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The excitation of thermal waves of frequency со in an anisotropic conductor by an
electromagnetic wave of the same frequency incident on its surface is investigated. The normal
to the metal surface does not coincide with the axis of symmetry of the conductor. Due
to the thermoelectric effect, oscillations of temperature appear in the metal which, in turn,
excite ultrasonic waves as a result of thermoelastic stresses. The role played by the
constant, relatively high, but nonquantizing magnetic field in the linear thermoelastic
generation of sound has been investigated. The nonlinear (at a frequency of 2w) thermoelastic
generation of sound has been studied and an analysis is given of the experimental
situation in this field.

1. INTRODUCTION

The traditional subject of investigation in problems of
the electromagnetic-acoustic transformation (EMAT) are
the mechanisms of the linear transformation responsible
for the generation of ultrasound in a metal at the frequency
of the electromagnetic wave incident on its surface. Al-
though being significantly less effective than the piezoelec-
tric and magnetostriction transformations, EMAT never-
theless is of interest both for the study of the intrinsic
acoustic properties of conductors, and for the determina-
tion of the coupling parameters between the electron, ion
and spin subsystems. Among the sources of linear trans-
formation of waves that have been studied in greatest detail
are the induction and deformation forces.1 Moreover, the
inertial force (the Stewart-Tolman force) can serve as a
source of the linear EMAT,1 as well as the inhomogeneous
oscillations of the temperature due to the thermoelectric
effect.22 The manner in which the oscillations of tempera-
ture can serve as a source of acoustic oscillations under the
action of electromagnetic waves is shown schematically as
follows:
Transformation Source

Electromagnetic wave
i
Tempe-ature oscillations
i
Ultrasound

Thermoelectric effect

Thermoelastic stresses

It is possible to realize the scheme of linear EMAT as a
result of thermoelastic stresses only in a significantly an-
isotropic conductor or in a metal in which anisotropy of
conductivity is produced by a magnetic field. In an isotro-
pic metal the thermoelastic stresses serve as a source of
generation of ultrasound at double the frequency of the
electromagnetic wave.

Before going on to investigate the linear and the non-
linear thermoelastic generation of ultrasound in metals we
note that in this article we use the notation for various

physical quantities adopted in Ref. 1 and only the newly
introduced quantities are defined here.

2. THERMAL WAVES IN A METAL

Temperature oscillations and electromagnetic oscilla-
tions (although obviously being different) have the follow-
ing in common that the propagation of both types of os-
cillations in a metal is accompanied by a skin-effect.
Indeed, the small temperature oscillations excited at a fre-
quency со by a heat source at the surface of a semi-infinite
(z>0) sample are described by the homogeneous equation
of heat conductivity

Cd6/dt-xd1e/dz2=0, (1)

where 0=Re Q(z)e~ta" is the variable (oscillating) part of
the temperature. The total temperature of the body is equal
to Т+в and it is assumed that 19 \ < T. This enables one to
regard the heat capacity of a unit volume C=C(T) and
the heat conductivity coefficient x = x(T) as being con-
stant quantities independent of the coordinate z and of the
time t. The solution of the equation (1) is the expression

The value of the amplitude 60 is determined by the source
(cf., below), while the depth of the thermal skin layer is

Sr=(2x/coC)1/2. (3)

The depth of penetration of the temperature wave 6T

just as the electromagnetic depth of penetration

8^=с/(2тгасо)1/г, (4)

falls with the increase in the frequency ea inversely propor-
tional to <и1/2. For making estimates it is convenient to use
expressions valid under the simplest assumptions concern-
ing the conduction electrons:
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a=ne2l/pF,

(5)

We assume that the main transporters of heat are the
electrons. Whether С coincides with the electron heat ca-
pacity, or with the heat capacity of the entire body is not
too significant for the present, since formula (3) contains
the coefficient of temperature conductivity к/С which does
not depend on the heat capacity.

Comparing the depths of penetration 5T and 5E one
can see that their ratio is independent of the frequency:

6T/<5E=//S0. (6)

At room temperature when the mean free path of the car-
riers is less than the plasma depth of penetration (/<50),
the depth of the thermal skin layer <5T is less than the depth
of the electromagnetic skin layer <5E. At low temperatures
in pure metals we have in contrast / > 60 and 6T > 6E.

Apparently it was noted for the first time in Ref. 4 that
in the case of propagation of temperature oscillations in a
metal there is no phenomenon analogous to the anomalous
skin-effect.5'14 Formulas (3)-(6) and the estimates given
above are based on a macroscopic description requiring the
validity of a number of inequalities:

E, (7)

If the last inequality does not hold (condition of a quasis-
tatic situation), then naturally it is not possible to speak of
the temperature oscillations (2), since the temperature is a
characteristic of an equilibrium thermodynamic system.
Throughout the entire article we shall assume that the in-
equality u)r<l holds. We shall show first of all that in such
a case the condition <5T>/ also necessarily holds. Indeed, in
accordance with (3) and (5) we have

(8)

On the other hand, since 6Е~б(/(й;т)1/2, then when />60

(low temperature pure metal) there is a frequency range

(9)

when the condition for the skin effect to be anomalous
(SE</) does not conflict with the condition for a quasi-
static situation (й>т<1). We note in passing that the skin-
effect being anomalous does not contradict the macro-
scopic nature of the phenomenon since although SE</,
both these quantities definitely exceed the size of the crys-
talline cell of the metal.

