turbulence), we obtain from (2.19)
the result reported in Ref. 30: for weak turbulence, we have
a superposition of monochromatic waves with different
phases, and there is no acceleration effect in the limit as
й-»0. The conditions for the validity of (2.19) are then

, 2 ч f°
("pot>=47r

^ JO
(2.20)

If the broadening of the resonances Tk is finite, the
particles are accelerated even in a system with very strong
particle scattering (й-»0):

,2.2,,

The conclusions about the role of diffusion and finite cor-
relation time of turbulence are quite general and unrelated
to particular forms of the function S(k,(a). In particular,
analogous results are obtained for a Gaussian dependence
of the spectrum on frequency.31

The presence of the acceleration effect in the limit of
strong scattering (x-»0) and finite correlation time
rc(k) = Tk is due to the presence in this case of the Fermi
stochastic velocity field that is necessary for acceleration.
As rc-> oo, the velocity field is found to consist of station-
ary modes into which the particles are 'frozen', so that
there is no acceleration. The turbulent increments Xap>
X$ , and x$ m tne spatial diffusion are also small in this
case and are of the order of u2/vpb . The vortical and po-
tential components of the velocity provide comparable con-
tributions to x(ap •

We note that the above criteria for the validity of per-
turbation theory may cease to be valid in the presence of
strong large-scale turbulence. The effective phase velocity
yph^« and the Peclet number /3 are then found to be large
for impurities in the atmosphere and in the ocean, and also
for the nuclei of heavy elements and moderate-energy cos-
mic rays in the Galaxy. The validity of perturbation theory
for the equation of induction (1.4) in the case of an in-
compressible medium is restricted by the condition that the
magnetic Reynolds number must be small
(Rem=wZ//vm<l), and this condition is also violated for
most astrophysical objects.

2.2. Short correlation times

In order to emerge from the confines of perturbation
theory, it is usual32"34 to consider a hypothetic turbulence
in which turbulent velocities have zero correlation time. In
particular, this corresponds to the correlation tensor

I. (2.22)

An analogous assumption can be made in relation to other
correlation tensors. We note that 5-correlated turbulence
(2.22) is a simplified model that does not correspond to
any particular real case and is interesting only to the extent
that averaging of equations such as (1.3) and (1.4) can be
performed exactly. In reality, the correlation time is finite
and of the order given by rc^L/u for strong turbulence
and TcxL/vph for weak turbulence.

Let us now average (1.4) by a method that is different
from that used in Refs. 33 and 34. In the case of short
correlation time (in the limit, zero correlation time), the
turbulent velocities for r<t and r>t are uncorrelated.
Any variable that depends upon them can then be averaged
independently within these two time intervals. Let

(2.23)

and take (1.4) in the form

+ Ba8(r-t), (2.24)

where A<$i=eail^V7a in which the 5-term is effectively the
initial condition for the unaveraged field H(r,/). The inte-
gral form of (2.24) is

Я«(г,т) =A% f d-r' J dVG(r-r',r-T')

a

where

(2.25)

,r)= d3r'G(r-r',r-t)Ba(r',t), (2.26)
J

and G is the Green's function of the diffusion operator

д

А-УяА

satisfying the condition

G(iyr) »6(r).
T-.0

We can now use (2.25) and the iteration method to calcu-
late Ha at time t+Д? to within terms that are linear in Д/.
Since Ha(r,t+At) depends explicitly on the turbulent ve-
locities, averaging over them can be performed directly. If
we then assume that At is small, we obtain the differential
equation for the mean field B(r,r).

To implement this program, we must first perform two
iterations of (1.25). The quantity

Д"» (г,т) = Ba(r,t) + (т- 0 vmA Ba(T,t)

can then be looked upon as the zero-order iteration in the
random velocity. The second iteration takes the form
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г г
dT,J

,*,) J 'dT 2 J

Г'+Д<

J t
dr,

X f dVjGX

. (2.27)

When we take the average of the last equation, we shall
consider as before that the turbulence is uniform and iso-
tropic, (u)=0, but is not invariant under reflection of the
spatial axes (gyrotropy). It is only then that we have
instability28 with respect to a growing magnetic field. In
contrast to (2.18), the velocity correlation tensor should
now contain a further term with a pseudoscalar that rep-
resents gyrotropy, so that in the coordinate representation

Kae(p)=A(p)8ap+R(p)papp+C(p)eapcpa (2.28)

where A and R are related to Т and S in (2.18) and
(2.18') by

T(k)=A(k)-

S(k) = T(k)-

dR(k)
kdk '

d2R(k)
(2.29)

in which A(k),R(k) are the Fourier transforms of the
functions A(p),R(p).

If we average (2.27) with the help of (2.22) and
(2.28), and assume that the field B,(r,f) is smooth within
the correlation length, we obtain the following equation:35

dB
-=a curl B+ (vm+vturb) ДВ, (2.30)

where

у,игЬ=Л(0)тс=!<ы2>тс,

a=-2C(0)Tc=!<u(r)curlu(r)>Tc. (2.30')

In the model of sharply-correlated turbulence, equa-
tions (2.30)-(2.30') are valid for arbitrary Rem, including
Rem>l.

Similarly, equation (1.3) can be readily averaged in
this model of turbulence. The final result is

dF 1 д

32F

dF

2 a

where
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 v drv

(2.32)

and 8xap(r,t) is the fluctuating part of the diffusion coef-
ficient. All the averages are evaluated at the same point in
space.

Let us now consider the range of validity of (2.31).
The 6-correlation of turbulence means that the actual cor-
relation time L/u must be shorter than all other times and,
in particular, shorter than the time L2/x taken by a par-
ticle to cross the correlation region. This leads to the con-
dition

uL/x^l. (2.33)

Since x <0 and dx<,x, it follows that, in the zero order in
the parameter of (2.33), the average equation assumes the
form

dF d2F 1 д dF
(2.34)

and Xaft i§ determined exclusively by the contribution due
to the turbulent velocity. This case was examined in our
previous paper.36

If, on the other hand, we omit the acceleration terms
from (2.31), we obtain the following fourth-order differ-
ential equation for isotropic diffusion:

dF
— (2.35)

For scales Дг>/=(т7/^)1/2, the last term in (2.35) is
small and solutions of the above equation have the usual
diffusion form, but the character of the solution changes37

for scales Дг> 1. It is, however, important to remember
that, by virtue of the criterion given by (2.33), the last
term in (2.35) can only be a small correction and the
length / should be small in comparison with the correlation
length L. The question of possible intermittency in the
distribution of a diffusing impurity must then be solved by
starting with the transport equation and not the diffusion
equation given by (2.35). This case is discussed in Sec. 4.

3. RENORMALIZATION METHODS FOR TRANSPORT
COEFFICIENTS IN HYDRODYNAMICS AND IN PLASMA
PHYSICS

The examples cited in the last Section demonstrate the
limited range of approximate methods and the need for a
more rigorous theory in which limitations such as (2.9) or
(2.33) can be relaxed and it is possible to take correctly
into account the finite correlation time between the har-
monics, which has a significant effect on the rate of accel-
eration of charged particles. The required theory must take
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into account with sufficient precision the interaction be-
tween the diffusing impurity and the moving medium over
correlation times and lengths prevailing in the turbulence.
In this sense, the problem of averaging (1.3) and (1.4)
with uL>x, «£>vm, M>tfph is a typical problem in the
theory of strong interactions for a stochastic process. It is
not surprising that the many attempts to solve this problem
and the problems of turbulence dynamics have exploited
the methods of the theory of strong interactions developed
in field theory, nuclear physics, and solid-state physics.

3.1. Descriptions of turbulent transport in hydrodynamics

In 1961, Wyld38 and Kraichnan39 formulated a pertur-
bation theory for the solution of the Navier-Stokes equa-
tions in the dynamics of incompressible fluids under the
influence of external forces. This approach can be used to
obtain a formal solution hi the form of a series which, as a
rule, can readily be used in special cases.

At present, the most widely used method transplanted
from the theory of strong interactions and quantum field
theory into turbulence theory is the renormalization group
method.48"54 Yakhot and Orszag49 and Dannevik et a/.52

have carried out a renormalization-group analysis of the
Navier-Stokes equation for an incompressible fluid in the
inertial interval of the turbulent spectrum. The effect of the
source of turbulent energy arising in the fluid from the side
of energy-containing scales was modeled by random forces
with 6-correlation in time. The authors of Ref. 49 and 52,
who did not use any adjustable parameters, calculated the
spectral densities of the turbulent energy E(k) and the
passive scalar impurity En(k), including the relevant nu-
merical constants:

, (3.1)

where c is the rate of dissipation of the turbulent energy
per unit volume and the rate of dissipation of fluctuations
hi the scalar impurity is given by

_ д 1
(3.2)

They also calculated the universal ratio of the renormal-
ized (i.e., including the turbulent motion) kinematic vis-
cosity v to the turbulent diffusion coefficient x for high
Reynolds numbers:

=0.7179. (3.3)

Particular attention was concentrated in all these pa-
pers on incompressible fluids and, correspondingly, the
Kolmogorov model of turbulence. It is therefore difficult to
transfer this method directly to plasma systems, and to
include the magnetic field and particle acceleration, al-
though attempts have been made56 to use the
renormalization-group approach in the analysis of aniso-
tropic diffusion in large-scale turbulent shear flow. It is
appropriate at this point to note that the renormalization
method has very extensive possible applications in the so-
lution of the problem of anomalous transport of angular

momentum during disk accretion of matter on gravitating
centers, which is an important topic in theoretical
astrophysics.57 Anomalous viscosity in the accretion disk
may be due to fluctuations associated with the universal
instability established in Ref. 58.

A simplified form of the renormalization method as
applied to the diffusion of a scalar impurity was discussed
earlier by Howells55 (see also Moffat5). We shall consider
their approach in greater detail, since it allows a generali-
zation to the transport and acceleration of charged parti-
cles in systems with strong fluctuations in magnetic and
electric fields (see Sec. 4). The method consists of the
following. Suppose that we have a statistical turbulent-
velocity field и in an incompressible fluid. Let us resolve
this field into a large number of components ur, r= 1,2,...s.
We assign to the rth component the portion of the field
with Fourier harmonics whose wave vectors k fall into a
spherical shell of thickness &r=kr—kr+l, kr<k<rr+l,
where we are assuming an isotropic distribution of wave
vectors. A similar expansion is made for the concentration
of this scalar impurity:

n=(n)+ £ nr
r=\

(3.4)

where (n) describes the concentration averaged over the
largest turbulence scale L and nr are small-scale compo-
nents for which (nr} =0. The averaging of the static trans-
port equation

uVn=xbn (3.5)

is performed successively over spherical layers in k space,
beginning with the smallest scales (largest k). Perturbation
theory can then be used in each spherical layer because the
expansion parameter, which does not exceed ur,lr/x, is
small because ur is small. When the averaging procedure is
applied to the rth layer, we take into account the motion of
smaller scales, but totally ignore transport by larger-scale
motion, which is probably the main disadvantage of the
method.

When we consider transport under the influence of the
velocity field us, we replace и with us in (3.5) and employ
the perturbative procedure (see Sec. 2.1). This leads to the
following two equations:

usVn's = x&ns, (usVns)=x&.n's; (3.6)

where «j = (n) + 2*~}лг is the'large-scale' (as compared
with ns) concentration. Next, we use the first of the above
equations to express ns in terms of n's and evaluate the
average

(u/is) = —х,,&п'5, (3.7)

where %s is the contribution of the field us to the turbulent
diffusion coefficient:

(3.8)

The quantity (u2)k represents the turbulent spectral
density normalized by the condition /o°<
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The total diffusion coefficient that includes molecular dif-
fusion and turbulent pulsations is then equal to the sum
K+XS- The unaveraged part of the impurity concentration
<и) + nl + ...ns — 1 = n's evolves with this effective diffu-
sion coefficient in the turbulent field ut + u2+—us-\-

Similarly, if we take the average of the field us_ l in the
next spherical layer, we obtain the following addition to
the effective diffusion coefficient:

1
Xs-l~ т/.

k-2(uk)dk. (3.9)

Repeating this procedure and assuming that the thickness
of each spherical layer is small (Дг-»сМ:), we obtain the
differential relation

(3.10)

where #(&) is the effective turbulent diffusion coefficient
that includes a contribution due to all harmonics with
wave vectors greater than k. We note once again that it is
calculated without taking into account large-scale turbu-
lence with wave vectors smaller than k. Integrating (3.10)
subject to the boundary condition ^( oo) =0, we obtain

=i Г k'-2(u2)k,dk'+K2. (3.11)
J k

The diffusion coefficient %o tnat takes into account the en-
tire turbulent velocity field can be obtained by going to the
limit as /:->0. When the Peclet number is large on the main
turbulence scale, so that и£,/я>1, molecular diffusion is
relatively unimportant and (3.11) gives

1/2

(3.12)

We then have the order-of-magnitude relation %0zzuL,
which is a reasonably quantitative estimate for turbulent
diffusion.

