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Sequences of clusters with a short-range interaction of atoms which form symmetrical
structures are constructed. Expressions for cluster parameters of some sequences at zero
temperature are obtained within the framework of a general scheme. Distributions of
atoms on cluster shells at finite temperatures are evaluated. An analysis sets up a
correspondence between parameters of large clusters and macroscopic particles or
macroscopic surfaces. The nature of the solid-liquid phase transition for clusters and other
systems of atoms with a short-range interaction is discussed.

1. INTRODUCTION

A short-range interaction of atoms in the attraction
region is characterized by a narrow and shallow well in the
interaction potential. Then only pair interaction between
nearest neighbors takes place in a cluster—a system of
bound atoms. Besides, the interaction potential of two
nearest atoms does not depend on interaction of these at-
oms with others. This atomic system is well described by
models in which atoms are replaced by balls. For hard ball
models the distance between nearest neighbors is fixed, and
the resultant structures are said to be structures with close
packing. There are such structures in crystals with the
cubic face-centered and hexagonal lattice."* Other struc-
tures, in which the distances between nearest neighbors
vary within some interval, are modeled by soft balls. The
main example of such a cluster structure is the icosahedron
one.’ This is the frequently occurring cluster structure
which atoms form inside metals, alloys and other con-
densed systems. Because of its importance, we consider this
structure together with the close packed ones.

A cluster with close packing has a high symmetry
which is conserved in various geometric figures that cluster
atoms can form—octahedra, dodecahedra etc. The analysis
of symmetric structures of clusters®2? gives information
concerning the energy parameters of such clusters. Re-
cently a simple method for the analysis of clusters with
cubic face-centered structure was developed.”>?* It allows
one to evaluate the energy parameters of clusters consisting
of hundreds of atoms for various distributions of cluster
atoms. The aim of this paper is to analyze various symmet-
ric structures of clusters with a short-range interaction of
atoms by using this method and the information contained
in Refs. 6-22 for such clusters. This analysis admits gen-
eralizations which allow one to describe closed structures
with soft packing, such as the icosahedral structures.

The close-packed structures under consideration due
to their high symmetry are suitable models for the analysis
of large clusters which have recently been the subject of
detailed studies.>"* The main group of problems is the
transition from clusters to macroscopic systems which oc-
curs in different ways depending on cluster types and pa-
rameters under consideration. Results of the analysis of
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symmetrical cluster structures within the framework of the
above question give additional information in understand-
ing the character of the transition from molecules to mac-
roscopic systems as the number of atoms in the systems is
increased. Besides, the study of melting for clusters with
close packing supplements our knowledge of physics of the
phase transition with new details. It confirms us that melt-
ing of a condensed system of atoms with a short-range
interaction is determined by transition between structures
which are formed from neighboring atoms inside the sys-
tem.

Note that the above questions are of interest not only
as methodological ones. Because of a short-range interac-
tion of inert gas atoms, the results relate to clusters and
condensed inert gases.

2. SHORT-RANGE INTERACTION IN ATOMIC PHYSICS

The concept of a short-range interaction has arisen in
nuclear physics for nucleon interaction. For example, the
Yukawa interaction potential of two nucleons has the
form:3132

U(R)=Upe R, (N

Here R is the distance between nucleons, 1/a=#/(m) is
the range of nuclear forces, m,, is the 7-meson mass, c¢ is
the light velocity. If a region of distances under consider-
ation significantly exceeds the range of nuclear forces this
potential can be written in the form:

U(r)=Up(R)/a. (2)

It is the potential of a short-range interaction in nuclear
physics. As it is seen its maximum corresponds to small
distances between nucleons.

One can extend the concept of a short-range interac-
tion also to the interaction of atoms or molecules by pos-
tulating the width of the region of distances between atoms
where atomic interaction is important to be small. In con-
trast to the nuclear physics case, atomic interaction must
include both attraction and repulsion. Besides the maxi-
mum attraction corresponds to finite distances between the
atoms.
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It is convenient to use the following approximate ex-
pression for the interaction potential of two atomic parti-
cles:

D
U(R)=7— [k(R/R)'=I(R/R) ]. (3)

Here R is the distance between atomic particles, R, is the
equilibrium distance which corresponds to maximum at-
traction, D is the maximum depth of the potential well, &,/
are parameters. The Lennard-Jones potential corresponds
to the case k=6, /=12:

U(R)=D[(R/R)*~2(R./R)®]. (4)

The short-range interaction potential relates to values of
parameters of formula (3) k,/>1.

Some gaseous processes are determined solely by the
repulsive part of the interaction potential (for instance,
transport coefficients), other effects are determined only by
the attractive region of interaction. Therefore it is conve-
nient to divide the interaction potential into two parts: the
repulsive and attractive regions. Further we use only the
attractive part of the interaction potential which is charac-
terized by a narrow and shallow well, and is of interest for
bound atomic systems. Because of the condition of the
small depth of the potential well the interaction potential
of two interacting atoms does not depend on their interac-
tion with other nearest neighbors in a system of many
bound atoms. Then the total interaction potential of such a
system is the sum of pair interaction potentials of atoms—
nearest neighbors.

The form of the interaction potential under consider-
ation allows us to approximate atoms by balls. In the ap-
proximation of a narrow well for an attractive interaction
or an infinite wall for a repulsive one these balls are hard.
In particular, the corresponding model of the repulsive
potential which is used for calculation of transport coeffi-
cients of gases is called the hard sphere model and is a basis
for an analysis of transport phenomena in gases.”‘36 Ac-
cepting a finite width Ar of the attractive well, one can
consider balls of the above models to be soft.

Further due to the model character of the analysis of
clusters we neglect the long-range interaction of atoms. It
means that the attractive potential is represented in the
form (see Fig. 1):

UR)=—D+U"(R) " (R—R,)? R <R<R,,

=0’ R<R1’ R>R2’ (53)

whereR,,R; = R, + VD/U” V2 U is the second derivative
of the actual interaction potential at its minimum.

The following form of the interaction potential of at-
oms is more convenient for applications:

U(R)=D exp[ — (R—R,)*/2A7], (5b)

where Ar=[D/U”(R.)]"/?. To estimate the accuracy of
such an approximation note that the value [U(R)dR for
the Lennard-Jones potential (4) and the potential (5b)
with the same value of U”(R,) differ by 20%.
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FIG. 1. The interaction potential of two atoms (solid line) and the at-
traction model potential for short-range interaction (dotted line).

Ball models for description of systems under consider-
ation are valid for classical atoms. This condition corre-
sponds to the condition of a narrow and shallow potential
well if the atom mass is large and satisfies the criterion:

m>#U"/ D

It follows from the condition of a small vibrational energy
of the diatomic molecule compared with its dissociation
energy.

As we have noted above, the interaction of two atoms
of inert gases is a short-range one, and the results given
below relate to condensed inert gas systems. Therefore Ta-
ble I lists the parameters of the pair interaction potential
for inert gas atoms.>’~*® Note that systems of atoms with a
short-range interaction are characterized by a certain scal-
ing law. Indeed, the parameters of a system of bound atoms
with a short range interaction are expressed through the
following parameters: R.—the equilibrium distance for the
diatomic molecule constructed from interacting atoms,
D—the depth of the interaction well, m»—the atom mass.

TABLE 1. Parameters of diatomic molecules of inert gases and reduced
parameters of condensed inert gases.

Parameter Ne Ar Kr Xe Average
D, meV 37 | 12,2 | 17,2 24 —_
R, A 309 | 376 | 401 | 4,36 -
fw, cm ! 26 14 24 21 -
Ar/R 0,16 | 0,094 | 0,077 | 0,077 | 0,10 0,04
a/R, 1,02 | 1,00 | 1,00 | 0,99 | 1,00%0,01
o’ D 54 | 6.6 | 67 7.t 6,4+ 0,7
T,/D 057 105 | 058 | 058 | 0,58+0,01
T,/D 0,63 | 0,62 | 0,60 | 0,59 | 0,61%0,02
p./Po 09 | 092 | 0,93 | 095 | 0,93+0,02
1-(/p) |0.137]0,1261 0,136 { 0,131 {0,132+ 0,005
1-(p,/p) |0,165|0,151 | 0,146 | 0,156 |0,154 + 0,008
AH, /D 0,94 | 1,00 { 0,99 | 0,99 | 0,98 0,03
e,/6D 08210921 091 | 091 | 0.89x0,04
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F1G. 2. Positions of centers of atoms on the symmetry plane for the cubic
face-centered lattice (a) and at the distance +a/v2 from it (b). Further
such layers are alternated. Due to symmetry the same distribution of
atoms corresponds to planes xz and yz.

Table I contains parameters of condensed inert gases
expressed in reduced units. The following notations are
used: a—the distance between neighboring atoms of an
inert gas at zero temperature; py—the crystal density at
zero temperature; p.—the crystal density at the melting
point; p—the liquid density at the melting point; p,—the
liquid density at the boiling point; T, T,—the melting
and boiling points correspondingly; &g,,—the sublimation
energy of the crystal at zero temperature relating to one
atom; AH_,—the melting heat per atom; ¢,,—the energy
which is spent for evaporation of one atom at the boiling
point.

It follows from Table I that a short-range interaction
describes condensed inert gas systems satisfactorily and is
better than the Lennard-Jones interaction potential (In
the case of the Lennard-Jones potential we have'
a=0.99R,, £,,,=8.61 D, while the short range interaction
potential gives a=R_, £,,=6D). Therefore it is valid to
use the short range interaction for description of bound
systems of inert gas atoms. The degree of coincidence for
reduced parameters of different inert gases in Table I char-
acterizes the accuracy of using the pair short-range inter-
action for description of condensed inert gases or their
clusters.

3. ASSEMBLING OF CLUSTERS WITH CLOSE PACKING

Let us describe the method of construction of clusters
with close packing23 and analyze the energy parameters of
such clusters. There are two types of crystals with close
packing which have the cubic face-centered or hexagonal
lattice."™ In both cases each atom of the structure has 12
nearest neighbors, but the symmetry of these structures is
different. Below we shall be guided by the cubic face-
centered structure. Take one atom of such a lattice as an
origin and choose a frame of axes zxy corresponding to Fig.
2. In this frame of axes the nearest neighbors of the central
atom have the coordinates 0, +a/v2, *a/v2; +a/v2, 0,
+a/v2;, +a/v2, +a/Vv2,0, where a is the distance between
nearest neighbors.

As may be seen, in the frame of axes under consider-
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ation the infinite cubic face-centered lattice is preserved
under two types of transformation:

1) x=2yez,
(6)

2) xe—x; 2y, zZe-—2,
b b

One can use such a symmetry of clusters as the basis for
assembling clusters with close packing. Then this operation
of cluster construction is equivalent to cutting out the clus-
ter from the crystal with the cubic face-centered structure.

