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Useful physical models that reveal the basic physical properties of the Berry phase are
presented. They include Foucault’s pendulum, rotation of the plane of polarization of light by
three mirrors, and so on. Particular attention is devoted to the phase that arises when

the polarization of light is transformed by an anisotropic medium. This is used to introduce
modern terminology and then to examine more general situations. Several
terminological and methodological questions are examined.

1. INTRODUCTION

Nearly ten years have passed since the publication of
Berry’s celebrated paper “Quantal phase factors accompa-
nying adiabatic changes”” that marked the beginning of a
stream of publications that has continued to this day. The
concept of geometric, or Berry, phase (GP) has been sig-
nificantly extended during this decade and has become part
of a great many branches of physics [see the reviews in
Refs. 3 and 4 and popular accounts in Refs. 5 and 6)]. GP
is involved in Sagnac, Aharpnov—Bohm, Jahn-Teller, and
Hall effects, in certain features of molecular and nuclear
spectra, in vortices occurring in superfluid helium, and in
chiral anomalies in gauge field theories. Manifestations of
GP have recently been found in chemical reactions.” The
Hannay angle®’ is the analog of GP in mechanics.

Many years before the publication of Ref. 2, GP effects
were found in optics by Rytov,'o Vladimirskii,!'! and
Pancharatnam'? (cf. Ref. 12).

Several special experiments have been performed to
demonstrate GP effects in optics,’>"!* in NMR,% and in
neutron interference.?'-2

We thus have before us an example of the unexpected
birth of a universal physical concept. Soon after, Simon®*
pointed out that there was a corresponding concept in
modern geometry, namely, the idea of holonomy, i.e., the
rotation of a tangent vector during its parallel transport
along a closed curve on a curved surface, e.g., a sphere.
This surface together with the set of its tangent planes is an
example of a fiber bundle.***> We recall that such mathe-
matical objects lie at the basis of important ideas in modern
physics, e.g., Yang-Mills gauge fields, the electroweak in-
teraction, and quantization of the gravitational field. A pe-
culiar gauge “field” and gauge invariance are also found to
arise in the formal description of GP (see Appendix).

Several restrictions were introduced in Ref. 2: the anal-
ysis was confined to a nondissipative quantum system and

— . . P A /44N Rleimlaae 4NNA

1na2 72R0/02/444NNAR_16841N0 NN

Too much abstraction usually shows
up in the use of jargon and the
uncritical manipulation of

words instead of concepts.

W. L. Burke!

only a slowly-varying cyclic Hamiltonian H(7)=H(0)
and its nondegenerate stationary states i, were considered,
but these restrictions were subsequently lifted. Wilczek and
Zee examined the case of degenerate levels, described by
a fiber bundle with a non-Abelian structure group, and the
corresponding non-Abelian gauge field—the analog of the
Yang—Mills field (cf. Ref. 27).

The generalization to the nonadiabatic case and to
non-stationary states i(¢) was made by Aharonov and
Anandan®® who assumed that the Hamiltonian and the
state vector #(¢) had the cyclic property ¥(7)
=exp(1y)¥(0) where the total phase acquired by the vec-
tor in a cycle is equal to the trivial dynamic phase plus the
GP, i.e,, y=a+ . Actually, the cyclic functions are eigen-
functions of the evolution operator with eigenvalues
exp(iy) (Refs. 4 and 29).

Jordan® started with the quantal analog of the Pan-
charatnam phase'? and introduced the GP for partial cy-
cles represented by open trajectories in the phase (projec-
tive) space of the fiber bundle. The GP in optical systems
with energy dissipation, i.e., polaroids, described by non-
unitary evolution operators, was observed in Refs. 15 and
19.

Unfortunately, the mathematics syllabuses of physics
departments frequently do not include topics such as group
theory, topology, and modern geometry, despite the fact
that they are increasingly used in physics. It follows that
there is a need for an account of GP at an intermediate
level of difficulty that presents fundamental geometric as-
pects and, at the same time, is accessible to a wide circle of
physicists.

This paper is an attempt to fill this gap by examining
oscillatory processes in terms of reasonably clear concepts.
It seems that the language of optical interference, which
allows a direct description of phase relations between ‘real’
macroscopic oscillations rather than the mysterious quan-
tum state vectors, are more suited to the elucidation of the
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FIG. 1. The plane of oscillation of a Foucault pendulum, shown by the
arrows, undergoes slow rotation due to the diurnal rotation of the Earth.
After 24 hours, this plane does not return to its original North-South
position: the angular difference is # and is a function of latitude.

essence of GP when it is encountered for the first time. It
is hoped that clear optical models will help in the assimi-
lation of some of the terminology of modern geometry and
will facilitate the removal of the current language barrier
between theoretical and experimental physicists. The Pan-
charatnam effect, i.e., the GP effect observed during the
propagation of a beam of polarized radiation in a
polarization-transforming medium, was chosen as the basic
model serving as a reliable bridgehead to subsequent gen-
eralizations.

The phrase geometric phase will be used as a generic
term covering special cases such as the Berry adiabatic
phase, the Aharonov-Anandan geometric phase, the Han-
nay angle, and so on.

Our presentation begins with some clear models that
exhibit GP (Sec. 2). In Sec. 3 we use the example of po-
larization optics to examine an important new concept,
namely, the relative phase of two beams with different po-
larization e. In Sec. 4 we consider what is probably the
simplest physical model described by the Hopf fiber bundle
(Ref. 24, p. 273) with the Poincaré sphere (PS) as its base
manifold and the unitary group U(1) as its structure group
represented by the phase factors e” of the polarization vec-
tor e. In Sec. 5 we present a direct evaluation of e for
particular polarization transformers used in optics, i.e., cir-
cular and linear phase plates. In Secs. 6 and 7 we show that
the formalism used in this presentation describes GP not
only for waves with two types of transverse polarization,
but also in the case of any system of two or more oscilla-
tions. Some methodological and terminological questions
are discussed in Sec. 8. The properties of the GP in the
quantal description of a field are briefly described in Sec. 9.
The Appendix discusses the geometrical meaning of the
GP.

2. ELEMENTARY MODELS

Let us now consider a few typical manifestations of the
GP. Figure 1 shows the observed rotation of the plane of
oscillation of the Foucault pendulum due to the diurnal
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rotation of the Earth. For small deflections, the harmonic
oscillations of the pendulum are linearly polarized in the
direction of the vector e that slowly rotates relative to the
surrounding objects. If we neglect the orbital rotation of
the Earth, the pendulum should return to its initial posi-
tion in space after 24 hours, and the naive expectation is
that the vector e should have rotated through 27. How-
ever, this occurs only at the poles, whereas at an arbitrary
latitude 3=7/2—9 (¥ is the polar angle), the vector e
revolves with angular velocity o’ = cos ¥ whose modulus
is equal to the angular velocity of the Earth, so that an
observer detects the ‘relative difference’

BEZ#\I—%‘=2#|1—C0S8|. (2.1)

For example, at the equator, »’ =0 and e retains its
orientation relative to the local coordinate frame, i.e., the
pendulum does not react to the rotation of the Earth and
the quantity B reaches its maximum value of 27. We note
that, according to (2.1), B is equal to the solid angle ()
subtended at an observer at the center of the Earth during
the diurnal displacement of the pendulum.

The rule =0 (ignoring the signs of B and ) that
relates radians and steradians® remains valid in the hypo-
thetical case where the Earth is stationary and the pendu-
lum is slowly (compared with the oscillation period) and
smoothly transported over the Earth’s surface on a close
trajectory. Suppose, for example, we start at the North
Pole along the Greenwich meridian (g,=0) with e parallel
to this meridian. On the equator, we turn left toward the
meridian @ and then left again, moving toward the Pole
along the meridian ¢. Throughout this the pendulum will
obviously maintain its oscillations in the North-South
plane and when we reach the Pole we find that the vector
has rotated relative to its initial position by the angle B=¢
which is equal to the subtended solid angle €. Although
during the transport along the geodesics the orientation of
e remains the same relative to the Iocal frame, i.e., the
latitudes and meridional angles remain constant, there is
nevertheless a global effect: f5£0. This is an example of
holonomy generated the parallel transport of the tangent
vector over a sphere (see Ref. 24, p. 277).

