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The physical interactions responsible for generation of acoustic waves in a conductor whose
surface is exposed to electromagnetic radiation is analyzed. It is shown that the main
features of the inertial, induction, and deformation mechanisms of electromagnetic—acoustic
conversion can be obtained by assuming that the excitation force is of a purely surface
character. Current experimental investigations in this field are reviewed.

1. INTRODUCTION

Many diverse electroacoustic and magnetoacoustic ef-
fects observed in solids incorporate a range of phenomena
which occur at the surface of a metal exposed to electro-
magnetic radiation and which are encompassed by the gen-
eral concept of electromagnetic-acoustic conversion
(EMAC).1"3 The crux of EMAC is that when a substance
which does not exhibit either piezoelectric or magnetostric-
tional properties is exposed to electromagnetic radiation,
ultrasonic waves with the same frequency (linear re-
sponse) and with the harmonic frequencies (nonlinear re-
sponse) are excited in the material. The existence of the
boundary of the metal, as a location where the exciting
force is concentrated, is of fundamental significance. For a
uniform force distribution the problem reduces not to the
excitation of acoustic waves in the metal—the subject ad-
dressed in the present paper—but rather the displacement
of the metal as a whole in the external medium, i.e., the
problem of vibrators and membranes. These two problems
somehow merge when EMAC is employed for generating
ultrasound in semiconductors and dielectrics. In this case a
nonconducting solid is coated with a metallic film whose
thickness is of the order of the thickness of the skin layer in
the metal, and it is this film that plays the role of the source
(and detector) of acoustic waves.79

The nontriviality of the EMAC as a physical phenom-
enon is caused, in our opinion, by a number of factors.
First, the electromagnetic wave incident on the boundary
of the metal excites acoustic waves in an electrically neu-
tral body. In each volume element the electron and ion
charges compensate one another, and since the Debye-
Hueckel radius of the electron plasma of the metal is of the
order of or even several times shorter than the interatomic
spacing, this compensation is very precise. Second, we are
dealing here with a range of phenomena, since the number
of mechanisms giving rise to conversion of electromagnetic
and acoustic waves in metals is large. Third, most effects
observed in the study of purely acoustic properties (damp-
ing and velocity of ultrasound) are sometimes manifested
more strongly in EMAC.4'5

Electromagnetic-acoustic conversion usually only oc-

curs under the conditions of the skin effect, when the thick-
ness 8 of the skin layer is significantly less than the dimen-
sions d of the sample. This phenomenon is often observed
in the electrodynamic properties of the sample with spatial
resonance d—nk/2, where n = l, 3,..., when a half-integer
number of wavelengths Я of the ultrasound fit within the
thickness d of the plate.6 Figures 1 and 2 display traces of
such resonances,7 corresponding to the excitation of trans-
verse and longitudinal ultrasound (n = l) in a tin single
crystal. If the order n of the resonance is low, then we are
obviously dealing with a situation in which Я is much
greater than 8. Since both Я and 8 are much greater than
the interatomic spacing a even under the conditions of the
anomalous skin effect, the EMAC is customarily consid-
ered to be a volume phenomenon, specially distinguishing
the surface force—if it exists—localized at atomic dis-
tances from the boundary.8"10 The restrictions Я, d^8
make it possible to derive compact equations for the am-
plitude of the excited ultrasound under the assumption
that the exciting force is of a surface character. We under-
score the fact that the inequalities Я, rf> 8 restrict the prob-
lem to comparatively low frequencies /-< 1 GHz (see Sec.
7 of Ref. 1).

2. GENERAL SOLUTION OF THE PROBLEM

Due to the high reflectance of the metal only a small
fraction of the energy of the electromagnetic waves is dis-
sipated in the metal in the skin layer and, naturally, even
less energy is converted into acoustic waves. In this situa-
tion there is no need to find a self-consistent solution of the
problem of excitation of ultrasound. The EMAC efficiency
can be calculated in two steps. In the first step, neglecting
the coupling between the electromagnetic and ultrasonic
oscillations, all electrodynamic and electronic characteris-
tics of the metal whose surface is exposed to electromag-
netic radiation can be calculated, and knowing these char-
acteristics the force density f(r,i) =f(r)e~'")' acting on the
crystal lattice can be calculated. At the second step, know-
ing the force f(r,f) exciting the ultrasound makes it possi-
ble to solve the acoustic problem, i.e., to calculate the dis-
placement field U(r,f) in an elastic wave. The elastic field
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FIG. 1. Transverse-ultrasound resonance in a tin single crystal.7

Ho||k||[100], Ho=70 kOe, Г=4.2 К, d=0.1 cm.

contains both the components concentrated within the skin
layer (or, in the more general case, within the mean-free
path length of the electrons) and a wave traveling with the
sound speed away from the boundary. We assume that the
amplitude of this wave Ux is the principal characteristic of
EMAC in the problem of ultrasound generation in a metal

i arbitrary units
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FIG. 2. Longitudinal-ultrasound resonance in a tin single crystal.7

Ho||k||[100], Я0=70 kOe, Г=4.2 К, rf=0.1 cm.

occupying the half-space z >0. The subscript " oo " in the
amplitude actually means that this quantity is measured at
a distance much greater than the depth of the skin layer.
The damping a of ultrasound can be taken into account by
replacing Ux by Ux exp( — az) for a given frequency and
polarization.