A model of the transport of a scalar impurity by a
stationary random turbulent-velocity field is investigated in
Refs. 34 and 59. The velocity field can contain vortical and
potential components. It is important to remember that
these are essentially model calculations because an inho-
mogeneous but stationary velocity field (at least in three-
dimensional space) cannot be realized in nature. The
renormalization group method is used by these authors to
investigate the asymptotic time dependence of the square
of the particle displacement R2(t) from the initial position.
Depending on the relationship between the dimension d of
space and the behavior of the velocity correlation function
over large distances (we assuming a power law of the form
r~"), we have either normal diffusion (R2(t) ~ t) or dif-
ferent anomalous regimes in which R2(t) ~ i2" with
In some cases, a logarithmic time dependence R2(t) is
found to ensue. The equations for the average distribution
function were not constructed in these papers and the
transport coefficients were not calculated. Obukhov60 has
discussed slow nondiffusion regimes of particle propaga-
tion (localization) in highly inhomogeneous two-

dimensional media. He showed that the phenomenon of
localization was due to the presence of random 'traps', i.e.,
a distribution of particle transit probabilities for which the
particle moves on almost closed paths.

Phythian and Curtis4 have solved the problem of av-
eraging equations such as (1.1) with the view to evaluating
the effective diffusion coefficient, taking into account tur-
bulent transport. The local diffusion coefficient к was as-
sumed to be a given regular quantity, the motion was taken
to be incompressible, and the probability distribution for
the velocity field was Gaussian, i.e., the higher-order even
correlators were expressed in terms of the pair correlator,
whereas odd correlators were set equal to zero. The
method employed in these calculations was analogous to
the self-consistent field method in atomic physics: a certain
unknown diffusion coefficient was introduced into the orig-
inal equation in order to represent local diffusion and part
of the turbulent diffusion, and this was followed by a de-
termination of the perturbation-theory correction, ob-
tained on the basis of the above assumptions about the
properties of the turbulence. The self-consistent conditions
chosen by these authors led to the following equation for
the required diffusion coefficient X'-

(3.13)

where the right-hand side was calculated in the form of an
expansion in the parameter (и2). Drummond et a/.61 have
performed a numerical simulation of diffusion in a turbu-
lent medium by the Kraichnan method62 in order to verify
the accuracy of the self-consistent theory of Phythian and
Curtis. They achieved good agreement with the results re-
ported in Ref. 4 (to within less than a few percent) for
reflection-invariant turbulence. On the other hand, for gy-
rotropic turbulence, numerical simulation gave a value of x
that was greater by tens of percent than the theoretical
values. The reason for this discrepancy is still unclear.

The processes involved in the mixing of passive scalar
and vector impurities in hydrodynamic flows are excep-
tionally important for a very wide range of technological
and scientific problems. They have attracted a large num-
ber of papers and monographs.

We shall not attempt to review all these publications
and will confine our attention to concepts and methods
that have contributed in some way to the development and
application of renormalization and self-consistent field
methods in quantitative descriptions of particle transport
in stochastic media. Nevertheless, to bring the topic to a
sharper focus, we note that there are two possible types of
stochastic mixing of particles in fluids and gases. The first
can occur even in the laminar flow of a fluid if we neglect
molecular diffusion effects: it is due to the appearance of
stochastic particle trajectories in determined flows. Mod-
ern methods for the description of such systems are based
on the theory of dynamic systems and allow a transport
description.40 This is particularly clear when one tries to
describe mixing in two-dimensional flows of an incom-
pressible fluid. The equations of motion of a fluid particle
then assume the Hamiltonian form
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dx

dT
дф dy дф

"ду' di=dx'
(3.14)

where ф(х,у,г) is the velocity potential. The structure of
the phase space of the set of equations given by (3.14) with
a one-dimensional 'Hamiltonian' can be investigated in de-
tail, and the stochastic particle trajectories mix the medium
in the determined laminar flow. Similarly, stochastic par-
ticle trajectories lead to mixing in plasma systems with
complex magnetic field configurations (cf., for example,
Refs. 11 and 41).

The interaction of particles with stochastic fields is an-
other possible cause of turbulent transport. In this review
we shall be mostly concerned with systems of particles in
stochastic fields with strong long-wave fluctuations, de-
scribed by low-order statistical parameters (see, however,
Sec. 7).

The transport description of mixing in a medium with
a passive-impurity gradient has recently attracted particu-
lar attention.42'43 The intermittency of the passive-impurity
distribution plays an important role in this problem. Gol-
lub et a/.42 have shown experimentally that, when the Rey-
nolds numbers are high enough, the distribution of the
temperature fluctuations in a medium with a forced mean
temperature gradient is exponential, i.e., of the form
exp( |ДГ|/£), rather than Gaussian. The quantity f is
then of the order of the product of the mean temperature
gradient and the correlation length for fluctuations in flow
velocity. This result can lead to significant corrections in
the theory of stellar evolution because the radiative power
of the medium often depends on local temperature. A wide
(non-Gaussian) fluctuation probability distribution pro-
duces appreciable corrections to the radiation balance. An-
other example of intermittency, e.g., the distribution of
charged particles in a system with ultrasonic and ultra-
Alfven turbulence is discussed in detail in Sec. 7.

3.2. Renormalization of transport coefficients in plasma
physics

Renormalization methods have been widely used in
plasma kinetics ever since the paper by Dupree63 who ex-
amined nonlinear broadening of resonances in wave-
particle type interactions in turbulent plasmas. The renor-
malized Liouville equation for test particles had previously
been obtained by Kubo.46 Calculations of renormalized
transport coefficients are discussed in detail Kadanoff and
Martin47 and by Martin et o/.,47a using the functional
method and the equation for the mean Green's function for
the response of a system to a small perturbation.

Galeev and Zelena10 examine the diffusion of electrons
across a magnetic field in plasma with broken-up magnetic
surfaces and infrequent collisions. Starting with the drift
kinetic equation and the BGK type collision integral, and
taking into account the nonlinear broadening of the wave-
particle resonant interaction during effective transverse dif-
fusion, the authors of Ref. 10 obtain the following equation
for the transverse diffusion coefficient:

XL =X\\ 2, ~gr-
Veff

*i*|| + veff'
(3.15)

where the effective frequency of scattering of electrons by
fluctuations, veff, is proportional to the required coefficient
Xi • The solution of (3.15) for Xi led to the following
result:

XL ~X\\ I
k

(3.16)

where Ae is the Coulomb range of electrons and Lx depends
on the longitudinal (relative to the unperturbed magnetic
field) wave vector of the perturbations as a function of the
transverse coordinate.10 An important feature of (3.16) is
that XL is proportional to the fourth power of the ampli-
tude of the magnetic field fluctuations (see Sec. 6).

Kadomtsev and Pogutse9 use renormalization to cal-
culate the diffusion coefficient for the magnetic lines of
force of a stochastic magnetic field. The imposition of a
small transverse random component B' on a uniform mag-
netic field BQ ensures that the line of force of the resultant
magnetic field undergoes random deviations from the di-
rection of B0. For b=B'/50, the deviation produced along
a path length z along B0 is given by the integral

ri = (\(z,
Jo

b(z,ri )dz. (3.17)

A simple estimate can be obtained for this interval, but
only when Ь<1 for which we can put /^ ^0 in the inte-
grand. Squaring and averaging, we obtain

<b(z',0)b(z",0))dz'dz". (3.18)
o o

When z>£|| , where the latter is the longitudinal correla-
tion length of the random field, we obtain9

where

1 г
=-A

4 J -

1 (B'2)
<b(z,0)b(0,0)>dz=-

(3.19)

(3.20)

is the diffusion coefficient for the magnetic lines of force.
The last equation is the definition of the correlation length
L\\-

The expressions given by (3.18) and (3.19) were ob-
tained by perturbation theory. They are valid when
b(z,r1 ) is a slowly-varying function of i^ along the inte-
gration path, which gives the condition rL ^LL or, ac-
cording to (3.19) or (3.20),

(B'/B0)Ц (3.21)

If the transverse correlation length LL is much shorter
than the longitudinal length, the condition given by (3.21)
may not be satisfied even for small relative amplitudes of
the random field B' <2?0- The diffusion coefficient is often
calculated in the following way for the case of 'strong'
turbulence. The analysis involves the particle-number den-
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sity N of certain 'tagged' random lines of force. By defini-
tion, the line number densities remain constant as we move
along these lines, so that

dN
(3.22)

Next, equation (3.22) is averaged by the usual proce-
dure and, assuming that N=N0+N', N0=(N), (N')=0,
we obtain the following two equations:

dN0
(3.23)

(3.24)

We now seek a diffusion-type equation for N0 and, to
achieve this, we put

—div(bN')=XF&i NO'> (3.25)

where XF is the required diffusion coefficient which can be
calculated by finding the relation between N' and N0 from
(3.24). Equation (3.24) is then simplified by replacing it
with the inhomogeneous diffusion equation

dN'
(3.26)

The main error introduced by this replacement can be
traced to the use of the same diffusion coefficient XF f°r

both the rapidly-fluctuating quantity M' and the smoothed
function N0. It seems that the error introduced in this way
cannot be estimated on the basis of the above consider-
ations. However, if we adopt this approximation, then
(3.25) and (3.26) readily yield a self-consistent non-linear
equation for the diffusion coefficient for the magnetic lines
of force:9

(3.27)

where the factor 1/2 is due to averaging over the azimuthal
angle kL . When | k0 \ ̂ XF^L > which corresponds to the
condition for the validity of perturbation theory (3.21), we
obtain the quasilinear result (3.20). In the opposite limit-
ing case, \kz\ <^>&i , we have the renormalized diffusion
coefficient

(3.28)

which should be compared with (3.12). The order-of-
magnitude result XF~ B' LL /B0 is proportional to the first
power of the amplitude of the random field and not to its
square.

The electronic coefficient of heat transfer across the
mean magnetic field is also evaluated in Ref. 9. We shall
examine the corresponding results in Chapter 6 where we
shall be concerned with the similar problem of transverse
diffusion of particles.

Renormalization methods have also found applications
in the problem of charged-particle transfer in systems with
inhomogeneous plasma turbulence (see Horton's
review64).

4. PARTICLE TRANSPORT IN STRONGLY TURBULENT
PLASMA AND RENORMALIZATION OF TRANSPORT
COEFFICIENTS

In Sec. 2, we used perturbation theory to derive the
particle transport equation (2.11) averaged over the en-
semble of turbulent pulsations. It is readily seen that, un-
der certain conditions, this equation retains its form [with
suitably modified transport coefficients in (2.12)-(2.15)]
even in the case of long-wave fluctuations with uL>x for
which perturbation theory is not valid. Actually, to ensure
that the required equation for the average distribution
function takes the form of the Fokker-Planck equation, we
have to assume that F is sufficiently smooth. This condi-
tion would be satisfied if averaging were performed over
spatial regions whose linear dimensions are appreciably
greater than the principal turbulent scale L. To obtain the
differential form of the acceleration term in the average
transport equation, we have to ensure that the change in
the particle momentum Д/> within the correlation length L
is small, i.e., Д/>^/».

When the above conditions are satisfied, the average
transport equation retains the form given by (2.11) even
for strong turbulence, and the problem reduces to the de-
termination of the diffusion coefficients x and D which are
now no longer described by (2.12) and (2.15). These co-
efficients will be calculated below in a number of stages,
using the method developed in one of our previous
papers,31 thus gradually complicating the problem. We be-
gin with the case of an incompressible medium, div u=0,
from which the adiabatic acceleration effect is absent and
the small-scale diffusion coefficient к can be looked upon as
a nonfluctuating, constant quantity.

4.1. Turbulent transport of an impurity in an incompressible
medium

We shall seek the transport equation, averaged over
large-scale fluctuations, in its diffusion form

dF d2F
~Xap- (4.1)

where Xap *s the unknown diffusion tensor. In addition to
(4.1), we shall also consider the equation for the distribu-
tion function in which averaging has been carried out over
all the harmonics of the velocity field with the exception of
those lying in a narrow wave-number interval ДА::

dF

where

dF

« dtu г d3k
~^~ /~ ч З "k<u

о 2lr Jbk (2ir)

Xexp[/(kr—cot)]

(4.2)

(4.3)
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is the unaveraged part of the velocity, the wave number
integral is evaluated within a spherical layer of thickness
ДА: near the arbitrarily chosen k, F is the part of the av-
erage distribution function which must be further averaged
over the random velocity 6u, and Xap~^Xa& K the diffu-
sion coefficient due to the turbulent velocity field after 6u
has been subtracted. Averaging of (4.2) over the ensemble
5u should cancel out the increment &Xa0 and should pro-
duce equation (4.1) with the resultant diffusion tensor

We note that the partially averaged distribution func-
tion F, which is an auxiliary function, depends on the ra-
dius k of the chosen spherical layer. However, the renor-
malized transport coefficients that are physically
observable are expressed in terms of integrals over the en-
tire wave-number space and, naturally, do not depend on
the arbitrary choice of the spherical wave. The fully aver-
aged observed distribution function F does not depend
upon it either.

Equation (4.2) can be averaged in accordance with
perturbation theory, using the fact that 5u is small. Since
Д£<А; is chosen arbitrarily, this approach does not limit
the precision of the final results. However, it was assumed
that the Fourier harmonics of the velocity field originating
from the interval ДА: were not correlated with harmonics
outside this interval. We shall assume throughout that the
turbulence is homogeneous and stationary, and will use the
following averaging rule for the Fourier harmonics:

(4.4)

This assumption is in agreement with model ideas on Kol-
mogorov turbulence and with the fact that it is possible to
describe it by specifying the spectral energy density.