It is clear that it is also possible to add vertical (adia-
batic) transport with a resulting change in the oscillation
frequency, but the formula 8= would remain valid. Gen-
erally speaking, B depends only on the global geometric
parameter {2, but does not depend on the details of exper-
iment, i.e., the velocities and durations of transport. Of
course, it is possible to perform a rigorous solution of the
equations of motion of the pendulum with the Coriolis
force taken into account®! in which case the formula B=0
emerges ‘automatically’ for each special transport path.

In terms of modern geometry, B0 because the sur-
face of the Earth, i.e., the sphere S?, has a nontrivial to-
pology (*‘one can’t comb a hedgehog”). The angular ori-
entations of the vector ¢ cannot be mapped on the circle S
[or the unitary group U(1) consisting of the numbers
exp(iB)], so that the state of the system is mapped by a
point in the fiber bundle that is locally the direct product



FIG. 2. a—Rotation of the plane of polarization of a beam of light after
reflection by three mirrors: at entry the polarization is vertical, at exit it
is horizontal. b—Mapping of the variation in the direction of the propa-

gation of the beam into the space of wave vectors k,, k,, k,.

S2x S! (Ref. 24, p. 272), i.e., it is represented by the three
numbers (3, @, B). Now consider a linearly polarized
beam of light propagating in the system of mirrors shown
in Fig. 2. Suppose that the initial beam is vertically polar-
ized. The direction of e relative to the wave vector k is
preserved on each reflection, but the result of three succes-
sive reflections is that the polarization becomes horizontal.
This can literally be explained by a hand-waving argument.
Let us extend the left hand horizontally with the thumb
pointing upward. The hand points in the direction of prop-
agation and the thumb in the direction of polarization. To
describe the effect of the ith mirror in Fig. 2, we rotate the
extended hand to the left through 90° with the thumb still
pointing upward. Next, we raise the hand upward and then
downward to its original position. We find that the thumb
is now horizontal.

We shall represent the direction of the beam of light at
any instant by a point on a unit sphere in k-space (Fig.
2b). The closed contour describing the effect of three mir-
rors covers one octant with the solid angle {}=m/2 that is
equal to the angle of rotation of the plane of polarization.
If we represent the linear polarization vector e as the su-
perposition of two vectors d'*’ with left and right circular
polarizations, the rotation of the plane of polarization
through an angle B is equivalent to a phase shift of the
vectors d(*) by =B. We note that the evolution of the
system is now represented not in real space but in the space
of the parameters (further details relating to a system of
mirrors can be found in Refs. 32-36).

An analogous effect is produced when the direction of
the light beam is altered by a circular isotropic
lightguide'>*" or by the random variation of the direction
of the beam due to fluctuations in the permittivity of a
medium.'*!" We note that the rotation of the plane of
polarization in such systems can be determined only if the
initial and final directions of propagation are the same, i.e.,
if the path in k-space is closed.

Now consider a simple example in which we observe a
change in the phase of a linearly polarized wave with a
fixed direction of propagation, which is the result of the

FIG. 3. The geometric phase 8=180° produced during the rotation of the
polarization vector e (arrows) around the direction of propagation of a
transverse wave. ‘Instantaneous wave pictures’ are shown. a—Rotation of
e by 180° does not result in the transformation of the reference wave
(top); b—directions of e in both arms of the interferometers rotated by
+90° in opposite directions.

rotation of the plane of polarization (this is the special case
of the Pancharatnam which will be discussed in greater
detail later). We may consider the plane light or transverse
acoustic wave, or a wave on a stretched string. Suppose
that the plane of polarization is rotated slowly (on the
scale of a wavelength) through 180° by some suitable de-
vice that does not affect the wavelength. It is clear from
Fig. 3a that this is accompanied by a phase shift of 180°: at
distances that are multiples of nA, the field assumes (at a
given time) negative instead of positive values. This can be
detected by examining the interference with a reference
wave that has transversed the same path but without the
rotation of the plane of polarization. This is an example of
the influence of geometry on phase. The space that maps
the state of polarization is conveniently taken to be the
Poincaré sphere (PS), in which case we have = —/2
where now () is the solid angle subtended by the orbit on
the PS.

The phase jump by 7 shown in Fig. 3, called a trans-
verse wave jump, is probably the simplest and clearest
manifestation of the GP. It was noted in Ref. 38 and was
considered in detail in Ref. 39. Figure 3b shows a more
symmetric variant of the effect.

3. PANCHARATNAM PHASE

Let us generalize the model of Fig. 3 to an arbitrarily
polarized incident wave and arbitrary transformers of po-
larization D. To be specific, we shall consider plane light
waves with frequency w and wave vector k. We shall sup-
pose that E is a transverse field, in which case polarization
is characterized by a two-dimensional complex vector e
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with unit norm: e*-e=1. It is convenient to include in the
vector e the phase change due to the propagation of the
beam along the z-axis:

E(z,t) =E,Re(e(z)e™ ).

We shall assume henceforth that E,=1.

Consider a pair of orthogonal normalized basis vectors
dV and d® where d‘V+d® =0, so that the polarization
state can be defined by two complex numbers e=(e,,e,)
where e,=d*-e and |e,|?+ |e,|*=1. For a complete de-
termination of e we need to know three real numbers, and
the polarization state can be represented by a point on a
sphere S° in four-dimensional space with coordinates
Ree;, Ime;, Ree,, Ime, (different ways of visualizing
this sphere are described in Ref. 40). If on the other hand
we are not interested in the phase factor exp(ie) that is
common to both components ¢; and e, (which is usually
the case in optics), then we need only consider two num-
bers that can be represented by a point on the Poincaré
sphere (PS).

In the case of a linear basis, the vectors d'=d® and
d@=d" are real and point along the x and y axes that
form a right-handed triple with the z axis. It is sometimes
convenient to work in a circular basis with complex vectors
d*’ describing the right and left handed circular polariza-
tions. We shall take the relation between these main bases
in the form

3.1)

d(:c)=71E (d(+)+d(_)),

d(y)=%E (d(+)—d(_)),
{

dt=) ___715 (d(x) +id» ).

The new components of the vector e after the change of
basis are as follows:

€in= w- €circ»
-1,
€circ= w €lin -

-5 1)
el )

where in accordance with tradition (Ref. 41, p. 53) the
signs are chosen so that it follows from d(+) that e/ex=i,
i.e., the real fields along the x and y axes are, respectively,
equal to cos(kz—wt) and cos(kz—awt+m/2)=sin(wt
—kz). For an observer looking at the light source we then
find that the vector E rotates in the anticlockwise direction.

Now consider an idealized experiment designed to en-
able us to observe the polarization GP (Pancharatnam
phase) as shown in Fig. 4. This scheme employs a Mach-
Zender interferometer with nonpolarizing mirrors and a
polarization transformer D which may consist of a chain of

(3.3)
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(3.2)

FIG. 4. Interferometer used to demonstrate the geometric phase. The
mirrors are assumed to be nonpolarizing. D,,...,.D, are the polarization
transformers in the main arm and Dy is the transformer in the reference
arm.

transformers, i.e., D=D,,...D,D, where D is the Jones ma-
trix describing the transformation of the vector e by these
transformers.