Three ultrasonic waves with mutually orthogonal po-
larizations jc(-(/= 1,2,3) and phase speeds Sj propagate in
each direction in the crystal. Designating by £/,(r) the am-
plitude of the /th wave it is easy to show that this quantity
satisfies an inhomogeneous wave equation

(1)

i=l,2,3;

here k^a/Sf is the wave vector of ultrasound, p is the
density of the metal, and /,(r) is the projection of the
exciting force on the polarization vector of the excited ul-
trasound. The problem is studied in the harmonic approx-
imation, and the factor e~m! is dropped.

We confine our attention to EMAC with an electro-
magnetic wave under normal incidence on the boundary of
the metallic half-space. Then all quantities depend only on
the coordinate z, the z axis being normal to the surface of
the sample, and the equations (1) simplify:

(2)

In what follows, we drop the index /.
The Newtonian boundary condition

dU
U+D —dz =0 (3)

z=0

makes it possible to investigate the generation of ultra-
sound when the boundary of the metal is mechanically
clamped (D=Q) and free (D= oo) as well as under inter-
mediate conditions. The first possibility is realized, in par-
ticular, in the problem of EMAC in a conducting liquid
placed in a dielectric container11 or with excitation of ul-
trasound in metallic films on a dielectric substrate.12"16 The
second possibility corresponds to the classical experiment,
when the electromagnetic field is produced by an induc-
tance coil placed on the free boundary of a metal.4'5'17"25 In
this case the sample is clamped along the lateral surfaces
(Fig. 3); this does not prevent realization of the advan-
tages of the electromagnetic (contactless) method of gen-
eration and detection of acoustic waves.

With the help of the Green's function GD(z,z') satis-
fying the boundary condition (3), we obtain

=-И Г
pS Jo

(4)

where
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FIG. 3. Arrangement of the experiment on electromagnetic excitation
and detection of ultrasound in metals. Sample /, encompassed by induc-
tion coils 2, is placed in a dielectric holder 3. Transverse waves are excited
in the sample in a magnetic field Я0 perpendicular to the surface.

~

z>z,_
~ 2ik\l+ikD

This enables writing the general solution of the acoustic
part of the problem in the form

Щг)-.=- ĵ:̂ -^k'̂
[1+ikD

f(z')eikz'dz'.

The amplitude of the elastic wave at large distances
from the boundary is determined by the first terms:

= 17 *'**. (7)

where

I \Dcoskz—-rsmkz}f(z)dz.
Jo \ K

special paper on the subject,26 the force density acting on
the crystal lattice can be represented in the form of three
terms:

f=fST + fL + fDef (10)

each of which reflects a definite specific feature of the dy-
namics of the electron gas. Thus, the first term—the
Stewart-Tolman force

The surface character of the force (8k<\) makes it possi-
ble to simplify Eq. (8) significantly:

- =

 ! f " (D-z)/(z)dz.
з — ~ c 2 / i i ;km Jo

(9)

„_ т д'} icom
«ST

e 3t e
(И)

(where т and e are the electron mass and charge, со is the
frequency, and j is the current density)—is determined by
the noninertial motion of the crystal lattice and, ultimately,
it is expressed in terms of the temporal dispersion of the
conductivity. A characteristic feature of this mechanism of
EMAC is that the true electron mass т appears in Eq.
(11). In addition, the inertial force is proportional to the
frequency of the incident electromagnetic radiation, and
this also identifies the Stewart-Tolman conversion mecha-
nism.

The second component of the exciting force—the Lor-
entz force

~'pS2(\+ikP) Jo

Further progress is possible only if the force density
/(z) acting on the crystal is specified more precisely.

3. NATURE OF THE FORCES

As mentioned above, EMAC is realized by several
mechanisms which transform energy from one form (elec-
tromagnetic) into another (elastic displacements). Confin-
ing attention to EMAC in a normal (nonsuperconducting
and nonmagnetic) metal, ignoring nonlinear effects, and
separating the thermoelastic mechanism of EMAC into a

fL=[jH0]/c (12)

is manifested only in the presence of a constant magnetic
field Я0. This identifies the Lorentzian conversion mecha-
nism. We now call attention to the fact that f87 and f are
orthogonal to one another. This could be significant for
determining the role of the inertial force in EMAC.

Finally, f°ef—the deformation force density—is a vec-
tor with the components

/pef=a<A,v^)/5xA; (I3)

here the brackets <...) means integration over the Fermi
surface

dSr di

where dS is an element of the Fermi surface £F; v is the
electron velocity; Kik is the deformation potential tensor for
free electrons (in the Drude-Lorentz-Sommerfeld model),
equal to mv,vk; (dF/de)x(9,z) is a nonequilibrium correc-
tion to the Fermi function F, and must be found by solving
the corresponding transport equation. The deformation
force is produced by direct transfer of the quasimomentum
acquired by electrons from the electric field of the radiation
to the lattice. This "transfer" occurs, on the average, over
a distance equal to the mean-free path / from the location
of "acquisition." The electron mean-free path depends on
the temperature, and thus the magnitude of the deforma-
tion force also depends on the temperature.

The association of the three principal mechanisms of
EMAC (inertial, induction, and deformational) to three
external parameters of the problem (frequency, magnetic
field, and temperature) should not be interpreted literally.
It is obvious that the efficiencies of the induction and de-
formational mechanisms will depend on the frequency, and
the efficiency of the deformational interaction will depend
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on the magnetic field. This division of the sources of the
force is more important as a base for further analysis of
EMAC at the boundary of a metal.