In conclusion of this section we emphasize once more:
the applicability of the macroscopic equation for heat
transfer [of the type (1)] is restricted only by the condition
for a quasistatic situation (wr<l); consequently it can be
used when the frequency of the source corresponds (for
electromagnetic oscillations) to the anomalous skin-effect
[of course, within the limits of the inequality (9)].

3. COUPLED ELECTROMAGNETIC-ACOUSTIC
OSCILLATIONS

Taking into account thermoelectric phenomena in in-
vestigating the propagation of an electromagnetic wave in a
conductor requires (in accordance with Ref. 6) the inclu-
sion into the complete system of equations along with the
Maxwell equations

rot H=4-7rj/c,

rotE=i<aH/c,

the equation for heat conductivity

C0+divq = 0;

(Ш)

(11)

here q is the heat flux density. Equations (10) and (11)
must be supplemented by the material equations which
express j and q in terms of E and в:

Ei=pikjk+aikde/dxk,

9i= Takjk- xikde/dxk •

(12)

(13)

here we have used the generally accepted notation:
pik=0fr' is the tensor of specific resistances, aik and xik are
the tensors for the specific electric and heat conductivity,
aik is the tensor of the thermoelectric coefficients. The re-
quirements of the principle of symmetry of kinetic coeffi-
cients have been taken into account (cf., Refs. 7,8).

We now study the normal incidence of electromagnetic
waves onto the half-space z>0 occupied by an anisotropic
metal. For simplicity we assume that the metal is uniaxial.
The crystal axis makes an angle <p with the normal to the
surface (with the z axis). The incident wave is polarized so
that Ey=Hx=0, while Ex,Hy^=0. All the quantities depend
only on the z coordinate, jy=jz=Q, while the nonvanish-
ing functions (Ex,Hy,qz,dd/dz) are related by the follow-
ing expressions:

-dH/dz=4irjx/c,

— icoCe+dqz/dz=0,

(14)

(15)

(16)

(17)

It is convenient to rewrite the system of equations
(14)-(17) as follows:

( 18 )d^/dz2 + иоСв/ха= T(aX2/Kzz)djx/dz.

The characteristic equation of the system (18) for the
wave vectors k can be rewritten as follows:

(19)
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From this it can be seen that the coupling between the
electrodynamic and thermal oscillations is determined by
the dimensionless parameter

а=Та2

х/рххх2г, (20)

which for "good" metals satisfies ~(77eF)2-<l.
Before proceeding we note that &E, fcT and a involve

different tensor components (for example p^ and xa). In
a strongly anisotropic conductor their values can depend in
an essential manner on the geometrical formulation of the
problem. For example, in a layered conductor they may
depend on the polarization of the electric field of the wave
with respect to the layers. These problems go beyond the
framework of our article and require a special examination.

Since a<l we can use the approximate values of the
roots of the characteristic equation (19). When

4~4[l-a4/(4-4)],

4^4[l-a4/(4-4)].

At high temperatures 1 4 1 >• 1 4 1

(21)

(21')

at low temperatures | 4 | < | 4 | and

). (21")

If 4=4 (this condition, analogous to the resonance
condition, must hold at an intermediate temperature, when
/~60) then

(22)l\ = /C = Л .

Naturally it is not difficult to write down the exact
expressions for the roots of equation (19)

(23)+4а(М:тГ
2]2 Ш

We note for any value of the parameter a(a>0) and
k\, and 4 are purely imaginary quantities [cf., the defini-
tion of 4 and 4 in (19)]; moreover, strict resonance be-
tween two types of oscillations is impossible: if a=/=0 then

The system of equations (14)-(17) [or (18)] for the
solution of the problem concerning the propagation of cou-
pled electrodynamic thermal oscillations requires, in addi-
tion to the natural electrodynamic boundary conditions,
the formulation of conditions describing the thermal con-
tact of the sample with the external medium. It is natural
to assume that within the bulk of the sample the temper-
ature is equal to the equilibrium temperature, i.e., 6=0 as

The boundary condition at z=0 (on the surface of the
metal) depends on the particular conditions of heat re-
moval. We consider two limiting cases:

isothermal boundary

(24)

adiabatic boundary

or

(25)

We have utilized equation (17).
The solution (dependence of all the quantities on the z

coordinate) can be conveniently written down by introduc-
ing two amplitudes A] and A2, the relationship between
which is obtained from the boundary condition for the
temperature

) +A2

Ex(z) =

Hy(z)=4m/c[Al exp(ik2z)k2

2];
(26)

here kl and k2 are the roots of the characteristic equation
( 19) [cf., (23)] keeping in mind that in order to guarantee
the damping of all waves within the bulk of the sample we
have chosen 1m &i,2>0.

Using the boundary conditions (24) and (25) we find
in the case of an isothermal boundary

(27)

-4)- (28)

On the basis of these expressions it is easy to write out
the distribution of the temperature over the sample and to
calculate the impedance of the metal

and the case of an adiabatic boundary

Z=Ex(0)/Hy(0).

For an isothermal boundary:

0(z) =Re{(cHy(Q)/4ir) Га

z= (в/с*,) [4(4+^2+4) -44]

(29)

(30)

(3D

For an adiabatic boundary:

0(z) =Re{(c#/0)/4:r) Ta^fa

X [ki exp(i7c,z) — k2 exp(/£2z) ]

(32)
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Z=(co/ckl)(kl+k2)k1

T[k2(klk2+ki

T)]- (33)

Substituting into formulas (30)-(33) the values of the
roots of the characteristic equation (23) we obtain expres-
sions for the temperature distribution 0=0(z) and for the
impedance Z. For subsequent discussion we require the
temperature distribution. As regards the impedance we re-
strict ourselves to a single assertion. As we have already
stated k\<2, are purely imaginary quantities, Im&l j 2>0;
moreover, both roots are proportional to u>1/2. Therefore in
accordance with formulas (31) and (33) in both cases we
have

Z=|Z|(l-/)/v2, \Z\=Kcol/2,

the coefficient of proportionality К depends on the compo-
nents of the tensors of the kinetic coefficients and differs in
the case of an isothermal and an adiabatic boundary.