Let e be the polarization vector at entry to the inter-
ferometer, i.e., in the reference beam and at entry into the
transformer D, and let e’ be the corresponding vector at
exit from the transformer (phase changes in free space are
ignored). These fields add vectorially at exit from the
transformer: e” = (e+e')/ \/5 so that the intensity at the
detector is proportional to

I=|e”|*=3[1+Re(e*+e’)]=3(1+Fcosy), (3.4)
where

V=|(e*-e’)|=|efe; +efer], (3.5)

y=arg(e*-e’) =arg(efe]+efe;). (3.6)

Following Pancharatnam,'? we define y as the relative

phase of two beams with polarizations e and e’ that in
general are different (the definition ceases to be valid when
e and e’ are orthogonal). Indeed, if the visibility ¥ is con-
stant and y is varied, the intensity varies as cosy. The
maximum intensity is obtained for =0 in which case the
beams are in phase; for y=1 they are in antiphase.

We note that y,,=arg(a*+b)= —v,,. The definition
given by (3.6) can be used to introduce the running phase
v(z) at any point in the channel relative to the initial field:

v(z) =arg[e*(0) -e(z)]. 3.7)

According to (3.6), the relative phase of vectors e and
¢’ is equal to the phase of their dot product. It is clear that
this can be generalized to the case of N-component vectors
and infinite-dimensional Hilbert space:

N

y=arg 3 et-ehargf Axg (1) (%),
n=1

where e can describe oscillations in N coupled classical
oscillators (Sec. 7) or the state of an N-level quantum
system.

(3.8)

4. POINCARE SPHERE AS FIBRATION BASIS

Consider a vector e at some fixed point in the system in
a circular basis in the form e=exp(ic)d where
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) 3
d, (3,p) =e~ 92 cos 7
(4.1)
N
d_(ﬁ,<p)=e“”/2 sin 7

This type of parametrization is often used in the linear
basis, but (4.1) is directly related to the traditional
polarization-type mapping on the Poincaré sphere (PS).
To see this, we need only identify the parameters ¥,p in
(4.1) with the usual spherical coordinates on a sphere S”.

Opposite points on the PS then correspond to orthog-
onal vectors: e*(3,¢) -e(7—3,p+7)=0. The significant
point is that if the coefficients 1/2 were not introduced in
(4.1) in front of ¥ and ¢, then opposite points on the PS
would correspond to vectors e and e’ = —e differing by
sign only, i.e., by 7 in phase. Each ‘polarization type’
that, by definition, does not depend on the common phase
factor exp(ic), then corresponds to two points on the PS,
i.e,, it is not single-valued and the PS is not a projective
space (base of fiber bundle). The words ‘light is linearly
polarized along the x axis’ can then be represented by a
single point on the PS with coordinates 4 =7/2, ¢=0 and
two polarization vectors e=d'® and e’=—d"™ (see Fig.
3) (or, in general, e’ =exp(ie)e).

In other words, the projection of vector e that belongs
to the space S° on to S is based on the definition of the
vectors e and exp i€ e as equivalent vectors (£ is an arbi-
trary real number here). This definition enables us to split
the entire set of points e€S” into equivalence classes (rays
or polarization types). Each ray has its own point on the
PS.

We can now use (3.3) and (4.1) to express the Car-
tesian coordinates of a point on the PS in terms of the
linear and circular components of e:

X=sin 9 cos p=|e,|*—|e,|*=2 Re(e%e_),

Y=sin 9 sin p=2 Re(e¥e,) =2 Im(ete_), (4.2)

Z=cos 3=2Im(ee,) = e, |*—|e_|%

The poles R=(X,Y,Z)=(0,0,%+ 1) thus correspond to cir-
cular polarization (e, ~1) and an equatorial point with
longitude ¢ =2y corresponds to linear polarization at an
angle y to the x axis (e,~cosy,e,~siny).

The path along the equator that starts and ends at the
point (1,0,0) corresponds to a rotation of the plane of
polarization, which produces the holonomy e— —e, is
shown in Fig. 3. For initial light with arbitrary elliptic
polarization, a gyrotropic medium shifts the mapping point
along a certain latitude that is determined by the initial
polarization (with Z=const).

Since (4.2) contains only paired products of compo-
nents of the form e¥*-e,, a ‘gauge’ transformation
e—exp(ie) e leaves the mapping point in the same place.

When the parameters of the optical transmission sys-
tem are given, this determines the evolution of the vector
e(z) and we can identify its orbit on S°. Its projection on to
the base manifold (the PS) is a certain curve C that can be
described parametrically by 4 =39(z),¢=¢(z). The third
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FIG. 5. Illustration of a fiber bundle. Bottom—base space (Poincaré
sphere) with closed curve C and curve parameter z. The vectors e, f, g
differ by gauge transformations with phases a, B, y. The vertical line
corresponds to the initial and final values of the polarization vectors.

coordinate that completes the definition of e(z) can be
taken to be the phase £(z) defined in accordance with
(4.1).

This procedure enables us to determine the trajectory
of the system in terms of the coordinates (#,¢,€), i.e., the
so-called section of a fiber bundle. The rule that allows us
to calculate ¢ for different z is called a connection. In the
case of the Foucault pendulum, the connection is specified
physically, i.e., by the conservation of the plane of oscilla-
tion in an inertial frame, which leads to the law of parallel
transport of the polarization of the pendulum during its
displacement. The rule for covariant differentiation in cur-
vilinear coordinates is also an example of a connection (of
the Levi—Civita type). The choice of a particular connec-
tion determines the internal geometry of a fiber bundle and
the holonomy, i.e., the law of transformation of vectors
over a closed trajectory C on the base of the fiber bundle.

On the other hand, for given e¢(0) and C, we can use
(3.7) to associate with each point z a Pancharatnam phase
y(2), i.e., specify another section (3,p,y) that corresponds
to the same path C, but is determined by the Pancharat-
nam connection.

Consider a closed trajectory C on the PS with R(L)
=R(0). The trajectory that corresponds to it in the com-
mon fiber bundle space an be open: e( L) =exp iy(L)e(0).
Figure 5 shown schematically a number of trajectories pro-
jected on the same contour C, i.e., differing from one an-
other only by a gauge transformation. Rays are represented
in Fig. 5 by the vertical lines.

To obtain a single-valued vector g(z) with a closed
orbit, we eliminate y(z) so that g(z) =exp[—iy(z)]e(z).
As already noted, y(z) is the sum of the dynamic part
a(z), which depends on the construction of the transmis-
sion system, its length, etc., and the geometric part B(z),
which depends only on the global properties of the contour
C. It is shown in the Appendix that the GP can be written
in the form

D. N. Kivshko 1009



z
p@)=i [ drere) a)=—40 (4.3)
where the dot represents differentiation with respect to 2’
and  is the solid angle subtended by C. We note that the
vector g is normalized so that Re g*+g=0 and hence g*- ¢
is an imaginary number.

The formula given by (4.3) can also be used when the
paths on the PS are not closed, provided we close them
with a geodesic along the shortest length. Such lines do not
contribute to B if they pass through the initial point.

For example, if we move along the equator away from
the point ¢=0, we find that B remains equal to zero up to
@=m because the shortest reverse path runs along the
equator in the opposite direction, and this gives 3 =0. At
the point ¢=m, we find that 8 jumps up by 7 because
closure occurs in the same direction and encompasses half
of the PS. The physical meaning of this jump is explained
by Fig. 3.

We note that the coefficient 1/2 appears in (4.3) be-
cause it is present in (4.1) [see equation (All) in the
Appendix] where it ensures, as already noted, the single-
valued correspondence between rays, i.e., vectors e differ-
ing only in phase, and the points on the PS. In other words,
these coefficients reflect the spinor character of the vectors
e under the influence of the polarization transformers: two
complete circuits must be executed on the PS to return to
the initial polarization.