The arbitrariness of the representation of the force act-
ing on the lattice in the form of three terms is clearly seen
in the free-electron model, when under very general as-
sumptions about the collision integral in the transport
equation the total force density can be written as

f=ne(E-j/0), (14)

where n is the electron density, E is the electric-field den-
sity, and or is the specific static conductivity. This simple
formula clearly demonstrates the origin of EMAC. It is
evident that for j = <rE the density of the exciting force
vanishes, and this in turn is possible only when the con-
ductivity does not exhibit either temporal or spatial disper-
sion and also when the conductivity does not depend on
the constant magnetic field.

Naturally, each term in Eq. (10) can be "recovered"
from Eq. (14). It is not difficult to formulate the condi-
tions under which Eq. (14) becomes one of the three terms
in Eq. (10). Thus, in order that Eq. (14) to be identical to
Eq. (11) only the temporal dispersion of the conductivity
need be taken into consideration. In order for Eq. (14) to
be identical to Eq. (12) the intensity E of the electric field
must be calculated from the fact that (according to the
Drude-Lorentz-Sommerfeld model) for H0^Q the resis-
tance tensor p in the coordinate system tied to H0 has the
form

(15)

Finally, in order for Eq. (14) to be identical to Eq. (13)
the electric-field E and current j densities must be calcu-
lated according to the theory of the anomalous skin effect
with Ho=Q and with no temporal dispersion of the con-
ductivity («r-»0).

We have discussed the properties of the Drude-
Lorentz-Sommerfeld model in such great detail because it
can be conjectured that this model is applicable to metals
such as potassium, whose Fermi surface is a sphere. If this
is so, then the main characteristic of EMAC Ux should be
expressed in electrodynamic terms and should not contain
any parameters describing the interaction of the electrons
with the sound. The electron-lattice interaction, which is
required for EMAC, is not "discarded" here: The finite
mean-free path length and hence the finite conductivity
and resistance are a result of the interaction of the elec-
trons with the lattice, to which electrons transfer the mo-
mentum that they acquire from the electric field. Identity
ofEq. (14) and Eqs. (10)-(13) in the absence of coupling
of the electrons with an ideal crystal lattice obtains because
in the Drude—Lorentz—Sommerfeld model the
deformation-potential tensor A;jt, as has already been men-
tioned, degenerates into a bivector mv,vk describing mo-
mentum transfer to the crystal.

4. EMAC. INERTIAL AND INDUCTION INTERACTIONS

A common feature of the Stewart-Tolman and Lor-
entz interactions is that both are expressed in terms of the
alternating current density induced by the electromagnetic
radiation in the skin layer. If ultrasound is generated owing
to these interactions, then according to Eqs. (1), (8),
(11), and (12)

1
i~Tcz

PS
2(\+ikD)

Cx

(D-z)
Jo

'1

X '7
{ С

icom .
x j(z)dz. (16)

We recall that x is the unit vector of polarization excited
by the sound wave.

This formula can be transformed with the help of Max-
well's equations without making any assumptions about
the character of the conductivity. For this, since jz=0, we
employ the values of the two integrals

I,

I

j(z)dz=— [£H],
о 4/n"

c2

zj(z)dz=--—
о 4тп<а

с2

E=--—Z[Hz],

(17)

(18)

where H and E are, respectively, the intensity of the mag-
netic and electric fields of the electromagnetic wave at the
boundary of the metal (z=0); Z is the surface impedance
tensor of the conducting half-space; z is a unit vector along
the z axis; and, Z[z,H] is a vector with the components
Zap[z,H]p, where a, (3=x, y. (We present the following
chain of equalities which follow from Maxwell's equations
curl H = 477J/c and curl Е=йоН/с:

r=o с г» с г = ° dHy
zjx(z)dz=— zcurLHdz= — — z——dz

Jo 4i7- J0 ** 4ir J0 dz

с г°° c2 r<*> dE,(z)
=— Яу(2)дг=- ^ dz

4ir J0 * 4тгш J0 dz

^_4то)'
= -—.E,(0).

Thus

тс

(19)

where oc=eH/mc is the free-electron cyclotron frequency.
The latter formula is very important, especially for D= oo.
It turned out that the main characteristic of EMAC—the
amplitude Ux of the excited sound wave—with a mechan-
ically free boundary (D= oo) does not depend on the elec-
trodynamic characteristics of the conductor, but rather it is
determined by the external magnetic field H0 and the mag-
netic field H of the wave on the surface of the sample as
well as by the acoustic properties (A,p,S) of the sample.
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The applicability of the condition of a mechanically
free boundary means that kD^ 1 (or D>A). We note that
in the case when sound is excited by a surface force (our
case) the inequality D%>A makes it possible to neglect in
Eq. (19) the term containing the impedance, since

S=\cZ/io)\ (20)

irrespective of the conduction mechanism, and we assume
that 5<A.