It can be seen that the discovery of the role played by
the thermoelectric effect in the surface impedance is possi-
ble only in the case that its absolute value can be measured
and compared with the classical value

1/2

It is true, perhaps, that it is possible to discover the role
played by the heat flux based on the violation of the rela-
tion (Re Z)2= (Im Z)2=Qpxx with the factor Q being in-
dependent both of the temperature and of the characteris-
tics of the metal.

Using the fact that the parameter satisfies a^l, we
write the approximate expressions for the temperature.

For an isothermal boundary (a<l):

(34)

For an adiabatic boundary (a<l):

}. (35)

The smallness of the parameter a which indicates the
weak coupling between the electrodynamic and thermal
oscillations enables one to calculate the temperature distri-
bution approximately by using the equation for the heat
conductivity [the second equation of the system (18)] in
which the term TaX2djx(z)/dz serves as the source, while
jx(z) = jx(0)elltEZ is the current density unperturbed by
the thermoelectric forces. Taking into account the fact that
in such a case [in accordance with (14)
jx(0) = — ikEcHy(0)/4TT\ we obtain formulas (34) and
(35). In conclusion of this section we call attention to the
fact that at low temperatures ( | k\ \ < | k\ \) the tempera-
ture distribution at relatively large distances from the sur-
face is determined by the thermal characteristics of the
metals and not by the electrodynamical ones: the heat wave
is damped over a distance 5T, which significantly exceeds
the depth of the skin layer 8E. Moreover, the electromag-
netic field and the current density jx(z) are also pulled by
the thermal wave to a depth 6-j>5E [cf., formula (26)].
Naturally the smaller is the coupling between the oscilla-

tions the smaller is the amplitude of the pulled wave [Л2-»0
as a^O, cf., formulas (27) and (28), if a=0, then k2=kT].

4. THERMAL OSCILLATIONS IN THE CASE OF A SURFACE
SOURCE

At a low temperature when the depth of the thermal
skin-layer 6T exceeds considerably the electromagnetic
depth 8E the temperature distribution at a distance signif-
icantly in excess of the depth of the skin-layer 8E can be
determined without specifying the specific dependence of
the heat source on the z coordinate. In accordance with the
second equation of the system (18)

here

Q(z) = ) = qe(z)/Kz,

(36)

(37)

where qe(z) is a part of the heat flux density due to the
thermoelectric effect. In the case of an isothermal bound-
ary 9(z) satisfies condition (24), while in the case of an
adiabatic boundary it satisfies condition (25) which in the
new notation assumes the following form:

d0/dz|z=0=e(0). (38)

With the aid of Green's functions satisfying the /его
boundary conditions one can easily obtain expressions for
f\f _\
"I Z, / •

For an isothermal boundary:

eikrz ~z

= (eiki2 +e~!k^ )O(z')dz'
2 Jo

+1 (e'V_e-*i*) f °° e'*Tz'e(z')dz',

Im kT > 0.

For an adiabatic boundary:

0U) = --^- Г' (e*1*'-e~*^
2 Jo

(39)

)CU')dz'

Г eikv'Q(z' )dz',

Im &T > 0. (40)

In the above expressions for z close to the boundary both
terms are important, but the asymptotic behavior for z><5
where 8 is the depth of damping of the source Q= Q(z), is
determined in both cases only by the first term in which
one must make the limit of integration tend to infinity,
while the expression in brackets under the integral sign
must be expanded in powers of &Tz' and restrict oneself to
the first nonvanishing term. As a result we shall have:

For an isothermal boundary:

Г Q(z')dz',
Jo

For an adiabatic boundary:

(41)
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T2 Г z'Q(z')dz'\,
Jo I

(42)

We note that the temperature distribution in the entire
body (with the exception of a narrow layer near the sur-
face) is determined by the integral characteristic of the
source and not by its detailed structure, and the boundary
condition (adiabatic or isothermal boundary) "selects" the
form of the integral characteristic [cf., formulas (41) and
(42)]. And in addition: it might appear strange that in the
case of the adiabatic boundary condition when heat is not
at all removed from the surface the amplitude of the ther-
mal wave is smaller than in the case of the isothermal
boundary condition when there is a definite heat flux across
the boundary. The seeming paradox, apparently, can be
explained in the following manner: due to the value of the
derivative d0/dz | z=0 fixed by the adiabatic boundary con-
dition the greater part of the energy of the source remains
in the electromagnetic wave [cf., formula (35)] and is dis-
sipated over a distance ~6E.

If in formulas (41) and (42) we substitute

(43)

then from (41) and (42) we obtain in accordance with
(34) and (35) expressions for в.

For an isothermal boundary:

(44)

for an adiabatic boundary:

^Re.

Formulas (41) and (42) together with formula (37)
can be used to calculate the temperature field under the
conditions of anomalous electrodynamical skin-effect when
the mean free path is />6E while the heat flux density qc(z)
is damped nonexponentially as the z coordinate increases.