If we assume that

F=F+8F,(8F)=0, (4.5)

where the angle brackets represent averaging over the en-
semble Su, and if we take the average of (4.2), we obtain

dF d2F I dSF\

- *•* • (4.6)

The correction 8F to the distribution function can be cal-
culated from the equation

dSF

~W~

dF
(4.7)

in which we have discarded terms that are quadratic in
8ua, including Д^д. The solution of the last equation will
be expressed in terms of the Green's function G of the
operator on the left-hand side:

dG &G
(4.8)

If we now substitute the solution of (4.7) in (4.6), we
obtain the following integrodifferential equation:

d2F d2dF

• (8ua(r,t)8Ufi(r',t'))F(r',t')d3r'dt'. (4.9)

To reduce this to the form of (4.1), we have to assume that
the distribution function F is sufficiently smooth within the
correlation length L and within the correlation time L/u.
This enables us to replace F(r',t') in (4.9) with F(r,r),
and to determine the increase in the diffusion tensor due to
the velocity field 6u:

= Г G(p,T)(Sua(T,t)8up(T',t")>d3pdr, (4.10)

where p=r—т' and r=t—t'. This formula differs from the
analogous expression given by (2.12) in three important
respects. In contrast to (2.4), it contains the correlator for
the small part of the velocity field 6u, but the Green's
function now includes the total (xap) and not the small-
scale (xap) diffusion tensor that represents the total large-
scale velocity field.

Transforming to the Fourier representation, and tak-
ing the Green's function in accordance with (4.8) in the
form

1

-ica + kkvx'
(4.11)

we obtain

f d"*d<" <n,K
J (2f f)4to+

where the integral is evaluated with respect to the angles of
k and the frequency. By integrating this expression over all
A:-space with Xa&=xap f°r u=Q, we are able to write down
the self-consistent set of equations for the components of
the renormalized diffusion tensor xap '•

J (27Г)4 (4.13)

Since the unknown quantities Xv/t appear under the integral
sign as parameters, the set of equations given by (4.13) is
algebraic rather than integral. It becomes simpler in the
case of isotropic turbulence. Substituting the velocity cor-
relation tensor in the form of (2.18) in (4.13) [with
S(k,o)) =0], and taking into account the parity of the spec-
tral function T(k,ct)) with respect to u>, and also the isot-
ropy of the tensors Xap=X^ and x

ap=xuap> we obtain
the following single transcendental equation for x-

2x Г
/=x+—

k2T(k,co)

(2ir)4 (4.14)

The analytic solution of this equation can readily be
obtained for 'frozen' turbulence, i.e., on the assumption
that T(k,a>)~8(o)):

1/2

(4.15)
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The solution that satisfies the natural condition ^->0 al-
ways exists because T(k,co)>0. Nonphysical (negative or
complex) values of x indicate that the method is invalid
because of the absence of diffusive particle propagation
(anomalous diffusion). As x-»0, the solution of (4.15) is
found to be different from the Moffat result given by (3.10)

-1/2by the factor 2 , since

(u2)bdk=2dk Г
.со

T(k,co).

Numerical solutions of (4.14) have to be obtained for
more realistic turbulence spectra. This is readily done and
the results of such calculations will be presented in Sec. 4.2.
Here, we confine our attention to the comparison of the
calculated renormalized diffusion coefficient with the data
of a numerical experiment. This type of comparison is very
important for our purposes because the above method of
calculating the renormalized transport coefficients is ap-
proximate. The main error in the method is probably due
to the fact that we consider the diffusive propagation of
particles for all turbulence scales l<iL, whereas this ap-
proach is valid for distances greater than R^L. Moreover,
the renormalized diffusion tensor is expressed exclusively
in terms of the pair turbulence correlation tensor (uau'p).
We must therefore expect considerable error when the
higher-order correlators contain significant information
about the structure of the turbulence (strong intermit-
tency).

Drummond et a/.61 describe numerical simulations of
spatial particle transport by an incompressible single-scale
hydrodynamic flow with a Gaussian distribution of real-
izations of velocity amplitudes. The spectrum of the veloc-
ity field realized in the numerical experiment61 is

(4.16)

This is a single-scale spectrum, so that the above formal
approach is invalid for the evaluation of transport coeffi-
cients. It is readily verified, however, that the entire argu-
ment presented above can be reformulated for a small seg-
ment Д<а of the frequency spectrum, in which case we
again arrive at (4.14) as the expression for the renormal-
ized diffusion coefficient. The numerical calculation can
therefore be performed for the spectrum (4.16) with the
help of (4.14). The results obtained for a wide range of
values of a>0 and k0 are in good agreement with the numer-
ical experiments,61 the maximum deviation being less than
10% and amounting to 3-6% for most points. This con-
firms that the approximations are reasonable and that the
above method can be used to describe transport and accel-
eration of particles by large-scale turbulence. The inade-
quacy of the above method, due to the application of the
diffusion approximation to small scales, can be reduced by
using the above self-consistent approach. To do this, we
shall seek the average transport equation, valid for any
distances R^-A where Л is the local (small-scale) transport
range, in the integral form

dF д2 Г
-5-=-5-3- *a0(r-rV-f')/I(r',r')dVdr'. (4.17)
Ot ОГаОГр J

The kernel Xa0(p>T) must correctly describe the propaga-
tion of particles in a single large-scale correlation region,
averaged over the ensemble of turbulence realizations. If
the distributions change little over such distances and
times, we obtain the usual diffusion equation (4.1) with the
diffusion coefficient given by

Xal3= J (4.18)

Let us now calculate the kernel Xap(p>T) in accor-
dance with the above self-consistent scheme. We start with
the partially averaged transport equation analogous to
(4.2):

dF _ d2

~dt

(4.19)
dF

Xd3r'dt'-8Ua — ,

where 6u is defined above as a small part of the velocity
field corresponding to a spherical layer of thickness Д& in
/c-space. Next, we use perturbation theory and average the
last equation. This gives the contribution to the kernel due
to the field 5u:

^Xap(p,r) = G(p,r){8ua(T,t)8up(r',t')). (4.20)

The required kernel can therefore be written in the
form of

Xap(r-r',t-t')=xaffS(r-T')6(t-t')

+ G(r-r',t-t')

X(8ua(T,t)8ue(r',t')), (4.21)

where G is the Green's function satisfying the equation

dG д2dG д Г

~dt=dird7J

= 8(T-r')8(t-t'). (4.22)

Only its Fourier transform can be found without difficulty:

vx(k,co)]-\ (4.23)

where now ^VM(k,<u) is the Fourier transform of the re-
quired kernel.

Transforming to the Fourier representation in (4.21),
and using (4.23), we obtain the following nonlinear inte-
gral equation for ;^v(k,u>):

J
(uau'B)/3'k

(2тг)4 -/6
(4.24)

This equation generalizes (4.13) and can serve for the de-
scription of particle transport to any distances exceeding
the local transport range, including those that are smaller
than the large-scale correlation length L. To transform
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from (4.24) to (4.13), we must use two approximations,
namely, (a) we must put &<&', <u<ft)' and neglect the
dependence on k and со on both right- and left-hand sides
of the equation and (b) we must replace the function

under the integral sign with the constant tensor
which, according to (4.18), is the diffusion ten-

sor. The mathematical structure is thus significantly more
complicated when we use a more accurate description of
transport over short distances.

4.2. Particle transport in a compressible medium and weak
acceleration within the correlation length

We shall now apply the averaging procedure to the
resultant equation given by (1.3), including the accelera-
tion term. In this particular approximation, the accelera-
tion effect arises only in a compressible medium (div
11=5^0). However, for the sake of simplicity, we shall ignore
fluctuations in the small-scale diffusion tensor due to den-
sity fluctuations, which is permissible for strong turbulent
transport, uL>x, when the small-scale diffusion coefficient
к may be looked upon as a 'seed' quantity whose precise
value is not important. The role of density fluctuations in
the medium will be examined below in Sec. 4.5.

As noted above, the average transport equation has the
differential form

dF d2F I d
р D(p)

& dF
(4.25)

if acceleration within the correlation length is small and
the distribution function is averaged over spatial regions
with linear dimensions exceeding L. The contribution to
the diffusion coefficients due to a small variation in the
velocity field 6u can be calculated from the equation

dF d2F 1 d

д2 dF I d8F\—_ / §Ua \

д
irdp

d8u
(4.26)

in which the correction Sx is found by perturbation theory
from the equation

dSF d28F I d d2 d8F

dF pdFd8ua (4.27)

Since the solution of this equation need only be constructed
for distances not exceeding the correlation length L within
which the acceleration of particles is assumed to be small,
the acceleration effect need not be taken into account in the
corresponding Green's function, and we can use (4.8) and
its solution (4.11).

As in Sec. 4.1, we obtain

Xal3=Xaf)- J d V j c

*-£ J>

dG

(4.28)

dr<div n(r,f)div u(r',r')>G(p,T),

(4.29)

&=У8 J iv u(r,r)div u(r'/)

XG(p,T)paPf}. (4.29')

Equation (4.28) determines the spatial diffusion tensor Xap
as a solution of a set of transcendental equations. It appears
not only on the left-hand side of this equation, but also on
the right-hand side (via the Green's function G). Once we
have found Xa0>we can calculate the diffusion coefficient D
in momentum space with the help of (4.29).

For isotropic turbulence we can use the correlation
tensor (2.18) and assume that к^^кЬ^, Xap=x8ap>

j. We thus obtain the simpler equations

tfkdca
=*+-/ (2ir)4

d3/td« k*S(k,co)

(4.30)

(4.31)

*•-£,/ d3kdco

X

k2S(k,co)

(4.32)

The term in (4.25) that contains the coefficient Ajj
describes the coupling between acceleration effects and spa-
tial diffusion. It can be of the same order of magnitude as
the first, diffusion, term on the right-hand side of (2.45).
In particular, if the momentum dependence of the distri-
bution function in a certain part of the momentum space is
of the power form F(p)~p~r, the presence of the term
containing the cross derivatives will produce a change in
the spatial diffusion coefficient % which then becomes

4.3. Transport equation with strong particle acceleration
within the correlation length

Charged-particle transport in random electromagnetic
fields in different physical systems can be examined in de-
tail within the framework of the Fokker-Planck approxi-
mation (see, for example, Refs. 65 and 66). The condition
for the validity of this approximation usually reduces to the
requirement that the change in momentum and (or) the
energy of a particle should be small within the correlation
length L or the correlation time тс of the random field. The
use of the Fokker-Planck approximation is therefore re-
stricted either to the consideration of particles with high
enough energies or to systems with short-correlated fields.
On the other hand, the solution of many problems such as,
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for example, the evolution of cosmic-ray spectra at low
energies (E<1 GeV) in the Galaxy, forces us to leave the
framework of the Fokker-Planck approximation. In this
section and in Sec. 4.4, we shall consider the evolution of
charged-particle spectra due to substantial changes in the
particle energy within the correlation length in a system
with strong MHD-type long- wave turbulence (see Ref.
67).

To analyze systems with a large change in momentum
within the correlation scale, we take the transport equation
averaged over the ensemble of fluctuations in the integral
form

d2

X Г D(r,-rj')F(r,r,',t)dri', (4.33)
J — 00

in which momentum has been replaced with the new vari-
able T)=ln(p/pQ), so that

d2 a_i d_ 4d_
дтр di] p1 dp dp'

(4.34)

Having taken the average over all the field harmonics with
the exception of the narrow interval Д&, we find from the
transport equation (4.1) that

d ~
— oo

1 d ~d8uа

дг
(4.35)

It is convenient to perform the Fourier transformation
with respect to the momentum variable т/. Denoting the
Fourier variable by s and the Fourier transforms of F,
Xtf, and D' by Fs, ^(s), and D'(s), we obtain

dFs

д ~ is ~ д
g-Fs--Fs — (4.36)

The problem has thus been reduced to averaging an equa-
tion of the form of (4.18) and can be solved by the method
used in (4.3). The fluctuating extra term 8FS is given by

8Fs(r,t) = - f d3r Г At'G(r-r',t-t',s)
J J — 00

X \8ua(r',t')— Fs(r',t')
dr

where the Green's function is given by
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(4.37)

-3/2 exp[ - (P

2/4Xr)

(4.38)

After averaging (4.35) with the help of (4.38), we
obtain

dFs

-
32FS

-(s2+3is)(D'+8D)Fs,

i.e., the Fourier transform of (4.33) in which

(4.39)

= Jd3pJ"dTG(p,T,s) 8Кар(р,т)

д2

i г , r<*
*e"9jd4

(4.40)

(4.41)j — - .
dpadPf3

The above relations are analogs of (4.24). They enable
us to write down the transcendental equations for the Fou-
rier transforms of the kernels of the integral operators

d3A:d<u Г 2T(k,<o)+S(k,co)

D(S)

1 г
=9 J

k2S(k,c*)

(4.42)

(4.43)

A=s2+3is.

In contrast to (4.26) and (4.27), these equations contain
the variable s as an independent parameter. The solutions
of these equations are functions of this parameter. More-
over, both of the required functions x(s) and D(s) appear
in the integrand.

It was assumed in the derivation of (4.33), (4.42), and
(4.43) that the seed diffusion coefficient к was independent
of the particle momentum.