If wc><u, then the amplitude of the sound excited by
the Stewart-Tolman force (C/^J) is small compared to
E/^—the amplitude of the sound excited by the Lorentz
force. The latter amplitude can be written in a form con-
venient for calculations:

[Hox][Hz],

s
со'

It is obvious that under the same conditions

(21)

(22)

It is easy to show, with the help of the formula (19)
and using the expression for the surface impedance, that
for EMAC a free metal surface of a metal is preferable to
a clamped surface. Indeed, according to Eq. (20)

\D=0

и
00 I .0=00

8

"A
(23)

5. EMAC. DEFORMATION INTERACTION

We now consider the deformation force (13). The
components of the deformation-potential tensor are even
functions of the quasimomentum p (A#( —p) =A(jt( +p)).
Neglecting the anomalous nature of the skin effect, the
nonequilibrium correction to the distribution function of
the conduction electrons is an odd function of the quasi-
momentum. This means that under the conditions of the
strictly normal skin effect /•<£ the deformation force van-
ishes (see Eq. (13)). In order to calculate the amplitude of
ultrasound excited by the deformation force it is necessary
to take into account the finiteness of the mean-free path /,
even if it is small compared to the thickness 8 of the skin
layer. Thus there appears in the problem, together with
macroscopic parameters having the dimension of length—
the thickness 8 of the skin layer and the wavelength A of
the elastic wave, the microscopic parameter /, which, in
principle, can form any ratio with A and 8. This makes it
necessary to consider separately the case of EMAC owing
to the deformation force.

As we have already mentioned, the total deformation
force acting on the metal is zero, i.e.,

r°

Jo
fCef(z)dz=0.

It is obvious from the expression for the deformation force
(13) that the condition (24) can be satisfied automatically,
if owing to the boundary conditions the function #(p,z)
satisfies the equations

U«(p)x(p,0)>=0. (25)

If this is not so, then the surface force f8 is concentrated
directly at the boundary of the metal in a layer, having a
thickness of the order of the interatomic separation, where
electrons undergo scattering differing significantly from
volume scattering.8"10'27'28 The expression for f6 can appar-
ently be derived by studying the interaction of the electrons
with the boundary. This result is unknown to us, however,
even though the interaction of electrons with the boundary
of the sample has been studied many times in the deriva-
tion of the boundary condition for the function x- The
problem is that there is actually no need for a microscopic
derivation, since the exact coordinate-dependence of f8 is
not important. For example, it can be assumed that

f s=Aexp(— z/a) (26)

and the factor can be chosen so that the condition (24) is
satisfied:

A=<A(p)x(p,0)>/a; (27)

here A is a vector with the components A^ (i=x,y,z). Then
the expression (13) for the deformation force density can
be replaced by the formula

(27')

and in order to obtain the macroscopic limit the parameter
a must be set equal to zero in the expressions obtained.

The unique coordinate dependence of the deformation
force makes it necessary to rederive an equation analogous
to Eq. (7). Let

Then

(24)

(28)

=— [<p—<p(0)exp( — z/a)].

Substituting this expression into Eq. (8) and passing to the
limit a-»0 we obtain

1 r«°
[7^=—j—— (kDsin kz+ cos /cz)<p(z)dz.

(29)

We shall employ Eqs. (28) and (29) below.
The deformation mechanism of sound excitation has

been studied many times.2'3'29"38 It should be kept in mind,
however, that a systematic microscopic theory of this phe-
nomenon is still not available for metals with an arbitrary
Fermi surface. First of all, little is known about the
deformation-potential tensor. In particular, the compo-
nents of this tensor have not been measured, even though it
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is these components (averaged over the Fermi surface)
that determine the electronic part of the sound absorption
by the metal, which in the limit W> 1 does not depend on
the dissipative characteristics of the conduction electrons,
and for this reason can be employed in order to determine
experimentally the components Aik for a metal whose
Fermi surface is known. Second, the problem of the skin
effect in a metal with a complicated Fermi surface has not
been solved outside the т approximation, so that U^ can-
not be calculated for different values of kl.

In the present paper we follow the traditional approach
and confine our attention to solving the simplest possible
problem. Thus we assume that the function x satisfies the
kinetic equation in the т approximation (сот-^l, Н0=0),
i.e.,

(30)

The interaction with the boundary is described by Fuch's
condition

where Q is the specularity parameter (0<Q<1), and inside
the metal

X(V^\u<o- (32)

The most important restriction is associated with the ge-
ometry of the problem and the structure of the deforma-
tion potential. Let the z axis (more accurately, pz) be the
symmetry axis of the Fermi surface of the metal. We as-
sume that the deformation potential has the same structure
as the bivector mv,vk, where the scalar factor in with the
dimension of mass (it is often called the effective mass of
the electron-phonon interaction) is a phenomenological
constant of the problem.

The function ^=#(p,z) does not depend directly on
the quasimomentum p, but rather it depends on the com-
ponents of the velocity v. We assume that the geometry of
the problem is such that integrals of the type {vjaz) and so
on computed over the Fermi surface vanish (see Ref. 39
for a discussion of this point). This means that, in partic-
ular, in the case of an electromagnetic wave incident nor-
mally on the surface of a metal occupying the half-space
z>0, not only jz=0 but also Ez=0.

According to Eqs. (30)-(32), having oriented the x
axis in the direction of the polarization in the electric field
of the electromagnetic wave, we have

f°° v^^z) I z'—z\
X(9,z)=e\ -j—j-exp --т—г dz', vz<0,

J z \uz\ \ r\vz\l

(•z U^(Z') / Z-Z'\
= e\ , . cxp —г—г dz'

Jo W I T\v*\

Using Eqs. (14) and (28) it is easy to show that under our
assumptions about the geometry of the problem the defor-
mation force excites only a wave for which the projection
of the polarization vector к of ultrasound on the x axis is
different from zero. This is obviously the case for a trans-
verse (with respect to the z axis) sound wave in an elasti-
cally isotropic body. Then xA is kx=mvxvz. This is the
case that we shall study. In calculating Ux from Eq. (29)
(see also Eqs. (28) and (32)) we shall perform the inte-
gration over the Fermi surface separately over the parts
where vz>0 and t>z<0, i.e., we employ the fact that
<...> = <...> + + <...>_.