5. EXCITATION OF ULTRASOUND

In an isotropic crystal three waves can be propagated
along any arbitrary direction, the three modes are analogs
of transverse and longitudinal oscillations in elastically iso-
tropic media—with three (in the general case) different
velocities Sl,S2,S3. The mutually orthogonal polarization
vectors e,,e2,e3 of these oscillations depend on the direc-
tion of the wave vector of sound ks with respect to the
crystallographic axes of the crystal. Even a cubic crystal is
elastically anisotropic, and in it the directions of the polar-
ization vectors depend in a complicated manner on the

direction of the ks vector. The oscillations of the three
modes are independent and are described by three wave
equations:

d2t/,

(46)
(e,f(z))

t/,= (e,U) is the component of the displacement vector U
along the fth polarization vector, f (z) is the density of the
force exciting the sound (the factor e~"°' has been omit-
ted). In the case of the thermoelastic mechanism of EMAT

where Bik is the tensor determining the thermoelastic part
ajk of the stress tensor aik:

(48)oik=-Bik9(z,t),

the elastic part of theis the elastic part of the stress tensor, while
Bik=pS2l3ik, where Pik in order of magnitude is the tensor
of the coefficients of thermal expansion (03lfc]=l/deg).
Therefore in our case we have

The boundary conditions for equations (46) depend on the
particular formulation of the problem. In the theory of
EMAT it is customary to distinguish two limiting cases:

fixed boundary U|z=0=0,

free boundary afe|z=0=0.

(50)

(51)

In the case of a fixed boundary condition (50) denotes
that each of the three functions C/, vanishes at the bound-
ary of the sample

/4*4 The condition at the free boundary

(50')

(51')

can be treated as the appearance of a surface source of an
exciting force

rtXlrf n / w _ \ I / CO \
Ji — BijV^Zl \z=0- V-^J

The surface force in the EMAT theory is usually regarded
as an independent source of sound waves.10 The existence
of a surface force, as a rule, is related to the nonspecular
nature of the reflection of electrons from the surface. It
may be seen that in the case of a thermoelastic mechanism
of EMAT if d(z=Q)=£Q (a nonisothermal boundary, cf,
Sec. 3), the surface force differs from zero independently of
the nature of reflection of electrons by the boundary.

Formulas (46)-(52) supplemented by the expressions
obtained in Sec. 3 for the temperature distribution 9=9(z)
[cf., (30), (32) or (34), (35) and (44), (45)], enable one
to calculate the amplitude of sound in the metal.

In what follows in order to avoid additional complica-
tion we shall assume the metal to be elastically isotropic. It
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is true that even in this case one cannot neglect the anisot-
ropy of the electron properties: the amplitude of the tem-
perature oscillations is proportional to axz—the nondiago-
nal component of the tensor of the thermoelectric
coefficients, which is equal to zero in an isotropic conduc-
tor.

The neglect of elastic anisotropy, it would appear to us,
will not lead to the loss of any interesting features of
EMAT. Perhaps, one should only note that in an elasti-
cally anisotropic body the boundary condition (51) can
lead to mixing of oscillations with different polarizations
(cf., with the theory of Rayleigh surface waves9).

One can easily convince oneself that due to the ther-
moelectric effect only the longitudinal wave is excited in an
elastically isotropic conductor. We denote its amplitude by
the letter U (without subscripts). The problem concerning
the excitation of sound waves assumes the following form:

d2 CVdz2+id U= (53)

where /3 in order of magnitude coincides with the volume
coefficient of thermal expansion k$=co/S, while S is the
velocity of longitudinal sound. The boundary conditions
for the problem can be rewritten in the form:

fixed boundary U\Z=0 = Q,

free boundary d{7/dz|z=0=/?0|2=0.

(54)

(55)

It is of interest to note that when the latter boundary con-
dition is satisfied the surface force is equal to the volume
force acting on the lattice with a reversed sign. This prop-
erty holds also when a deformation force is acting on the
lattice, and the reflection of electrons is not specular.1'10

We shall calculate the temperature distribution in two
cases: for an isothermal boundary [formulas (30), (34)
and (44)] and for an adiabatic one [formulas (32), (35)
and (45)]. Therefore we have to calculate the sound am-
plitude in four cases. In order to regulate the results we
shall separately consider the case of a fixed boundary, and
also separately that of a free boundary.

There are many different parameters in the problem. In
particular, there are the three wave vectors: the electrody-
namic one &E, the thermal one &T and the sound one
£s = 2ir/A. Usually the EMAT is realized under conditions
when the wavelength of sound Я considerably exceeds the
layer near the surface of the metal where the exciting force
is concentrated. Therefore in subsequent discussion we
shall quote results valid for

fcs<|&E|, |&т |- (56)

This means that the frequency со is not too small and sat-
isfies the following conditions easily fulfilled in practice:

vS2/vl,

(57)

Fixed boundary. By using the Green's function method
it is easy to solve equation (53) with the boundary condi-
tion (54) with an arbitrary dependence 0=0(z). At large
distances from the surface the asymptotic equality

U(z)~V

holds, where

jkz

'-0Г' Jo

(58)

(59)

In the case of an adiabatic boundary [cf., (32) and (35)]

0(z)dz=0ГJo

and one should use the quadratic term of the expansion in
terms of k$z. Thus, in the case of an adiabatic boundary we
have

Pkl r°
"=—=

2 Jo
(60)

Substituting expression (34) into formula (59) and the
expression (35) into (60) we obtain (Л8<|ЛЕ|,

isothermal boundary

cHy(0)

4тг " *

adiabatic boundary

cHy(0) TaX2

~P~—
*1

4-n-

Free boundary. When the mechanically free boundary
is under isothermal conditions, then the boundary condi-
tion (55) is simplified

dU_

~dz
=0—isothermal boundary. (55')

z=0

Independently of thermal conditions in the case of a (me-
chanically) free boundary

U(z). (62)

Jo
z0(z)dz.

