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Different analytic methods (perturbation theory in the Born approximation and under Bragg
reflection, as well as coupled-wave theory and its modifications) are used to derive and discuss
approximate analytic expressions for electromagnetic wave fields in bounded one-dimensional
periodic dielectric structures and the corresponding reflection coefficients. The range of validity
of each of the analytic solutions is established and it is shown that the modified coupled-wave
method, which is valid simultaneously for large and small modulation periods and appreciable
modulation depths, has the widest range of validity. The method is used to calculate the reflection
coefficients of such structures as functions of the incident-wave frequency, taking into account
the finite size of the structures, the properties of the ambient media, absorption, and small
nonlinearity and aperiodicity.

INTRODUCTION

One-dimensional problems have always been popular
among physicists. The mathematical formalism that is nec-
essary for their solution is usually particularly simple in the
one-dimensional case. It is thus often possible to obtain an
exact solution of a problem, which can subsequently serve as
a standing point and testing ground for approximate meth-
ods describing more complicated physical situations.

Wave propagation in one-dimensional periodic media
has gone through two well-defined "highs" in its history.
The first involved studies of the structure of energy bands in
one-dimensional crystals, and was initiated by the well
known paper by Kronig and Penney.' At first, the electron
theory of one-dimensional crystals was merely a convenient
physical model, but it subsequently found its real experimen-
tal basis in semiconducting superlattices.2'3'49 Another
"high" in the study of wave propagation in one-dimensional
periodic structures was the rapid advance in optical hologra-
phy,4'5 acousto-optics,6'7 integrated and optical electron-
ics,8~'° X-ray diffractometry,' '-12 and so on in the middle 60s
and early 70s. The renewed interest in one-dimensional
problems was dictated by the desire to investigate wave
propagation and scattering in one-dimensional structures at
a new level (defined by the then current problems), and to
use new tools (such as computer technology), with a view to
practical applications. And although the one-dimensional
model of a periodic medium was invalid more often than not
in practical cases, the results obtained in this way were useful
in the qualitative analysis and in approximate descriptions of
the physics of these processes. The one-dimensional problem
was thus the source of a key or basic model whose function
was, on the one hand, to improve our understanding of pro-
cesses occurring in periodic structures and, on the other, to
enable us to develop and test quantitative methods for their
analysis.

The aim of this paper is to review from a unified stand-

point the methods now available for the analysis of wave
processes in one-dimensional periodic structures, to expose
similarities and differences between these methods, to com-
pare their ranges of validity, and to provide a brief descrip-
tion of the basic physical effects encountered in periodic me-
dia with weak aperiodicity and small nonlinearity in
structure parameters.

It has not been our intention to provide an exhaustive
review of these questions, since this has already been done to
some extent elsewhere (we recall, for example, the mono-
graph by Brillouin and Parodi13 and the review paper by
Elachi.14 We have concentrated our attention on universal
approximate methods of analysis that lead to analytic solu-
tions. Such methods enable us to describe from a unified
standpoint the different processes that occur in periodic
structures of arbitrary configuration. They can usually be
extended to two-dimensional problems and to problems with
a large number of degrees of freedom. In this sense, analysis
of one-dimensional periodic structures provides us with a
methodological basis for the solution of more complicated
problems. Finally, universal approximate methods allow us
to perform rapid estimates and qualitative analyses of spe-
cial cases, which is important from the practical point of
view.

We begin our review with classical methods of solving
Maxwell's equations in periodic media. They include the
Floquet-Bloch method, the multiwave and two-wave dy-
namic theory of diffraction (using the perturbation-theory
expansion with the permittivity modulation depth as the
small parameter), and the method of integral equations. We
continue by considering the approximate analytic theory of
coupled waves due to Kogelnik. All these methods lead to
simple approximate analytic solutions that are valid for
small permittivity modulation depths. A more detailed ac-
count is then given of the modified coupled-wave theory that
is valid not only for small modulation depths but, particular-
ly, when the radiation wavelength is much smaller than the
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modulation period. This approximate analytic theory is used
as a basis for the derivation of the corresponding dispersion
relations and the wavelength dependence of the wave trans-
formation coefficients for an arbitrary modulation profile
and arbitrary thickness of the periodic layer, taking its ab-
sorption and the properties of ambient media into account.
It has been shown57'59 that there is good agreement (for
small modulations depths) between the results obtained in
this analytic theory and the exact numerical calculations
performed near a Bragg resonance and for large detuning
from this resonance. Small aperiodicity in the layer and
weak nonlinearity of the media are taken in account within
the framework of this unified approach.

Our entire discussion is based on the simple example of
wave propagation in the direction of a periodic variation in
the properties of a medium with scalar and frequency-inde-
pendent permittivity. There has been considerable recent
progress in theoretical and experimental studies of the optics
of anisotropic and gyrotropic periodic media.48-50"52 The
most interesting results have been obtained in the optics of
liquid crystals, including the effect of polarization, frequen-
cy, and amplitude on reflection properties.48-50-52 The propa-
gation and transformation of waves in such media will not be
discussed here for lack of space.