We now use one further gauge transformation to define
a vector f(z) with the dynamic phase excluded (see Fig.
5):

f(z) =e~1oDe(z) =B Pg(2). (4.4)

It is readily verified that the so-called parallel transport
rule is satisfied by this vector, i.e., f* +f=0, i.e., the incre-
ment f produced by the Hamiltonian is orthogonal to f. We
note that, for real vectors, this is a trivial result because it
is a consequence of normalization. In geometric language,
f(z) is a tangent vector to the graph of f(z) at the point z.
The vector f, like the other vectors of the given ray, are
assumed to point ‘vertically’ (Fig. 5), so that the parallel
transport condition signifies that the vector f is orthogonal
to f and, consequently, lies in the ‘horizontal plane.” Ac-
cordingly, the orbit of the vector f(z) is called the horizon-
tal lift of the closed curve C on the base, and its increment
on the closure of C is a holonomy (cf. Refs. 24 and 42).
It is shown in the Appendix that, for closed C, the
replacement of g in (4.3) with =g exp(ie), where £(z) is
an arbitrary function, that does not affect 5. All optical
systems that give the same contours C on the PS are thus
found to introduce the same GPs (although their dynamic
phases can be quite different). This is an example of the
gauge invariance of the GP; it is discussed for arbitrary
quantum systems in a number of publications.*>*

5. EVALUATION OF THE GP USING JONES MATRICES

Let us now consider the change in the polarization
vector e during the propagation of light in an optical trans-
mission system, ignoring reflections, diffraction, losses, and
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so on. The individual elements of the optical system, and
indeed the system as a whole, perform transformations of
the form

e—e =eD-e, (5.1

where o is a common phase and D is a 2 X 2 matrix called
the Jones matrix. Since intensity is conserved

e'*e=(D+e)* (D:e)=e* Dt Dee=1 (5.2)

we obtain D < D=1, i.e., D belongs to the group U(2) of
unitary matrices [where (D%),,,=(D%),,]. The phase o
can be chosen so that the determinant of D becomes equal
to unity, which is the essential property of the special group
SU(2). The matrices of this group can in general be writ-
ten in the form

a b
P~ )

la|2+|b|*=1.

(5.3)

There are therefore three independent real parameters and
any matrix can be mapped by a point on the sphere S°.

The trivial transformation e— eexp(iwz/c) takes place
in empty space, and will not be taken into account here.
During propagation in an anisotropic medium, there is a
certain basis d,d® in which the two components of e
vary independently (the possible longitudinal component
e, will not be taken into account either; a more rigorous
approach is to use the induction vector®®).

In this particular representation

en(z) =é*re, (0),m=1,2, (5.4)
which gives

e(2) =ef 641" ¢ )k = g7 e,V 1, f Ve~ ).

The result is
o
D=(0 e—w)’ (5.5)
where

= (k1 +ky)/2,6= (ky—ky)/2.

The evolution of the vector e can be described by an
analog of the Schrodinger equation:

iée=—H-e, (5.6)
for which the evolution operator is
e(z)=U(z)-e(0),U(0)=1 (5.7)

For homogeneous materials, H is independent of z. Ac-
cording to (5.4), we then have in the corresponding rep-
resentation

(kO
~(o &)

where U=¢“D=exp(iHz).

(5.8)
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If, on the other hand, we ignore the phase o, then it
follows from (5.5) that
0
)
Hence U=D=exp(/Hz).
Suppose that the eigenvectors of H have coordinates

(9,¢) and (m—@,p+7) on the PS. We can then readily
verify that in the circular basis

. 1 1
H=——ID(0)=§ (kl—k2)(0 (5.9)

cosd sinde'%

sinde ™%

1
H(ﬁ,¢)=-2- (kl—kz)( ) (5.10)

—cosd
The displacement of a point on the PS under the influence
of this operator can be readily represented by assuming
that the PS rotates around an axis passing through the
points (d,¢) and (7—@,p+7).

5.1. The rotator

For a rotator, e.g., a Faraday cell or circular phase
plate, the eigenvectors correspond to the poles of the PS.
We now transform to the linear basis with the help of (3.3)

WD W-! cosd  sind 511
Din=W* Deir =(—sin8 cos6)’ 1D
where now 6=wz(n, —n_)/2c and n_ are the refractive
indices for the circularly polarized waves. The explicit

transformation is

e,= €7(cosbe, + sinde, ),
' (5.12)
e;, =¢€'7( —sinbe,+ cosde,).

The increase in the longitude ¢ on the PS is —26.
Let us now consider an interference experiment involv-
ing the rotator (Fig. 4). According to (4.12),

e* e’ =¢"(cos 5 +iZsind),
|2

(5.13)

where Z=|e, |*— |e_|? is determined by the original po-
larization.

Substitution in (3.4) yields

I=3}(1+ Vcosy), (5.14)
where

V={(cos*$+2Zsin* 5)"2, (5.15)

y=o0+arctg(Ztgd) =a+7,. (5.16)
Usually, o» |8/, so that as z varies, (5.14) describes inter-
ference beats in intensity with the period

A=4n/(k _+k_), in which case the visibility ¥ and the
interference phase ¥, are slowly-varying functions of z with
the period 47/ (k_ +k_). The Pancharatnam phase is thus
seen to be a direct observable and (3.6) has an operational
meaning.

When Z=+1 (circular polarization), we obtain the

trivial result
I=%[14cos(ox+8)]=3[1+cos(k 2)], (5.17)

- . o St AR T4 4N Rlaiimmabkar 4000

Vil

7
/2
//
10}
/ /"
.. 7
/7
/ //
/7 7
/ y
.
Z=0,05 ’ 7
Z
7 /7 //
I 7/ ¢
/// Z=-0,05
/ /7
7/
7/ y/,
////
///
y /4
v
1
g g 6/ 0

FIG. 6. Resultant phase y (dynamic plus geometric) as a function of the
path length z in a gyrotropic medium according to (5.16). The phase ¥
divided by = is shown along the vertical axis and the ratio
o/m=(k, +k_)z/2n is shown along the horizontal axis, where k are
the propagation constants for waves with the indicated circular polariza-
tions. The anisotropy parameter 8/o0=(k,+k_)/(k, +k_) is set equal
to 0.2. The parameter Z is related to the ellipticity of the wave (Z=0-
linear polarization, Z= = l-circular polarization. The dashed lines corre-
spond to k+z and (k, +k_)z.

and for Z=0 (linear polarization) we find from (5.15)-
(5.16) that ¥, or , and V'=|cos 8/, so that

I=}{(1+cos 8- cos g)

=3[1+43cos(k,z) +3cos(k_2)]. (5.18)

The beats stop as we cross the point §=7/2, but they
subsequently reappear with phase shifted by .

The graph of the function y(z) is shown in Fig. 6 for
Z==0.05. The accompanying phase jumps, discussed
above, are smoothed out somewhat, but the nonlinear
dependence of the phase on z is still clear (to emphasize
the effect, the anisotropy parameter 8/0=(n, —n_)/
(n,+n,) was assigned the value 0.2).

The expression given by (5.16) is the common phase.
The question is: how can it be separated from the geomet-
ric part? Let us define the difference y—B=a as the prod-
uct of the path length z and the ‘mean’ wave vector for the
given polarization type:

a=(k)z=(k, |e,|*+k_le_|})z=0+25. (5.19)

For example, when Z= 1 we have (k)=k, and for
Z=0 we have (k)=(k, +k_)/2. Naturally, this defini-
tion can be generalized to the case of a spatially-
inhomogeneous medium in which the eigenvalues k, de-
pend on z:
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FIG. 7. Geometric phase introduced by a gyrotropic medium as a func-
tion of the normalized path length 6= (k, — K _)z/2 according to (5.24)
for different values of the ellipticity parameter Z.