Using formulas (34) and (35) we obtain
isothermal boundary

'"- ' 4vr " х„

adiabatic boundary

,^„, сЯ„(0) Та,
\kT(kE+kr)\-

(63)

Leaving to later discussion the absolute evaluation of the
EMAT mechanism under discussion here we compare the
effect of the boundary conditions (mechanical and ther-
mal) on EMAT. If the boundary is fixed then it can be seen
from formula (60) that the isothermal nature of the
boundary favors the transformation, in the case of a free
boundary everything depends on the ratio |&T/£E| [cf.,
formula (63)]. In concluding this section we note: formu-
las (60) and (62) should be regarded as examples. In a
comparison of theory with experiment (and/or in planning
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an experiment) with the aid of the formulas available here
for в=в(г) it is not difficult to calculate the amplitude of
the excited sound wave for any ratio between the wave-
length of sound Я and the depths of the skin-layers (the
electromagnetic 5E and the thermal <5T) and to select a
convenient frequency range, temperature range etc.

6. THE ROLE PLAYED BY THE MAGNETIC FIELD

We have repeatedly emphasized that the linear ther-
moelastic mechanism of EMAT is possible only in an an-
isotropic conductor. However, anisotropy can be created
artificially by placing the conductor in a constant magnetic
field H0. Since the electrons move differently along the
magnetic field and in the plane perpendicular to the mag-
netic field an anisotropy of the kinetic coefficients appears
which is necessary for the excitation of a temperature
wave.

Equations (12) and (13) for Я0̂ 0 take on the fol-
lowing form:

(12')

(13')f= Taki( -

where p/vt(Ho) = pfa(-H0) and л;№(Но) = л:А,-(-Н0); the
coefficient in front of j in (13') is written down observing
the principle of symmetry of kinetic coefficients. The prin-
ciple of symmetry of kinetic coefficients does not require
the symmetry of the tensor aik for HQ=O, but in the ma-
jority of metals а^(Но=0)=ал,(Но=0) due to the rela-
tively high symmetry of the crystalline lattice.

If we neglect the quantum oscillations of the kinetic
coefficients their dependence on the magnetic field HQ can
be determined on the basis of Boltzmann's kinetic equa-
tion, naturally, taking into account the structure of the
energy spectrum of the electrons. Without using simplified
models one can determine only the asymptotic behavior of
the components of the tensors pik, Kik and aik in a strong
magnetic field.8 Here we wish to demonstrate the effect of
the structure of the energy spectrum of the electrons on the
dependence on the magnetic field of the amplitude of the
thermal wave. Therefore we shall greatly simplify the for-
mulation of the problem. First of all we assume that the
conductor is isotropic in the absence of a magnetic field.
Then equations (12') and (13') are simplified signifi-
cantly. We shall require the components transverse with
respect to HQ of the vectors Ej and others. For them (in
the notation adopted in Ref. 7) we have

E=Pi j + aVT+RH0[ijj]+NH0[ijVT],

rj=U/H. (64)

We assume (again for the sake of simplicity) that the mag-
netic field is parallel to the metal surface (it is specifically
because of this that we shall not need the longitudinal
components of the vectors E and q). All the coefficients
(pL , a, R, N, KL and Z,) appearing in formulas (64) are
functions of the magnetic field. Since the component nor-
mal to the metal surface of the current density y'z=0 the

electromagnetic field in the wave has its previous form with
the replacement of p^ and pL =pL (H0) [cf., (19)]

(Я0). (65)

In the equation for heat conductivity the source in the
present case is the dirivative of the term in the flux density
of heat q that describes the Ettingshausen effect. Therefore

l
(66)

In order to determine 9(2) we need to know three kinetic
coefficients: pL , XL and N. Regarding the specific resis-
tance pi and the coefficient of thermal conductivity XL ,
their behavior in a magnetic field is known: pi increases
with increasing magnetic field (significantly if the metal is
compensated, i.e., the number of electrons ne is equal to the
number of holes «h and insignificantly if ne=^«h) x± de-
creases with increasing magnetic field tending in the limit
to the value of the phonon heat conductivity of the given
crystal, which, as a rule, is lower by a factor of several fold
than the electron coefficient of heat conductivity.

The Nernst-Ettingshausen N, as has been noted in
Ref. 3, has a quite complicated nature: for example N=0
in conductors with one type of carriers without dispersion,
i.e., if their relaxation time т does not depend on the en-
ergy. In order to determine the order of magnitude of the
quantity N=N(H0) with an arbitrary (but not a quantiz-
ing) magnetic field one can use the linearized Boltzmann
kinetic equation in the т—approximation (however, as-
suming that т is a function of the energy). After some quite
tedious calculations we obtain

/

-\
e-g аут2

(67)

here £ is the chemical potential of the electrons, which in
subsequent discussion does not differ from the Fermi en-
ergy, a>c=eH(/m*c is the cyclotron frequency, m* is the
effective mass (m*>0 of the electrons, m*<0 for holes),
the angle brackets denote averaging over the energy:

(68)

v=de/dp, F is the equilibrium Fermi function; formulas
(67) and (68) assume that the dispersion law of both elec-
trons and holes is isotropic. Formula (68) can be written
in a somewhat different form taking into account that

974 Physics - Uspekhi 36 (10), October 1993 Vasil'ev et a/. 974



v= I m* | 'p (if one measures the quasimomentum p from
the center of the corresponding constant energy sphere):

1 Г I dF\

=-j-*T -Гlm I J V d£ }

n(e) is the number of occupied electron states of energy
smaller than e and m*>0, or the number of free states
with an energy greater than e and m* < 0. The number of
states n(e) is naturally positive, while the sign of dn/de
agrees with the sign of m*. If several groups of electrons
and holes exist one should carry out a summation over the
groups.