It is convenient to introduce reduced values for atomic
coordinates expressing them in units of a/v2. Then the z, x,
y coordinates of each atom are integers and their sum is an
even integer. Because of the cluster symmetry the opera-
tion of assembling a cluster corresponds to placing atoms
on cluster shells, and coordinates of all atoms of one shell
can be obtained from the coordinates of one atom as a
result of transformations (6). This allows us to use for
cluster description the coordinates of one atom from each
shell. Further we choose atoms with positive values of co-
ordinates and z<x <.

On the basis of this let us calculate the number of
nearest neighbors for atoms of a given shell. Because the
cluster energy is determined by the number of bonds in the
cluster, it allows us to calculate the cluster energy, the
cohesive energy of atoms attached to the cluster and to find
the optimal sequence of occupation of shells at zero tem-
perature. Let us analyze the corresponding results.

Since the distance between neighboring atoms is fixed,
the binding energy for two nearest neighbors is equal to D.
Therefore the total binding energy of atoms in a cluster is:

E=kD, (7

where k is the total number of bonds between nearest
neighbors. Further we express the energy in units of D, i.e.
the binding energy of cluster atoms is equal to the total
number of bonds between nearest neighbors.

For large numbers of cluster atoms n most of the at-
oms are located inside the cluster and have 12 nearest
neighbors. Therefore there is the asymptotic dependence
E(n)—~6n for n— «. It is convenient to introduce the sur-
face energy E,, as:

E, =6n—E. (8)

Another expression for the surface energy has the form:

k
Esur= Z (6_—2_)nk’ (9)
k

where n; is the number of atoms that have k nearest neigh-
bors. From this it follows that addition of an atom with &k
nearest neighbors to the cluster increases the cluster sur-
face energy by the amount 6 — k. We used the fact that one
bond relates to two atoms.

Constructing the cluster under consideration at zero
temperature, we postulate that its optimal structure corre-
sponds to a minimum surface energy for a given number of
cluster atoms. This characterizes the sequence of the
growth of the cluster as a result of addition of new atoms
to it. This sequence of cluster growth is given in Table II
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TABLE II. Sequence of the growth of clusters with close packing.

o

Shells being filled *) n E,, v-w

oLt (1-5 2-13 642 12-1
002 (4) 13-19 42-54 61
112 (3-5) + 022 (5) 19-55 S4-114 12-3
013 (4-6) 55-79 114-138 6-4
123 (3-5) + 222 (6) 79-135 138-210 8-7
033 (5) 135-147 210-222 12-1
004 (9 +114 (5) +024 (&) 147-201 222-258 6-9
233 (3-5) +224 (5) +134 (5~-6) 201-297 258-354 §-12
015 (4-6) + 125 (5-6) 297-369 354-402 6-12
044 (5) + 035 (6) 369-405 402-414 12-3
006 (4) +116 (5) +026 (6) 405-459 414-450 6-9
334 (3-5) + 244 (5) +235 (5-6) + 145 (5-6) +226 (5) +136 (6) 459-675 450-594 8-27
055 (5) + 046 (6) 675-711 594-606 12-3
017 (4-6) + 127 (5-6) + 037 (6) 711-807 606-654 6-16
008 (4) + 118 (5) +028 (6) 807-861 654-690 6-9
444 (3) + 345 (4~6) + 255 (5) + 336 (5) +246 (6) + 156 (5—6) +

+237 (5—6) + 147 (6) 861-1157 690858 8§37
066 (5) + 057 (6) + 228 (5) + 138 (6) + 048 (6) 1157-1289 858-894 12 - 11
019 (4-6) + 129 (5-6) + 039 (6) 12891385 8§94-942 6-16
455 (3—5) + 446 (5) + 356 (5-6) + 347 (5-6) + 266 (5) +257 (6) +

+ 338 (5) + 248 (6) + 158 (6) + 167 (5—6) +239 (5-6) + 149 (6) 1385-1865 942-1158 8-60
077 (5) + 068 (6) + 059 (6) 1865-1925 1158-1170 12-5
00,10 () + 11,10 (5) +12,10 (6) +22,10 (5) + 13,10 (6) + 04,10 (6) 1925-2075 1170-1230 6-25
01,11 (4-6) +12,11 (5-6) + 03,11 (6) 2075-2171 1230-1278 6-16

*)Values in parentheses show the number of nearest neighbors.

which is an expanded version of the analysis of Refs. 23
and 24. It is seen that small clusters can grow as a result of
the occupation of separate shells, but for large clusters the
simultaneous filling of several shells takes place. Thus clus-
ter growth results from the addition of separate blocks to
the cluster with close packing. In Table II v is the number
of separate blocks which have no common boundaries, and
w is the number of atoms in a filled block. The shell and
block structure of clusters is observed for metallic*’*! and
other types*>** of large clusters.

Note that the sequence of cluster growth of Table II
has a schematic character for some cases of large clusters.
For example, a cluster with about 500 atoms grows by
addition of blocks with 27 atoms in each. But after addi-
tion of three such blocks attachment of atoms from shells
055 and 066 is favored. For large clusters such violation of
the sequence of cluster growth occurs more often. Because
it is not essential at finite temperatures we will not dwell on
this in detail.

4. THE CUBO-OCTAHEDRAL CLUSTER STRUCTURE

Clusters with closed shells are not changed as a result
of the transformations (6). This property is fulfilled for
some symmetric figures which can form clusters with close
packing. Using the experience of the analysis of such clus-
ters (Refs. 6-22), we study some of these further within
the framework of a general scheme using their symmetry
(6). It leads to analytical expressions for energy parame-
ters of these clusters and allows us to analyze them as
systems of many bound atoms. Further we consider such
figures as cubo-octahedron, cube, octahedron and tetra-
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kaidecahedron. Such an analysis is of interest because it is
carried out within the framework of a general scheme that
unites various structures and allows one to pick out the
optimal ones. Besides, it allows one to analyze general
properties of these structures.

Figure 3 contains the simplest cubo-octahedral cluster
consisting of 13 atoms which are modeled by hard balls,
and Fig. 4 (Ref. 20) represents the cubo-octahedral cluster
consisting of 55 atoms. The cubo-octahedral figure has a
surface consisting of 6 squares and 8 triangles. It contains
24 common sides and 12 vertices. The distance between
nearest neighbors for the cubo-octahedral structure is
fixed. Therefore assuming vertices to be centers of the re-
motest atoms, we have the sides length for the figure sur-
face is equal to ma, where a is the distance between nearest
neighbors, m is the number of the surface layer.

Cubo-octahedrons have two modifications (see Fig. 3).
In the first of these the projections of upper and lower
triangles onto a plane parallel to them are the same (the
hexagonal structure), in the second one these projections
are turned by an angle 7/3 around the axis which is per-
pendicular to the planes of triangles and passes through
their centers (the cubic face-centered structure). This axis
is the symmetry one for a cubo-octahedron. The figure is
preserved as a result of turning around this axis by the
angle 27/3. There are 4 such axes which pass through
centers of opposite triangles. One more type of symmetry
corresponds to reflection of the figure with respect to
planes which pass through its center. For the first modifi-
cation (the hexagonal structure) a cubo-octahedron is pre-
served as a result of reflection with respect to symmetry
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FIG. 3. Cubo-octahedron cluster consisting of 13 atoms. a) Positions of
3 atoms of the upper layer and 7 atoms of the central layer are given.
Positions of centers of atoms of the lower layer are marked by crosses for
the hexagonal structure and by circles for the cubic face-centered one.
b,c) The front view for the hexagonal and cubic face-centered structure
respectively.

planes (i.e. if the axis of a cubo-octahedron is Oz, it means
xs —x; 2z —2z). For the cubic face-centered structure
case a cubo-octahedron is preserved as a result of reflection
x4+ —x and inversion z=2 —z, y= —y (see Fig. 3).

As can be seen, a cubo-octahedron has a high symme-
try and is one of the structures with close packing. There-
fore it can be included in a general scheme of construction
of clusters with close packing (see Table IT). In the utilized
notations the cluster-cubo-octahedron with mth closed
shell includes atomic shells a,B8,y, where a,B,y<m and
a+B+y<2m.

FIG. 4. Cubo-octahedron cluster consisting of 55 atoms and positions of

centers of surface atoms.?
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Let us evaluate the number of atoms in the surface
layer of a cluster-cubo-octahedron. Denote the number of
vertices by p=12, the number of faces by g=24, the num-
ber of squares by r=6 and the number of triangles by s=38.
We have for the number of atoms on the surface of a closed
layer:

An=p+g(m—1)+r(m—1)2+s(m—1)(m—2)/2

=10m>+2. (10)

From this it follows that the expression for the total num-
ber of atoms of the cluster-cubo-octahedron:

n=10m3/3+5m*+11m/3+ 1. (11)

The cubo-octahedral structure allows us to analyze the
connection between structures with close packing. For this
purpose let us transfer from the frame of axes of Fig. 3 to
the frame of axes of Fig. 2 where a cluster with the cubic
face-centered structure has the symmetry with respect to
the transformations (6). One can make such a transfer as
a result of two turns around the x and z axes. Let us make
a turn around the x axis through an angle ¢. An atom with
the coordinates zxy has the following coordinates z'xy’ in a
new frame of axes:

z'=zcos ¢+ysin @,
y'=—zsingp+ycos g,

where cos ¢=1/v3, sin g = 2/3. A subsequent rotation
around the Oz axis through an angle #/4 corresponds to
the following transformation for the new coordinates ZX'Y:

X=x/VI4+y'/V3,
Y=x/vi—y' /V1.

As a result of the above transformations we transfer from
the frame of axes zxy of Fig. 3 to the frame of axes ZXY of
Fig. 2. There are 48 different ways for transition from the
frame of axes of Fig. 3 to the frame of axes of Fig. 2.
Coordinates of atoms in the new frame of axes obtained as
the result of different ways are connected by the transfor-
mations (6).

We now determine the positions of atoms of a cluster-
cubo-octahedron for a new frame of axes. We choose, as
before, as the unit of length a/v2, where a is the distance
between the center and the vertices of the cubo-
octahedron. In these units we have the following coordi-
nates of vertices for the cluster-cubo-octahedron with the
cubic face-centered structure in the new frame of axes:

O, =1, =1, +1,0, =1, «1, £1, 0.

9 atoms of the cubo-octahedron with the hexagonal struc-
ture have the same positions as in the case of the cubic
face-centered one, 3 atoms of the upper triangles of Fig. 3a
occupy other positions. Instead of coordinates

01, -1, 1, 1,0 1,0 —1,
they have coordinates
4/3, 1/3, 1/3; 1/3, 4/3, —1/3; 1/3, 1/3, —4/3.
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TABLE III. Parameters of the cubo-octahedron cluster.