4.4. The spectra of particles interacting with strong long-
wave turbulence

Consider a plasma system with a developed, statisti-
cally homogeneous, isotropic MHD-type turbulence. The
electric field induced by the turbulent motions of a per-
fectly conducting medium with a frozen-in magnetic field
produce a statistical change in the energy of suprathermal
charged particles. Magnetic-field fluctuations with scales
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smaller than or of the order of the gyrotropic radius of a
particle lead (in the absence of Coulomb collisions) to the
effective isotropization of the particle momentum and de-
termine their transport range Л. As before, we consider
long-wave fluctuations with scales 1>Л. The distribution
function G(r,rj,t) of the suprathermal particles, averaged
over the ensemble of turbulent fluctuations of all scales,
satisfies equation (4.3) obtained in Sec. 4.3:

dG

=Q8(ri), (4.44)

where the particle momentum p has been replaced with the
variable tj=]n(p/p0) and G is the rate of generation of
low-energy particles with momentum p0 by a stationary
source. Equation (4.44) is conveniently solved in the Fou-
rier representation in 77, whose transform will be denoted
by s. The Fourier transforms of the kernels of the integral
equation given by (4.44) can be expressed in terms of the
turbulence correlation functions.

Consider the very general case of a compressible sys-
tem with a wide velocity fluctuation spectrum67

=5(*)=—C(v) (4.45)

and a Lorentz frequency dependence characterized by the
dispersion relation co0=uk and 'resonance width'

where

«=<И2>1/2,

and

C(v):
4Г(у/2+1)

:Зтг3/2Г(у/2-1/2)

is the normalization constant. This leads to the following
set of transcendental equations for the Fourier transforms
of the kernels:

Di(s)=E+C(v) fJo

(4.46)

C(v) r x*dx

which were obtained from (4.42) and (4.44) with allow-
ance for the finite change in the particle energy within the

field correlation length. The dimensionless variables in
(4.46) and (4.47) are defined by Xap^^uk^D^S^,
D(s)=ukoD2(s), b=kmm/k0, x=k/kg, e=xko/u where
к is the 'seed' diffusion coefficient (x~\) due to the scat-
tering of particles by small-scale magnetic-field fluctuations
and

(4.48)

The transport equation given by (4.44) with kernels
determined from (4.46) and (4.47) describes the energy
spectra due to stochastic changes in the energy of particles
(initially low-energy particles) produced by long- wave
electric-field fluctuations. The derivation of (4.44) rests on
the assumption that the velocities of the suprathermal par-
ticles are higher than the turbulent velocities и of the me-
dium. The parameter of e can then be arbitrary.

When £> 1, i.e., particle transport due to scattering by
small-scale magnetic-field fluctuations predominates, the
solutions of (4.46) and (4.47) are given by D\(s) zze and

(4.49)

(4.50)

Equation (4.44) is thus reduced to the Fokker-Planck
form.

When £<1, particle transport is determined by long-
wave fluctuations in the velocity of the medium. The renor-
malization of the kernels of (4.44) is then significant. The
dependence of DI and D2

 on s is not trivial. When s<3, the
transforms of the kernels are slowly-varying functions of s:
D^s^DiW and D2(s)zzD2(Q) Next, the character of
these functions depends significantly on the size of the fluc-
tuation spectrum, characterized by the parameter b>\.
When eb(v+l)/2> 1 and s<a(v) where

This gives

e(v) =
9(3-v)

C(v)

1/2

-10,

the dependence of the kernels on s is weak. When s^a(v),
we have the following asymptotic expressions for the Fou-
rier transforms of the kernels:

Z>j(s)^£/2, (4.51)

Я2(5)-»6<3-у)/2(а(у)А1/2)-'. (4.52)

For a wide fluctuation spectrum, £i(v+1)/2>l, the as-
ymptotic functions (4.51) and (4.52) are valid for
s>a(v)£ft(v+1)/2. The behavior of the functions D^s) and
D2(s) for 5>3, and before the asymptotic behavior is
reached, depends on the specific form of the resonant width
y(k) and the parameters e and b. In particular, the behav-
ior of D2(s) in this region can be nonmonotonic. Typically,
the limiting value in (4.51) is smaller than the seed diffu-
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G(s) =

FIG. 1. Fourier transforms of the real part of the kernel D2 for e=0.01,
*=10,10,103

>104.

sion coefficient e. This property is due to the compressibil-
ity of the system and is general in character (see also Ref.
54).

The equations for the Fourier transforms of the ker-
nels, given by (4.46) and (4.47), can be solved numeri-
cally. Figures 1-4 show the results of a numerical calcula-
tion of DI(S) and D2(s) in order to illustrate their
dependence on the size b of the velocity fluctuation spec-
trum and the seed diffusion coefficient e. The kernel trans-
forms are complex (whereas the kernels themselves are, of
course, real). For the fluctuation spectrum (4.45) that was
considered, the imaginary parts of the kernels are small in
comparison with the real parts. There is particular interest
in the function ReD2(s) that determines the asymptotic
behavior of the particle energy spectrum. We shall there-
fore examine this function in some detail for different val-
ues of £ and b. The results of the numerical calculation are
in agreement with the approximate analytic results pre-
sented above.

We note that although the derivation of (4.44),
(4.46), and (4.47) was based on the assumption that, as
noted in Sec. 4.3, e does not depend on the particle mo-
mentum, this is a significant limitation when (4.33),
(4.44), and (4.43) are employed. Actually, for very gen-
eral types of fluctuation spectra (4.45), the effects associ-
ated with the significant difference between the transport
equation (4.33) and the corresponding Fokker-Planck
equation are well-defined for small values of £ (dimension-
less x). However, in the limit of small £, the asymptotic
behavior of D2(s) (4.52) does not, as has been shown,
depend on £. The subsequent results are therefore valid
even in the case of a momentum-dependent seed diffusion
coefficient.

The analytic expressions given by (4.51) and (4.52)
enable us to investigate the charged-particle spectra for
momenta approaching the injection momentum. For the
sake of simplicity, but without significant loss of generality,
we can replace the spatial diffusion operator in (4.44) with
its eigenvalue. The Fourier transform of the stationary par-
ticle distribution function (here, this is the Green's func-
tion) then becomes

(4.53)

where |~(&оД) in which R is the size of the region
occupied by the turbulent fluctuations. From (4.51),
(4.52), and (4.53) we then obtain the following asymp-
totic particle spectrum for momenta close to the injection
momentum p0:

G(p,Po) oc -Q(uk0)-lb(v-3)/2a(v)ln\ln(p/Po) \

P^Po- (4.54)

This spectrum has an integrable logarithmic singular-
ity near/;0, which is related to the possible finite change in
the particle energy within the correlation scale. For mo-
menta P%>PQ, the particle spectrum (4.53) is determined by
the behavior of D^s) and D2(s) for s-»0:

where

0.5

(4.55)

(4.56)

The expressions given by (4.54) and (4.56) are also
found to describe the Fokker-Planck spectrum for all
/>>/>o- In contrast to (4.54), as p-*po, the distribution
function (4.55) has a finite limit and a weak dependence
on the width b of the fluctuation spectrum.

We note that the above result can be used to calculate
the photon spectra formed as a result of the Thomson
scattering in an optically dense turbulent medium.

4.5. Effect of fluctuations In the density of a medium on
particle diffusion

In the preceding Sections, we examined in detail the
acceleration and diffusion of particles in a compressible
medium (div 117^0). We did not, however, take into ac-
count the change in the density of the medium, which
produces fluctuations in the effective scattering frequency
and the small-scale ('molecular') particle diffusion coeffi-
cient. This effect may be significant, but only if the small-
scale diffusion itself plays an appreciable part against a
background of turbulent transport, i.e., for uL<*x. The
limiting case of this situation is particle diffusion over cha-
otically distributed 'clouds' in a medium, whose motion
can be neglected. We shall now consider global diffusion
over distances exceeding the characteristic scale of density
fluctuations. Particle acceleration will be neglected for the
sake of simplicity.

It is convenient to start not with the transport equa-
tion, but with the kinetic equation for the distribution func-
tion /(r,pf) in the relaxation-time approximation:

df df
-|-V = —V

* ̂  ft

3uv _1

7-4 (4.57)

where v(r,t,p) is the effective particle scattering frequency
that fluctuates in both space and time as a result of fluc-
tuations in the density of the medium

(v)=Q. (4.58)
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The statistical properties of the scattering frequency v
are assumed known. The right-hand side of (4.57) de-
scribes the scattering of particles in a moving medium for
u^v and the bar represents averaging over the angles of
the vector p; the derivatives with respect to momentum,
i.e., particle accelerations are discarded (see Sec. 8 in Ref.
25 for further details).

The equation for the distribution function F(r,p,t)
= (f(r,p,t)), averaged over the ensemble of velocity and
density fluctuations in the medium will be taken in the
form

dF dF
= -ve(F-F), (4.59)

where ve(p) is the eflective scattering frequency and
^OJS(P) is tne diffusion tensor describing turbulent trans-
port. Both these quantities must be calculated the global
diffusion tensor Dap is expressed in terms of them. Its re-
lation to ve and #op(p) can be determined by transforming
in (4.59) to the diffusion approximation

1 / 4nJ\ v
F=—[N+ , n=-,4ir\ v I v

(4.60)

where N is the isotropic part of the distribution function
and / is the differential (with respect to the momenta)
particle flux density. Substituting the distribution function
(4.60) in (4.59) and eliminating the vector J in the usual
way, we obtain the diffusion equation (4.1) with the dif-
fusion tensor given by

(4.61)

Henceforth, we shall put u2/3ve=x. In accordance with
the general method presented in the last few sections, we
shall consider (4.59) together with the partially averaged
equation with the still unaveraged harmonics from the nar-
row wave-number integral Д&:

dF dF &F

~ - 35uv -
(4.62)

The primes in this equation indicate the transport coeffi-
cients associated with the spectrum of turbulent quantities
after subtraction of Д&. Applying the perturbation proce-
dure, we obtain from (4.62) the set of equations for the
mean distribution function F

dF dF

3v
= _v'e(F-F) - (8v(8F-8F))+v'e - (SuSF),

(4.63)

and the oscillatory increment 8F:
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d8F d8F

where

Q=-

d28F _

r 3 v

'~?

(4.64)

(4.65)

The solutions of (4.64) are conveniently expressed in
terms of the Green's function g(r—r',r— f',p,p') of the
operator on the left-hand side. In the Fourier representa-
tion, we have the following equation for the Green's func-
tion:

(4.66)
vr—

This simple equation is obtained only in the diffusion ap-
proximation, i.e., in the limit where ca/ve<1, | k - v|/ve<l.
In this limit, and for the isotropic case in which
Хар=Х8

ар, we find that

X ( ve -

1. (4.67)

This equation must then be expanded in terms of the
above small ratios. Using (4.67), we evaluate the term on
the right-hand side of (4.63) and determine the contribu-
tions to the effective collision frequency ve and the turbu-
lent diffusion coefficient s%~p due to the small wave-number
range ДА:.

This procedure gives the following set of transcenden-
tal equations for the transport coefficients ve,x'-

<v2)_ < v ) к_ Г
Ve~V°~ ve

 +3ve J i (2тг)4

(4.68)

(4.69)

where D=x+%, *: = u2/3ve. Fluctuations in the scattering
frequency v are proportional to fluctuations in the density
of the medium, so that the correlator <vv') and (vu'p) can
be expressed, at least in principle, in terms of the velocity
correlator by using the equations of motion.

A simple analytic solution of (4.68)-(4.69) is possible
only for static inhomogeneites when и=0 and v is inde-
pendent of time, i.e., (vv')kia~8(ct)). We then have^=0
and the effective scattering frequency satisfies the simple
relations
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(4.70)

where v0 is the scattering frequency averaged over the en-
semble. The physical (positive) value of the root

/v2 1/2

is realized for (v2)<(3/8)v^. In this range, the effective
scattering frequency is less than the mean value v0 and
decreases with increasing fluctuations. For sufficiently
large fluctuations (v2) > (3/8)\^, the roots become com-
plex and physically meaningless. This is probably due to
the failure of the above method of calculation which oper-
ates only with pair correlators of random variables for
| v| >v0 when there is strong intermittency in the structure
of the scattering medium. Moreover, the diffusion approx-
imation for the Green's function g used above will also fail
under these conditions.

For strong intermittency, |v|>v0, we can readily ob-
tain an approximate estimate for the effective collision fre-
quency. Suppose that the homogeneous medium in which
the scattering frequency for the particular particles is V j
contains clouds in which the collision frequency is
У! + v2>Vj. The mean separation between the clouds is L
and the linear dimensions of the clouds are /. Suppose that
the mean collision frequency is

and let us vary the ratio l/L (assuming that the collision
frequency is proportional to the density of the medium and
that v2 depends on /). If the clouds fill the space almost
completely (/;= L), we have the case of homogeneous scat-
tering with vt = v0=v^v2. In the opposite limiting case of
dense and rare clouds of small size (l^L), the particles
propagate mostly in the tenuous phase with effective colli-
sion frequency V^ — V^-^VQ. In these two limiting cases, the
mean square collision frequency fluctuation is <v2) =;0 and
<v2)s;(v0 — V!)2(//L)3>Vo, respectively, where in the lat-
ter limit we have a sharp asymmetry between frequency
deviations frequency in the direction of increasing and de-
creasing values, respectively. In accordance with (4.71),
the collision frequency decreases with increasing inhomo-
geneity of the medium. In particular when dense clouds are
placed in a vacuum, the effective collision frequency de-
creases as ve~y/2/L3-«0 with increasing concentration of
material in the cloud (/-»0). This is independent of the
mean density of the medium and mean collision frequency.
The significant point is that the properties of the medium
are characterized in this method by two scales that cannot
be introduced by specifying the pair correlation tensor
alone.