Substituting expression (67) into the right hand part
of equation (66) and integrating it we obtain

Х(е'*т'_е'*Е2). (70)

In order not to complicate the presentation we restrict
ourselves to the case of an isothermal boundary [cf., (24)]
and, moreover, we use the value of k? according to one of
the formulas (19). We note that in terms of the notation
adopted by us the heat capacity С has the dimensionality of
cm~3, and in order of magnitude is equal to Ce~nT/£p if
the electrons play the principal role in heat conductivity,
and Cph~«r3/0n> if the heat conductivity is due to pho-
nons (74#D, 0D is the Debye temperature, л in order of
magnitude is the number of cells of the crystal per unit
volume). Formula (70) enables us to make estimates in
the case of low («cr< 1) and high (U>CT> 1) magnetic fields.
Naturally we shall assume that the electron gas is highly
degenerate and use an expansion in powers of T/ev, re-
taining the first nonvanishing term of the expansion, i.e.,
we take

(71)

For OJCT> 1 one must distinguish between the cases ne

and ле=«h. In the former case neglecting in all the denom
inators unity compared with (<»cr)

2 we obtain

1 dr

(74)

3|m

In the case of a compensated metal the first term in the
figure brackets is equal to zero (as a result of the first
factor) and the second one differs from zero, and

9-n2Tn I I 1

'4u)c|m*|

"e = «h = «. (75)

£p(h) is the Fermi energy of the electrons and holes mea-
sured from the bottom (top) of the corresponding band.

We can see that the value of (...) for a compensated
metal differs from that for an uncompensated one in a not
very significant manner.

We now evaluate the ratio k^/kj taking into account
the fact that p± and KL are functions of the magnetic field.
For <ucr<l the previously obtained estimate [cf., (6)] is
retained. According to it at low temperatures | fcT| < | kE\ ,
and at relatively high temperatures |^T|^|^E| in both
cases we have

/Чл
(76)

For U)CT> 1 it is convenient to rewrite the ratio с т m

form which enables us to take into account its dependence
on the value of сост. For compensated and uncompensated
metals we have

where lx "arises" from the heat conductivity
XL (lx~l/(&cr)2) and lp "arises" from the resistance
Pi (1р~П for ne=£nh and /p~//(u)cr)

2 for «e=nh. Thus,
for U)CT> 1 we have

and

(72)
"3|m*| de

We begin with the expression in angle brackets. For <ac

its order of magnitude certainly does not depend on
whether the metal is compensated (ne = n^) or not,

тт^Тп dr

'3\m*\ WcTd£
(73)

rH~vF/a>c. (77)

The results (70), (73)-(77) show that in order to make an
estimate of the amplitude of the temperature oscillations
8(z) one can use the following expression

eHv(Q)r 1
c m

(78)

The function F(o)cr) has a maximum at (ост~ 1,

F((OCT)~COCT for <вст<1,
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(<UCT) for <UCT>1. (79)

We have assumed that С is the heat capacity due to the
electrons [cf., (70)]. We shall not write out the amplitude
of the sound wave excited by thermoelastic stresses. This is
not difficult to do using the results of Sec. 5. We note only
that the distinctive dependence of the amplitude of the
thermal wave on the magnetic field H0 is particularly char-
acteristic of a compensated metal when the ratio &E/^T
depends only weakly on HQ [cf., (76) and (77)] may en-
able us to determine the existence of a thermoelastic linear
mechanism of EMAT. In fact the dependence of 0(z) on
Щ is reproduced by the amplitude of the sound wave.
Consult Ref. 3 for more details concerning the thermoelas-
tic mechanism of the excitation of sound in a magnetic field
(the case of <acr< 1).

7. NONLINEAR GENERATION OF LONGITUDINAL
ULTRASOUND

The smallness of the coupling between the electromag-
netic and the elastic subsystems characteristic for problems
of electromagnetic excitation of ultrasound that has been
repeatedly emphasized by us, forces us, it might seem, to
restrict ourselves only to linear interactions, when the fre-
quencies of the incident and transformed waves coincide.
A more careful analysis shows, however, that such a re-
striction is justified essentially only for the inertial mecha-
nism of EMAT. For the inductive and deformational in-
teraction the level of manifestation of nonlinear effects in
the transformation is determined by the degree of action of
the electromagnetic field on the dynamics of conduction
electrons in the layer near the surface. Regarding the ther-
mal mechanisms of EMAT the basic one (at any rate in an
isotropic conductor or when the axis of symmetry of a
single crystal is perpendicular to the surface) appears to be
specifically the nonlinear interaction that is due to the ap-
pearance of thermoelastic stresses in the skin-layer as Joule
heat 6=li<J is liberated within it. In this case the frequency
of the ultrasound being excited is equal to the doubled
frequency of the incident electromagnetic wave. To avoid
misunderstanding we shall at once emphasize that we are
speaking of sources of nonlinearity concealed specifically in
the transformation mechanisms. Other sources of nonlin-
earity contained in particular in the equations of the theory
of elasticity or in the kinetic equation (cf., Ref. 11 on this
subject) are not discussed here. Examination of different
mechanisms of electromagnetic excitation of ultrasound in-
dependent of one another that is due to the low effective-
ness of linear EMAT is all the more justified in the case of
a nonlinear transformation. Quantitative estimates of the
amplitude of the excited ultrasound given below confirm
this.