To each point P on the Fermi surface with vz < 0 it is
possible to associate in a one-to-one manner the point P' on
the Fermi surface where uz>0, and vx(P') = +vx(P) and
vz(P') = — vz(P). This correspondence, which is a conse-
quence of our assumption about the geometry of the prob-
lem, enables us to switch from integration over the Fermi
surface to integration over the part (half) of the Fermi
surface where vz>0. Taking this into consideration, it is
easy to derive

[7Def=

pS2(\+ikD)

X
Лоо

I f ( 7^f*nQ кI .ti vl ̂  / t'v'o Л

Jo

f°° / z \ \X Ex(z)exp( — dz)
Jo \ ™z) I

X
v2

x(I mvx(-rvzr

\ \ + (krvz)

+ ((2-D

(C+i)

-2
I mv2

x(Tvz)

\ l + (krvz
v(z) cos kz dz . (34)

(33)

The equations derived above are convenient for calcula-
tions and for obtaining results. The limits of a mechani-
cally free boundary (Z>-> oo) and a clamped boundary (D
=0) as well as specular reflection (Q=l) and diffuse
reflection (6=0) are obvious. It is only necessary to take
into account the fact that under the conditions of the
anomalous skin effect Ex(z) and Hy(z) depend on the
character of the reflection of the electron and, strictly
speaking, for Q=0 and Q= 1 different functions Ex(z) and
Hy(z) must be substituted into Eq. (34). We neglect the
difference in the electric and magnetic fields as a function
of the values of the Fuchs' parameter Q, since the penetra-
tion depth of the fields is apparently insensitive to the value
of this parameter.

Since the number of parameters is large, the cases of a
mechanically free boundary (Z>= oo) and a mechanically
clamped boundary (Z>=0) must be studied separately. We
shall focus on the case D= oo (as a rule, sound is excited
in a conductor with a free boundary6?4(M2):
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Defl
iek I mv\(rvz)

cos &z+(£>-!)

TV.
Xexp -— \\Ex(z)dz) , (35)

ил I mvl(TVz)) r«

z)
2 Jo

(C+i)

Xexp — — —2 cos kz H(z)dz )J (36)

At the beginning of this paper and in the title we de-
clared that EMAC for k8 < 1 is a surface phenomenon.
The equations (35) and (36) show that when sound is
excited by the deformation force (13), strictly speaking,
the force can be regarded as a surface force only when A is
not only greater than 5 but also greater than the mean free
path /, i.e., W<1. The opposite limit (W>1), which is
often encountered under the conditions of the skin effect
(/>S), is also very interesting. For this reason we assume
that any values of kl are possible.

The problem contains three parameters having the di-
mension of length: the wavelength of the sound, the pene-
tration depth of the electromagnetic wave, and the mean
free path length. In addition, one should remember that
the penetration depth 8 is different in the anomalous and
normal skin effects:

8я6и=с/(2«ив)1/2,

(37)

By assumption, A>5. The mean free path length / can have
any value:

1) А>5И>/,

2) A>/>(/6j)1/3,

3)

Each line specifies the conditions which the frequency of
the electromagnetic wave must satisfy (т is the relaxation
time of the electron gas; 80=c/a>0; <ao=4irne2/m* is the
squared plasma frequency; VF is the Fermi velocity; n is the
conduction-electron density; and, m* is the effective mass
of the conduction electrons). For making estimates we
started from the Drude-Lorentz-Sommerfeld theory. The
condition of quasistatics <UT< 1 holds for all of the above
inequalities.

The condition 6<A enables replacing in Eq. (35)
cos kz by 1. Then

l + (krvz)

X exp -— (38)

The integrals containing exp( —z/TV2) depend strongly on
the character of the skin effect. Since they are averaged
over the Fermi surface and it is obvious that averaging
does not distinguish yz=0, it can be assumed that vzr~l.
For this reason for the normal skin effect

Jo
exp - — (39)

and for the anomalous skin effect

Г expf-—\Ex(z)dz~ Г Ex(z)dz~Ex(0)8.
Jo \ TVZJ J0

(40)

From Eqs. (38)-(40) we obtain

"со !/>=«- Ex(0)

XI, K8,

XQ, (41)

The case of completely diffuse reflection of electrons by the
boundary of the metal (6=0) requires, of course, a more
detailed analysis. It may seem unsystematic to employ the
formulas of the normal skin effect for calculating U^.
The derivation of Eq. (34) shows that if the normal-skin-
effect expressions are employed for Ex(z) and Hy(z), then
the expressions obtained are the result of the method of
successive approximations in the ratio 1/8, the first non-
vanishing term in the expansion being proportional to I2.