2 2
a(z)=f° dz’ 2‘1 ko(2)|eq|% (5.20)

This definition is the analog of the Aharonov-
Anandan dynamic phase?® in a quantum system (the dot
now represents differentiation with respect to time):

1 rT i T
a(N=—; [ awlHn=—; | dr<¢|¢(>;21)

In our notation, (5.6) leads to the following expression
that is identical with (5.20):

a(z)= J: dz'(e*-H-e)=—i J: dz(e*-¢e). (5.22)

In the above case of a rotator, (5.19) shows that a is
simply the linear part of the function y(z):

a(z) =2zy(0) =0+ Z6. (5.23)
Hence®®
B(z) =arctg(Z tg §) —Z6. (5.24)

The graph of this functjon is shown in Fig. 7. In the Ap-
pendix, we use the formulas of spherical trigonometry to
evaluate the solid angle corresponding to motion in lati-
tude with the increase ¢ = — 24 in longitude. In accordance
with (4.3), this angle is equal to twice the expression in
(5.24).

For a complete circuit on PS, g = —2§=2m, so that

a/m=(n, +n_)/(n_—n,)+2
B/r=1—-2, y/m=2n_/(n_—n,).

We must now find the explicit form of the vectors e,f,g
for motion at constant latitude in which ¥=const and
g=(k_—k )z=-26. According to (5.5)

(5.25)
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FIG. 8. Phases of the vectors e, f, g as functions of the longitude ¢ on the
PS in the case of a rotator with Z=0.05 and anisotropy parameter 0.25.
The solid and dashed lines correspond to right- and left-circular compo-
nents of the vectors. The phases are in units of 2.

e, (2)=(o+8)e (0)=exp(ik z)e(0),
so that

e=¢%, f=e¢ %e=¢"g,
(5.26)
g:e_i}'e:ei(‘a—'y)h’

where
h,=e*%, (0), o=@(n,+n_)/(n_—n,)

and the functions a, B, y are given by (5.23), (5.24), and
(5.16). In particular,

o—y=—B—Z6= —arctg(Z tg §).

Figure 8 illustrates three fiber bundle sections given by
the vectors e,f,g, i.e., the evolution operator of the trans-
mission system, the parallel transfer condition f*+f=0,
and the single-valuedness condition g=exp(—iy)e.

From (5.26) it does actually follow that

e f=i5[(1—2Z) e, (0) |2—(1+2Z)|e_(0) |2]=0.

The vector g determines, according to (5.26), the rate of
change of the GP [cf. (A.4)]:

g*-g=g** (iBg+°1) = —ip.
The explicit form of B follows from (5.24):
B=3(k, —k_)Z(1—-Z*)/(Z*+ctg? §). (5.27)

Hence, for Z=0 (equatorial motion), we have B=0 (for
@=m). This illustrates the following general rule: the GP
does not vary during motion that takes place along a geo-
desic with arc length less than 7 and passes through the
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initial point (the necessity of the last condition is clear
from Fig. 8 where the path length along the PS meridian
gives the GP).

5.2. Linear plate

Actual experiments'*® rely on a sequence of 1/4 and

A/2 linear phase plates that are used to vary 8 without
affecting a. Suppose that the axis of symmetry of a uniaxial
crystal makes an angle y with the x axis. The vector d‘®
oriented along the axis of symmetry is then an eigenvector
of the matrix of U(2) with eigenvalue exp ¢’*<* where the
subscript e refers to the extraordinary wave. The second
eigenvector d‘? is at an angle y+7/2 and has the eigen-
value exp(ikyz). Consequently, the crystal transformation
matrix is then given by (5.5) [without the factor exp(ic)]
where now k, =k, k,=kg.

The angle y in real space corresponds to longitude
@=2y on the PS, so that points on the equator with lon-
gitudes 2y and 2y + correspond to the vectors d®,d?.
Transforming to the basis rotated through —y, i.e., to the
usual basis d”,d"’, we find the following parameters of
the matrix D[see (5.3)):

a=cos 6+isin & cos 2y,

(5.28)

b=isin & -sin 2y.

Hence for plates with §=1/4 and §=1/2 we have
A/4 : 1+icos?2
a( )—75 (1+icos2y),
i

b(A/4) =75- sin 2y,

(5.29)

a(A/2)=icos 2y, b(A/2)=isin 2y.

Suppose that a beam polarized along the x axis is incident
on a A/4 plate with y=45°, so that e- and o-waves are
excited in the crystal with equal amplitudes. According to
(5.29),

A AAYAANGAe
=l 1)) o)
The path on the PS that corresponds to this transfo;'mation
runs from the equator to the North Pole along the ¢=0

meridian. According to (5.30), the vector has now ac-
quired only the dynamic phase

(5.30)

ne+ﬂ0‘lT
ne+ngd’

1
7’=a=0=5 (ke+k0)2=

The product e*- ¢’ is equal to Dy, =exp(ia)/ 2.

Let us now pass the beam through a second A1/4 plate
with arbitrary orientation y. The result of this second
transformation can be found with the help of (5.29) and
(5.30):

4Nn4n
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FIG. 9. The path 4 BC on the Poincaré sphere corresponds to the effect
of two A/4 plates and gives a geometric phase S=@/2=y+45 thatis a
linear function of the angle y by which the second plate is rotated; the
dynamic phase a is independent of y. Dashed curve—possible closing

path for 4 BC.
isiny 1
1—icos 2)()(1‘)

n

P (1+icos 2y

©=7 isin y
. cos B
=el(20+ﬁ)(sin3)' (5.31)

We now find that, in addition to the dynamic phase 20, we
also have the GP B=y+45’, the field is linearly polarized
at an angle 3, and the mapping point has returned to the
equator to a point with longitude p=28=2y+#/2 (as a
result of a rotation by 7/2 around an axis with longitude
2y=¢@—m/2). If we close the trajectory along the equator
(Fig. 9), we obtain the solid angle )= —¢@=-28, in
agreement with the rule given by (4.3) (we are assuming
that O @< ). We note, by the way, that the GP obtained
in this way is smaller by a factor of two than that found for
the Foucault pendulum for an analogous circuit on the
Earth’s surface (see Sec. 2).

We shall now use the Pancharatnam definition (3.6) to
compare the field phases at three points in the transmission
system (Fig. 9), namely, at entry point 4 (polarization e),
at a point B between the plates (polarization e’, and at an
exit point C (polarization e”). If we neglect the phase o we
find from (5.30) and (5.31) that

Byp=arg(e*-e’) =0,

Bpc=arg(e'*-e”) =0, (5.32)

Byc=arg(e*-e”)=y+n/4.
Thus, although the fields at 4 and B and at B and C are in
phase, the field at 4 is not in phase with the field at C, i.e.,
the Pancharatnam ‘in phase’ binary relation for beams
with different polarizations does not have the transitivity
property and does not therefore enable us to divide the set
of fields e into equivalence classes.

If we ignore o, the resultant effect of the two plates is
e” =D, D;-e where the product of the matrices in (5.30)
and (5.31) is given by
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cos B

(5.33)

, sin B
D=D2‘D1=elﬂ( )-

—sinB cosf

Comparison with (5.11) shows that the effect of the
two A/4 plates is not equivalent to the effect of a rotator
that takes the original point 4 directly to C along the equa-
tor without crossing the pole and without giving the GP
(for 6 <m/2).

The significant experimental point is that the dynamic
phase a is independent of the orientation y of the second
plate. From this point of view, it is better to use a closed
trajectory on the PS, which can be accomplished with the
three plates A/4, 1/2, and A/4. A symmetric path in the
southern hemisphere (dashed line in Fig. 9)'*'® is then
added to the trajectory indicated by the thick line in Fig. 9,
and rotation of the middle plate (1/2) produces intensity
beats with 100% visibility. Uniform rotation of this plate
at the rate y produces a linear rise in the beam phase with
time, i.e., a frequency shift"’ o/ —w+2y.