To compare the effectiveness of the linear and the non-
linear induction mechanisms of EMAT is easy. The ratio
of the amplitude of generation at the first harmonic Ua to
the amplitude of generation at the second harmonic U2a is
equal to the ratio of the constant Я0 and the variable H
magnetic fields. The part that is quadratic in the amplitude
of the wave incident on the metal of the induction force

acting on the lattice is directed into the bulk of the metal,
and this leads to the excitation in it of compression waves
propagating along the normal to the surface. For the case
/cs5E< 1 the amplitude of the ultrasound of frequency 2ы
excited by the Lorentz force is determined by the expres-
sion:

|trd |=A (80)

where A is the wavelength of the ultrasound being excited,
and 2 is the ratio of the energy density of the variable
magnetic field Я2/8тг to the elastic modulus pS2. The value
of | C/*nd | depends on the temperature only weakly, and
this enables one to use it as a scale in representing the
dependence on the temperature of the amplitude of ultra-
sound excited as a result of other mechanisms of transfor-
mation. At the frequency of /=а>/2тт= 1 MHz in the vari-
able field /7=100 Oe the characteristic value is
|(/nd|~Kr13cm.

If the nonlinear induction interaction reduces essen-
tially only to the appearance of a source of variable pres-
sure at the boundary of the metal, then the nonlinear de-
formation interaction (as generally also in the linear case)
represents a significantly more subtle effect. The theoretical
analysis of the deformation mechanism of EMAT covers
the regimes of weak" and strong12'13 nonlinearities. These
two cases differ in the degree of action of the variable
magnetic field on the dynamics of the electrons in the skin-
layer and give different asymptotic behavior of the ampli-
tude of the ultrasound being excited depending on the am-
plitude of the incident wave and on the mean free path of
electrons in the metal. Within the regime of the normal
skin-effect the deformation mechanism of EMAT is inef-
fective while in the regime of the anomalous skin-effect in
the case of a well-developed electrodynamic nonlinearity
which is characterized by the parameter

b=(Hel2/ScpFS)V2,

1/3 (81)

(where 6A is the thickness of the skin-layer in the regime of
the anomalous skin effect) the amplitude of ultrasound is
described by the interpolation formula (cf., Ref. 13)

m

Except for the deformation mass m all the parameters
needed for a quantitative calculation of | U4^ \ using for-
mula (82) can be obtained from independent measure-
ments. Due to the presence in this formula of the nonlin-
earity parameter the dependence of | U**\ on H deviates
from the quadratic dependence as the amplitude of the
variable field increases.

We now consider the thermoelastic mechanism of the
nonlinear generation in the regimes of normal and anom-
alous skin-effects. In the regime of the normal skin-effect
the source of thermoelastic stresses is the part of the Joule
heat that depends on the time
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шН2

•exp[2/(£Ez-u>0] , (83)

and the boundary condition reduces to the requirement of
the absence of a heat flux across the surface

d0(z)
dz

=0. (84)
z=0

In this case the expression for the oscillating increment
to the temperature can be written in the form

0(z)=Re
exp(2/&Ez) —

(85)

The substitution of this expression into equation (53)
in which one should replace ks by 2<o/S, enables one to
calculate the amplitude of the longitudinal ultrasound ex-
cited in the metal as a result of the thermoelastic stresses in
the regime of the normal skin-effect. For | ks \ •< | kE \, \kT\

(86)
64т?СА:т+2А:8 С kT+2ks

It can be seen that when the condition ATE<fcT is satisfied
which is valid at high temperatures the ratio of the ampli-
tude of the thermoelastic and Lorentz generation is equal
to the Gruneisen parameter y=/3pS2/C.

In the regime of the anomalous skin-effect the heat in
the sample is liberated in a layer of thickness ~<5A</. In
the macroscopic approach the source of heat in this case
cannot be regarded as a distributed one. The correct ap-
proach in this case is as follows: in formula (83) one
should set Q=0, and for the boundary condition one
should specify the flux of heat across the boundary:

d0(z)

dz
= Re Г E(z)j(z)dz.

Jo
(87)

Using the expressions for the distributions of the field
and of the current for /> 6A (Ref. 14), the wave part of the
solution of the equation of heat conductivity can be written
in the form:4

0(z,f)=: -Re (0.35+0.2/)

(88)

Then the amplitude of the longitudinal ultrasound excited
in the metal as a result of thermoelastic stresses in the
regime of the anomalous skin-effect is equal to

\Utiusrm\=-r-^Y^AG(\kT\/ks), (89)

*3

G(x) =ут^? t (fli +<*2*)2+ (ai*-a2)
2]1/2,

a,-0.24, a2 ;=0.067. (90)
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FIG. I. Calculation of the temperature dependences of the amplitudes of
the nonlinear generation of longitudinal ultrasound U in Zn at the fre-
quency of the electromagnetic wave of 9.5 MHz in a variable magnetic
field of 35 Oe under the action of the induction (curve 1), deformation
(curve 2) and thermoelastic (curve 3) mechanisms of transformation.