5. RENORMALIZATION OF THE EQUATION FOR THE MEAN
MAGNETIC FIELD IN THE TURBULENT-DYNAMO
THEORY

The method used in the last Section to renormalize the
transport coefficients can also be used to describe the trans-

port of a vector impurity by a turbulent flow. Consider the
averaged equation of magnetic induction in turbulent-
dynamo theory:

db
(5.1)

where u(r,0 is the turbulent velocity field which, as before,
we will be assumed to be specified by its statistical charac-
teristics, and т/™0 is the local magnetic viscosity tensor.
Since turbulent magnetic viscosity is usually much greater
than 77^0 , we shall look upon the latter as a seed quantity
whose precise value is unimportant and taken in the form
Т75з=77тба^ where т]т = с2/4тт(7 is determined by the elec-
trical conductivity a of the plasma. Possible anisotropy and
gyrotropy of turbulence will be taken into account (we
shall assume, as before, that the turbulence is homoge-
neous) and we shall take the Fourier transform of the
velocity correlation tensor in the form

Kaf}(k,co) =

where

Pap(k,co) =

(5.2)

=Pap( -M) (5.3)

is a symmetric tensor that is invariant under the replace-
ment of k with — k whereas

Ca/3(k,«) =Cea( —k,«) = — Cap( —k,ca) (5.4)

is a skew-symmetric reflection-noninvariant tensor describ-
ing the gyrotropy of the turbulence.

To investigate the possible generation of a magnetic
field with scale exceeding the principal turbulent-velocity
scale L, we have to average equation (5.1). We shall do
this by the method developed in the last Section. We start
by seeking the equation for the average large-scale field
B={b> in the form

dBv

dt
(5.5)

where Aa^v and 17̂  are constant tensorial coefficients for
homogeneous turbulence and repeated Greek indices indi-
cate summation. If there are no special directions in space
other than the direction of k, then for an incompressible
medium we have

/Vk,«)=m«)
) = C( k,c

(5.6)

(5.7)

where eapY is a skew-symmetric unit tensor and (5.5) as-
sumes the well-known form27'28

<ЭВ
-^-=curl(aB)+7/totAB. (5.8)

The coefficient a that leads to the generation of a large-
scale magnetic field is nonzero only for gyrotropic turbu-
lence [C(k,o))=£0].

To calculate the coefficients in the more general equa-
tion (5.5), we extract from the velocity field a small part
5u which, as before, contains harmonics within a narrow
wave-number interval Д&. If we now average (5.5) over all
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harmonics except those in this narrow interval, and denote
the magnetic field obtained in this way by B, we obtain the
following equation:

дВа_

~дТ=А'а»
in which A'aiiv

-+curla[6uXB], (5.9)

and 77̂ °' are not very different (because Д&
is small) from the exact coefficients Aa]iv and 77^.

We shall now use perturbation theory to average the
last equation over the realizations of 5u. Taking

B = B+6B, <«5B>=0,

we find from (5.9) that

(5.10)

fi-
at

ЭдВ„

dt

дГц MV drlldrv

+ curU[<5uX<5B]>,

(5.11)

-= '̂
Bru

-+17,

т2с D

'tot

T-^+curla[6uXB].

(5.12)

We note that the sharp difference between the turbu-
lent pulsation scales (1<L) and the regular field B(/?>L)
is possible only if the gyrotropic part Cap of the correlation
tensor (5.2) is small in comparison with its nongyrotropic
part Pap. This is so because magnetic-field generation oc-
curs for scales35 exceeding

2irrjtoi/a ss 2-rrL (u2) 1/2/a, (5.13)

2\ 1/2and the condition Lcrit>L is satisfied for а<(м >
Since we are assuming that the gyrotropic term in

(5.12) is small, we can neglect the first term on the right-
hand side and write the solution in the form

J
(7m(r-rV-r')

dBa(r,t

X5aa(rV')dVdf; (5.14)

where the Green's function Gm represents the turbulent
transport

dt
-=6(r-r')6(f-?'), (5.15)

and we have used the incompressibility condition div 6u
=0.

By substituting (5.14) into the last term in (5.11), we
can find the contributions ДЛаду and ATJ^ to the transport
coefficients due to harmonics in the wave-number interval
ДА::

г=-2 Г
J (Л*)

а

^
(5.16)

'~L ^„.(r.Tje^vtr.Tjd^T. (5.17)

Integrating (5.16) and (5.17) over the entire wave-number
spectrum, and transforming to the Fourier representation,
we obtain a set of self-consistent equations for the coeffi-
cients of viscosity 77^ and magnetic-field generation Aaflv

in the averaged equation (5.5):

'-b

V-2J /a
(5.19)

The first step then is to use (5.18) to calculate the mag-
netic field diffusion tensor and then, from 77^ found in the
above way, determine the tensor Aaflv of rank 3 from
(5.19), which is skew-symmetric in the first two indices.
Equations (5.6) and (5.7) become simpler for simple gy-
rotropic turbulence. The diffusion tensor becomes diago-
nal, i?j!v==T?totS/4V and the magnetic-field generation tensor
is expressed in terms of the pseudoscalar a: A^v=ae^v.
The coefficients 77'°' and a are calculated from the set of
equations

Г(Л,й>)

(2ir)4

2 Г k
a=- -

3 J к

k2T(k,co) tfkdco

*2 (2ir)4 '

(5.20)

(5.21)

These equations differ from the analogous equations
obtained in Ref. 68 in that, for a given scale /, they take
into account field transport by flows with all other scales,
and not only the small-scale flows as in Ref. 68 or Ref. 5.
Moreover, our equations (5.20) and (5.21) take into ac-
count nonsteady flow which always occurs in practice (in-
tegrals over frequencies). Finally, according to Ref. 61, the
validity of the renormalization procedure for gyrotropic
systems requires more careful justification.

The expression given by (5.14), which relates fluctua-
tions in a small-scale field with turbulent velocity and the
mean field, can be used to calculate the correlation tensor
for the small-scale magnetic field. In steady state, and as-
suming that the regular-field scale has its limiting maxi-
mum value (B=const), we obtain

d8ua(r',t') .
Gm<r-r',r-r') — r̂ dVdr',

and in the Fourier representation

(5.22)

(5-23)

where according to (5.15) the Fourier transform of the
Green's function is

(5.24)
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If the turbulence is weak and may be looked upon as a
set of quasilinear MHD modes with phase velocities t>ph>",
then (ob-kgktf™ and, according to (5.23) and (5.24)

(u2)
!1. (5-25)

(5.26)

For strong turbulence, we have

v^u, (B2)~Bl.

It is important, however, to remember that, in general,
the expression given by (5.23) is not the complete small-
scale field correlator. This expression actually describes
fluctuations in the large-scale field that is frozen into the
plasma and is due to the turbulent motion of the medium.
There is also another reason for the appearance of small-
scale fields: they grow in the turbulent medium indepen-
dently of the presence or otherwise of the mean field ('tur-
bulent small-scale field dynamo'). The process is also
possible under the influence of reflection-invarariant turbu-
lence, and that gyrotropy is not then essential. This prob-
lem has been examined in many papers.28'32'33'68"71 In the
linear (kinematic) approximation, it is often possible to
find the criterion for the growth of small-fields, but it is not
possible to calculate the steady level of turbulence and
(5.23) is valid when there is no spontaneous growth of the
small-scaled magnetic field.

It is important to note that the growth of small-scale
magnetic fields in a turbulent medium is a difficult problem
even in the linear approximation. A relatively simple equa-
tion can be obtained for the magnetic energy density, but
only on the assumption of zero turbulence correlation time
(see, for example, Refs. 69 and 72). This approximation is
valid only if the growth time of the magnetic field is greater
than the existing finite turbulence correlation time.

Kulsrud and Anderson72 have noted correctly that the
growth times of harmonics with different wave numbers
may be different by many orders of magnitude. In partic-
ular, the growth time for small-scale fields in the case of
Kolmorgorow turbulence is much shorter than the corre-
lation time found for the smallest vortices. These estimates
lead to the conclusion that the evaluation of large-scale
fields is possible only if we abandon the approximation that
relies on zero correlation time, and small-scale fields are
correctly taken into account.

6. DIFFUSION AND TURBULENT TRANSPORT OF
PARTICLES IN A LARGE-SCALE STOCHASTIC MAGNETIC
FIELD

6.1. Qualitative considerations

Magnetic fields often have a decisive influence on
charged-particle transport in plasma systems. In this Sec-
tion, we examine this type of situation when the spatial
scales of variation of a random magnetic field B(r,r) are
much greater than the local range of particles for scattering
by small-scale electromagnetic fields (Coulomb or
plasma). A quasihomogeneous field B0 with a variation
scale much greater than the random-field scale may also be
present in the system. These conditions are typical for the

diffusion of different impurities, both thermal and nonequi-
librium, in magnetized turbulent plasma with a wide spec-
trum of fluctuations in the magnetic field and in the veloc-
ity u(r,f) of the medium.

Local diffusion of the particles is highly anisotropic if
their Larmor radius is small in comparison with the trans-
port range. The particles travel mostly in the direction of
the local magnetic field, with small transverse deviations
due to drifts. At the same time, global transport to dis-
tances exceeding the random-field correlation length in a
time much greater than the large-scale field correlation
time may become equivalent to almost isotropic diffusion
because of the considerable entanglement of the lines of
force and the presence of transverse plasma motion. We
thus have to consider the connection between local and
global diffusion tensors. The transverse (relative to the
quasihomogeneous magnetic field B0) diffusion coefficient
is then particularly important. This problem is important
for the transport of heat and of particles in thermonuclear
fusion installations9'10'12'64 and in the analysis of the prop-
agation of cosmic rays and elements synthesized in active
processes under astrophysical conditions.6'14'15'73

The classical theory of transport yields the following
local transverse diffusion coefficient for magnetized parti-
cles:

)2, (6.1)

where РСЦ is the diffusion coefficient along the magnetic
field, rg is the Larmor radius, and Лц is the longitudinal
transport range of the particles. For example, consider XL
for relativistic particles in the Galaxy. Assuming6 that
50=;3X 10~6 G and Лц ~ 1018 cm, we find that the mag-
netization factor is Лц /гя=й>дт^5хЮ6(1 GeV/E)
where Eis the total particle energy and т= I/vis the mean
free time between collisions. These estimates suggest that
the local diffusion of most cosmic rays (E~ 1 GeV) should
be highly anisotropic: XL /x\\ ^ 10~13. On the other hand,
there is no experimental evidence for such strong anisot-
ropy in the propagation of cosmic rays in the Galaxy as a
whole. Observations suggest isotropic global diffusion of
relativistic particles with moderate energies. It may be con-
sidered that, both in the Galaxy and in thermonuclear in-
stallations, 'anomalous' transverse transport, which may
exceed 'classical normal' transport by several orders of
magnitude, is the dominant phenomenon.

Both the turbulent velocity field of the medium and the
stochastic component of the large-scale magnetic field must
be taken into account in calculations of the global diffusion
tensor for highly-turbulent systems. The latter effect may
have the same order of magnitude as the regular field in
spiral arms, e.g., in the Galaxy, and this can probably pro-
duce particle transport across B0 due to deviations of the
local field from the mean. The transverse components of
the turbulent velocity field (and the associated electric
fields in the highly-conducting plasma) play a similar role.
Different approaches to transport in large-scale stochastic
fields are developed in Refs. 74-77, 9, 14, and 15. Most of
them employ perturbation theory
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We shall now follow one of our previous papers15 to
calculate the global diffusion tensor (without restricting
the amplitude of the random field, i.e., including the case
В>В0). Turbulent motion will be taken into account in a
self-consistent manner and the analysis will be based on the
renormalization method presented in Sec. 4 in connection
with the drift kinetic equation. In the final analysis, the
components of the global diffusion tensor will be given by
a set of transcendental equations in terms of pair correla-
tion functions of the turbulent fields.

We shall assume in our calculations that particle trans-
port by percolation is small. It may play an important role
in systems in which the longitudinal correlation length of
the fluctuations is much greater than the transverse length.
Particle transport is then determined by a relatively small
number of long lines of force. Percolation is relatively un-
important for systems with isotropic turbulence, the linear
size of which is much greater than the fluctuation correla-
tion length. The restriction on the topology of the random
magnetic field then reduces to the condition for a random
breakup of lines of force for scales greater than the corre-
lation scale. The description of systems with long correla-
tions requires more detailed statistical information than the
pair correlation functions that we have used (see Ref. 29
for greater detail).