] n E . E
1 13 42 42
2 55 114 114
3 147 222 220
4 309 366 362
5 56) 546 535
6 923 762 729
7 1415 1014 963
8 2057 1302 1226

As can be seen the symmetry of the cluster-cubo-
octahedron with the hexagonal structure is mainly hidden
in the frame of axes of Fig. 2. Indeed, the simple transfor-
mations which preserve the structure have the form Z=Y,
Xa-2Z,Ya2X and Z=2—-X, X=2Y, Yo —Z. Thus, the
new frame of axes is not suitable for the analysis of clusters
with the hexagonal structure because it exposes only part
of the cluster symmetry. On the contrary, in this frame of
axes clusters with the cubic face-centered structure have a
high symmetry which is characterized by the transforma-
tions (6). Therefore the further analysis of clusters with
close packing refers only to clusters with the cubic face-
centered structure although we shall often refer to it as the
structure with close packing.

Note that both the cubo-octahedral structure and
other symmetrical structures under consideration have
been studied previously Refs. 1621, and the accumulated
experience in this regard is used below. But usually the
analysis is based on the Lennard-Jones interaction poten-
tial, which includes a long-range part of the interaction.
Our task is simpler because of the absence of a long-range
interaction. It allows us to obtain analytic expressions for
energy parameters of clusters, while the presence of a long-
range interaction demands numerical calculations. In ad-
dition remember that a short-range interaction describes
inert gas crystals better than the Lennard-Jones interac-
tion potential.

Let us determine the energy of the cluster with the
cubo-octahedral structure. Take into account that each in-
ternal atom has 12 nearest neighbors and surface atoms
have the following numbers of nearest neighbors: vertex
atoms—S5, edge atoms—7, atoms on squares—8, atoms on
triangles—9. Using the number of atoms on each structure
element, we obtain for the surface energy of the cluster-
cubo-octahedron with m-closed layers (in units D):

(12)

The total binding energy of atoms in the cluster-cubo-
octahedron is equal to:

E=6n—E,,,=20m>+12m*+4m. (13)

Table III lists the surface energies of cubo-octahedron-
clusters (E,,,) with closed layers which are compared with
the surface energies E,, of clusters with close packing and
optimal configuration of atoms for a given n and at zero
temperature. As may be seen, the cubo-octahedral struc-
ture is not the optimal one for clusters with close packing.

E . =18m*+18m +6.
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TABLE IV. Parameters of the cube cluster.

m " E, E.
1 63 138 118
2 365 468 399
3 1099 978 828
4 2457 1686 1387 £ 11

Indeed, assembling of a cluster-cubo-octahedron is finished
with occupation of its vertices which have positions 0,m,m
(notations of Table II). Table II shows that only the cubo-
octahedral structures with m=1 and m=2 are optimal
ones. For large m the cubo-octahedral structure is not op-
timal.

5. SYMMETRICAL STRUCTURES OF CLUSTERS WITH
CLOSE PACKING

Now we study some structures with close packing
within the framework of the scheme under consideration.
These structures have the form of regular geometrical fig-
ures with plane surfaces and have been investigated previ-
ously Refs. 15-22 by numerical methods. From the stand-
point of the method under consideration we have a certain
sequence of closed shells. At first we analyze within the
framework of the scheme under consideration the simplest
structure—a cube. Its surface is a square net, its vertices
relate to the shell 2m, 2m, 2m; where m is the number of
the figure in the sequence. Atoms at the cube edges have
positions a, 2m, 2m, where a <2m and is an even number.
Surface atoms inside squares correspond to shells a, 3, 2m,
where a, B<2m. Note that atomic layers of this figure
which are adjacent to surface layers do not have a square
net. Projections of their atoms onto a neighboring surface
layer are located in centers of squares which are formed by
surface atoms. These two types of layers are alternated in a
cluster-cube, i.e. the cluster has a complicated structure.

The cluster under consideration has p=8 vertices,
g=12 edges and r=6 squares. Thus a surface layer con-
tains p vertex atoms, g(2m—1) edge atoms and
r(8m*>—4m+1) atoms inside squares. Each vertex atom
has 3 nearest neighbors, each edge atom has 5 nearest
neighbors and each atom inside a square has 8 nearest
neighbors.

This gives for the number of atoms of a cube-cluster n
and its surface energy E, :

n=32m>+24m?*+6m+1,
Eg,=96m>+36m+-6.

Comparison of the surface energies for the cube-clusters
with closed layers and clusters with close packing of the
optimal structure with the same number of atoms is pro-
vided in Table IV. Evidently, the cube-structure is far from
the optimal structure of clusters with close packing.
Figure 5 gives the following cluster structure—the oc-
tahedral one. Its surface consists of 8 regular triangles.
Atoms of this cluster occupy shells a, B, vy, where a+8
+vY<2m and m is an integer which characterizes the num-

(14)
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FIG. 5. Octahedron cluster consisting of 231 atoms and positions of
centers of surface atoms.

ber of a figure in the sequence. The octahedral surface has
p=06 vertices, g=12 edges and includes s=8 triangles.
There are g(2m—1) atoms in octahedron edges and
s(2m2——3m+1) atoms inside triangles. Vertex atoms re-
late to a shell 0, 0, 2m, atoms inside edges occupy shells O,
1, 2m—1, where 1 is an integer; atoms inside triangles form
shells a, B, 7, where a+B8+y=2m, a, B, y>0. Each vertex
atom has 4 nearest neighbors, each edge atom has 7 nearest
neighbors, and each atom inside triangles has 9 nearest
neighbors. From this we obtain the following expressions
for the total number of atoms »n for a cluster-octahedron
and its surface energy E:

n=16m/3+8m*+ 14m/3+1, (15)
E, =24m*+24m+6.

Table V lists parameters of octahedron-clusters that follow
from these formulae and the surface energies for optimal
configurations of clusters with close packing E,, and a
given n.

The analysis of the above data for various cluster struc-
tures shows that the number of nearest neighbors for ver-
tex atoms is less than for other surface atoms. One can
expect that the figure will be close to the optimal one if the
vertex atoms are cut off. Indeed, such a truncated structure
is closer to the spherical one than the original one. Con-
sider one of such structures—tetrakaidecahedron® (Fig.
6) which is formed from an octahedron as a result of cut-
ting off its vertex pyramids. The surface of a tetrakaideca-
hedron consists of 8 regular hexagons and 6 squares. Note

TABLE V. Parameters of the octahedron cluster.

FIG. 6. Tetrakaidecahedron cluster consisting of 201 atoms and positions
of centers of surface atoms.?

that a tetrakaidecahedron can be obtained only from octa-
hedra for which m is a number divisible by three.

Introducing a tetrakaidecahedron number m, we have
that it contains p=24 vertices which occupy a shell
0,2m,4m, q' =12 edges which are common sides of hexa-
gons and belong to shells 0,8,y, where B+y=6m, B,y
>2m; q" =24 edges on the boundary of hexagons and
squares relate to shells a,3,4m, where a+B=2m; a,f=0.
Atoms inside squares belong to shells a,8,4m, a+8<2m,
atoms inside hexagons form shells a,8,y, a+B+y=6m,
¥ <4m.

Each atom of tetrakaidecahedron vertices has 6 nearest
neighbors, each of 36(2m— 1) atoms of edges have 7 near-
est neighbors, each of 6(2m—1)? atoms inside squares has
8 nearest neighbors and each of 96m*—48m+8 atoms in-
side hexagons has 9 nearest neighbors. This gives for the
number of atoms of a cluster-tetrakaidecahedron » and its
surface energy E,:

n=128m>+60m*+ 12m+1,

(16)
Eq,=192m+ 60m+6.

Table VI contains these parameters for the first terms of
the sequence of clusters-tetrakaidecahedron. Note that
these relate to optimal structures of clusters with close
packing (compare Tables II and VI).

Consider one more structure of a truncated octahedron
which is formed from an octahedron by cutting off 5 atoms
near each vertex. Assume that the mth term of the se-
quence of truncated octahedra is formed from the (m
+ 1)-th term of the octahedron sequence. Then the cut-off
atoms belong to shells 0,0,2m+2 and 1,1,2m. The surface
of the obtained figure consists of 6 squares with the side of
length 3, and of 8 irregular hexagons. Cutting off of the
above atoms decreases the number of cluster atoms of oc-

m n E E
sur . opt TABLE VI. Parameters of the tetrakaidecadron cluster.
1 19 54 54
2 85 150 144 m " E
3 231 294 291
4 489 486 469 1 201 251
L) 891 726 71t 2 1289 894
6 1469 1014 990 3 4033 1914
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TABLE VII1. Parameters of the truncated octahedron cluster.

m n E,,
1 55 114
2 201 253
3 459 450
4 861 690
5 1439 978
6 2221 1314

tahedra by 30 and the cluster surface energy by 36. Thus
from formula (15) we have for the cluster parameters:

n=16m>/3+24m*+110m/3—11,
Eg . =24m*+72m+18.

Table VII contains data for the first terms of the sequence
for considering truncated octahedra. Note that all clusters
except the last one relate to the optimal cluster structure
with close packing (see Table II).

Let us consider asymptotic properties of clusters with
the structures being considered. We approximate the sur-
face energy of large clusters E, . as a function of a number
of cluster atoms n by the dependence:®

Eq=An*? (18)

and find the values of A4 for large m of the sequence with
the corresponding structure. Table VIII lists these data,
and Fig. 7 gives these values for optimal configurations
which are obtained as a result of treatment of Table II data
for an interval n=400-2000 and use of formula (18). The
oscillatory form of this dependence explains the result that
the mean value A4 for the optimal structure is larger than
for the tetrakaidecahedron structure. Indeed, the tetrakaid-
ecahedron structure corresponds to some optimal cluster
structures with closed shells and the coefficient 4 is larger
for nonclosed cluster shells than for closed ones.

Thus the method being considered allows us to analyze
various closed structures of clusters with close packing

(17)

TABLE VIIL. Asymptotic parameter A4 for large clusters.

Structure A
Cubo-octahedron 8,07
Cube 9,52
Octahedron 7,86
Tetrakaidecahedron 7.55
Optimal 7,62 £ 0,06

within the framework of a common scheme. Therefore,
this method gives a possibility to compare parameters of
different structures and is useful for optimization of cluster
parameters.

6. CLUSTERS WITH THE ICOSAHEDRAL STRUCTURE

The interaction potential (4) admits cluster structures
for which distances between nearest neighbors are not
fixed, but can vary over a certain range near the mean
value. The most important of these structures is the icosa-
hedral one’ because it can provide the maximum number
of bonds between atoms. The icosahedron consisting of 13
atoms is represented in Fig. 8, Ref. 45, and the icosahedron
containing 55 atoms is given in Fig. 9, Ref. 20. The icosa-
hedron surface consists of 20 regular triangles, and all 12
vertices of the icosahedron are located on a sphere.