1. ONE-DIMENSIONAL PERIODIC MEDIA

In general, a one-dimensional periodic medium consists
of a layer of thickness L (Fig. 1), filled with a medium whose
permittivity E(Z) =e(z + a) varies periodically in the di-
rection of the z axis (a is the period of the structure). If the
medium has absorbing or amplifying properties, its permit-
tivity becomes complex: e = e' + ie". In practice, most
known media have e" ^e' where the real part e' is related to
the refractive index by the formula и = (f')1 / 2 and the
imaginary part e" is related to the intensity absorption coef-
ficient a by e" = ak ~1(e')l/2 where k = со/с = 2тг/Л and/I
is the wavelength of light in vacuum. For the sake of simpli-
city, we consider a plane light wave, incident normally on a
one-dimensional periodic structure (OPS). For arbitrarily
polarized light, the equation for the electric field E(z) inside
the layer then takes the form

d2£(z)/dz2 + k2e(z)E(z) = 0, (1)

where

E(z,t) = E(z) exp(- icat).

Equation (1) is called Hill's equation when f(z) is a
periodic function. We shall take it as our basic equation for

FIG. 1. Layer with one-dimensional perodicity: L—layer thickness, £, and
£2—permittivities of ambient homogeneous media, a—period of the func-
tion e(z).

the description of light propagation in OPS.
Since Hill's equation is linear, its general solution is a

superposition of two independent special solutions £,(z)
and£'2(z):

E(z) = C2E2(z), (2)

where C, and C2 are arbitrary constants. For a periodic me-
dium, Floquet's theorem13-15-16 shows that a special solution
of (1) can be written in the form

£j(z) = Oj(z) exp(iftz), (3)

where fj, is the so-called characteristic index that is generally
complex (ц = ц' + ifi") and Ф^г) is a periodic function
with period a. A solution such as (3) gives the following
expression for the resultant field:

exp(- f4"z) exp ;-at)]. (3')

This is a spatially modulated [Ф^г) is periodic], inhomo-
geneous (//"^0) electromagnetic wave, propagating (for
/z'^0) along thez axis with phase velocity yph = ea/\/u'\.

There are usually two standard electrodynamic prob-
lems that are of interest. The first involves the determination
of the dispersion relation// = /j,(k) and the use of this rela-
tion as a means of establishing the regions of instability and
stability of solutions such as (3') with real (//" =0) and
complex values of/ j , (ц = fj,'(k) + 1ц" (k)). The next step is
to determine the amplitudes of the Fourier components of
the functions Ф1)2 (z) for an unbounded periodic medium. In
the second problem, we have to find the reflection and trans-
mission coefficients for a plane wave incident on a layer of a
periodic medium of thickness L. These coefficients, and also
the constants Cl and C2, are determined from the field conti-
nuity conditions at the layer boundaries, i.e., at z = 0 and
z = L. The dispersion relation p(k) and the form of the spe-
cial solutions EI (z) and E2(z) are assumed known. The first
problem is therefore a preliminary stage to the solution of
the second, and this is indeed how we shall proceed below.

2. CLASSICAL METHODS OF FINDING SOLUTIONS FOR
UNBOUNDED PERIODIC STRUCTURES

In practice, the two most frequent one-dimensional pe-
riodic structures are: layered media with (1) a step
(piecewise constant) variation in permittivity e(z) and (2)
with harmonically varying e(z). These periodic media are
discussed in detail in a number of monographs13-17'18-53 and
we shall therefore confine our attention to a brief review of
the methods available for their analysis. For layered media,
there are effective matrix methods1 '-17-53 that lead to a tran-
scendental dispersion relation for the characteristic index
p(k). In simple cases such as, for example, the Kronig-Pen-
ney model,1-13-19 the dispersion relation can be expressed in
terms of trigonometric functions and its solution can be ob-
tained approximately by a graphical method or numerically
to a given precision. For harmonically modulated permittiv-
ity, the solution of (1) can be expressed in terms of Mathieu
functions.18 The dispersion relationц(k) and the field con-
figurations are then most frequently calculated with the help
of rapidly converging series. The number of terms that must
be taken into account in the series is determined by the re-
quired precision of the final result. In each of these cases,
therefore, specific calculations sooner or later involve a nu-
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merical procedure. Moreover, the computational schemes
developed for OPS with piecewise e(z) and harmonically
modulated permittivity are not universal, but are designed
for the analysis of these particular structures.

This is why subsequent studies were concerned with
creating a unified numerical method for the solution of (1)
that was independent of the particular form of e(z) and was
based on the expansion of e(z) and of the solutions Ф, 2 (z)
into infinite Fourier series. Hill's classical papers served as
the starting point for all this work (see Refs. 13 and 15). In
more recent times, the tendency toward the unification of
numerical calculations has been represented by the so-called
Floquet method, widely used in the analysis of one-dimen-
sional periodic structures. 20~26

2.1. The Floquet-Bloch method

The essence of this method is as follows (see, for exam-
ple, Ref. 25). In accordance with (3), we write the solution
of (1) in the form

/= + 00

/=-00
(<Н (4)

where A, are unknown coefficients that determine the form
of the periodic function Ф,(г). We also make a Fourier ex-
pansion of the periodic permittivity E (z) where a is the struc-
ture period:

mz

in which

.2л
-z— mz

.
)dz.