The equation (41) describes the linear acoustic re-
sponse of the metal. It is evident that the magnitude of the
effect is determined by the average value of the xz compo-
nent of the deformation-potential tensor

V

This and similar expressions open up the possibility of de-
termining the role of the local geometry of the Fermi sur-
face in EMAC, but this question has still not been exam-
ined in detail. The reason is apparently that the
appropriate experimental data are not available. If the
Fermi surface is assumed to be spherical (for purposes of
making estimates), then

т

(42)
-2

Hence and from Eq. (41), assuming Q~l, we obtain an
equation that demonstrates the crux of the phenomenon:
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, arbitrary units

FIG. 4. Quantum oscillations of the real part of the
surface impedance of a tin single crystal at a nonres-
onant frequency (/, = 1500 kHz) and at the fre-
quency of a standing sound wave in a plate (/2= 1676
kHz).7

50 60 70

(43)

For numerical calculations it is convenient to replace
Ex(0) by Zffj,(0) and note that 8~cZ/o).

Comparing Eqs. (36) and (41) shows that Eq. (36)
does not contain the factor <5/A, which apparently makes
the case of a clamped boundary (Z>=0) more favorable for
observing the deformation mechanism of EMAC (at least,
for 6—1)- It seems to us, however, that this assertion
requires a more careful analysis that takes into account the
structure of the electric field for different values of the
parameter Q.

6. CURRENT EXPERIMENTAL WORK

Ultrasound generation by the Stewart-Tolman force
has apparently thus far not been observed in normal met-
als. Such an experiment would undoubtedly be of funda-
mental value, since in the inertial mechanism of EMAC
electrons can have the "true" mass т and not an effective
mass m* of one or another nature. The question of the
manifestation of this conversion mechanism in experiments
on surface impedance of superconductors at ultrahigh
frequencies43^7 falls outside the scope of the present paper
and essentially requires a separate analysis. As far as ul-
trasound generation by the Lorentz force is concerned, this
question, conversely, has been studied in detail (see, for
example, Refs. 1 and 48-50 and the references cited there),
and at the present time the induction mechanism of con-
version is used mainly as a basis for the contactless method
of investigation of the elastic properties of solids and in
practical applications (see, for example, Refs. 51 and 52
and the literature cited there). As an example of the ap-
plication of EMAC in a physical experiment, Fig. 4 dis-
plays traces of the quantum oscillations of the surface im-
pedance of a tin single crystal.7 It is evident that at the
frequency of a standing elastic wave over the thickness of
the plate the amplitude obtained served oscillations is an
order of magnitude higher than the generation amplitude
obtained on nonresonance frequencies. The resonance
characteristics of the surface impedance of the type shown

in Figs. 1 and 2 can also be used for studying quantum
oscillations of the velocity and damping of ultrasound.23'41

For this, the sample, together with the coils encompassing
it, must be connected into the positive feedback circuit of a
self-excited oscillator.42 The generation frequency and am-
plitude of such a device are fixed by the frequency and Q of
acoustic resonance in the plate, and these quantities are in
turn determined by the speed 5 and damping a of ultra-
sound in the metal. Traces of the quantum oscillations of S
and a in a tin single crystal are shown in Fig. 5. Contact-
less methods—EMAC being such a method—yield the
most reliable information about subtle physical phenom-
ena, such as quantum oscillations of the elastic properties
of metals. In the traditional approach to acoustic measure-
ments it is the presence of sample—transducer contact,
unavoidably leading to deformation of the surface, that
affects the repeatability of the experimental results.

Electromagnetic acoustic conversion due to deforma-
tion interaction is of greatest interest as a phenomenon
directly reflecting the dynamics of the electron gas. Anal-
ysis of this mechanism of conversion shows that ultrasound
generation in the absence of a constant magnetic field oc-
curs at any frequencies (we confine our attention here to
the quasistatic case U>T< 1) and temperatures, and the mag-
nitude of the effect is determined, on the one hand, by the
electron-phonon coupling (the tensor A.ik is essentially the
phonon charge of an electron) and on the other by the
relations between parameters having the dimension of
length: the thickness 8 of the skin layer, the wavelength A
of the elastic wave, and the electron mean free path /. The
role of nonlocal interactions increases rapidly with increas-
ing / and reaches experimentally measurable values in the
regime of the anomalous skin effect. This determines the
arrangement of the experiment for studying the deforma-
tion mechanism of EMAC: The measurements must be
performed on high-quality samples at low temperatures
and as high as possible frequencies. Such experiments have
been performed on semimetals—bismuth53"56 and
antimony57—as well as on many metals—tin,5'58'59

gallium,50 aluminum,61'62 tungsten,63"65 potassium,66"72 etc.
It is not our purpose to give a complete description of the
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FIG. 5. Quantum oscillations of the speed
5 and damping a of ultrasound in a tin
single crystal.42

50 60 65 70 75 80

current experimental situation. We give here only some
examples of experimental investigations which exhibit the
basic features of the deformation mechanism of EMAC.