At first we consider the simplest cluster-icosahedron
consisting of 13 atoms. To construct such an icosahedron
let us choose one of the cluster atoms as a center, and
locate the other 12 atoms on a sphere of radius R in the
following way. Two of these are placed on the sphere poles,
i.e. they are located on the line which connects these atoms
and passes through the center. The other 10 atoms form
two regular pentagons whose planes are perpendicular to
this line—the icosahedron axis. The pentagons are in-
scribed in circles that are sections of planes and the sphere,
and the pentagon vertices are rotated by the angle 7/5
against each other. These circles form a cylinder whose
axis is the icosahedron axis.

72,80
A ]
[o]
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3 o ° FIG. 7. The asymptotic coefficient A4 of formula
8 ° o ° (18) calculated on the basis of Table II data (O)
; o a o and for the structure of a truncated octahedron
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2 neof o o o (Table VII) (A).
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FIG. 8. Icosahedron cluster consisting of 13 atoms.** The dark circle
relates to the central atom. Lines join surface atoms-nearest neighbors are
shown.

Joining the nearest vertices of the icosahedron we ob-
tain 20 regular triangles. This means that the distances
between nearest neighbors on the sphere are the same, and
each atom has 5 nearest neighbors on the sphere. Nearest
neighbors of polar atoms on the sphere are atoms of the
nearest pentagon, and each atom of the pentagon has as
nearest neighbors on the sphere one atom of the nearest
pole, two nearest atoms of its own pentagon and two atoms
of the neighboring pentagon.

The distance between nearest neighbors on the sphere
of the icosahedron differs a little from the sphere radius,
i.e. from the distance between the central and surface at-
oms. Therefore, strictly speaking, the icosahedron is not a
structure with close packing where distances between near-
est neighbors are fixed.

The icosahedron has a high symmetry. It is character-
ized by 6 axes which pass through the center and opposite
atoms of the sphere. Rotating through the angle 27/5
around any of these axes preserves the figure. Besides, the
icosahedron is preserved as the result of turning by the
angle /5 around one of these axes and reflection with
respect to the plane which is perpendicular to the axis and
passes through the center. One more symmetry of the
icosahedron corresponds to the inversion operation xs
—X; ps —y; z& —2. And the icosahedron has the symme-
try for reflection with respect to the plane which passes

FIG. 9. Icosahedron cluster consisting of 55 atoms and positions of cen-
ters of surface atoms.*
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through a given symmetry axis and two atoms of penta-
gons. It takes place also for any axis of the icosahedron.
Let us find the relation between the sphere radius and
the distance between nearest neighbors on the sphere for
the icosahedron. Let R be the distance between nearest
neighbors on the sphere whose radius is R and the radius of
the cylinder in which the pentagons are inscribed is 7. One
can obtain the following relations between the icosahedron
parameters. The pentagon side length is equal to:

Ry=2rsin(7/5). (19a)

The distance between nearest neighbors that are vertices of
different pentagons is:

Ro={2+[2rsin(7/10)]}2, (19b)

where / is the distance between pentagons. The distance
between a pole and an atom of the nearest pentagon equals

Ro={P+1r—(/2) )2}~ (19¢)

Moreover, the following relation holds between the sphere
radius and the ring radius in which the pentagons are in-
scribed:

R:=P 4 (1/2)% (194d)

One can see that the first three equations give the re-
lation between the icosahedron parameters, and the fourth
equation allows us to check the validity of the icosahedron
definition. The first and the second equations give:

r=1=0.851R,. (20)
From the third equation we have:
R=1/=0551R,. (21)

The last equation corroborates these relations. Thus, the
distance from the center to the icosahedron vertices is ap-
proximately 5% less than between the nearest vertices of
the icosahedron.

The icosahedron-cluster of 13 atoms under consider-
ation contains 30 bonds of length R, and 12 bonds of
length R. For comparison note that the cubo-octahedron-
cluster consisting of 13 atoms has 36 bonds. It is seen that
the icosahedral structure is more favorable among clusters
with 13 atoms than structures with close packing and a
fixed distance between any nearest neighbors.

Let us consider the following cluster of the icosahedral
sequence which consists of 55 atoms (see Fig. 9). 5 atoms
of this icosahedron are located on its axis with the distance
R =0.951R, between nearest atoms. Twenty atoms form 4
pentagons which are inscribed in a cylinder of radius
r=0.851R,. Ten atoms form 2 large pentagons which are
inscribed in a cylinder of the radius 2r. The axis of both
cylinders is the icosahedron axis, and planes of all penta-
gons are perpendicular to this axis. Twenty atoms are lo-
cated at the midpoints of sides of large triangles which are
not joined with the icosahedron axis. Relative positions of
pentagon atoms of such a cluster are represented in Fig. 10.
There is in this figure the developed view of the small
cylinder and projections of all pentagon atoms on this cyl-
inder surface. Moreover Fig. 11 contains projections of



FIG. 10. The developed view of the icosahe-
dron cluster consisting of 55 atoms. This clus-
ter contains a central atom, 12 atoms on the
surface of a small sphere, 12 atoms on the sur-
face of a large sphere with twice the radius of
the small sphere and 30 atoms at midpoints of
lines joining atoms of the large sphere. A de-
veloped view of the internal cylinder is given
with projection on it of all atoms except those
located on the icosahedron axis. Solid lines are
sides of large triangles, and dotted lines are
sides of small ones. Solid circles are centers of

atoms of the large pentagons and internal atoms of small
pentagons onto a plane which is perpendicular to the icosa-
hedron axis.

The icosahedron cluster consisting of 55 atoms has 84
bonds between nearest neighbors with the bond length of
R=0.951R, and 150 bonds between nearest neighbors with
the bond length of R,. From this we have for the total
binding energy of atoms in the icosahedron-cluster of 55
atoms neglecting the long-range interaction:

E=234D—0.067U" (a)d*, (22)

where U”(a) is the second derivative of the pair interac-
tion potential at its minimum. In particular, it corresponds
to the total binding energy of atoms 229D for the
Lennard-Jones potential, and the total binding energy of

FIG. 11. Projections of the icosahedron cluster consisting of 55 atoms
onto a plane which is perpendicular to the icosahedron axis. Atoms on the
axis and internal pentagons are excluded from the figure. Crosses corre-
spond to centers of atoms of the central plane, open and solid circles relate
to atoms of the lower and upper plane respectively. Dotted lines corre-
spond to sides of triangles, arrows mark bonds for one of the atoms.
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atoms of the external layer, open circles relate
to internal atoms, arrows show bonds of one of
the atoms.

atoms is 216 D for the cubo-octahedron cluster (Table III).
It can be seen that the icosahedral structure is more favor-
able for this cluster than the cubo-octahedral one which is
the optimal cluster structure with close packing and n=55
(see Table II).

Now using the accumulated experience, construct
large icosahedra by taking into account that their surface
consists of s=20 regular triangles, has p=12 vertices and
g=30 common edges. The first cluster of the icosahedron
sequence contains one central atom and p=12 atoms-
vertices. The edge length of the second cluster of the icosa-
hedron sequence is twice as great as the edge length of the
first cluster. Let us locate atoms of the second layer in the
vertices of the icosahedron and in midpoints of edges. Thus
the second layer contains An=p+¢=42 atoms, and the
total number of atoms for the second cluster-icosahedron is
n=>55. The third layer has the edge length three times as
great as the edge length of the first cluster. This layer
contains p atoms as vertices of the figure, 2¢ atoms in edges
of the figure and s atoms in midpoints of triangles. Thus
this layer contains An=p+2¢-+s=92 atoms, and the total
number of atoms for the third icosahedron cluster is equal
to n=147.

Continuing this operation, we have that the mth icosa-
hedron cluster has the edge length m times as great as the
length of the first one. Dividing each edge into m parts,
draw through the formed points lines which are parallel to
the sides of triangles. Let us locate atoms in these points
and the points of intersections of lines. We obtain a number
of atoms at the vertices p=12, on the sides of triangles
q(m—1) and inside triangles s(m—1) (m—2)/2. Thus the
mth layer contains An=10m?+ 2 atoms. The total number
of atoms for the mth icosahedron cluster is equal to:

n=10m*/345m*+ 11m/3 4 1. (23)
It can be seen that the number of atoms for the mth icosa-
hedron and cubo-octahedron is the same. This fact simpli-
fies the comparison of parameters for different structures
which has been made repeatedly for the pair Lennard-
Jones interaction potential Refs. 16, and 19-21.
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Let us evaluate the binding energy of atoms for the
icosahedral clusters taking into account the short-range
interaction between atoms—nearest neighbors only. We
have that each surface atom placed at a vertex of the icosa-
hedron has 1 bond of length R and 5 bonds of length R,,
each edge atom has 2 bonds of length R and 6 bonds of
length R, and the surface atoms inside triangles have 3
bonds of length R and 6 bonds of length R,. Summarizing,
we found that addition of the mth icosahedron layer in-
creases the binding energy of cluster atoms by the value

5 1
AE=p(£|+§£2) +q(m— l)(2£1+3£2)+—2-s(m—l)

X (m—2)(3e1+ 3¢,)

=£,(30m*—30m+12) +¢, - 30m?, (24)

where ¢,=—U(R), g,=—U(Ry)—the binding energies
of two atoms for distances between them R and R, corre-
spondingly. We take into account that bonds of length R,
connect surface atoms, and such bonds are repeated twice
as the result of addition of a new layer. Thus the total
binding energy of atoms of the icosahedron is equal to:

(25)

Let us illustrate the method of determination of the
total cluster energy on the basis of formula (25). Trans-
form formula (25) to the form:

E=10m>(e,+¢&,) + 15m*, + m(2e,+ 5¢,).