(5)

(5')

Substituting (4) and (5) in (1), separating out the
т = 0 term, and replacing in the double infinite sums over т
and / the summation index / + т with /, and in the sum over
т the summation index т with / — m, we obtain the follow-
ing infinite set of equations for the coefficients A,:

2 -

A,k\- 4/

(6)

where / = 0, + 1, + 2,...,8ml is the Kronecker symbol, and
the factor (1 — Sm,) annuls the т = I term. The set of equa-
tions given by (6) is exact. If we equate its determinant to
zero, we obtain the dispersion relaxation for the characteris-
tic index /a, and the unknown coefficients A, can be ex-
pressed in terms of A0 either by the method of continued
fractions13'15 or by the well-known methods available for the
evaluation of infinite matrices.13'15 In practice, instead of the
infinite set of equations, we solve a finite set that is obtained
from (6) by discarding the higher-order harmonics. The or-
der of the approximate set of equations is determined by the
required precision of the final result. We note that, if the
permittivity is not modulated, and em = 0, equation (6) has
nonzero solutions, А,=^0, only if the wave vector k is such
that

0, ±1, ±2,..., (6')

where k(,+J and k } ' refer to waves traveling in the positive
and negative directions of the z axis, respectively [see (3') ].

It is clear from (6) and from the solutions given by (4)
that the Floquet-Bloch method is particularly suitable for
computer evaluations: the numerical calculation follows di-
rectly the formulation of the problem. It is therefore much
simpler to use the Floquet-Bloch method in specific calcula-
tions rather than derive general properties of wave transfor-
mations in one-dimensional periodic media. The latter prob-
lem is usually solved by approximate analytic methods.

2.2. Integral-equation method

Approximate analytic solutions of equation (1) can be
found by starting with the equivalent integral equation (see,
for example, Ref. 27)

(7)

in which the periodic perturbation ep (z) = £(z) — EO has a
zero mean and G(z — z') is the Green's function of the un-
perturbed equation (1) with E(Z) = £0 and right-hand side
equal to — S(z — z'). According to Ref. 27, G(z-z') is
given by (see Appendix I)

G(z-z') =
2/tei

(8)

where k = <a/c = 2tr/A and £0 = e'0 + ie'o- For an infinite
periodic structure, the integral in (7) is conveniently evalu-
ated over the period a instead of the entire z axis. If we use
the periodicity relations ep (z ± ma) = ep (z) and E(z ±_ a)
= £(z)exp( + щта), which follow from (3) and (7), we

find that instead of (7) we have

(9)

where

8(2)=

(10)

A detailed analysis of (9) and (10) and a proof of the
equivalence of the integral equation (9) and the system giv-
en by (6) in the Floquet-Bloch method are given in Appen-
dix I.

3. PERTURBATION THEORY

3.1. Born approximation and Raman-Nath multlwave
diffraction

When approximate analytic formulas are derived in the
Born approximation, we start not with the integral equation
(7) [or (9)] and its subsequent solution by the iteration
method, but with the equivalent set of equations of the dy-
namic diffraction theory, given by (6). To construct an ap-
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proximate solution of (6) for E{(z) in (4), we consider its
right-hand side as a perturbation. This is possible, for exam-
ple, for small permittivity modulation amplitudes, i.e., for
£m <f0 and m/0. If, at the same time, we suppose that
Am </40, and if we solve (6) by the method of successive
approximations, we obtain a perturbation-theory series for
the characteristic index fi and the amplitudes Am (see, for
example, Ref. 25). This gives

*(*'о)
1/2 . or (13)

.1/2ео 1 +

2 m=

1-1/2
ЯеО

(11)

where Л = 2ir/k = 2тгс/со is the wavelength in vacuum.
This solution procedure corresponds to the Born ap-

proximation that is widely used in quantum theory of scat-
tering62 and in calculations on the scattering of electromag-
netic waves by ultrasound.'7 It is based on the expansion of
the field in powers of a small parameter that involves the
perturbation and the ratio of the size of the scatterer to the
wavelength. It is readily seen that, in the case of (11), the
small parameter is

£ = (Jta/|e0| )Де = &0оДе/|е0|, (12)

where Де is the permittivity modulation amplitude, i.e.,
Дг = \em |max and k0 = k(Eg)I/2 is the wave vector of light
propagating in the homogeneous medium.

The resultant field £,(z) in (4) is a superposition of
plane electromagnetic waves with different amplitudes A,
and wave vectors

When the permittivity modulation depth Д£ is small and the
wavelength Я is comparable with the structure period a, in
which case the Born-approximation parameter f in (12) is
also small, all the amplitudes Л / (/ / 0) are small in compari-
son with the amplitude A0 of the zero-order approximation.
This means that, when f«l, the total field £,(z) in (4)
consists, in the first approximation, essentially of one wave
with amplitude A0 and propagation constant/^ = k(e'0)

1/2,
which corresponds to phase velocity i>ph =o)/[i'0
= c/(fo)1/2- The secondary waves with small amplitudes

A, <Л„ that are excited by this wave on permittivity inhomo-
geneities produce a weak wave "background." This takes the
form of a set of waves traveling with different velocities cu/k,
(different in both magnitude and direction) and small am-
plitudes A, that can be calculated from the approximate for-
mulas given by (11).