Bismuth. The peculiarities of the deformation mech-
anism of electromagnetic excitation of ultrasound in semi-
metals are determined by the specific nature of the electron
spectrum of these materials. The Fermi surface of semi-
metals consists of electron and hole valleys, separated by a
distance in p space that is significantly greater than their
dimensions. At low temperatures the equilibrium distribu-
tion of the carriers in each valley is established over a time
much shorter than the time required to establish equilib-
rium between the valleys. In the case when an electromag-
netic wave is incident on the surface of the semimetal the
equilibrium distribution of the carriers in the semimetal—
both within each valley and between valleys—is destroyed.
This means that if the system remains electrically neutral
on the whole, the electron density in separate valleys can
change. This nonequilibrium, which is specific to semimet-
als and is associated with the appearance of gradients of
the carrier density, leads to the appearance of a deforma-
tion force. The specific nature of EMAC in semimetals is
most pronounced in the giant quantum oscillations of the
damping of ultrasound and the conversion efficiency in
bismuth.4 Traces of these quantities are displayed in Fig. 6.
The conversion efficiency 77, defined as the ratio of the
energy flux in the excited elastic wave to the energy flux in
the incident electromagnetic wave, is proportional to the
squared amplitude of the ultrasound Ux. It was found
that, first, additional features are observed in the field de-
pendence of the conversion efficiency—period doubling of
the oscillations—and, second, the relative magnitude of the
effect in oscillations of the efficiency was an order of mag-

nitude greater than in the oscillations of the damping a.
These phenomena are explained in Ref. 73.

Tin. The temperature dependences (Fig. 7) of the
generation amplitude Ux and damping a of transverse ul-
trasound in a tin single crystal indicate that EMAC is
closely associated with the acoustic properties of metals.5

At low temperatures (for the present experiment Г<8 К)
Ux and a are virtually independent of the temperature,
since the mean free path in this region is determined by the
scattering of electrons by impurities. As the temperature
increases thermal phonons are included in the scattering
processes, and at 7>8 К the plots of a(T) and UX(T)
are described by power-law functions of the type T~". The
exponent n=3.3±0.1 for a and я=6.5±ОЛ for Ux . Thus
in the temperature interval studied Ux~a2, and if it is
assumed74 that the damping is proportional to the mean
free path length, then Ux~l2. The parameters of the ex-

"см КОе

FIG. 6. Giant quantum oscillations of the damping a of ultrasound and
the EMAC efficiency т/ in a bismuth single crystal. k||Ho, /= 10 MHz,
T= 1.5 K.4

i i 1,к; ос игл OMnhor M. I. Kaganov and A. N. Vasil'ev 964



-10
mn

-20

-JO -

r-J,3

I I I I I I \1

1

0,5

£
°
CO

io

5 10 20
Г.К

X

т - 360 MHz *
+ - 309
х - 757
п - 757

cvi
N.̂

?
N1*1

•ŷ l
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FIG. 7. Temperature dependences of the damping a of transverse ultra-
sound and generation amplitude Ux , normalized to the superconducting
transition temperature in tin (Гс = 3.73 К). The dashed lines at temper-
atures T> 8 К represent power-law fits to the data points.5

FIG. 8. Modulus of the generation amplitude of transverse ultrasound in
aluminum versus the reduced magnetic field at Г=4.2 К.62

perimental sample were characterized by the following val-
ues: in the normal state, near the transition into the super-

-3conducting state (Гс=3.72 К) 1=1.7- 10 * cm and the
thickness of the skin layer 6=4- 10~5 cm at the frequency
/=16 MHz. The parameter kl increases from 0.04 at
T= 15 К up to 1 at T=TC, while kS decreases from 0.04
at Г=15 К to 0.02 at T=TC. Thus in the experiment
performed W<1 and k8<£ 1. The case realized in the exper-
iment corresponds qualitatively to Eq. (43), according to
which C/00~/2, obtained from the top line of Eq. (42).

Aluminum. Excitation of transverse ultrasound in
aluminum at comparatively high frequencies (/=90-400
MHz) has been investigated in detail at liquid-helium
temperatures.62 The aim of this work was to determine the
absolute values of the efficiency of the deformation mech-
anism of EMAC, as well as to compare these data to the
results obtained in low-frequency measurements.61 Due to
the strong electronic damping of ultrasound in metals at
high frequencies the measurements were performed on thin
(d=3A and 2.8 /mi) polycrystalline films, deposited by
sputtering Al in vacuum on plane-parallel surfaces of a
sapphire single crystal. The main result of the measure-
ments is displayed in Fig. 8. The absolute value of the
efficiency of the deformation mechanism of EMAC was
determined at the frequency /=90 MHz by calibration
with respect to measurements in a strong magnetic field
(cac/kvF^z2), when EMAC is due entirely to the induction
interaction.

In order to compare the results of different experi-
ments with one another and to the theory the carrier mean
free path length or, ultimately, the nonlocality parameter
kl must be estimated. The carrier mean free path length in
aluminum films was calculated on the basis of the Fuchs-
Sondheimer size-effect theory.75 At liquid-helium temper-
atures /=15±3 /ял in both experimental films; this leads
to nonlocality parameter kl=6 even at /=200 MHz. In

this situation the amplitude of the excited ultrasound must
increase linearly with frequency. It is difficult to determine
the frequency dependence from the experimental data pre-
sented, but it is important to note that in the absence of a
constant field HQ=Q the experimental values of the con-
version efficiency at all frequencies were an order of mag-
nitude higher than the values estimated from the free-
electron model, just as the results of low-frequency
measurements.61 Both the low-frequency61 and
high-frequency62 experiments were performed at close val-
ues of the parameter kl. It can be conjectured (compare to
Refs. 8 and 9) that the boundaries of the film with the
insulating substrate did not significantly affect the EMAC
efficiency, so that the EMAC efficiency with D=0, Q=0
was close to that in the case Z>= oo, Q= 1.