E=Ae,+ Be,=—AU(R) — BU(R,), (26)

where 4 =10m>+2m, B=10m>+ 15m?+5m. Choose the
optimal relation between the parameters R, R, and
R —the equilibrium distance between atoms of the di-
atomic molecule. Expanding the interaction potential near
the equilibrium distance, choose the parameters R,R; such
that the total binding energy has a minimum. It gives the
following expressions for optimal distances:

0.0494a 0.049 Ba
09514+ B’ T 09514+ B

and the optimal binding energy of atoms in the cluster is
equal to:

Ry=a+ =a 27)

0.049°4 B(A+ B)
2(0.9514+ B)* °

E=(A+ B)—U"(a)d* (28)

The obtained expressions allow us to understand the
behavior of the cluster energy for large clusters. Then
A= B=10m’ and we have from formula (28) for the total
energy of the cluster—icosahedron:

E=(20-—0.0063U"(a)a*)m*+ 15m?, (29)

Comparing it with the total energy of the cubo-octahedral
cluster, we have that an internal atom of any structure has
12 nearest neighbors, but the distances between nearest
neighbors are equal to the optimal one for the cubo-
octahedral structure and differ a little from the optimal one
for the icosahedral structure. Therefore, the coefficient for
the term m° is a little higher for clusters with close packing
than for the icosahedron structure. On the other hand,
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TABLE IX. Parameters of the icosahedron cluster.

m n Number of hm\d.l E Eopl

1 13 42 41,2 36
2 55 234 229 216
3 147 696 681 662
4 309 1548 1514 1492
5 561 2910 2846 2835
6 923 4902 4793 4809
7 1415 7644 7474 7527
8 2057 11256 11005 11116

surface atoms of the icosahedron have more nearest neigh-
bors than in the case of structures with close packing.
From this it follows that the icosahedron structure is the
optimal one for not very large clusters, and large clusters
must have the structure with close packing.

The transition from one structure to other one is ex-
pected at n ~ 1000. Table IX lists the total binding energies
for icosahedra in the case of the truncated Lennard-Jones
interaction potential if only the interaction of nearest
neighbors is taken into account. As can be seen from Table
IX, the binding energies of clusters with the icosahedral
structure E and with close packing E,, are compared at
n~ 1000.

Note that inclusion of a long-range interaction between
cluster atoms increases typical values of n up to which the
icosahedral structure is the optimal one. A long-range in-
teraction is stronger for the icosahedron structure than for
structures with close packing because of its higher density.
For example, for large clusters the radius of the sphere on
which vertices of structures are placed are higher by 2.4%
for the icosahedral structure than for the structure with
close packing. Add to this that according to the experimen-
tal studies (Refs. 8, 10, 16, 19, 4648) of rare gas clusters
by the method of electron diffraction by cluster beams,
neutral clusters of rare gases have the icosahedral structure
for n <1000 and the structure with close packing is real-
ized for n of a few thousand. Investigations of charged
clusters of rare gases**5® have shown that the magic num-
bers of clusters depend on the cluster type and conditions
of cluster formation. But for all cases of studies the icosa-
hedral structure of clusters corresponds to observing magic
numbers for n <1000.

7. DISTRIBUTIONS OF CLUSTER ATOMS AMONG SHELLS

Analyzing the properties of large clusters, we compare
these with properties of macroscopic particles. Experience
with such a comparison shows a correspondence in cases of
some properties and a lack of correspondence in other
cases. Further we consider this question for distributions of
cluster atoms among cluster shells. Because of the high
symmetry of a cluster with close packing, each cluster shell
contains many (6-48) atoms. If the cluster under consid-
eration forms a symmetric figure or is close to it, the num-
ber of atoms in the same state becomes even greater. Fur-
ther we construct the distribution of cluster atoms among
shells using the macroscopic concept of the cluster with
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close packing and check the validity of this concept. Then
one can use the Fermi-Dirac formula for occupation
numbers:®’

gme=ni{1+exp[(ex—p)/T1}" L

Here n, is the number of atoms on the kth shell, g,, is the
optimal number of atoms on this shell at a total number of
cluster atoms n, g, is the binding energy of the atom for
this shell, p is the chemical potential of the cluster which
satisfies the relation:

(30)

n= 2 qu= 2 m{l+expl(ex—pu)/T1} " (31
k k
Assuming the chemical potential to be a smooth func-
tion of n (|, 1 —p,| €1,), we have:

Bny1=pn+dp,/dn.

In this case by taking the derivative of the relation (31) we
obtain for the cohesive energy of the cluster which is the
mean energy of a released atom:

g,=d Z £1qni/dn

—1
= %“?kan(”k—an)nk-1 §4nk(nk—an)"k—l

(32)

It may be seen that free and closed shells give a small
contribution to the cohesive energy. Therefore, analyzing
the distribution of atoms among cluster shells, we must
concentrate the main attention on shells being filled.

To check the validity of the Fermi-Dirac formula for
considering clusters we compare its result with the accu-
rate one. Use a simplified cluster model according to which
the cluster under consideration has only two shells that are
not free or closed. Label the number of states for the lower
shell by /, the number of states for the upper shell by », the
energy difference between the upper and lower shells as .
The equation for the chemical potential in accordance with
the Fermi-Dirac formula (30) has the form:

n=Il/(1+X)+m/(1+X7Y), (33)

where X =exp[(g;—pn)/T), €, is the energy of the lower
shell, Y=exp(e/T). The solution of this equation allows
us to find the distribution of atoms among shells within the
framework of the Fermi-Dirac approximation.

Use the simplified cluster model for the accurate dis-
tribution of atoms among shells. The probability to have ¢

atoms on the upper shell has the form:
W,=C|7ClY /Z, (34)

where C { is the number of combinations of / items taken ¢
at a time, and the partition function is equal to:

min(},n)
Z= 2 CricLy (35)
g=0
1t gives for the cluster excitation energy:
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TABLE X.

n 23 24 25 26
Z,107 11,0 6,6 3,6 1,8
g, 80(,1) | 85@7D | 91192 | 9,798
Ag, 1,61 1,70 1,72 1,77
aq/¢\? 0.57 0,58 0,57 0,57
[ 0,55 (0,56) | 0,58 (0,58) | 0,62 (0,60)

E,=ef,= 2, qC1CLY/Z,
q
where G, is the mean number of atoms on the upper shell.
This value is similar to

(36)

E,=ms/(1+XY),

which relates to the Fermi-Dirac distribution.

Compare these two expressions for clusters with close
packing within the framework of the above simplified
scheme. Choose the shell 037 as the lower shell of the
cluster (see Table IT), and the group of shells 008, 118, 028
as the upper shell. The cluster growth at zero temperature
is accompanied by simultaneous occupation of these shells.
Averaging over the parameters of these shells, we have for
the parameters of the model under consideration:

=24, m=54, g=—-6D, £=2D/3.

Table X lists data which characterizes the distribution
of atoms among cluster shells at the temperature 7=0.3.D
(i.e. Y=9.2). Values of parameters which correspond to
the Fermi-Dirac approximation are given in Table X in
parentheses. It can be seen that the error due to using the
Fermi-Dirac approximation does not exceed several per-
cent. Figure 12 gives distributions according to occupation
numbers evaluated on the basis of formula (31). From this
one can determine the standard deviation:

(37)

Au=g, "~ (@),

According to data in Table X where these values are given
the ratio Ag,/qY? practically does not depend on n.

From Table X it follows that the partition function in
the present case is large Z~10"-10%. It means that the
effective number of cluster states is large too and justifies
the use of the Fermi-Dirac approximation for this case.
Moreover, the average excitation energy of clusters lies in
the interval 5D-6D, i.e. significantly exceeds the cluster
thermal energy T'=0.3.D. This also confirms the validity of
statistical methods.

But there is an ultimate problem because the energy
parameters of atoms for each shell £, depend on the occu-
pation of neighboring shells. One can expect that for a real
distribution of atoms among shells the mean values of &
change but little for the most probable distributions of at-
oms among shells. This allows us to construct a perturba-
tion theory whose zero order approximation is the distri-
bution of atoms among shells at zero temperature. One can
obtain from this mean values of g; which are used for the
first order approximation of the pertubation theory. Such a
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FIG. 12. The distribution of clusters with close
packing consisting of 807+ n atoms with respect
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pertubation theory works the better the nearer is the clus-
ter structure to the symmetric one for which any shell is
either occupied or free.

Figure 13 gives the cohesive energy of clusters with
close packing as a function of the number of cluster atoms.
It corroborates the conclusion that a large cluster differs
from a macroscopic particle. An increase of the tempera-
ture smooths out the dependence of cluster energy param-
eters on the number of atoms in it, but this dependence
does not coincide with that which corresponds to macro-
scopic particles.

Thus a cluster with close packing is a convenient
model which allows one to analyze the validity of a mac-
roscopic description for distributions of atoms in a cluster.
The validity of the Fermi-Dirac distribution for clusters
with close packing is explained by the high cluster symme-
try. It leads to a large number of atoms in the same states.
It holds not only for clusters with close packing, but also in
the case of other symmetric clusters including clusters with
the icosahedral structure.

8. LARGE SYMMETRIC CLUSTERS AND FLAT SURFACES

The main property of clusters relates to the large spe-
cific area of their surface. Therefore, one can expect an
analogy between cluster and surface properties. Properties
of the symmetric clusters under consideration must be
found in greater correspondence with properties of surface
because they have flat boundaries. Atoms on these bound-
aries are found to be under the same conditions as atoms of
a macroscopic surface. Therefore this analogy deserves at-
tention.

Add to this that the Fermi-Dirac approximation is
more valid for symmetric clusters. Indeed, the maximum
number of atoms on one cluster shell is equal to 48, but a
flat surface of symmetric clusters can contain a much
greater number of atoms with identical parameters. For
example, the tetrakaidecahedron—a cluster with m=2
which consists of 1289 atoms has 24 vertex atoms with the
binding energy £=6, 108 edge atoms with £=7, 54 atoms
inside surface squares with £=8, and 296 atoms inside

FIG. 13. The cohesive energy of clusters with
close packing at 7=0.3D. The dotted line corre-
sponds to a macroscopic particle.
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surface hexagons with £=9. Therefore the Fermi-Dirac
approximation is valid for cluster structures which are
close to symmetric ones.

Let us consider such a case assuming the number of
excited atoms from the cluster surface to be relatively
small. Divide the surface atoms into two groups. Label the
atoms of the cluster surface by the subscript / and the
atoms of excited shells by the subscript k. The condition of
a small number of excitations means that
expf(ex—u)/T)«1 and exp[(e;—u)/T]»1. Using these
conditions in the Fermi-Dirac formula (30) we obtain:

An= D niexp(—e/T)X—| X nyexp(en/T) /X |,
i k

(38)

where

An=n— 2 ng, X=exp(u/T).

k
This gives for the chemical potential of the cluster:
I An [ (An\? b} 9

el (8] o
where

a= 2 nexp(—e/T), b= Y nyexp(ey/T).

i k

Here n; is the total number of possible excited states.

Let us go to the macroscopic limit assuming

An<(a/b)'?=1/X. (40)

Then the numbers of vacancies and excitations are equal to
each other and are \/a—l;. As can be seen, in this case a
cluster is like a semiconductor with a small density of free
electrons with atoms of the cluster playing the role of elec-
trons of the semiconductor. Such a semiconductor has the
Fermi level in the middle of a forbidden band.! Then we
have for the cluster chemical potential u=6D with an ac-
curacy up to thermal energy.