3.2. Two-wave dynamic diffraction theory; Bragg diffraction

The Born approximation considered in the last Section
is valid when the wave amplitudes A m other than A0 are all
small, i.e., when we are dealing with essentially single-wave
propagation. On the other hand, it is clear from the solutions
given by (11) and obtained in the Born approximation that
the condition Am <%A0 ceases to be valid for numbers
т = — л for which the radiation wavelength A = 2irc/a>
satisfies the Bragg condition

where n = 1,2,3,. ..define the Bragg resonances. The condi-
tion given by (13) refers to the nth Bragg resonance for
which the amplitude A _ „ of the ( — w)-th harmonic can
become equal to or greater than the amplitude A „ of the lead-
ing incident wave for which, according to (6')
k £ + > = k(e'0 )

l/2=^ = irn/a. It is then clear from (11)
that the amplitude Am of the remaining harmonics with
w/(0, — и) are small, as before, and this means that the
propagation of light in this case is essentially of the two-wave
kind. For x-rays in crystals, this is known as the two-wave
dynamic theory of diffraction (see, for example, Refs. 1 1 and
48).

If we solve (6) with allowance for two-wave diffraction,
we can neglect in the first approximation all the other har-
monics except for the ( — «)-th harmonic with amplitude
A _ „ and the fundamental harmonic with amplitude A 0 if as
before £x 1. The approximate set of equations then assumes
the form (see, for example, Refs. 24 and 25)

(A-^V + ̂ - " 0 . (14)

where e0, e ± „ , and em are complex quantities defined by
(5'). The condition that this set of equations has a solution
gives the following dispersion relation for the characteristic
index ц( k):

-Геп«_„ = 0. (15)

Near a Bragg resonance (13), and when the permittivity
modulation amplitude is small (\£±n |<|f0|). equation
(15) has the following approximate analytic solution (see,
for example, Refs. 25 or 54):

where

6 = - (л/а) n, x±n

\l/2

(16')

The expression for у given by (16) was obtained on the as-
sumption that the detuning 8 in (16') from the Bragg reso-
nance (13) was small for |<5| < irn/a. The quantities x ± „ are
usually called the coupling constants. They determine the
strength of the diffraction coupling between the leading har-
monic of amplitude A0 and the ( — n)-th harmonic of ampli-
tude Л _ „. The coefficient a describes the absorption of light
by the homogeneous medium. The quantity 7 in (16) is de-
fined so that Re ^<0 and 5 Im y<0. It is now a relatively
simple matter to obtain the relation between the amplitudes
A _ „ and.<40, using (14) and the solution given by (16). The
result is

_
A- ~

_ __
-n ~ гвА>' ГВ - у + (a/2) - и" (17)

As the wave number k = o/c departs from the Bragg
resonance (13), i.e., when |5|>|xm | and a, but as before
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) l / 2, the quantity // tends to k(e'0)
112, and the

expression for the amplitude A _ „ assumes the form given
by (11), which agrees with the solutions found earlier in the
Born approximation.

The accuracy of these calculations can be increased if,
as in (14), we retain terms containing A0 and A _ „ on the
left-hand side of the equations and the other nonresonant
terms in the sums on the right-hand side of (6) are taken
according to perturbation theory (see, for example, Ref.
54). This is essentially the procedure used in Ref. 28. It leads
to the renormalization of the coupling constants xn and
к _ „, and also to the wavelength shift of the Bragg resonance
relative to its position given by (13). The result54 is that the
shift of the center of the Bragg resonance in the presence of
absorption a (a 7^ 0) is proportional to the absorption coeffi-
cient a, whereas in a transparent medium (a = 0) it depends
on the third power of the small coupling constants xm. The
change in the coupling constants is then proportional to the
first power of кт (see Ref. 54).

The main result that follows both from the general theo-
ryis.i8,48 an(j from particuiar formulas such as (16) is that a
range of forbidden frequencies k = a/c appears on the dis-
persion curv k = a>/c = k(n) near the /ith Bragg resonance
in nonabsorbing media (a = 0, к _ „ = к*, and
х„ к _ „ = \х„ \2 = к2}. The solution of (16) is then complex
(y^Q). In this forbidden frequency band, the electromag-
netic waves (3') are found to be damped (for periodic non-
stationary media these solutions become unstable), but out-
side the forbidden frequency band we have у = 0, // in (16)
is purely real, and we have propagating electromagnetic
waves. It follows from (16) that the width of the forbidden
frequency band is equal to twice the coupling constant x, and
the function y ( k ) is a parabola with 7max = x (see Fig. 2).
When a ̂ 0, the characteristic index fi of an absorbing medi-
um is always complex and waves of all frequencies are
damped in the medium to a greater or lesser extent. If the
medium is not subject to periodic modulation, so that x = 0,
the dispersion relation k(fi) degenerates to a straight line
that passes through the origin in Fig. 2. This corresponds to
a constant velocity of light in a homogeneous medium. In
addition to the dispersion relation k = a>/c = k(fi), we are
interested in the dependence of the quantity r% = А _„/А0

on the frequency со = ck [see (17) ], which determines the
relative amplitude of the ( — /z)-th harmonic. For the Bragg
resonance (13), this ( — n)-th harmonic has, according to