6.2. Averaging the drift kinetic equation

We start with the drift kinetic equation for the distri-
bution function f(r,p,n,t) for magnetized particles, using
the approximation of zero gyroradius:

(6.2)

where u(r,f) is the turbulent velocity field in the medium,
defined by the binary correlation tensor and b is the unit
vector in the direction of the magnetic field

10s s

FIG. 3. Fourier transforms of the real part of the kernel Z>, for E= 10 2,
6=10,102,103,104.

b=
Bp+B

|B0+B|
(6.3)

where B(r,f) is the turbulent magnetic field with scales /
(Лц < 1<L) over which we perform our averaging. These
scales are characteristics for the velocity u. The field B0 is
regular and its scale of variation R > L is of the order of the
linear dimensions of the plasma system that we are consid-
ering. To keep the calculations as simple as possible, we
discard all terms in (6.2) that describe changes in the par-
ticle energy. These effects are very small if the medium is
incompressible, i.e.,

divu=0. (6.4)

If necessary, we may abandon this condition and take into
account the acceleration terms as in Sec. 4. To simplify the
averaging of the original equation (6.2), we assume that
the turbulence is nongyrotropic and take the vectors u and
В to be perpendicular to B0. The interaction of particles

Ю3

\mD,
0,01-3

-/70/4

-0,03-

w 10е

FIG. 2. Fourier transforms of the imaginary part of the kernel />2 for
e=10-2, i=10,102,103,104.

FIG. 4. Fourier transforms of the imaginary part of the kernel D, for
е=КГ2, i=10,102,103,104.

1040 Physics - Uspekhi 36 (11), November 1993 A. M. Bykov and I. N. Toptygin 1040



with magnetic fields whose scale is smaller than or of the
order of the gyroradius of the particles will be simulated by
the right-hand side of (6.2) where v is the collision fre-
quency for particles interacting with small-scale fields. The
bar in / represents averaging over the pitch angle 9(p)
=cos 9. The term that describes focusing of particle pitch
angles by large-scale field fluctuations is omitted from
(6.2) because the collision frequency v is much greater
than the corresponding frequency of variation in the pitch
angle v div b.

We shall seek the average of equation (6.2) over the
ensemble of turbulent pulsations in the form

dF dF &F

where F(r,p,t) = {f(r,p,t)) is the average distribution
function.

We note that f(r,p,9,t) and the averaged F(r,f,t) de-
pend on different angles defining the orientation of the
momentum vector p. The function / depends on the local
pitch angle 9, but does not depend on the local (fast)
gyrophase. Averaging over the latter gives (6.2). After
averaging over the turbulent fields, the direction of mo-
mentum is characterized by the angle 9 to the mean mag-
netic field B0 and the azimuthal angle op measured around
B0. The azimuthal angle <p is not a fast variable. The de-
pendence of the distribution function on this angle can be
due to the azimuthal anisotropy of the turbulence or by a
gradient in the distribution of the particles whose direction
is different from that of B0.

In (6.5),

Va

=((y 'b—u-b)b a +u a ) = (v^) (6.6)

is the average particle drift velocity. The term containing
the second derivative XatfP^F/drJdrp) is the result of av-
eraging:

The tensor Xa0(v) ls not the complete diffusion tensor:
it describes only part of the contribution of the turbulence
to the diffusion. It will be calculated below, using the self-
consistent scheme. However, as a preliminary step, we
must write down the average velocity Va in a convenient
form. Let

е=(Вг/(В2

0+В2)), (6.8)

so that the correlator of unit vectors at a particular point is

(6.9)

where 60a is the unit vector along the field B0. From (6.9)
we find that

+(e/2)vL

a, (6.10)

where the symbols || ,1 refer to the direction of B0. The
parameter e varies in the range 0<£< 1 and characterizes

the contribution of the turbulent component of the mag-
netic field, 8^=8ap—b0cf>0p where 6a/3 is the three-
dimensional Kronecker symbol.

The total diffusion coefficient must now be expressed in
terms of v and Xa0(9) by transforming from (6.5) to the
low anisotropy approximation. If we assume that

F=—(N(r,p,t)+8N(T,f,t)), (6.11)

5ЛГ(г,р,0=0, |вЛГ|«ЛГ,

we can write (6.5) in the diffusion form

dN
(6.5) -57=^ (6.12)

where

Ь0аЬор,

v2

(6ЛЗ)

We now turn to the evaluation of the transport coeffi-
cient ;fa0(p) and consider a narrow wave-number interval
ДА: in the turbulent spectrum. The contributions to the
turbulent fields due to harmonics belonging to ДА; will be
denoted by 6u and 6B. This leads to the expression

(6.14)

where

vf= (v • 8b-8u • Ъ'-и'8Ъ)Ь'а+ (vb'-u'b')8ba+Sua,

(6.15)

in which primes indicate quantities from whose spectra the
interval ДА: has been excluded.

We now average the initial equation (6.2) over the
entire spectrum of turbulent pulsations with ДА: excluded.
We shall indicate this average by a prime:

so that we have (details of this calculation can be found in
Ref. 15)

dF dF
(6.16)

where L is the perturbation operator that is proportional
to the small quantities 8ua and 8Ba:

д д2

(6.17)

(6.18)
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The tensor SA^ is of the same order of magnitude as
(8B/B)Xa0 and is expressed in terms of a sum of several
terms.

The final averaging over the ensemble of realizations of
Sua, 8Ba will be carried out using standard perturbation
theory. The fluctuation increment 8F on the fully averaged
distribution function F will be written in terms of the
Green's function

6F(r,p,0 = J G(r,f,t;T',9',t')L'F'd3r'dt'dfl', (6.19)

satisfying the equation

dG dG
-+v(G-G)

f). (6.20)

where dti' is a solid angle element defining the direction of
P'

The calculation of the Green's function in the Fourier
representation is made, like all other previous calculations,
on the assumption that the wavelength of all the harmonics
of this stochastic field are large in comparison with
Л|| =v/v. This leads to the inequality | k - u | < v and en-
ables us to obtain the Green's function in the form

6(cosd—cosd'
(6.21)

where the bar indicates, as before, averaging over the an-
gles 6,q> of the particle momentum and v'=v— ia>.

Next, if we use the scheme employed in Sees. 4 and 5,
we obtain a transcendental algebraic equation for the trans-
verse diffusion coefficient

J £\ Г uau
-«1*00+ 1-2 J to + A + Л2 DL

X I -
ico+k» D» +kl Dv ) (2тг)4 '

where

(6.22)

(6.23)

We emphasize that these relationships are valid for any
ratio of regular to random magnetic fields (0<e<l) and
also without any restriction on the amplitude of the
turbulent-velocity pulsations. The orientation of the vec-
tors that was assumed above (u and В perpendicular to
BQ) has ensured that the turbulence correlation tensors
appeared only in the equation for the transverse diffusion
coefficient.

D, (6.24)

In this case, anomalous transport across the uniform mag-
netic field is proportional to the square of the amplitude of
the turbulent component of the field.

When the longitudinal range of the particles is long
enough, so that иЛц $>vAL, and if we neglect the attenua-
tion of the Alfven modes and integrate with respect to the
frequencies and the angles of the vectors k in the second
term on the right-hand side of (33), we obtain

Г
J

d*kdco

k2dk

X г _
Jo DL

(6.25)

-D

where x = x+[ivt/2k(D\\ —DL )]. In this calculation, we
use the correlation tensor

(6.26)

6.3. Transverse diffusion regimes

We shall now examine particle transport by weak Al-
fven turbulence: (£=<52>/5g=<M2>/i^h<l). When the
local transport range is short enough, we have
uphZ,/M|( >1. We then have />ц zsxzzvA\\ /3 and
<a= |kvj>£f Z>|| +k\ DL , so that, using (5.23), we ob-
tain

and the dispersion law cok= |k- VA|. For the fluctuations
spectra with characteristic scale L, we find from (6.25)
that

J uo
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where b is a numerical factor of the order of unity. Simi-
larly, we can obtain an estimate for the third term on the
right-hand side of (6.22). All this finally leads to

3-rrb
D1 ZZ— (6.28)

for particles with longitudinal diffusion coefficients in the
range Vf^L-^K^ ^i^Le"1 where the constant factor b de-
pends on the shape of the spectrum and is given by

kT(k)dk,

T(k)k2dk.=J-3

If хц >i;ALe ', the fluctuations obtained for such particles
may be regarded as quasistatic, in which case

ETT ...

Hence,

(6.29)

(6.30)

where the numerical factor is g ̂  1.8. These results are in
qualitative agreement with the corresponding regimes ex-
amined by Ptuskin and ChuviFgin.13 The transport of
charged particles by small-amplitude quasistatic fluctua-
tions is proportional to the fourth power of the amplitude.

The latter dependence is in agreement with the esti-
mate reported by Kadomtsev and Pogutsee9 for the trans-
verse thermal conductivity in the presence of a small-
amplitude random magnetic field.

The description of the transport of particles by strong
turbulence requires a numerical solution of the transcen-
dental algebraic equations (6.22)-(6.23). For typical tur-
bulence spectra, this leads to the conclusion of isotropiza-
tion of diffusion by strong turbulence: DL ~D\\ . In
particular, if the random magnetic field is static, the results
do not depend on the particular form of the field correla-
tor. The equation D± = D\\ is attained for e = 0.77 whereas
for £=1 we have DL = 0.25y2/3v and £>ц =0. The last
result is due to the fact that, when D0=0, the lines offeree
of the large-scale magnetic field become flat and the parti-
cles are not displaced at right angle to these planes.

Although the results presented above are valid for any
ratio or (B2) and B\, they are restricted by certain other
conditions (short local transport range, zero gyroradius,
perpendicular В and B0, and incompressibility of the me-
dium). Results that are free from some of these limitations,
but still assume that the amplitude of the random field is
small, can be found in Refs. 11, 13, 41, and 78.

7. PARTICLE KINETICS IN A TURBULENT PLASMA WITH
STRONG INTERMITTENCY AND SHOCK FRONTS

7.1. Introduction

Analysis of a number of problems on the evolution of
scalar and vector fields in stochastic media has recently led
to an understanding of the importance of intermittency in

the stochastical description of such fields. Examples involv-
ing very different physical systems are cited, for example,
in Refs. 79 and 80.

In this Section, we consider intermittent distributions
of charged particles that evolve as a result of acceleration
and transport of particles in a medium with a large-scale
ultrasonic and ultra-Alfven fluctuations. The acceleration
of particles by fluctuations in the electric field induced by
plasma motion in a magnetic field (Fermi mechanism) is
regarded as one of the basic mechanisms responsible for
the evolution of the spectra of suprathermal particles, in-
cluding, cosmic rays.

There is particular interest in the acceleration of par-
ticles by shock waves in turbulent media. The universal
character of this mechanism was established in Refs. 17-
20. Much attention has been devoted to this effect in recent
years (see the review paper in Ref. 81) because this type of
acceleration can be observed directly near the front of a
geomagnetic head shock wave and also in interplanatary
space. There is no doubt that particle acceleration pro-
cesses occur in larger-scale phenomena with shock waves
such as supernova explosions and strong stellar wind em-
anating from stars of early spectral class in the Galaxy.82

In active regions of astrophysical objects such as active
galatic nuclei, stellar associations of early spectral class,
and many others, the presence of numerous sources of
powerful perturbation and of strong inhomogeneities sug-
gests that there should be random ensembles of relatively
strong shock fronts against a background of large-scale
condensation and rarefaction waves and various other
smooth perturbations with a very wide spectrum of spatial
and state temporal scales. Since shock waves are the main
transporters of energy under such conditions, the presence
of shock fronts is a characteristics feature of ultrasonic and
ultra-Alfven turbulence in compact active regions. Differ-
ent aspects of the interaction of charged particles with ul-
trasonic and ultra-Alfven turbulence are examined in Refs.
83-88.

Particles accelerated in the vicinity of shock waves
may respond by influencing the shock fronts. This is inves-
tigated in many publications, including Refs. 66, 81, and
88-92. A systematic and rigorous theory of this phenom-
enon essentially reduces to the problem of the structure of
a collisionless shock-wave front. Despite the considerable
advances in our understanding of the underlying processes,
this problem is still far from solved. The so-called two-fluid
model88'89 is the most popular and is based on the idea of
two fluids, i.e., thermal plasma and cosmic rays, coupled
by fluctuating magnetic fields.

The two-fluid model predicts that the structure of a
shock front contains an intrinsically viscous ion disconti-
nuity (in velocity and other quantities) and a region of
smooth deceleration of the flow incident on the front (pre-
front), with significantly different dimensions. The pre-
front originates from CR effects. For very strong shock
waves, the model predicts that the structure of the front
may become smeared out until the viscous dissipative dis-
continuity vanishes altogether (these waves are often re-
ferred to in Western literature as 'CR-dominated shock
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waves'). Jones and Ellison81 consider that such waves can-
not exist and the occurrence of such solutions is a difficulty
for the two-fluid model.

On the other hand, the existence of a prefront and of a
viscous discontinuity has been confirmed by observations
of the interplanetary medium and has long been known in
the physics of radiation-dominated shock waves. We shall
use these ideas in Sec. 7.2 to show that the nonlinear struc-
ture of a shock wave can be approximately taken into ac-
count in the theory of acceleration of particles by ensem-
bles of shock waves.

Since particles become accelerated in the vicinity of a
MHD shock front, their distribution acquires an inhomo-
geneity whose spatial scale / is of the order of x/u^
= vA./u where и is the velocity of the front and к is the
local diffusion coefficient along the normal to the front.
This diffusion may be due to small-scale fluctuations in
macroscopic turbulent fields and, in sufficiently dense me-
dia, Coulomb collisions as well. The formation of the spec-
trum of accelerated particles by an ensemble of shock
fronts depends significantly not only on the strength of
these fronts, but also on the ratio of the scale / to the mean
front separation L (which we shall identify with the max-
imum size of turbulent cells, i.e., with the principal turbu-
lence scale).