It is possible to obtain this result in a simple way by
using the symmetry of the problem. Indeed, let us take a
unit of a flat surface and assume the surface to be entirely
covered by atoms at zero temperature. Then the numbers
of vacancies and excitations are the same at a finite tem-
perature, and the system is symmetrical with respect to a
replacement of vacancies by excitations. From this it fol-
lows that the chemical potential of such a surface and the
cluster cohesive energy are equal to 6D. This coincides
with the result of Ref. 24 for the cohesive energy of a flat
macroscopic surface which was obtained for a system of
surface atoms with a short-range interaction and a certain
structure of this surface. Note that it is not important that
the atoms must entirely cover a macroscopic surface at
zero temperature because in the opposite case transitional
zones exist over a small part of the surface area.

Let us obtain the criterion that the surface of a sym-
metric cluster is like a macroscopic surface. Assume the
number of cluster atoms to be close to that of a symmetric
figure and the distribution of cluster atoms to be close to
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that of the symmetric structure. Then cluster vertices and
edges play a role of transitional zones of a macroscopic
surface. Therefore the possibility to use for the cluster pa-
rameters of a macroscopic surface demands the neglect of
vertex and edge atoms compared with surface ones. This
corresponds to the criterion:

gy exp(—Ae/T) > n, (41)

where n,, is the number of atoms situated on the cluster
flat surfaces, n’ is the number of vertex and edge atoms, Ae
is the difference in the binding energy for atoms situated on
cluster surfaces and on its vertices or edges.

Consider as an example the case of the cluster-
tetraikaidecadron consisting of 1289 atoms at the crystal
melting point 7'=0.58 D. Then the small parameter corre-
sponding to the criterion (41) has the form:

a=[ny,+n,exp(—D/T))/[n, exp(~2D/T)
+nsexp(—3D/T)], (42)

where n,,, ng, n,, and n, are respectively numbers of cluster
atoms that are located on the vertices, edges, surfaces of
squares and surfaces of hexagons. From this we have for
the cluster with m=2 consisting of 1289 atoms at the crys-
tal melting point 7=0.58 D a =13, i.e. this cluster does not
have an analogy with a macroscopic surface. An asymp-
totic expression for the small parameter in the limit m — o
has the form at the crystal melting point 77=0.58 D:

a=2.1/m=14/n'"3,

At this temperature the cluster surface becomes identical
with a macroscopic surface if the number of cluster atoms
is of the order of 10*. The smaller is the temperature, the
larger are cluster sizes demanded for this transition.

Let us analyze the correspondence between large clus-
ters and a macroscopic surface in another way. The mean
cohesive atom energy for a macroscopic flat surface is
equal to:

e=6D. (43)

This is the asymptotic limit n— oo for clusters with close
packing. Taking into account the next term in the expan-
sion of the small parameter n~'/> leads to a macroscopic
cluster model—the liquid drop model. Then in accordance
with formulae (8), (18) the mean cohesive energy is equal
to:

e=dE/dn=6D—24D/3n'?, (44)

where E is the total binding energy of atoms in the cluster.
This formula is transformed for the cluster with close
packing to the form:

e=6D—5.1D/n'3. (45)

Note that the mean cluster cohesive energy is a little less
than the cluster sublimation energy related to one atom
which is equal to:

ean=E/n=6D—17.6D/n'"3. (46)
For the truncated Lennard-Jones interaction potential
without a long-range interaction the sublimation energy of
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FIG. 14. Positions of maxima for the cohesive
energy as a function of the number of cluster at-
oms. The dotted line relates to the dependence
e(n) =5m>+4nm’.
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alarge cluster with the icosahedral structure is given by the
expression which follows from formulae (23), (29):

Eo=E/n=5.86D—6.55D/n"". (47)

It is of interest to compare this expression with that cor-
responding to the Lennard—Jones interaction potential of
atoms taking into account a long-range interaction. From
treatment of the data of Ref. 21 we have the asymptotic
expressions for the sublimation energy of clusters with the
cubo-octahedral structure:

Esp=E/n=8.41D—12.7D/n"? (48)
and with the icosahedral structure:
Eap=E/n=8.57D—15.6D/n'". (49)

Note that the close values of coefficients of formulae (48),
(49) are obtained in Ref. 16 by approximation of numer-
ical values in some range of n. The asymptotic value of the
first coefficient, i.e. the sublimation energy of the crystal
per one atom for the Lennard—Jones interaction potential
is equal to 8.61.D (Ref. 1). This value for the lattice with
close packing refers to the cubo-octahedral cluster struc-
ture. The degree of correspondence of this value to the
coefficient of formula (48) characterizes the accuracy of
formulae (48), (49).

Figure 13 gives the average cohesive energy of the clus-
ter with close packing at the temperature 7=0.3D. One
can seen that the cohesive energy oscillates as a function of
n and differs from that corresponding to a macroscopic
particle [formula (45)]. With cluster increase the ampli-
tude of oscillations must decrease and the cohesive energy
£(n) will tend to the macroscopic limit.

Note that according to Fig. 13 and the data of Table 11
maxima of the cluster cohesive energy correspond to at-
tachment of blocks with shells 0, 3, B, to the cluster. Min-
ima of the cluster cohesive energy correspond to attach-
ment of blocks which include shells 0, 8, y, where 8=0 or
1 or an attaching block is started from a shell a, 8, 7,
where a~f~7y. With increase of cluster size these blocks
are increased and the binding energy difference for neigh-
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boring blocks falls. Moreover, neighboring blocks grow in-
dependently for clusters of large size, and the function
£(n) becomes smooth. Then the cluster becomes similar to
a macroscopic particle.

Denote positions of maxima of the cohesive energy by
Nna, and assume these to correspond to half-occupied
blocks with maximum binding energies of atoms at zero
temperature. Figure 14 gives some values of np,,. The
corresponding blocks contain a shell 0, m, m whose atoms
are vertices of cubo-octahedra, but the optimal sequence of
cluster growth differs from the cubo-octahedral one. Posi-
tions of maxima of £(n) in Fig. 14 are compared with the
dependence

nmax=5m3+4m2, (50)
(m is the maximum number) which is the optimal one for
not too great values of m.

Thus £(n) has an oscillatory character for n~ 1000,
and oscillations are important up to n~ 10*. Such a form of
the cluster cohesive energy influences the character of the
cluster growth. In particular, the classical theory of homo-
geneous condensation®>"! which is based on the macro-
scopic drop model for clusters-condensation nuclei-must
be changed taking into account the real form of (n). In-
deed, intermediate products of the process are clusters for
which the dependence £(n) differs from that which corre-
sponds to a macroscopic drop.

Thus the analysis of clusters with close packing and
comparison of these with macroscopic particles leads to the
following conclusions. First, as a system of many bound
atoms with a high symmetry such a cluster admits a mac-
roscopic description for distributions of atoms in clusters
on the basis of the Fermi—Dirac distribution. Second, the
cohesive energy of a cluster is a nonmonotonic function of
n, in contrast to a macroscopic particle. Third, if the num-
ber of cluster atoms is close to the number of atoms of
symmetric structures, the majority of the surface atoms of
a close-packed cluster are located at not too great a tem-
perature on the flat surfaces of the structure. Nevertheless,
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FIG. 15. Processes of the structure transitions between symmetric states
of atom systems. a) DSD-process; b} EB-process.

the behavior of a cluster surface differs from the behavior
of a macroscopic surface up to ~10* atoms in the cluster.

9. SOLID-LIQUID PHASE TRANSITION

The solid-liquid phase transition is the principal prob-
lem of physics of condensed systems.”! Clusters, and espe-
cially their symmetric structures can be useful for an anal-
ysis of this problem. The phase transition starts from the
surface,” and clusters as systems with a large specific area
of the surface give some information for this process.
Experimental73’76 and theoretical’®® studies of phase
transitions for clusters extend our knowledge of this pro-
cess.

We note that systems of bound atoms with a short-
range interaction are suitable systems for understanding
the nature of phase transitions due to the high symmetry
and simplicity of systems with close packing. Moreover,
condensed inert gases are such systems, and existing infor-
mation about the phase transition of condensed inert gases
also helps to understand this problem. Main results for
physics of the phenomenon are obtained on the basis of
numerical methods of molecular dynamics, and the analy-
sis of the phase transition by such methods is the more
detailed the smaller is the number of atoms in the system.
Therefore, the phase transition for clusters can be studied
in greater detail than for macroscopic systems.

The nature of the phase transition for clusters with a
short-range interaction depends on filling the last cluster
shell. If the cluster shell is not filled, there is a finite num-
ber of states of the cluster with maximum binding energy
of atoms. These states relate to different configurations of
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atoms, and transitions from one of these states to another
are accompanied by atom transitions to new sites in the
cluster. Thus, for unfilled cluster shells free movement of
atoms of this shell between their sites can take place at low
temperatures and small cluster excitations.

There are two types of atom displacement in this case
which lead to a change of atom configurations (see Fig.
15). The first of these is the DSD-process’® (diamond-
square-diamond). As a result of this process, the bond
passes from one pair of atoms to another one. Usually this
process takes place for carbon compounds.®*? The other
type of the bond transition is called the EB-process
(edge-bridging).*® Then some bonds of the migrating atom
are broken, and it rotates on the unbroken bonds to a new
site which is symmetrical with respect to the initial one.
The final atom state is characterized by the same number
of bonds as the initial one. The EB-process of atom dis-
placements relates to systems of atoms with a short-range
interaction, in particular, to condensed inert gases.94‘96

The phase transition of clusters with an unfilled exter-
nal shell®*% can be an analog of the phase transition of an
unfilled macroscopic surface. For investigation of the phase
transition of macroscopic condensed systems with a short-
range interaction it is necessary to use as an analog the
symmetrical clusters with filled layers considered above.
Then it is of interest for the phase transition of condensed
inert gases to consider first of all the closed icosahedral
structures, because closed clusters with such a structure
have a maximum binding energy.

The peculiarity of the cluster phase transition is deter-
mined by the different binding energy of atoms of external
and internal shells. Therefore, the phase transition for in-
ternal and surface atoms must be observed at different tem-
peratures. As an illustration of this statement, Fig. 16 gives
the nature of atom movements in a Si-cluster.?! Atom tra-
jectories for long times are shown in this figure. If atoms
vibrate near the equilibrium positions, their trajectories
have the form of smeared out points. If atoms can change
their positions, the entire region which joins the equilib-
rium atom positions is smeared out. As can be seen from
Fig. 16, surface atoms can change their positions under the
conditions being discussed and this corresponds to the lig-
uid state, while internal atoms are fixed in the lattice nodes
and this corresponds to the crystal state.

Figure 17 (Refs. 86, 87) gives another example of this
kind and refers to the Ar,4; cluster which at zero temper-
ature has the icosahedral structure with three filled layers.