Reft

FIG. 2. Dispersion relation k (fi) near the nth forbidden band (other bands
not shown) for transparent media: solid curve—k = k(Rep), dot-dash
curve—Imfi = у = y ( k ) , dashed curve—wave propagation in a homoge-
neous medium.

-г -2 -1

FIG. 3. Spectral dependence of the power reflection coefficient Rx (6/
x) = \fg (S/x)\2 and the phase j(S/x) ofr£ for a semi-infinite medium:
S—frequency detuning for the nth Bragg resonance, x—coupling coeffi-
cient of counterpropagating waves, <p—initial phase for reflection with
8= -к.

(6'), the wave vector k _„ = — irn/a whose magnitude is
equal to that of the wave vector k0 = k(e'0)

112 = irn/aofthe
leading incident wave propagating in the opposite direction.
Since54 the amplitudes A, of the remaining waves with
/ Ф (0, — n) are small in comparison with A0 and A _ „, the
quantity r% must be the Bragg reflection coefficient of an
infinite periodic medium (OPS). Figure 3 shows the square
of the modulus of the Bragg reflection coefficient
R x =\rg\2 and its phase x = arg rj? as functions of the nor-
malized detuning, calculated for a lossless OPS. The phase <p
from which x is measured is related to the initial modulation
phase (forz = 0) of the permittivity: x _ „ = x exp (/?>). Itis
clear that Rx = 1 in the forbidden frequency band. This
means that the amplitude of the ( — «)-th harmonic be-
comes equal at Bragg resonance to the amplitude of the
original zeroth harmonic. We also note that at the short-
wave (8/x = + 1) and long-wave (S/x = — 1) edges of
the forbidden frequency band, the reflection coefficient r%
has opposite signs because there is a phase change of тт when
S/x crosses the forbidden band.

The expression given by (4) with the characteristic in-
dex (16) is one of the independent solutions of (1). Another
independent solution for an even function e(z) is

E2(z) - Ф2(2) ехр ( - #»), Ф2(«) = (18)

For arbitrary e(z), the second independent solution of
(1) can be obtained by changing the sign of the characteris-
tic index and repeating from the beginning the procedure for
finding its value while at the same time determining the
quantities y4m. If we know the solutions Et (z) andE2(

z)>we

can calculate the characteristics of a bounded OPS by de-
manding field continuity across its boundaries. We shall dis-
cuss this procedure later in relation to the coupled-wave
equations.

4. STANDARD COUPLED-WAVE THEORY (CWT)

This approach to the solution of (1) with periodic per-
mittivity e (z) was first used by Kogelnik to analyze light
scattering by phase holograms in the case of small harmonic
permittivity modulation.14'29 We shall illustrate this ap-
proach for the more general case of a medium with arbitrary
periodic permittivity e(z), confining ourselves to the basic
assumption made by Kogelnik, namely, that the wave trans-
formation in one structure period is small. This assumption
is satisfactory when the incident wave frequency is close to a
Bragg resonance frequency.
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4.1 . Derivation of coupled-wave equations

The essence of the method that we shall use is as fol-
lows.26-55 The solution of ( 1 ) is taken in the form of a super-
position of two counterpropagating waves

E(z) = A^\z) exp(i*4/2z) +

ЙЬ>1/2г) (19)

with variable amplitudes A(±) (z) and wave vector
kel

0

/2 = k(e'0 )
in + (/a/2 ) that corresponds to wave propa-

gation in a homogeneous absorbing medium with complex
permittivity EO = e'0 + ie'o where е„ = а(е'0 )l/2/k and a is
the absorption coefficient. Substituting (19) in (1), using
the expansion given by ( 5 ) for the periodic perturbation

ep(z) = Ф) - е0 = £emexp
m=-«>,

(.2л \
(гИ

and substituting 8 = k ( E ' 0 ) l / 2 — (тг/an) for the detuning
from the nth Bragg resonance, we obtain an exact solution
that involves the amplitudes of the forward, A (+}(z), and
backward, A (~\z), waves

dz'
m=-«,

1 , ,
/ .2л \ I . JT a — 2»5 1

exp (i— mzi exp г — «z =— z

x exp (20)

If, as assumed by Kogelnik,29 the transformation of forward
into backward waves is small within the structure period a,
the functions A( ±' (z) and their derivatives, and also the
factors exp ± [ (a — 2/V5)/2z], can be regarded as constant
within the structure period a. If this is so, we can multiply
(20) by

/ .л , a — 2i8 чexp ( 7-1 — nz H ~— zj

and, by
/.я a — 2и5 \exp(i-nz 5—z),

and then, by averaging over the structure period a, we obtain
the approximate set of coupled equations for the forward
and backward wave amplitudes (see also Refs. 26 and 55)

exp[ (a - 2tf)z] О,
(21)

dz2

*2е_„ехр[-(а - 1i 0.