When $=L/l~uL/K4,I, a given particle will interact
with several fronts within the characteristic time к/и2, and
the inhomogeneity in the particle distribution will be de-
termined by the smaller of the two scales, i.e., by L. The
distribution can be averaged over regions with linear di-
mensions of the order of L. Perturbation theory is valid
under these conditions. The corresponding problem of
evaluating the transport coefficients and of finding the
shape of the accelerated-particle spectrum was solved in
Refs. 83 and 86.

The opposite case, i[>>I, is more complicated and in-
teresting. Here, a strong inhomogeneity in the accelerated-
particle distribution is formed near each individual shock
front, and the spatial scale of the inhomogeneity is small in
comparison with the principal turbulence scale. The parti-
cle distribution thus becomes highly intermittent.

The statistical description of intermittent systems re-
quires additional information as compared with systems
that are stochastically homogeneous in all their scales. The
accelerated-particle distribution will therefore be described
by two distribution functions, namely, the mean function
corresponding to the distribution of particles in regions
between strong fronts and a local distribution function that
differs from zero near a given front. The parameter ^ then
characterizes the degree of intermittency of the system.
For small if>, the fluctuating part of the distribution func-
tion is small in comparison with the mean distribution
function. This was demonstrated in Ref. 83 in the course of
a derivation of the kinetic equation for the mean distribu-
tion function. For large ф (this usually corresponds to su-
prathermal particles with low energies), the fluctuations in
the particle distribution are stronger.

To take into account more correctly the contribution
of shock fronts to acceleration, we shall use the well-known

solution18 for an individual front of arbitrary strength and,
on the first stage, average the distribution function over
spatial regions of scale / in the vicinity of the front. This
results in the appearance in the equation for the mean
distribution function of an integral operator describing
strong acceleration on individual fronts. Moreover, it is
important that this operator can be modified so that the
nonlinear distortion of the shock-wave profile can be ap-
proximately taken into account.

The next stage is to average the kinetic equation over
regions of the order of the principal scale L. Since V>/,
perturbation theory is not valid and we must renormalize
the transport coefficients. This can be done by the method
discussed in Sec. 4 (see also Ref. 87). The transport coef-
ficients cannot be calculated from the pair correlation ten-
sor of the turbulent velocity field alone: it is also necessary
to have information on the statistical properties of the
fronts and on their correlations with the velocity field be-
tween the fronts. This means that higher-order velocity-
field correlators must be taken into account.

7.2. Interaction between charged particles and strong
shock waves

Suppose that we have a random ensemble of shock
fronts separated by a mean distance L and that the Mach
numbers are such M —1>1. We shall assume that the en-
semble is stochastically homogeneous and isotropic. An
inhomogeneous cloud of accelerated particles with a
power-type spectrum in a wide range of energies is formed
near each front during the mean front collision time L/u
where и is the front velocity (not very different from the
characteristic velocity of the medium when values Mb 1
have low probability). The inhomogeneity scale of this dis-
tribution is of the order of /г;иЛ/и>Л where v is the
particle velocity and Л is the transport range in the turbu-
lent medium ahead of the front. The distribution of accel-
erated particles in space is thus seen to be highly inhomo-
geneous: near the fronts, there are relatively narrow
accelerated-particle peaks which, after front collisions,
spread out by turbulent diffusion through the system.
However, the appearance of the next shock front of suffi-
cient strength again gives rise to a strong inhomogeneity in
the particle distribution. This picture of acceleration is a
natural consequence of the intermittency of ultrasonic tur-
bulence, namely, the presence of strong discontinuities
within it.

To construct the accelerated-particle distribution func-
tion averaged over the ensemble of random fronts, we must
correctly take into account these local inhomogeneities.
Assuming that /<L, we isolate scales A such that

/<A<L, (7.1)

and average the distribution function over such scales.
Since \<L, we can use the transport equation given by
(1.3) in regions between these fronts:

dNд dN dN pdNdua
(7.2)
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and on the front itself we must use the continuity of the
distribution functions and differential (with respect to p)
particle front densities (see Ref. 25 for further details). We
shall use N to represent the distribution function averaged
over scales A. At distances of the order of >A from the
fronts, we have N~N, so that the inhomogeneity scale N
in this region is large in comparison with A. In the vicinity
of a discontinuity, on the other hand, we can use the well-
known solution of (7.2) for a plane shock front18'25'92 and
relate the local value of the distribution function to its
value N well away from the front (at distances of the order
A)

Ni(z,P)=e(-Zi)

Г p ' ( r i + l ) N ( p ' ) d p '
Jo

-N(p) exp-

Г p'
Jo

where z,- is the coordinate measured along the normal to
the first front (ahead of the front, z, < 0 and after the front,
z,->0), Kf is the diffusion coefficient in the direction of the
normal ahead of the front, Дм,,/ is the change in the normal
component of the velocity of the medium across the front,
Y=[(p2/P\) + 2]/[(p2/Pi) — 1] is the exponent in the 'uni-
versal' spectrum on an individual front, and P2/PI is the
relative compression of the medium in the shock wave. The
solution given by (7.3) can readily be written with the help
of the Green's function constructed for the plane shock
front. The quantity N(p) that appears in (7.3) will of
course remain a function of the large-scale coordinates
(determined to within A) and time.

The use of the stationary solution in (7.3) is allowed
because of the rapid evolution of the power spectrum on
the shockfront: when ?c= const, the time Af necessary for it
to evolve in the range p0 and p is given by the approximate
expression (see Ref. 25)

3 x D O l p
In — ~- — In — .

ДИ„
(7.4)

This time (for Ды~и) is much shorter than the average
time between front collisions, which is of the order L/u.

Having evaluated the local inhomogeneities in the dis-
tribution function near the fronts (7.3), we perform the
direct averaging of (7.2) over the scales A. To do this, we
extract the singular term from диа/дха:

(7.5)

where (dua/dxa)smooth is the smooth part of the divergence
of the velocity, which is of the order of u/S, and the
5-terms are due to velocity jumps across discontinuities.
We now write

_ a _ _ .
~ + ( '3 dp 3ra~3 dp dra

(7.6)

and evaluate the last term. It is clear that, well away from
the front, this term is of the order of (A/L)(p/3)
X(dN/dp)(dua/dxa) and, since A/Z,<1, can be dis-
carded. Near the /th front (in a layer of thickness A) we
have, using (7.3),

(7.7)

With the help of (7.7) and (7.5) (in the latter, we take
into account only the singular terms), we obtain

Pd Yi+2

,ri (7-8)

Although the right-hand side is written as the sum over all
the fronts, the /th term is actually different from zero only
in the vicinity of the /th front.

Next,

dN dN
(7.9)

and

A/2д _ 1 ^ fA/
ua j- (N-N) =- I «fa -5- (N-N)fr,

ОГа A , J _ A 2 °ra

= I (N-

'a

.A/2

-A/2

A/2

-Д/2

_ duia

For distances of the order of A/2 from the front, we have
M—N~Q, so that the term outside the integral must van-
ish and from (7.5) we finally obtain

ГР , ,. dNi
X />'(n+2)3-/d/>'. (7.10)

Jo of

Combining the contributions of (7.8) and (7.10), we have

p д - ди„ д
-i^-(N-N) -^-ua—(N-N)3 d p . a - " j_dr, drn

^7 dp'- (7.П)

Terms of the form

5 д
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do not provide an additional contribution either near the
fronts or away from them after averaging. Hence, taking
the average of (7.2) with the help of by (7.6) and (7.9),
we find that

dN d dN _ dN p dN dua

- Ua d^+ 3 ~d d

The last equation can be written in a somewhat simpler
form. Consider an ensemble of fronts with the same index
(Yi=Yl f°r sufficiently strong waves, we know that у is a
slow function of M) and let us introduce the function

that assumes the values Ди/Д near the /th front (in a layer
of thickness Д) and 0 between fronts. Equation (7.12)
then takes the form

dN d _ dN _ dN pdNdua

(7.13)

We assumed in the derivation of (7.12) that the fronts
were discontinuities in velocity whose width was small in
comparison with the gyroradii of the accelerated particles
and their transport ranges. On the other hand, it was noted
in Sec. 7.1 that the structure of a shock wave could be
modified as a result of the retardation of the incident flux
by cosmic rays.66'81'92 Equation (7.12) has a solution that
allows us to take approximately into account the presence
of prefronts and of a viscous discontinuity.

Qualitatively, the front structure ensures that low-
energy particles are accelerated only in the viscous jump,
whereas the smooth part is received as an adiabatic pertur-
bation, described by the field ua(r,t) in (7.12). The spec-
trum of particles with momenta p </>„,, and spectral index
Уа is therefore due to the viscous jump Дияп in which the
relative compression is smaller than the total compression
of the medium by the entire shock wave. The limiting mo-
mentum PIJ is determined by the condition that the particle
range is equal to the thickness of the prefront. For high-
energy particles,p>p^t, the spectral index yr, is formed by
the total velocity jump Ды„„ across which the compression
of the medium is greater. Hence, the spectrum of particles
accelerated in the neighborhood of the /th shock wave is
harder for р>р^ (ys,<yt,)•

In view of the foregoing, we shall write the transport
equation for charged particles in a system with an ensem-
ble of shock fronts in the form
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dN__ d _ dN _ dN pdNdua

~я7=лТ~ X<*P Я- ~ua з„ +Т д„ з_dt ~dra dr dra

,dN,
(7.12a)

In writing this equation, we consider a two-stage com-
pression in a shock wave, which means that we might
achieve a correct description of the asymptotic behavior of
the spectrum (see Ref. 88). This model is simple enough
and useful for practical calculations. A more general form
of the acceleration term for shock fronts leads to

dN д dN _ dN pdNdua

U°dra

 + 3 dp dra

(7.12b)

where the Green's function G((p,pt) describes the transfor-
mation of the particle spectrum on the /th shock front. We
now need additional observations and calculations of the
structure of collisionless shock waves with a view to estab-
lishing the form of the function G in the nonlinear regime.
It must also be borne in mind that, in the nonlinear case,
P#i>Ysi> and the Green's function G,(p,p') are generally
functionals of the mean distribution functions of the accel-
erated particles. A sufficiently simple working theory can
be constructed only by using the corresponding approxi-
mation and by parametrizing these quantities.

7.3. Kinetic equation for the distribution function averaged
over large-scale motion In the medium

To perform further averaging of (7.13) over regions
with dimensions of the order of the principal turbulent
scale L, we use the notation

— ,

,-)— =<p(r,t),
Tsh

where the operators L and P take the form

(7.14)

1 д . p д

in which a = y+ 2 and the angle brackets represent the
above averaging. It is readily verified that the above two
operators ^xmimute. Next, wejntroduce a new distribution
function f(r,p,t), related to N by

(7.15)

The equation for / is
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where

(7.16)

(7.17)

is a random operator. The quantity x^ is the diffusion
tensor due to small-scale turbulence; in general, it under-
goes random changes in both space and time. However,
since uL/vA<l, the transport of particles in space is
largely due to the motion of the medium (turbulent diffu-
sion). Diffusion due to small-scale field plays a minor role
under these conditions. We shall therefore assume in
(7.16) that the diffusion tensor x^ is constant and isotro-
pic and that KC^= кб^ is independent of the momentum
variable p.

We can now apply the general approach developed in
Sec. 4 for the averaging of (7.16). We shall assume that
only harmonics with sufficiently close wave numbers are
correlated in the spectrum of the random quantities U0, a
and cp in (7.16). This means that we can extract a macro-
scopically small wave-number interval ДА: and assume that
harmonics belonging to this interval do not correlate with
all others. The corresponding contributions to the velocity
field will be denoted by 8и,8а,8ф where

'=J>L
and so on. During the averaging procedure, the Fourier
components of turbulent quantities satisfy the usual rela-
tionships for homogeneous turbulence:

For a complete description of the acceleration process,
we must introduce two further spectral functions87 in ad-
dition to the functions Т and S associated with the vortical
and potential motions. One of them, q>(\s.,co), describes cor-
relations between velocity jumps on shock fronts and the
other, /i(k,u>) represents mutual correlation between
<p(r,t) and a(t',t'). The introduction of these spectral
functions is dictated by the intermittent character of the
particle distribution function, the description of which re-
quires additional statistical information about the random
velocity field (cf. statistically homogeneous problems ex-
amined in Sees. 4 and 5 where a significantly smaller num-
ber of correlators was used).

The mean distribution function F=(N) satisfies the
following kinetic equation when the energy change within
the correlation length of the smooth velocity field is small
(but the energy change across the shock wave front is
large):

dF 1 д dF

+ 2BLPF. (7.20)

The characteristic feature of this equation is the presence
of the integral parameter L which shows that there is
strong acceleration of particles near an individual wave

front. At the same time, the acceleration effect may on
average be relatively small if the fronts appear relatively
infrequently.

The expressions for the transport coefficients have the
following form:87

1 r d3kd« Г 2T+S

* = * + 3 J (2тг)4 [и[ico+xk

D=-TTX

S(k,co)

(7.21)

(7.22)

» . r°°
kdkL

£(k,ci))

These expressions allow for the fact that, for the isotropic
turbulence that we are considering, Хар=Х^ар- Moreover,
we have used the parity property of the spectral functions
in со. To calculate the spatial diffusion coefficient x we have
to solve the transcendental equation given by (7.21), after
which the evaluation of the coefficients A,B,D that deter-
mine the rate of acceleration reduces to integration.