FIG. 16. Space trajectories of atoms for a Si-cluster con-
sisting of 1024 atoms.®! Slices of the cluster are shown.
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FIG. 17. A snapshot of the cluster Ar 4, in which atoms are modeled by
balls. 34

The upper layer becomes liquid under the above condi-
tions, and the internal ones are solid. The atom configura-
tion in the cluster is calculated on the basis of methods of
molecular dynamics, and the Lennard-Jones pair interac-
tion potential for atoms is used.

Let us consider the special features of the phase tran-
sition which follow from studies of Ar-clusters.®s* The
conclusion of these studies is that the phase transition of
surface atoms does not consist in a random movement of
atoms which leads to an amorphous surface of the surface
layer. On the contrary, the strong interaction between
neighboring atoms is preserved. But the collective move-
ment of surface atoms attains high amplitudes at the phase
transition, and this causes ejection of some surface atoms
out of the layer. They become attached to a cluster surface
and “float” on it. They can return to the surface layer, and
then other surface atoms become floating. Thus, the phase
transition is explained not by transitions of individual at-
oms, but by special features collective movements of at-
oms.

Figure 18 contains the atom distribution in Ar,,; for
the liquid and solid state of the surface layer at the melting
point.**#” As can be seen, the phase transition is accompa-
nied by displacement of some surface atoms into the next
free layer. Then the distribution of internal changes small.
The temperature dependence for some parameters of the
Arss cluster is given in Fig. 19 (Ref. 88) near the melting
point of the surface layer.

The main special feature of the cluster phase transition
is that it has a range of temperatures in contrast to mac-
roscopic systems where the phase transition takes place at
a fixed temperature. Therefore the coexistence of liquid
and solid phases is possible in a cluster.”®®* Indeed, in
accordance with (Refs. 90-93) introduce the ratio of the
probabilities of liquid and solid phases of the cluster in the
form K=exp(—AF/T), where AF =nAp is the difference
between the free energies of the liquid and solid phases, Ay
is the difference between the chemical potentials for these
phases, and # is the number of atoms in the cluster. As-
suming Ap=(9Au/dT)(T —T.), where T, is the temper-
ature of the phase transition, we obtain the following ex-
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FIG. 18. The atom density of Ar4, as a function of the square of the
distance from the central atoms near the melting point of the surface layer
(38 K).%4" a) The solid state of the surface layer; b) the liquid state of
the surface layer.

pression for the probability for the cluster to be in the
liquid state:
JAu

wyq=1+exp|n T (T-T.) 7.

The transition range is the narrower the larger is n. For a
macroscopic system (72— oo ) Wy is a step-function of the
temperature, but for a cluster the transition range is char-
acterized by a finite width. Solid and liquid phases coexist
in this range.

We give some estimates on the basis of numerical re-
sults obtained in Refs. 86-90 for Arss and Ar,4; clusters.
Note that in this case as in the case of a macroscopic
system with a short-range interaction of atoms we have for
the melting point:

T./e=0.04-0.05.

Here T is the melting point, ¢ is the energy which is spent
on formation of one vacancy in the system. For the surface
of clusters this value is equal to the cluster cohesive energy,
and in the case of the Lennard—Jones interaction it is equal
to 7.04D for Arss and 7.19D for Ar,; (Ref. 15).
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FIG. 19. Parameters of the Arsg cluster near the melting point for the
surface layer in absence of external pressure.®® a) The total binding energy
E of atoms (in units of D); b) the heat capacity Cp (dimensionless); ¢)
the volume occupied by the cluster (in units of R2/v32).

Let us estimate the equilibrium number of vacancies
for the crystal state of the Arss cluster at the phase tran-
sition temperature by assuming that it has the icosahedral
structure. For simplicity we use the parameters of the trun-
cated Lennard-Jones interaction potential without its long-
range part and neglect small difference from the equilib-
rium distance for nearest neighbors in the icosahedron.
This gives that the Arss cluster contains 13 atoms with the
binding energy of 12.D, 30 atoms with the binding energy
of 8D and 12 atoms with the binding energy of 6D. In
addition, in the unfilled layer there are 20 states with the
binding energy of 3D, 20 states with the binding energy of
2D and 12 states with the binding energy of D. Then on
the basis of formula (39) we obtain for the cluster chem-
ical potential = —4.65D at the cluster melting point
T=0.3D, and the average number of vacancies formed at
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the vertices of the cluster at this temperature is equal to
0.13. Taking the long-range interaction into account leads
to an increase of this value.

The above estimates contradict the results of computer
modeling of this cluster by methods of molecular dynamics
because the phase transition for the cluster surface layer
takes place at the above temperature and causes the for-
mation of several vacancies. Understanding the reason for
this contradiction will allow us to elucidate the nature of
the phase transition. Note that application of the Fermi-
Dirac distribution for considering a solid cluster is valid
because cluster shells are filled and the excitation probabil-
ity is small. Therefore the used binding energies are accu-
rate, and we must look for the contradiction in neglecting
atom vibrations. But the vibrational movement of an indi-
vidual atom is not essential in this case. Indeed, the binding
energy of atoms in the Lennard-Jones cluster at zero tem-
perature is equal to 279D (Refs. 15, 16, and 21) while the
phase transition of surface atoms corresponds to the bind-
ing energy of atoms of approximately 255D (see Fig. 19),
i.e. the vibrational energy of cluster atoms does not exceed
10% of the total binding energy of the cluster.

Thus vibrations of individual atoms do not influence
the cluster behavior. It follows from this that the phase
transition can be associated with a nonlinear interaction of
collective vibrations of atoms. This is the conclusion of
Refs. 86-88 on the basis of numerical modeling of the
parameters for the Ar;4; cluster. Then the question arises
as to why a strong interaction of vibrations takes place at
small amplitudes of vibration. We note that a Lennard-
Jones cluster consisting of 55 atoms with the cubo-
octahedral structure has at zero temperature the binding
energy of atoms of 268 D while the phase transition corre-
sponds to the binding energy of atoms of 255D, i.e. the
cubo-octahedral structure can be excited at the tempera-
ture of the phase transition. Interaction between the icosa-
hedral and cubo-octahedral structures can provide a non-
linear interaction of vibrations. It relates to symmetrical
vibrations in which all cluster atoms partake, and this in-
teraction can lead to a strong redistribution of the energy
between degrees of freedom.

Thus the analysis of the phase transition allows us to
understand in detail the nature of the phenomenon and the
character of melting for surface and internal cluster layers.
The dependence of the phenomenon on cluster sizes leads
to the above peculiarity of the cluster phase transition. In a
macroscopic system the transition from one phase to the
other one takes place at a fixed temperature and is accom-
panied by a change of the internal energy of the system. In
clusters this transition takes place in a certain range of
temperatures, and the concept of the point of the phase
transition must be extended to an interval. We note the
methodological side of the problem. The analysis of the
phase transition by using molecular dynamics methods be-
comes more accessible for clusters. Therefore it can be used
for understanding the phase transition of macroscopic sys-
tems.

Analyzing the phase transition of macroscopic sys-
tems, consider the popular model of Stillinger and
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TABLE XI. Parameters of the phase transition for condensed inert
gases.

Parameter { Ne Ar Kr Xe Average
T,./6D 0,048 | 0,049 | 0,048 | 0,048 | 0,048 £ 0,001
L= (p/p,) | 0,137 {0,126 | 0,136 | 0,131 } 0,132 + 0,005
AlI /D 1094 11,00 [099 {099 | 0,98=0,03
€.,/ 6D 0,82 0,92 0,91 0,91 0,89 = 0,04
e, /D 8,3 8,6 |80 8.3 8,3+ 0.2
n,,. 45 37 59 45 46+9

Weber!™ which was constructed on the basis of computer
modeling of an argon cluster with the cubic body-centered
lattice. It accounts for interaction of vacancies and the
influence of excitations on the energy of the system. The
interaction energies for both effects are assumed in this
model to be proportional to the square of the number of
single vacancies inside the system. This approximation
gives the “S-bend” form for the temperature dependence of
the cluster density. Such a form describes both the Still-
inger and Weber phase transition in a macroscopic
systems'® and the phase coexistence. Because one can in-
troduce strictly the interaction of vacancies for an atomic
system with a short-range interaction, this allows us to
check the validity of the above assumptions as long as the
atom movement does not influence the state of the system.

Let us treat the Table I data on the basis of the above
assumptions (see Table XI). The formation of vacancies
inside a system demands a certain expenditure of energy.
Assuming a decrease in the system density as a result of the
phase transition to be connected with formation of vacan-
cies, one can calculate by using the measured values of the
specific energy of the process the energy which is expended
per single vacancy &,,., i.e. the energy that is necessary to
remove one atom from the system. Table XI contains the
corresponding values of the specific energy for the forma-
tion of a single vacancy £,,,.

The energy of formation of a single vacancy depends
on its size. For example, it is necessary to break 12 bonds
for the removal of one atom from inside of a system with a
short-range interaction of atoms, i.e. £,.,=12D. For re-
moval of a diatomic molecule we must break 23 bonds, i.e.
€,,.~ 11.5D. This accounts for an interaction of single va-
cancies which coalesce into bubbles. The energy for the
formation of a single vacancy depends on bubble size. Us-
ing the energy per single vacancy which we obtain from
measuring values of the heat of melting and the volume
change on melting, one can evaluate the average vacancy
size for melting of various condensed inert gases. Such an
operation was made in Ref. 24 and the obtained values of
a number of vacancies in a bubble n,, are given in Table
XL

The above analysis is a logically consistent one within
the framework of the used concept. Indeed, assuming that
the liquid differs from the crystal consisting of atoms with
a short-range interaction only by presence of vacancies in-
side it, we have estimated the average size of the vacancies
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by using experimental data. But it is difficult to explain the
obtained result n,,. ~ 50 within the framework of the math-
ematical model. This casts doubt on the used mechanism of
the phase transition and demands a search for alternative
mechanisms for the phase transition.

The above result casts doubt also on the mechanism of
the phase transition which is used by the Stillinger—-Weber
model.'® According to this model the phase transition is
created by vacancy interaction. This interaction for a mac-
roscopic system of atoms with a short-range interaction
can be found accurately on the basis of measuring the pa-
rameters of the phase transition and can explain the ob-
served picture of the phase transition of condensed inert
gases as a result of formation of bubbles consisting of doz-
ens of vacancies inside a system. If we reject this conclu-
sion, we must also regard the mechanism of the phase
transition corresponding to the Stillinger~Weber model to
be a doubtful one.

Using the analysis of the phase transition for surface
layers of clusters with a short-range interaction of atoms,
one can contend that its mechanism is explained by a non-
linear interaction of collective vibrations. Then symmetri-
cal structures of clusters with a short-range interaction of
atoms give one of such mechanisms of the phase transition.
It will be considered below. Within the framework of this
mechanism the phase transition inside condensed inert
gases is determined by the interaction of the cubic face-
centered and icosahedral structures.