When we average over the period in the sums over m, all the
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terms vanish with the exception of the resonant terms with
т = n and т = — n; expressions containing A( ±' (z) and
their derivatives multiplied by exp( + i2irnz/a) also vanish.
The condition that the amplitudes A(*' (z) and their deriva-
tives, and also the factors exp[ + (a — 2iS)z], are constant
over the period a is satisfied when

aa«l, \x±n\a«l, (2la)

or

| i t le ± n l/ le 0 l« l ,

where

, со 2л
k = — = -j-.

с л

(2lb)

The last inequality in (2la) was derived using the Bragg
resonance condition given by (13).

The set of equations with constant coefficients given by
(21), which relates the amplitudes A (+)(z) and^4 (~'(z),can
be solved by standard exponential substitution.26>55 How-
ever, in the widely-used Kogelnik approach14-29 one usually
neglects the second order derivatives of Л ( ± ) (z) in (21).
These equations then assume the form of the standard set of
Kogelnik equations for coupled waves:

dz
йе„ехр[(в - (22)

- (« - 2«5)zM(+)(z),

where к ± = ke ± „ /2el

0

/2, a is the absorption coefficient,
and S is the detuning from the nth Bragg resonance.

A similar set of approximate equations is obtained from
the integral equation given by (7) by substituting into it the
solution given by (19), dividing the range of integration
with respect to z' by 2 (in which z — z' has a particular sign),
and then equating the coefficients of exp( + ike^z) on the
left and on the right of (7). The result of all this is the follow-
ing exact set of integral equations:

bo -o

*z'n (22')

If we again use the conditions given by (2 la), which ensure
that we are close to the nth Bragg resonance and that the
change in the amplitude Л ( ± ' (z) per period is small, we can
readily reduce (22') to the set of coupled wave equations
given by (22) (see Appendix II). However, the set of exact
integral equations given by (22') is convenient because it
allows us to use a simple iteration method to estimate the
next approximation for A( *' (z) (see Appendix II).

The general solution of the approximate equations giv-
en by (22) is

S. Yu. Karpov and S. N. Stolyarov 6



xexp

exp( -yz) + C ех
/

[ f|-«5

р(уг)1

exp( -yz) + p C2 exp(yz)]xn г J

where Ref>0. Hence, and from the solution given by (23),
in which we use the second equation in (24), we obtain the
following expression for the Bragg reflection coefficient of
the matched layer of thickness L:

xexp[-(f-tf)z], (23)

where y and r% are given by (16) and (17), respectively. The
constants C, and C2 are determined from the boundary con-
ditions imposed on the fields at z = 0 and z = L,

4.2. Reflection from a matched layer

We shall now calculate the reflection coefficient for a
light wave incident on a layer of a one-dimensional periodic
medium (OPS) matched to the ambient media and having a
thickness L. This means that the permittivity of the layer
defined by (5) satisfies the continuity conditions e(0) = el

and £• (L) = £2atz = Qandz = L, respectively, where, in the
notation of Fig. 1, e, is the permittivity of the homogeneous
medium behind the layer, for z<L (the light wave travels
from the former to the latter). When the modulation depth
of the permittivity EZ in (5) is small, and the media on either
side of the layer are the same, i.e., £, = e2, the approximate
matching condition can be written in the form £, = e2 = EO

where £„ is the homogeneous part of the function e(z) in (5),
i.e., its zero-order Fourier harmonic.

For a matched layer, the refractive index is continuous
across the separation boundaries at z = 0 and z = L, so that
there is also no Fresnel wave reflection from the separation
boundaries. This means that, on the other hand, reflection
by the entire layer is determined exclusively by Bragg reflec-
tion from the periodic structure and, on the other, the elec-
tromagnetic fields on either side of these boundaries (z = 0
and z = L) are identical. The quantity A0 = A( + ' (z) in the
solution given by (19) is then identical to the amplitude of
the wave incident on the layer, and Л '"'(О) is the amplitude
of the wave reflected by the layer. Similarly,^ (+\L) is equal
to the amplitude of the wave transmitted by the layer into the
region z>L. By virtue of the radiation principle (see, for
example, Refs. 33 and 38), the incident wave is absent from
the region z > L behind the layer, A (~' (L) =0. This gives the
boundary conditions in the form

If we use the first of these conditions for solutions such as
(23), we obtain

ych(yL) - i<5]sh(yL)'
(26)

and also the transmission coefficient

у ехр (innL/o)_
ych(yL)

_
- #]sh(yL)'

(27)

- У ~~ у + (а/1) + id (25)

These formulas can be interpreted as follows. Since, in the
real world, there are no lossless layers (a > 0), it follows that
Re^ > 0 and, in the limit of the semi-infinite space (L -> oo ),
the formula given by (26) gives the quantity r% obtained in
(17) from dynamic diffraction theory. Naturally, we then
have t % = 0. If we now substitute the solutions given by
(23) for the field E(z) in (19), we find that C, and C2 refer
to the forward Bloch wave in (2) and the backward Bloch
wave, respectively. It is clear from (25) that, for a matched
layer of finite thickness, these two counterpropagating
Bloch waves are always coupled to one another. This cou-
pling vanishes only in a semi-infinite medium because we
then have C2 -> oo.