The closure operation can also be performed in the
reference channel (see Figs. 3b and 4). Let e¢g=Dg+e be
the transformed reference polarization vector, so that the
observed interference is determined by the product

eg.e’=e*.D0—1.D.e,

and we may consider that the light beam propagates along
the reference channel in the reverse direction. The closure
condition for a contour on the PS takes the form
D;! *D=¢", i.e., Dy=e"'"D. For example, for the exper-
iment illustrated in Fig. 3b,

0 1
p=(2, o)

0 —1
D°=(1 0)’

so that Dy '-D=D*=—1, y=%7.
To conclude, consider an arbitrary unitary transforma-
tion e’=U-e, U-U*=I for which in the characteristic

representation of the operator U we have e, =exp(id,)e,,
where exp(idn) are the eigenvalues of U. Hence

(5.34)

2
e*-e'= D |e,|%exp(ir,)
1

n=

=é'%(cos 8+iZ sin ), (5.35)
where
U=(11+12)/2, 6=(L1'—L2)/2,

Z=\ei|*— e

(5.36)

The expression that we have obtained is identical with
(5.13) when the relevant parameters are suitably rede-
fined. The formulas given by (5.14)—(5.16) thus retain
their meaning. In general, the dynamic phase is given by
(5.22).

For a closed orbit on the PS, the vectors e’ and e differ
only by the phase v, i.e, e is identical with one of the
eigenvectors of U, and v is identical with 4, or 4;.
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6. GP FOR TWO SCALAR WAVES

The three examples discussed above, namely, the
Foucault pendulum, the polarized beam of light, and the
vibrations of a stretched spring involve polarized trans-
verse oscillations. The question that arises is whether the
transversality of the vibrations is essential to the concept of
the geometric phase? Is it possible to observe the GP in the
case of, say, longitudinal sound waves?

It is readily verified that the essential feature is not the
transversality, but the fact that the transverse oscillations
have two degrees of freedom, i.e., we have a set of two
degenerate oscillators. These oscillators are independent in
free space, but they are coupled (in general) during prop-
agation in an anisotropic materials. In the case of the
Foucault pendulum, mode coupling is due to Coriolis
forces.’! The formalism employed above, which employs
Jones vectors and matrices and the Poincaré sphere, can be
applied to any two-mode systems, including a spin 1/2
particle in a magnetic field.

Consider two scalar waves which, for the sake of clar-
ity we shall take to be two light beams with identical fixed
polarizations.

Let ¢, and e, be the complex amplitudes of the waves
in the two beams whose resultant intensity is
le;|2+|e;]* =1. We now introduce the ‘vector
e=(e;,e,), i.e., a set of two numbers specifying the state of
the filed in a particular cross section z of a two-channel
optical transmission system.

We shall mix the two beams with the help of a perfect
semitransparent mirror with a variable transmission coef-
ficient ¢ and reflection coefficient 7= (1—72)"/2 These two
coefficients can be expressed in terms of the auxiliary pa-
rameter Yy, i.e., £=cos y,r=sin y, so that the effect of the
mirror is described by the transformation e’ =D, - e where

cosy siny
D] = ( . ).
—siny cosy

(6.1)

We now point the two beams at the second mirror
which differs only by the sign of the reflection coefficient
and is described by the matrix D; '=Dj . Next, we intro-
duce an additional path difference 28 into one of the beams
between the two mirrors. The effect of this is described by
the diagonal matrix

e? 0 e? 0
D2=(0 1)=e"s(o e—iﬁ)'

The factor exp(i6) will be omitted henceforth. The device
just described is a Mach-Zehnder interferometer with re-
sultant matrix D=D; 'D,D,.

By multiplying these matrices together we can verify
that D is the same as the matrix for the linear phase plate
(5.28). The delay 28 corresponds to the thickness of the
phase plate multiplied by k.— &;, and the mirror transmis-
sion coefficient ¢ corresponds to the cosine of the angle
between the axis of symmetry and the x axis. The effect of
the interferometer on the two beams with fixed polariza-

(6.2)

D. N. Klyshko 1014



FIG. 10. System of mirrors used to mix three beams of light with fixed
polarizations and to realize the unitary group U(3).

tions is thus seen to be isomorphic with the effect of a phase
plate with parameters 8,y on a single beam of polarized
light.

To obtain the equivalent of the A/4 plate with the
orientation y, we must set the path difference 26 equal to
2m/2 and the transmission coefficient ¢ of both mirrors
equal to cosy. Two such interferometers placed in series,
one with t=1/ 2 and the other with the adjustable trans-
mission #=cosy will simulate the system illustrated in Fig.
9. We then have at entry e;=1 and e,=0, i.e., only one
channel of the first interferometer is excited. According to
(5.30), the amplitudes of the exit beams are, respectively,
given by

e{’=e‘ﬂ cos B,e&’:ew sin B (6.3)

with a common phase that depends on the transmission of
the mirrors in the secondary interferometer: B=2y+7/2
=2arccos t+7/2.

If we mix one of the exit beams with a third reference
beam, we obtain intensity beats with phase and visibility
given by (3.5) and (3.6), respectively.

As in the polarization experiments, it is best to use a
combination of three interferometers, equivalent to A/4,
A/2, A/4 plates and producing a closed trajectory on the
PS (see Fig. 9). We then have a single exit beam with
phase that depends on the transmission of the middle in-
terferometer that simulates the 4/2 plate.

7. GP IN MULTIMODE SYSTEMS

We have examined the transformation of two beams
that differed either by their polarizations or by the direc-
tion of propagation and spatial localization. It is clear that,
in the latter case, the number of beams can be greater than
two. It is possible to construct an optical system in which
N time-independent beams with the same fixed polariza-
tions are displaced by a system of semitransparent mirrors
and delays. The use of directional couplers is proposed in
Ref. 45. Mixing with the aid of mirrors is discussed in Ref.
46 (Fig. 10).

The state of the N-mode field in a particular section of
the transmission system is specified by a point in
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N-dimensional complex space C¥=R*". The transformed
states are described by N X N matrices so that this system
is a realization of the linear group GL(2N,R). If there are
no losses, the space of states is bounded by the sphere
S?¥-1in 2N-dimensional space. If we ignore the common
phase factor exp(ie) of all the N beams, we obtain the
projective space S2N-2,

It is clear from the foregoing that, to observe the phase
v, we need a reference beam with amplitude ey, i.e., the
dimensionality of the system has to be increased to N+ 1.
The interference system will then allow the observation of
the GP associated with the group SU(2N —2) and defined
in terms of the common phase in accordance with (3.8).

Nonlinear optics can be used to realize other types of
groups as well. For example, the effect of a two-mode para-
metric amplifier with a given pump can be described by
matrices that belong to the Lorentz group SU(1,1). An
amplifier of this kind preserves the intensity difference be-
tween the signal and idle modes: |e,|*—|e,|?=1 and the
projective space is found to be a hyperboloid.*’*® The GP
introduced by a system of four degenerate (single-mode)
parametric amplifiers giving a closed contour in projective
space is calculated in Ref. 47 by a group method. Of
course, direct calculation gives the same result.** We draw
attention to the fact that we have here an example of the
GP with N=1 (without counting the reference channel),
which arises as a result of the modulation of the parame-
ters of a linear oscillator by an external ‘pump’ solution.
The general solution of this problem in the case of a quan-
tum oscillator has been discussed by many authors.>®%6!

Schemes consisting of several parametric amplifiers
and interferometers provide us with new possibilities, e.g.,
the realization of the group SU(2,1) (Ref. 50), and have
been under recent discussion in connection with the EPR-
Bell paradox.’!~>* We note that group methods are increas-
ingly used in the description, classification, and evaluation
of different models of linear, nonlinear, and quantum op-
tics.