There are three structures of clusters with close pack-
ing: cubic face-centered, hexagonal and icosahedral, and
for each of these an internal atom of the structure has 12
nearest neighbors. Note that all inert gas crystals have the
cubic face-centered lattice, and the phase transition to the
hexagonal lattice is observed sometimes, but it demands
special conditions and is accompanied by a small specific
energy of transition. Therefore further we will not differ-
entiate between the cubic face-centered and hexagonal
structures, and consider the phase transition as a transition
between the cubic face-centered and icosahedral structures.

The icosahedral structure is not advantageous at zero
temperature because the distances between nearest neigh-
bors of this structure differ from the optimal ones by ap-
proximately 2.5%. With increase of the temperature the
amplitude of atom vibrations is increased and average dis-
tances between nearest atoms are increased also due to
anharmonism of vibrations. Evidently, if this change ap-
proaches 2.5%, both the cubic face-centered and the icosa-
hedral one can exist inside the crystal. This will correspond
to a phase transition. As can be seen from Table XI, the
solid-liquid phase transition for condensed rare gases cor-
responds to just such a change of the average distance
between nearest atoms. Note that this concept of the phase
transition does not mean the formation of clusters with the
icosahedral structure inside the system. It shows only that
the formation of intermediate cluster structures is useful
for the description of this phenomenon.

Consider the solid-liquid phase transition inside a sys-
tem with short-range interaction of atoms, as a result of
formation of clusters with icosahedral structure inside it. It
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means that an element of the crystal structure which is a
cluster with the cubic face-centered structure is trans-
formed into a cluster with the icosahedral structure as a
result of displacement of its atoms. Then the cluster size is
decreased and it can turn about its center. This is a mech-
anism of the atom displacement to new nodes of the crystal
lattice without formation of vacancies inside the system.
Let us estimate the energy of the considered transition
by assuming that it relates to a cluster consisting of 13
atoms (the minimum number of cluster atoms among the
possible ones). As a result of the transition a cluster with
the cubo-octahedral structure is transformed into a cluster
with the icosahedral one. Assuming that the atoms sur-
rounding this cluster retain their positions during the tran-
sition, we calculate the energy of such a transition. We take
into account that both structures have one central atom
and 12 atoms are located on a sphere. Because the transi-
tion from the cubo-octahedron to the icosahedron changes
in an essential manner the atom distribution on the sphere,
we assume that the atoms of the icosahedron are located on
the sphere randomly with respect to the surrounding atoms
of the lattice. Moreover, we use the expression (5b) for the
pair potential of the short-range interaction of atoms:

U(R)=D exp[ — (R—R,)*/2AP]. (51)

We pick out inside an inert gas crystal a cubo-
octahedron cluster consisting of 13 atoms. Its atoms have
84 bonds with surrounding atoms of the crystal. Therefore
the removal of this cluster from the crystal demands an
energy expenditure of 84D. The above bonds involve 6
atoms which are located at a distance of av2 from the
cluster center, and each of these atoms has 4 bonds with
cluster atoms. In addition, there are 24 atoms of the sur-
rounding lattice at a distance of av3 from the center and
each of these has 2 bonds with cluster atoms, and 12 atoms
with one bond are located at a distance of 2a from the
center. Here a is the lattice constant and for the crystal
with a short-range interaction of atoms we have a=R,.

Let us determine the change in the potential of inter-
action of external atoms of the lattice with cluster atoms
for the transition from a cubo-octahedron to an icosahe-
dron. Assuming icosahedral atoms to be distributed on the
sphere randomly, denote by R the sphere radius, R; the
distance of an external atom from the cluster center and
assume R+ R.— R ;> Ar. Then the average interaction po-
tential of an external atom with a cluster atom is equal to:

_ 1 dcos
U=J' 5 “ U[(R*+R*—2RR, cos a)'/?]
—1

RAr \/77

= D -,

RR, 2

where a is the angle between directions which join the
atoms under discussion with the cluster center. From this
it follows that the average interaction potential of cluster
atoms with surrounding atoms of the lattice is equal to
U=272DAr/R and this formula is the first term of expan-

sion in terms of the small parameter Ar/R, under the as-
sumptions made. Assuming near the minimum the pair

(52)
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TABLE XII.

Shell n, Nuniber of bonds R/Ro
with cubo-octahedron
013 24 4 5
222 8 3 6
123 48 2 7
033 12 1 9

interaction potential to have the form of the Lennard-
Jones one (4), we obtain for the binding energy of the
icosahedral cluster with the face-centered lattice U=32D.

Taking into account 36 bonds between nearest neigh-
bors in the cubo-octahedron cluster of 13 atoms and 42
bonds in the icosahedron cluster of the same size, we will
find the energy expenditure for the transition from a cubo-
octahedron to an icosahedron inside the crystal lattice A
=47D. We assume that at the melting point this energy is
compensated by the vibration energy of atoms in the exist-
ing bonds, i.e. nT.=Ag, where T, is the melting point.
Then we obtain:

T.=0.56D. (53)

This estimate corresponds to real values of the melting
point for condensed inert gases T.=0.58 D.

Let us make the same estimate for the cluster consist-
ing of 55 atoms assuming that as a result of the cluster
transition from a cubo-octahedron to an icosahedron the
surrounding lattice retains the cubic face-centered struc-
ture. Table XII contains parameters of lattice atoms which
interact with cluster atoms. Averaging over positions of the
icosahedron atoms on the sphere, we obtain for the mean
binding energy of the icosahedron with the surrounding
lattice:

- T n; n i

U—D\/;Ar Rogj RR,’ (54)
where 7; is the number of atoms in the corresponding
icosahedral shell, R; is the radius of this shell, #;, R; are the
same parameters for atoms of the surrounding lattice
which are given in Table XII.

For definiteness we assume the distances between at-
oms to be the same as in an isolated icosahedron cluster.
Moreover, we used, as before, the short-range interaction
potential in the form (5b) when the parameter Ar corre-
sponds to the truncated Lennard-Jones interaction poten-
tial Ar = R,/ \/’7~2 Then atoms of the icosahedral surface
include 12 atoms-vertices with R;=1.936R, and 30 atoms
situated at the midpoints of sides of equilateral triangles
with R;=1.732R,. Moreover, the transformation of the
cubo-octahedron cluster consisting of 55 atoms into the
icosahedron cluster demands an energy expenditure of 13D
under the above conditions.

Formula (54) gives in this case U=112D. This corre-
sponds to the energy expenditure for the transformation of
a cubo-octahedron cluster consisting of 55 atoms into an
icosahedron cluster inside the crystal lattice Ae=103D.
We assume that this energy expenditure is compensated at
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the phase transition by the vibration energy nT"; on bonds
between the cluster and the surrounding atoms. Because
n=228, we obtain in this case

T,=0.45D. (55)

As can be seen, this estimate coincides within the limits of
this accuracy with the preceding one and with the values of
the melting point for inert gas crystals.

Thus the phase transition for a system of bound atoms
with a short-range interaction can be explained as a result
of nonlinear vibrations for modes which mix cubo-
octahedral and icosahedral structures of clusters consisting
of lattice atoms. Many atoms partake in such vibrations
which can include both normal and tangential movements.
These vibrations can be accompanied by a small rotation of
clusters. A certain amplitude of these vibrations leads to
formation of vacancies.

Vibrations which are responsible for the phase transi-
tion can be picked out in the course of the analysis of the
motion spectrum for a system of bound atoms if this mo-
tion is modeled by computer methods of molecular dynam-
ics. Amplitudes of motion for frequencies which corre-
spond to vibrations which mix the cubo-octahedral and
icosahedral structures must increase sharply near the tem-
perature of the phase transition. Data on the parameters of
these vibrations obtained from the numerical computer
analysis of systems will allow us to construct a simple
model of the phase transition which is similar to that of
Ref. 100, but takes into account the real mechanism of the
phase transition and its numerical parameters. The more
accessible analysis of such a type relates to the phase tran-
sition of surface layers for clusters with filled shells, i.e. to
the above symmetrical cluster structures.

Thus symmetrical structures of clusters assist progress
in understanding the solid-liquid phase transition for atom
systems with a short-range interaction of atoms. The mech-
anism of this transition is associated with a nonlinear in-
teraction of collective vibrations of atoms in the system,
that, probably, results from the transition between the
cubo-octahedral and icosahedral structures of clusters in-
side the system.

10. CONCLUSION

The analysis of clusters with close packing shows that
they are a convenient object for studies of systems of many
bound atoms. Because of the high symmetry and simple
description of such clusters, one can use these as a model
for investigation of various problems of large clusters, es-
pecially, by using modern computer methods. %1% The
symmetric cluster structures discussed above are useful in
this regard due to their simplicity. The possibility exam-
ined above to analyze these structures within the frame-
work of a general scheme allows one to obtain general
conclusions about their structure, energy parameters and
their role in various processes.

Clusters can form new stable structures (Refs. 104 and
105) which can be the basis of solids new in principle such
as fullerenes.'% Therefore, clusters can be used for assem-
bling new materials (Refs. 49 and 107) and be a basis for
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new technologies (Refs. 108-116). One of the stable clus-
ter structures with close packing is a cluster with icosahe-
dral structure which is realized in various solids. This
structure is essential for various processes and interactions
in systems with a short-range interaction of atoms, and the
experience of this review confirms it.

The main problem of physics of large clusters relates to
their correspondence with macroscopic particles. Accord-
ing to the accumulated experience in some cases we find
such a correspondence, in other cases it is absent. For ex-
ample, the surface energy of such a cluster is described by
a macroscopic dependence n** with an accuracy of several
percent starting from clusters with a few dozen of atoms.
The reason for this is a large number of shells and atoms
which give a contribution to the surface energy. Some
properties of large clusters differ from macroscopic ones.
For instance, the cluster cohesive energy is a nonmono-
tonic function of the number of cluster atoms up to thou-
sands of atoms in a cluster in contrast to the properties of
macroscopic particles. This is explained by the block struc-
ture of clusters with close packing, and each block includes
hundreds of atoms. As a result, the cluster cohesive energy
as a function of the number of atoms has an oscillating
structure. These oscillations become nonessential for clus-
ters consisting of ~ 10* atoms.

One would expect at the first stage of studies of large
clusters that a cluster as a system intermediate between
molecules and macroscopic particles has properties of one
of these depending on its size.!'”!"® It turned out, that a
large cluster is an object with specific properties in a wide
region of the number of atoms in it.!!*-'2! These properties
depend on the cluster structure. Clusters with close pack-
ing as one kind of cluster give a useful experience in this
direction. The simplicity of these clusters will allow them
to be used as a model for studies of various processes and
phenomena.
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