Figure 4 shows the spectral dependence of the energy
reflection coefficient RL = |r| |2 as a function of the dimen-
sionless detuning 8x of the wave frequency from the Bragg
resonance for different values of absorption, characterized
by the parameter aL. It is clear from Fig. 4 that, when aL is
small and lies outside the forbidden frequency band, so that
| S \ > | к \, the function R L (8) oscillates as a result of interfer-
ence between waves reflected from the more distant bound-
ary of the layer of thickness of L. The fraction of light reach-
ing this more distant boundary of the mirror decreases with
increasing aL. This means that, as aL increases, the ampli-
tude of the oscillation decreases and vanishes altogether
when aL > 1. We then find that R L

B tends to r% in (17), and
the shape of the RL (S) curve approaches R „ (<5) = r% 2in
the semi-infinite periodic medium.

The reflection curve RL (S) of a layer of finite thickness
L will also cease to oscillate when the layer is illuminated by
a nonmonochromatic radiation with wave-packet width Д«
such that its width Д/с = Aw/c in wave number space satis-
fies the condition

FIG. 4. Spectral dependence of the power reflection coefficient RL (5/
x) for a matched layer (a/x = 0.3 and xL = 3) for orL = 0.9(a),

and3.6(c).
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4.3. Connection between the dynamic theory of diffraction
and the coupled-wave theory, and the conditions for the
validity of the latter

All the results obtained in coupled-wave theory for the
dispersion relations, the field distribution, the reflection and
transmission coefficients, and so on, can also be derived in
the dynamic theory of diffraction. Comparison of (16) and
(17), on the one hand, and the solutions given by (23), on
the other, shows that the two approaches yield the same re-
sult near a Bragg resonance, but the computational scheme
in the dynamic theory of diffraction is more laborious.

We must now examine the ranges of validity of the cou-
pled-wave theory, which can be deduced from (2la) and
(21b). The coupled-wave equations (22) demand that the
absorption coefficient a remains small within the structure
period a, and so does the detuning S as compared with a~',
but they also demand that the change in the amplitudes
A(±) (z) per structure period must also be small (see Ap-
pendix II). This change is characterized by the value of the
coupling constant к in (21b), which can be estimated from
the expression k~k&£/\£0\

1/2 where Де is the maximum de-
viation of e ( z ) . The basic condition for the applicability of
the coupled-wave theory is thus the condition

l e I1 / 2

or [see (12)]

ka
\er

,1/2

«a

лAs =

-1

а Де

Ie0l
1/2 «1. (27')

On the other hand, the dynamic theory of diffraction is
valid when the parameter £ in ( 1 1 ) is small. This means that
the coupled-wave theory (CWT) and the dynamic theory of
diffraction (DTD) become identical in this range. All the
results obtained in these theories are then identical as well.

It is clear from (27') that both theories provide a rea-
sonable description of the propagation of light for low-order
Bragg resonances for which и = 1,2,3 in (13) and the struc-
ture period a is of the order of the radiation wavelength Л.
For a given Я, an increase in the structure period a, i.e., in the
Bragg resonance number in ( 1 3 ) , or in the modulation depth
Д£/|£0|, is accompanied by the onset of an increase in g in
(12), or in (27'), and the analytic formulas deduced from
the two theories (CWT and DTD) become less accurate.
The physical reason for this is the increasing importance of
multiwave and multiple diffraction. On the one hand, the
amplitudes/*,, i n ( l l ) increase with increasing f in ( 1 2 ) , so
that there is also an increase in the resulting contribution of
the wave 'background' to the wave field in (4) . On the other
hand, the contribution of the successive multiple scatterings,
i.e., of the next perturbation orders, becomes significant
(see, for example, Refs. 26 or 54). According to (11), the
amplitudes Am (terms with т = + 1) of singly-scattered
(diffracted) waves are proportional to the parameter f in
(12). These singly-diffracted scattered waves can then be
diffracted again by inhomogeneities of E(Z), producing sec-
ondary waves whose amplitudes are proportional to g 2.
These secondary waves can, in turn, produce tertiary waves
with amplitudes proportional to f 3, and so on. The ampli-
tudes of и-fold scattered (diffracted) waves are then propor-
tional to g " . The contribution of first-order perturbation