8. BERRY, AHARONOV-ANANDAN, AND PANCHARATNAM
PHASES

Let us now consider a few points in relation to termi-
nology which is still evolving and has not reached its final
stage.

The phrase topological phase is often used instead of
geometrical phase. This is justified by the importance of the
topology of the base space of the fiber bundle, which
should be nontrivial (Ref. 24, page 263). The invariance of
the GP under arbitrary deformation of the trajectory C in
the base space, which preserves the area () subtended by it
[see (4.3)] may also be regarded as a topological property.

Another phrase that is sometimes encountered is non-
integrable phase. This may be due to the fact that the par-
allel transport rule is not equivalent to the presence of
holonomic coupling in mechanical systems (which can be
used to reduce the number of degrees of freedom of the
system). We also note the therminological conflict between
holonomy in geometry and nonholonomic system in
mechanics.®
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The GP that is produced at the end of the cycle is
sometimes described by the words ‘global change without
local change.” We note, however, that it is possible to define
a current, local GP with the help of the Pancharatnam
connection [see (3.7) and (5.24)].

It is common to distinguish between a number of mod-
ifications of the GP: adiabatic and nonadiabatic Berry
phases, the Aharonov-Anandan phase (AA), the Pan-
charatnam polarization phase, and the Rytov—Vladimirskii
quantum and nonquantum GP; the Hannay phase is en-
countered in the analysis of classical dynamic systems in
terms of angle-action variables.

This terminology frequently reflects publishing priori-
ties rather significant differences. A more systematic clas-
sification of types of GP is based on the standard notation
for the corresponding transformation group such as SU(#)
and so on.

The similarities and differences between some of the
above types of GP are readily elucidated with the help of
the polarization model. The point is that the above descrip-
tion of the transformation of polarization in terms of the
Jones vectors and matrices and the Poincaré sphere is iso-
morphic with the description of the evolution of a two-level
quantum system, e.g., a spin 1/2 particle in a magnetic
field B. Motion on the PS at constant latitude under the
influence of a rotator (Sec. 5) corresponds to the free pre-
cession of the particle magnetic moment ji around the di-
rection of B in real space (or on the Bloch sphere; see, for
example, Ref. 54, page 85). The level splitting that occurs
in the field B corresponds to the splitting of the propaga-
tion constant Ak=k;—k;, in an anisotropic medium.

The transmission of light by several phase plates cor-
responds to the passage of an electron or a neutron through
several regions with nonuniform field B,,. This case is ac-
tually described by a time-dependent Hamiltonian H(z). A
medium with z-dependent anisotropy corresponds to a con-
tinuous variation of H(e) (Ref. 43).

The authors of Refs. 4 and 29 have drawn attention to
the fact that the adiabatic and nonadiabatic Berry phases
can be looked upon as special cases of the AA phase. The
latter relies on a cyclicly varying Hamiltonian and is con-
fined to solutions of the Schriodinger equation that also
have this property:

H(T)=H(0), ¢(T)=£74(0). (8.1

This condition means that ¥(7') and ¢(0) belong to the
same ray (vertical lines in Fig. 5), so that the contour C
describing the trajectory of the system in projective space is
closed. The closure condition can also be written in the
form

Y(T)=U(T¢(0)=€"(0),

where U(#) is the evolution operator corresponding to the
given Hamiltonian H(z). The AA phase is therefore the
phase acquired by the eigenfunctions of the evolution op-
erator, (0), where exp(iy) is the corresponding eigen-
value. An analogous situation arises in polarization optics
for closed orbits: ' =U+e=exp(iy)e, i.e., e is an eigenvec-
tor of the matrix U.

(8.2)
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In particular, the Hamiltonian can be a constant, in
which case all the state vectors of a two-level system are
cyclic for T =n27/w, but the nontrivial phase B arises only
in time-dependent vectors, i.e., the parameter Z in (5.24)
should differ from = 1. The formula for B, given by (5.25)
for closed cycles is identical with the corresponding for-

"mula in Ref. 28 where it was obtained for a spin; the for-

mula for the current phase, given by (2.24), generalizes it
to the case of open cycles.

It follows that the Pancharatnam polarization phase is
essentially the same as the AA phase for N=2.

Berry? has examined the eigenfunctions 1,(¢) of the
initial Hamiltonian H(0) that satisfy the cyclic condition
(8.1) only for adiabatic changes in H(t) (since otherwise
there are ‘transitions’ to other levels with m=£n).

We note that descriptions of polarization experiments
implicitly employ the adiabatic assumption because they
neglect reflections from phase plates, i.e., the excitation of
additional degrees of freedom (counterpropagating
waves).

There is one further formal difference between the
Berry and the AA phases: in the former case, the geometric
character of the phase is elucidated by mapping the states
of the system into the space of the parameters of the
Hamiltonian, which are used to accomplish its variation in
time [see (A14)] whereas, in the latter case, they are
mapped into the projective space relative to the entire
Hilbert space of the system.

In polarization optics, the adiabatic GP is observed by
slowly (on the scale of A) varying the anisotropic param-
eters of the medium along the beam axis (z axis) and by
exciting the medium with the eigenwaves for the initial
layers of the material.*> For example, in a uniaxial crystal
that gradually twists around the z axis, the ordinary wave
remains an ordinary wave, i.e., it ‘follows’ the rotation of
the axis of symmetry of the crystal, but at the same time
acquires an additional phase, namely, the Berry adiabatic
phase. Obviously, such a twisted crystal acts as a rotator
and this takes us to the experiment shown in Fig. 3. If,
however, the wave incident on the crystal has arbitrary
polarization, the picture becomes more complicated be-
cause there are then two characteristic parameters, namely,
the length for a twist of 27 and the anisotropic length
2w/Ak.

These general solutions are analyzed for a spin 1/2 in
Refs. 55-59 and for an oscillator with variable parameters
in Refs. 58, 60, and 61.

9. GP IN QUANTUM OPTICS

The quantum aspects of optical GP effects are the sub-
ject of relatively few published papers (see, for example,
Refs. 38, 48, and 62.

Some discussion was provoked by the question
whether the Rytov—Vladimirskii phase observed in
lightguides' is a classical or a quantum effect.!”-3%6?

It is clear that, in general, the quantum description of
optical phenomena is more universal than the classical or
semiclassical presentation, so that it may be useful to start
with the following definition. The essentially quantal ef-
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fects are only those that have no classical analogs with the
same characteristic features. From this point of view,
quantum-optical effects are relatively rare, especially if we
exclude from our discussion the detection process, i.e.,
adopt a semiclassical theory (see the discussion of two-
photon interference in Refs. 49, 50, 53, and 64).

It follows from the foregoing discussion that the char-
acteristic features of the GP are associated exclusively with
the mathematical structure of the models used: the struc-
ture is the same for, say, a spin 1/2 in a magnetic field and
for polarized light in an anisotropic medium. The geomet-
ric phase 8= — /2 of the spin state vector |¢) and of the
polarization vector e of a plane wave arises from the scalar
products {(¥|¢’) and e*-e’ in precisely the same way, so
that there is little point in calling it the quantum GP in the
first case and the semiclassical GP in the second.

In the quantum description of a field, the vector e(z)
describes the evolution of two field operators for a plane
wave in the Heisenberg representation. The significant
point here is that, in the case of linear optical devices, this
evolution is exactly the same in form in both quantum and
classical phenomenological theories (see, for example,
Refs. 64 and 65). The result is that the quantum descrip-
tion of optical experiments that demonstrate GP yields
nothing new as compared with the classical description,
and the observed phase does not depend on the state |y}
(Ref. 38).