According to formulas (80), (82), (86), and (89) the
temperature dependences of the amplitude of the longitu-
dinal ultrasound excited under the action of the nonlinear
induction, deformation and thermoelastic interactions can
be represented by the curves shown in Fig. 1. Having in
mind the discussion of the results of the experiment of Ref.
4 designed to elucidate the role of each of the mechanisms
of nonlinear EMAT the curves in Fig. 1 were calculated for
a specific metal—zinc. The value of | С/"1*3 [ has been taken
as the unit along the coordinate axis. It can be seen that at
high temperatures the determining role in the processes of
transformation is played by the thermal elastic force. As
the temperature is decreased | £/*herm | decreases and this is
determined by the temperature dependences of the electro-
dynamic |&E|~ ' an<i of the thermal |&T|~' penetration
depths. Under the conditions of the anomalous skin-effect
| £/*herm | is negligibly small. An estimate of the magnitude
of displacements due to thermoelastic stresses was carried
out utilizing data on the coefficients of thermal expansion,
heat conductivity and heat capacity of zinc. The generation
of ultrasound due to the deformation force is manifested
only at low temperatures under conditions of the anoma-
lous skin-effect (at Г<15 К).

The details of the experiment are fully described in
Ref. 4. We note only that the measurements were con-
ducted on single crystalplates of zinc, the normal to the
plane of which coincided with the axis of symmetry of the
sixth order in the temperature range 4—40 K, at three fre-
quencies of the incident electromagnetic wave of 3, 5 and
9.5 MHz with the intensity of the variable magnetic field at
the surface of the crystal of ~35 Oe. The reception of
ultrasound was carried out using lithium niobate transduc-
ers, the resonance frequencies of which corresponded to
double the frequency of the incident signal, i.e., 6, 10, and
19 MHz.

The experimental data on the nonlinear generation of
longitudinal ultrasound in zinc are shown in Figs. 2-4, the
amplitude of the ultrasound excited by the induction force
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FIG. 2. The temperature dependence of the amplitude of the nonlinear
generation of longitudinal ultrasound U in Zn at the frequency of elec-
tromagnetic wave of 3 MHz. The intensity of the variable magnetic field
was 10 Oe. Along the vertical axis the unit is the amplitude of the non-
linear generation as a result of the induction interaction. Along the upper
horizontal axis values are given of the dimensionless parameter /cs/.

FIG. 4. The temperature dependence of the amplitude of the nonlinear
generation of longitudinal ultrasound V in Zn at the frequency of the
electromagnetic wave of 9.5 MHz. The intensity of the variable magnetic
field is 35 Oe.

at the appropriate frequency was chosen as a scale along
the ordinate axis. In the temperature range shown in the
these figures the experimental dependences of U2a>(T) are
nonmonotonic. At all the frequencies that were investi-
gated the amplitude of the generation decreased as the
temperature was lowered, passed through a minimum and
increased again. As the frequency increased the position of
the minimum shifted into the region of higher tempera-
tures, and the increase in the amplitude of the generation at
low temperatures becomes more pronounced. The experi-
mentally observed dependences qualitatively agree with
theoretical concepts. A decrease in the amplitude of ultra-
sound as the temperature is lowered is due to the switching
off of the thermoelastic mechanism the effectiveness of
which in this temperature range decreases. An increase in
the amplitude of generation with a further lowering of the

1,7 0,3

I*

gl

10 1Z is т;к

FIG. 3. The temperature dependence of the amplitude of the nonlinear
generation of the longitudinal ultrasound U in Zn at the frequency of the
electromagnetic wave of 5 MHz. The intensity of the variable magnetic
field was 35 Oe.

temperature can be explained by the manifestation of the
deformation mechanism of EMAT.

An analysis of the expression for the amplitude of ul-
trasound excited as a result of the deformation force (89)
shows that the role of this mechanism increases with an
increase in the parameter ql which is shown along the up-
per horizontal axis in Figs. 2-4. As the frequency is in-
creased this mechanism of EMAT begins to be manifested
at ever higher temperatures. At the same time the temper-
ature behavior of the amplitude of the thermoelastic gen-
eration (89) does not depend on the frequency. This ex-
plains the shift of the position of the minimum on the
curves of U(T) as the frequency is increased. In accor-
dance with (82), | Vм \ -I2, which agrees well with the
experimental data. If one uses the simplest ideas concern-
ing the structure of the deformation tensor (see above) the
numerical comparison of the results of theory and experi-
ment can be carried out by varying the single parameter
unknown in the problem—the deformation mass m. A sat-
isfactory agreement is reached at the value of m, which
exceeds by an order of magnitude the mass of the free
electron m. As has been noted in Ref. I, a similar situation
exists also for the linear deformation interaction.

8. CONCLUSION

The induction, inertial and deformation mechanisms
for the linear EMAT have been examined in detail in Ref.
1. In this paper the principal attention is devoted to the
linear thermoelastic mechanism of transformation, and
also the nonlinear generation of ultrasound has been exam-
ined which is due to the induction, deformation and ther-
moelastic interactions. In our opinion this achieves a qual-
itatively complete picture of the physical mechanisms
responsible for the electromagnetic excitation of ultra-
sound both in the linear and in the nonlinear cases. It
should be emphasized, however, that individual details in
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this picture so far have been obtained only theoretically
(the linear thermoelastic and inertial mechanisms) and
await their experimental confirmation.
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