(7.18) Strong acceleration

If the change in the particle energy within the turbu-
lent velocity correlation time or length is not small
(A/?>/>), then acceleration on fronts and between the
fronts will be described by an integral operator (see Sees.
4.3 and 4.4). Nevertheless, the renormalized transport co-
efficients can be calculated even in this case by slightly
modifying the above scheme. The case of strong accelera-
tion can be included in the general scheme because the
acceleration operators P and L are homogeneous in the
averaged equation (7.15) (they are invariant under the
similarity transformation in the momentum variable). Af-
ter averaging, the kernel of the integral operator can there-
fore be written as a function of the difference 17 —17' where

X f+

J — o

where the operator

The equation for the total distribution function
F(r,rj,t) = {N(r,p,t)) will now be sought in the form

dF C+°° I d

(7.25)

(7.26)

ensures that the second term vanishes when both parts of
the equation are integrated over all momenta. We shall not
go into the details of the averaging procedure (they are
described in Ref. 87) and merely present the final result.
The Fourier transforms of the kernels of the integral equa-
tion (7.25), x(s) and D(s), can be calculated by solving
the following set of two transcendental equations:
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1 Г d3kda 2T+S(k,o)

9(й-2-у)'

(7.27)

и Г c№du)
=- J -^р-[-

2-г)т8Ь]-1. (7.28)

In the case of weak acceleration, x(s) ceases to depend on
s and equation (7.25) takes the form of (7.20). Equation
(7.28) then becomes

is—3 isis

3 (is—Y—2)2 is—2—7

1 и
(7.29)

where Д Л, and 5 are given by (7.21)-(7.24).

7.4. Time-dependent energy spectra of accelerated charged
particles

We must now consider solutions of the time-dependent
kinetic equation for the average charged-particle distribu-
tion function with instantaneous injection of monoener-
getic particles into a turbulent medium containing an en-
semble of shock waves.87'93

The equation for the Green's function is

dG G I 1 1 д dG

G(p,a) =
-at'

ДО

P<Po,

(xl-x2)(xl-x3)(xl-x4)

(x2+a)2

— f-V
~*4> \Po)(xt—x2)(x2-x3)(x2

Qc3+a)2

(Xi — X 3 ) (X3 — X2) (X3 — X

(x4+a)2 (p\x*
+7 Г? w Г ~~l > />>/'o.V*l—*4ДДС4 — Х2ДХ4 — X$) \PoJ

(7.32)

where к, are the roots of the fourth-degree polynomial
ax4+bx3+cx2+dx+e. The coefficients of the polynomial
are related to the above renormalized coefficients A,B,Dby
the following equations:

а=тл(А+2В+90),

b=T,h(6A+9B+21D+2a(B+9D)) + 3,

+ 9 + 3a-9(£+(7Tsh),

e=-9a2(£+arsh), £=rsh/re. (7.33)

We shall now examine this system for times f>rsh where
0Tsh<l. We shall determine the roots xt for this case to
within the linear term in orsh . Approximate calculations of
these roots for the time-independent state <7Tsh=0 show
that x1~a£,x2ss — 3^c3~— a,x4=;3/a(o,£<l) for wide
range of turbulence spectral functions that is compatible
with the model of particle acceleration in an association of
О and В stars (see Ref. 93). It follows that, when p>p0,
we need only take into account the first term in the spec-
trum (7.32):

РГ ^

' P P°'
and

x2+a p\*2
T . P>Po-(x{— X2)(x2—д

The reverse transformation in the variable t yields

(7.34)

+2BLPG+-8(p-Po)S(t-t'). (7.30)
Po

To solve this, it is convenient to perform the Fourier trans-
formation in r]=\n(p/p0) —s and the Laplace transforma-
tion in t—a. We then find from (7.30) that

.. — at'

(7.31)

The expression for D(s) corresponds to (7.29) and the
reverse transformation to the variable p gives

and

ae

-t'-tp\), P<Po,

Po

xe(t-t'-tp2), p>Po,
where

(7.35)
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FIG. 5. Spectra of accelerated particles at successive instants of time
f/rsh = 5,10,15,20. The curves are plotted on a logarithmic scale: log (in-
tensity of suprathermal particles) as a function of log (/>//>,).

9т,sh

9Tsh a po
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o-2 =9rsh
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p
In — .

p0

(7.36)

(7.37)

For time-independent injection, which is interesting
for applications, we must integrate (7.35) with respect to
t' between 0 and r. The result is

p<Po,

and

PoJ
-1р2), p>Po, (7.38)

where we have retained only the first term for times t > rsh.
The time dependence of the Green's function (7.38)

has a simple physical interpretation. It describes the evo-
lution of the high-energy part of the particle distribution
function. Figure 5 (Ref. 93) illustrates the evolution of the
distribution function for power-type particle injection into
the acceleration process, which corresponds to the case of
injection on shock-wave fronts.

We have thus shown that the description of intermit-
tent particle distributions in systems containing ensembles
of shock waves requires detailed statistical information on
correlations of shock fronts and their strengths. The deter-
mination of the distribution function for suprathermal
charged particles can be reduced to the solution of an in-
tegral equation for the average distribution function. The
intermittent part of the distribution function due to strong
deviations from the average distribution function in the
neighborhood of shock fronts is then expressed in terms of
the average distribution function by means of (7.7).

8. CONCLUSION

We have tried to demonstrate the considerable possi-
bilities of the renormalization method of constructing the

equations of transport for impurity particles and the eval-
uation of the transport coefficients in plasmas with strong
turbulence in the presence of an external magnetic field.
The advantages of this method include its relative simplic-
ity, possible generalization to compressible media, the in-
clusion of not only the motion of particles in space but also
their acceleration by stochastic electric fields in nonequi-
librium systems, and the possibility of including strong in-
termittency (in the special but important for astrophysics
example of interaction of particles with an ensemble of
strong shock waves in a turbulent medium). It is impor-
tant to note that the renormalized equations of transport
may not take the Fokker-Planck form, so that they de-
scribe regimes that do not reduce to diffusion (see Sees. 4
and 7). The required average equation of transport is then
written in an integral form that is the most general linear
expression which only in special cases, and with the corre-
sponding structure of the kernels, assumes the Fokker-
Planck form. The evaluation of the kernels of integral
equations for the transport of particles to large distances
(greater than the correlation length) is then reduced to the
solution of a set of transcendental algebraic (nonintegral)
equations, which enables us to express these kernels in
terms of the correlators of velocity functions and the mag-
netic field.

We emphasize that the numerical solutions of such
equations does not encounter fundamental difficulties and
has been obtained31'67 for a number of realistic turbulent
spectra (see, in particular, Figs. 1—4). We have thus dem-
onstrated the fact that it is possible to take the results of
our theory to a numerical stage and to a comparison with
experiment.

In our view, these advantages distinguish our method
from other approaches to the evaluation of renormalized
transport coefficients presented in the literature. For exam-
ple, the renormalization group method,49"52 which is being
actively developed at present, is apparently capable of de-
scribing only the Kolmogorov model of turbulence in an
incompressible fluid. We are unaware of any analyses of
the effects of compressibility, magnetic field, or particle
acceleration performed by this method; this also applies to
the theory developed by Phythian and Curtis4.

At the same time, our method is, of course, subject to
certain disadvantages and limitations, which it is conve-
nient to summarize once again. When the renormalized
transport coefficients are calculated, we have to employ an
approximate description of the motion of particles for
small scales (smaller than the correlation length) and con-
sider that the motion is diffusive (see Sees. 4.1-4.3) al-
though this is not strictly correct. Attempts to remove this
infelicity (see the end of Sec. 4.1) and to correctly describe
transport over short distances involve the evaluation of the
kernel of the integral transport equation by solving a cer-
tain nonlinear integral equation [such as (4.24)] which is a
very difficult but not an insurmountable problem.

The errors introduced by these approximations cannot
be estimated theoretically but comparisons with the nu-
merical calculations reported by Drummond et a/.,61 sug-
gest that, in most cases, the errors are not large.
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Another limitation that has played a very significant
role in our method was the assumption that the turbulence
was homogeneous [condition (4.4)]. The method will have
to be modified to allow for the presence of significant in-
homogeneity in the distribution of turbulent fluctuations or
background quantities.

The third limitation relates to the approach used to
describe the turbulent field. All the information about the
turbulent medium enters the calculated transport coeffi-
cients exclusively through the pair correlators of velocity,
density and magnetic field, which are coupled by the equa-
tions of motion of the medium. Since the exact expression
for the transport coefficients in terms of the turbulent pa-
rameters must in general contain correlators of all orders,
this means that some closure procedure is implicit in these
calculations, in which the higher-order correlators are ex-
pressed in terms of the pair correlator. Consequently, our
method can only tackle situations in which the distribution
of turbulence is sufficiently homogeneous and the entire
significant information about the turbulent field can be de-
scribed by the lowest-order (pair) correlator. This means,
in particular, that intermittency effects that give rise to
infrequent but strong inhomogeneities should not play an
appreciable role. When this is not so, the method must be
modified and we must have more detailed information
about the structure of the turbulence. An example of this
type of modification is provided by the case of strong in-
termittency due to the presence of an ensemble of shock
fronts in the system, considered in Sec. 7. In addition to the
pair correlator, we then also have to use turbulence char-
acteristics such as the distribution of shock fronts over
Mach numbers and correlators of the velocity of the me-
dium on and between fronts. Another, more trivial, special
case is that of strong static density inhomogeneities (Sec.
4.5).

The method developed above, which is based on the
use of pair correlators, presupposes that there is a rapid
enough decay of correlations over distances exceeding the
correlation length. It ceases to be valid when the system
contains an appreciable number of ordered lines of force
(or lines of current) that can ensure rapid transport of
particles to distances exceeding the dimensions of a turbu-
lent cell. The theory of transport in such systems, which is
not included in our review, can be found in the review
literature.29'38'39

The fourth limitation of our theory is its linearity: we
assume that the diffusing impurity does not affect the tur-
bulent medium. When this assumption is not valid, the
equations that we have obtained must be augmented by
other equations that describe the change in turbulence un-
der the influence of the diffusing substance (accelerated
particles, generated magnetic field). Although the linear
theory of transport has a relatively wide range of validity,
nonlinear effects are often of primary importance. We note
particularly two 'hotspots' among the questions touched
upon in this review, namely, the generation of a magnetic
field by gyrotropic turbulence and the acceleration of par-
ticles by an ensemble of sufficiently strong fronts.

In the generation of a magnetic field (Sec. 5), it is

important to take in to account the reaction of the field on
the turbulent motion and its gyrotropy. The growth times
of the field harmonics are very dependent on the spatial
scale, and the frequently used approximation in which the
correlation time for turbulent velocities is assumed to be
zero is not valid for small-scale harmonics. Because of the
rapid growth of the latter, a systematic nonlinear theory
must evidently rely on a set of nonlinear equations for the
large-scale field, the energy density of the small-scale field
(the pair correlator), and the equations of motion of the
medium, modified significantly by magnetic forces. As far
as we are aware, no one has yet formulated a working
theory of this kind.

When particles are accelerated by a sufficiently strong
shock front, the efficiency of transfer of energy from hy-
drodynamic motion by accelerated particles may be high
and the structure of the front itself may be modified by the
accelerated particles (see Section 7.2 and the detailed re-
view in Ref. 81). An analogous phenomenon is naturally
expected when particles are accelerated by ensembles of
shock fronts.93 Equations (7.20) and (7.25) must there-
fore be augmented in the nonlinear theory with relations
describing the depletion of ultrasonic turbulence and its
modification by particle acceleration.

These basic limitations and disadvantages of our the-
ory also seem to suggest certain future developments, since
some of these limitations can be removed within the frame-
work of the method itself.

Finally, let us briefly consider two directions of re-
search that are closely related to our theory and which
seem to us to be quite promising. In Sec. 4 we cited the
numerical simulation reported by Drummond et a/.61 and
used it to estimate the precision of the approximate theory.
Unfortunately, this simulation was concerned exclusively
with turbulent transport in space in an incompressible me-
dium without a magnetic field. Numerical simulations of
typical solutions with particle acceleration and the trans-
port of such particles in the presence of a magnetic field
could be of major interest. Such studies have become fea-
sible since the advent of the modern supercomputer, and a
number of very interesting results has been reported in
Refs. 73 and 94. The simulation of particle kinetics and of
the magnetic field in a medium with gyrotropic turbulence
is particularly important because Drummond et al. have
shown that there is considerable discrepancy with the self-
consistent theory of Phythian and Curtis.4 Comparisons of
the theoretical results with the detailed numerical simula-
tions should establish the precision of the theory and define
in greater detail its range of validity.

Another topic is the application of the above method
to the evaluation of higher-order (two-particle, etc.) dis-
tribution functions. These functions will enable us to ob-
tain a more detailed picture of the behavior of particles in
a turbulent medium and to find fluctuations in the distri-
bution function that have already been investigated exper-
imentally for a number of systems (see, for example, Refs.
95 and 96). This problem is particularly topical for the
generation of magnetic fields because the large-scale (reg-
ular) magnetic field cannot be correctly calculated unless
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we know the spectral density, i.e., the second correlator, of
the turbulent magnetic field.
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