It is sometimes considered that optical interference ex-
periments reveal the classical Hannay phase and not the
quantum Berry phase.*® This point of view is based on the
definition of the optical GP in terms of the product {(¥|¢’)
rather than e*-e’. However this formal definition has
nothing in common with observed effects in quantum
optics.”® In particular, the phase of the product {y|y’)
depends significantly on the properties of the state |1) and
the mean field intensity, and it is only in some cases
(single-photon state) that it describes the observed
phase. 848

We note in conclusion that GP can also be observed in
intensity interference experiments'**® which usually em-
ploy the photon counting method and the observed inter-
ference is interpreted as an essentially nonclassical effect.
However, it seems more logical to look upon the interfer-
ence phenomenon itself as a classical effect and ascribe its
only nonclassical characteristic, namely, the high interfer-
ence visibility, to the nonclassical nature of the nonclassical
(two-photon)light used at entry to the interfero-
meter, 334950

10. CONCLUSION

We have seen that a system of V interacting oscillators
with complex amplitudes e, is characterized by a phase
Y=a+ which, after subtraction of the dynamic part a
that is determined by the dynamics of the system, displays
specific geometric properties associated with the circuit C
that represents the evolution of the system in projective
space (i.e., if we ignore the common phase of the ampli-
tude e,). The evolution of the system in time or in space is
described by the linear transformation U: e—e’ where

iN17 Physics - Uspekhi 36 (11), November 1993

e={e,}. The phase y can be observed in an interference
experiment employing an additional reference channel
with amplitude ey=e, which results in interference beats
with phase y. The latter is equal to the phase of the result-
ant of N complex numbers:

y=arctg(Im u/Re u),

where

N N
u= > up= Q2 ele.
n=1 n=1

The simplest and clearest example of a physical model
revealing the geometric phase employs linearly polarized
waves traveling, for example, along a stretched string (see
Fig. 3). A jet of air can be used to rotate the plane of
polarization of such waves. In the case of linear polariza-
tion, we have 8= *1. Generalization to arbitrary elliptic
polarization lead to the geometric formula f=—/2
where {) is the solid angle subtended on the Poincaré
sphere in the course of the transformation of the polariza-
tion.

APPENDIX: A DERIVATION OF THE ‘GEOMETRIC’
FORMULA g=—0/2

Consider a vector g(z) freed from the common phase
¥(z), so that the polarization vector is

e(z) =€"9g(z) (A1)
and let us determine it’s the rate of change:

de .

5 =é=iye+ée'g. (A2)

If we now multiply by e* we obtain the following expres-
sion for the rate of change of phase:

y=i(g*-g)—i(e*-@). (A3)

According to (5.22), the second term on the right is equal
to the rate of change of the dynamic part of the phase, so
that the rate of change of the GP is

B=i(g*+8)=—Im(g**g) (A4)
which follows from the fact that |g|?=1. It follows that
the GP at the point z takes the form

p@=—1m [ dz'(g*g). (AS)
Suppose that the circuit C on the PS is specified para-

metrically: ¥=3(z), p==¢(z), so that on the circuit C we
have

. dg . 9.
g—£8+%¢7. (A6)
Substituting
g
AaEIm(g*-a—g),
(AT)
A,=Im|g* ig_
[ g a¢) ]
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we find that (A5) assumes the form of the curvilinear
integral

ot [ o] (e G5)o+(s e

=—f Ayd 3+4,d . (AB)
c

In the case of a closed circuit, this is the circulation of
the ‘vector’ A= (4, ,A,p). We can now use Stokes’ formula
to express GP in terms of the flux of the ‘magnetic field’:

=—ff Bd 9d ¢, (A9)
I
where

_aA,P 04,
=3 op
_ & g og* &

3 dp dp I

dg* Jg

=2 Im(g"t '3 ) (A10)

and ) is the solid angles subtended by the circuit C.

In modern geometry, the integrand in (A8) with the
integration variables 9,¢ is called the differential form of
degree 1 or simply the 1-form.?* Accordingly, Bdddg is a
2-form. A commonly used notation is: g* - dg and dg* A dg.

If we suppose that the two-component function
A(3,9) is effectively the vector potential on the PS, the
quantity B corresponds to a magnetic field pointing radi-
ally. It could be due to the Dirac magnetic monopole
placed at the center of the PS. At the same time, there is an
analogy with the Aharanov-Bohm effect (cf. Ref. 43).

We note that if we multiply the vector g by an arbi-
trary phase factor, i.e., g— =g explic(z)], then according
to (A7) the functions 43 and A, will be incremented by
0e/3%,9¢ and dp, respectively, and similarly for the vector
potential of the electromagnetic field under the gauge
transformation of the state vector of a charged particle.
This transformation may be related to the conservation of
the electric charge, which necessarily leads to the existence
of an electromagnetic field with known properties (see, for
example, Ref. 27).

The essential point is that, according to (A10), B is
invariant under an arbitrary gauge transformation. For ex-
ample, in the case of a closed circuit C, we can use e or
f=exp(—ia)e in (AS5) instead of g [it is g that appears in
the local relation (A4)). It is convenient to take g in the
form of (4.1), i.e,, §=d. In a cyclic basis, the derivatives of
g are given by

g%:% (e—i‘”2 sin g 6972 cos g).

(A11)
%:% (—e‘i"’/z cos -‘; ,—e'i‘P/2 sin g),

and if we substitute this in (A7) and (A10) we obtain
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FIG. 11. Calculation of the solid angle (shaded region) on the Poincaré
sphere, which corresponds to the geometric phase introduced by a rota-
tor. Dashed curve—geodesic line.

A3=0, A,=—jcosd, B=isind. (A12)
Finally, from (A9) we have
1 1
B=-—§ff sin 9ddde= ) Q. (A13)
o]

To transform to the case of the adiabatic Berry phase
(Sec. 8), we assume that the initial state
¢(0)=g(0)=g,(0) is an eigenstate of H(0). For suffi-
ciently slowly varying H, the system remains in eigenstate
of the instantaneous Hamiltonian H(¢). Suppose that H
depends on z (or on ¢) through the parameters A ={4,(z)},
so that the vector g, is also a function of z through these
parameters:

og, .
8= 2 37 A0 (Al4)
i 1
The formula given by (A8) then assumes the form
Z
B,=— f A"da, (A15)
0 i
where now
A" =Im(g* - Ig,/3A). (A16)

In the case of a two-level system, we can choose the
parameters A, in accordance with (5.10) to be the spherical
coordinates 3, on the PS (i.e., take the dimensionalities of
the projective space and of the parameter space of the
Hamiltonian to be the same), which again gives (A8)-
(A13), but this does not happen when the number of levels
is more than 2 [we have to use the multidimensional
Stokes’ formula to transform the circulation (A15)].

To conclude, we present a direct derivation of (A13)
for the special case of the GP induced by a rotator [cf.
(5.24)]. It is clear from Fig. 11 that the required area () is
equal to the difference 2, —, where , is the area be-
tween two meridians with difference in longitude ¢ and
latitude ¥=90°—4, and Q, is the area of the spherical
triangle bounded by the same longitudes and the corre-
sponding geodesic. The angle a is found from the formulas
of spherical trigonometry (it is assumed to be <7/2:

sin & ctg ¥ =ctg a sin ¢+cos ¥ cos ¢. (A17)
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Substituting cosd =z, we find that cota=Ztan2¢, and
replacing cota with tan(90°—a) we obtain

(A18)

By the Gauss-Bonnet theorem, the area of a spherical
triangle is the difference between the sum of the angles and
e

a=90"—arctg(Ztg2p).

My=¢+2a—m=@—2 arctg(Ztg2ep). (A19)

The area {); is readily found by integration:
Q,=¢@(1—2Z). Hence, using the result ¢ = — 248, we obtain

Q= —-2arctg(Z tg §) +22Z4.

Comparison with (5.24) again gives S=—1/2.

We assumed above that Q, , >0. When the direction in
which the circuit is made is taken into account, the sign of
B is found to be opposite to the signs of 2 and Zgp, but is
the same as the sign of Z5.
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