Potassium. One of the most remarkable pages in the
history of EMAC research is the "potassium" problem—
the problem of the quantitative disagreement between the
experimental and theoretical data on the generation ampli-
tude of transverse ultrasound in potassium. This problem
arose soon after the first low-temperature measurements
were performed on normal metals, and it continues to at-
tract attention. The crux of the problem is that for a metal
with a spherical Fermi surface it is comparatively easy to
calculate the generation amplitude76 and this quantity can
be compared to the experimental results. It is also easy to
calculate the frequency, temperature, and field depen-
dences in the case when the constant magnetic field is per-
pendicular to the surface. They can also be compared to
experiment. We are accustomed to the fact that in situa-
tions when a numerical comparison is made between the-
ory and experiment it most often turns out that experiment
"does not reach" the theory and, as a rule, many explana-
tions can be found for why this happens. The opposite
situation, when experimental results significantly exceed
theoretical estimates, occurs much more rarely. This is
what happened in potassium; the discrepancy between the-
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FIG. 9. Field dependences of the generation amplitude of transverse
ultrasound in potassium at Г=4.2 К. f/£(exp) and (/*(exp) are the
experimental results. The curves tff (theor) and {/*(theor) were calcu-
lated on the basis of the free-electron model with the nonlocality param-
eter W=1.9.68

FIG. 10. Field dependence of the modulus of the generation amplitude of
transverse ultrasound in potassium at T=4.2 К and /=8.97 MHz. The
solid curve was calculated on the basis of the free-electron model with the
nonlocality parameter Л/=4.5.69

огу and experiment reached the point where quantitative
agreement changes to qualitative agreement.77

The main result of the first experimental investigations
of EMAC in potassium66'67 was the very fact of generation
of ultrasound in metal in the absence of a constant mag-
netic field. It was found that in a weak magnetic field the
excited transverse elastic waves are polarized along the
alternating electric field vector UE

X, while in a strong mag-
netic field they are polarized along the vector of the alter-
nating magnetic field U1^. The results agreed qualitatively
with the understanding of the physical processes responsi-
ble for EMAC, indicating that in weak magnetic fields and
with H0=0 ultrasound is generated by the deformation
interaction, while in strong fields ultrasound is generated
by the induction mechanism (compare with Eqs. (21) and
(43)). The work that actually led to the potassium prob-
lem was the experiment of Ref. 68, performed on a single
crystal whose [110] axis was perpendicular to the surface.
The measurements of the generation amplitude of the fast
transverse mode were performed by the echo-pulse method
at the frequency /=9.4 MHz. The amplitudes of the elec-
tric UE

X and magnetic U1^ components of the displacement
were measured for two mutually perpendicular positions of
the linearly polarized measuring coil. The quality of the
sample was characterized by the parameter kl=l.9 at
Т=4.2 К. The results of the measurements and the curves
calculated on the basis of the free-electron model76 are
displayed in Fig. 9. It is evident that UE

X is maximum with
Я0=0 and decays rapidly when the magnetic field is
switched on. The theoretical curve also has, in principle,
the same form, but the experimental value of U^ with
7/0=0 is almost an order of magnitude higher than the
computed value. The experimentally observed field depen-
dence of f/* is substantially different from the value com-
puted on the basis of the free-electron model. The signal

from this polarization at first increases rapidly with in-
creasing magnetic field, passes successively through a max-
imum and a minimum, and finally, in a strong magnetic
field it reaches the linear asymptotic relation characteristic
for the induction mechanism of EMAC. We note that it is
the generation of ultrasound in strong fields that was em-
ployed for calibrating the generation amplitude in weak
fields and with H0=0. The next step in the experimental
investigation of the potassium problem was Ref. 69, in
which the field dependence of the modulus of the ampli-
tude of the excited ultrasound Ux = [(UE

0)
2+(U^,)2]l/2

was measured for the fast transverse mode propagating in
the [110] direction. The main result of this work is shown
in Fig. 10. This figure also shows the calculation based on
the free-electron model, performed using the nonlocality
parameter kl=4.5. Significant discrepancies between the-
ory and experiment are observed in a weak magnetic field,
and with H0=0 in a strong magnetic field the experimental
and theoretical dependences are identical. Similar results
for the slow transverse mode, propagating in the [110] di-
rection, were obtained in Ref. 70 and very recently in Ref.
72, where it is also shown that the amplitude of nonlocal
generation in potassium decays rapidly with increasing
temperature. Completing this section, as well as this re-
port, we note that in virtually all works in which theory
was compared to experiment it was found that the exper-
imentally determined EMAC efficiency was significantly
higher than the theoretical value. Though one can try to
explain this discrepancy in aluminum61"62 and zinc78 by the
structural characteristics of the Fermi surface and the de-
viation of this surface from the free-electron model, many
experiments on potassium—a metal with a spherical Fermi
surface—do not allow for this possibility. This in turn sug-
gests that the mass of the electron-phonon interaction in
metals is significantly higher than not only the carrier ef-
fective masses but also the free-electron mass. This is an
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important result, since electron motion on the Fermi sur-
face and the corresponding effective masses have been well
studied for most metals, whereas the electron-phonon in-
teraction still awaits a detailed experimental investigation.
The phenomenon of direct electromagnetic-acoustic con-
version could be very helpful for such a study.

In conclusion M. K. thanks the directors of the Insti-
tute of Solid State Physics (IFW, Dresden, Germany),
where a significant part of this work was initiated and
performed, and A. V. thanks T. N. Voloshok for assistance
at the final stage of this work.
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