theory for the nth Bragg resonance is then proportional to
the same quantity [see (17) in which к ± „ ~f for harmon-
ic modulation]. This means that, near the nth Bragg reso-
nance (13), the resultant amplitude of Bragg-diffracted
waves can contain comparable contributions due to (1) non-
resonant и-fold scattering [i.e., inhomogeneities in E(Z)
with dimensions of the order of the wavelength], primary
diffracted waves, (и — l)-fold scattered secondary waves,
(n — 2)-fold scattered tertiary waves, and so on, and (2)
singularly scattered waves corresponding to the nth Bragg
resonance. We thus have to sum the contributions due to all
these n scattering channels in order to determine the resul-
tant amplitude of the diffracted waves corresponding to the
nth Bragg resonance, which is proportional to g". We find
that this is not at all easy to do. Attempts to construct this
type of multiwave and multiple diffraction theory21'23 have
forced us to use numerical procedures that significantly re-
duce the typical simplicity and clarity of approximate ana-
lytic formulas. We therefore turn to a different approximate
analysis of wave transformation near the nth Bragg reso-
nance, i.e., large structure periods a, in which multiple and
multiwave diffraction is partially taken into account by a
modified coupled-wave theory (MCWT).

5. MODIFIED COUPLED-WAVE THEORY (MCWT)

The principles of the modified coupled-wave theory
were formulated in Refs. 30 and 60 and were later used to
examine wave transformation in periodic corrugated wave-
guides.31-37>60 Subsequent comparison of these calculations
with exact numerical results57'59 showed good agreement be-
tween them near Bragg resonances and well away from them
(which includes periodic media with a small number of pe-
riods and an appreciable modulation depth). This confirms
that the modified coupled-wave theory evidently takes par-
tially into account the multiwave and multiple diffraction of
waves by periodic inhomogeneities in e ( z ) , especially for
high-order Bragg resonances.

5.1. Derivation of the MCWT equations

The essence of the method is as follows. We start by
substituting in (1) the solution for E(z) in the form of coun-
terpropagating waves with variable amplitudes A(+\z),
A(~\z) and geometric-optics phases

it

J(e(Z'))1/2dz',

(28)

Equation (1) then becomes an identity (see, for example,
Ref. 33), and the problem thus reduces to the solution of
(29), if the amplitudes Л (+\z),A {~\z) satisfy the equations

(29)

where

(30)
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We can now average over rapid oscillations to obtain
from the exact equations (29) an approximate and simpler
set of equations.24-35 In practice, this means that the main
contribution to the exact solutions of (29) is provided by the
slowly-varying components of the coefficients S( *'. It is
precisely these components that are taken into account when
the approximate solution is constructed. Since e(z) is peri-
odic, we have ф(г + a) = ip(z) + i/>(a), because

z+a r+a

J(£(Z'))1/2dz'=J£
1/2dz'+je1/2dz'

or, because of periodicity,

t+a
j(£(z'))1/2dz'=J(e(z'))1/2dz.

If we now introduce the average permittivity £1
0
/2 = ф(а)/

ka, which is related to the change in the phase if>(a) per OPS
period, we find that the quantities S ( ± ' (z)exp( + like^z)
are periodic functions that can be expanded into Fourier
series. The final result is

xexp mzj, (31)

where

-III ** de&
~ a I T 4е(г) dz

x exp [z |± 2y(z) т 2*Tj/2z - ~ mz] ]

"/ (32)

The integral in (32) represents the principal value, and
the sum over у = \,2...,p takes into account the contribution
to xl*' of jumps in the permittivity e(z) at the points of
discontinuity z, within the period (Refs. 30,57, and 60). If a
discontinuity in e(z) occurs at the beginning or the end of
the period, it is, of course, taken into account only once, e.g.,
at the beginning of the period. The quantities e(Zj +0) are
the limiting values of the permittivity e(z) to the right,
(Zj + 0), and to the left, (z,- — 0), of a point of discontinuity

ZJ-
Near the «th Bragg resonance (13), and for small de-

tuning from resonance, i.e., when \S\ ^тгп/а, we have

Л(Г^) = — n + д, EQ = а(ё"о> /k,

2ke'l(.
/2 = —n + i(a-2i6),

S(+)(z) = xty exp Г - (а - 2»3)zl

'exp[^-(n + m)z-(a-2j<5)z|, (33)

5(-)(z) = 4~} exp Г (а - 2й)г]

r*

• (m — ri)z + (a — 2i6)z

where we have separated out the slowly-varying terms in
S( *' (z) and have discarded terms with т = + и in Ъ'т.
Averaging over the fast oscillations is then equivalent to the
neglect of 1,'m in the second term in S( ±' (z) in (33). The set
of equations given by (29) then takes the form of (22) with
х„ replaced with — ix(

a ~
 } and x _ „ replaced with /лг(_+

я

}- Its
solutions are constructed by analogy with the solution of the
Kogelnik coupled-wave equations.

5.2. Comparison of standard and modified coupled-wave
theories

It is clear from the foregoing comparison of the formu-
las for x±n in (16'), (21a), and (32) that the modified
coupled-wave theory differs from the standard Kogelnik
theory, first, by the value of £OJ^EO and, second, by the mag-
nitude of the coupling constants к ± „. The first factor leads
to a more accurate (as compared with the Kogelnik theory)
determination of the position of the Bragg resonance on the
wavelength axis. In the usual dynamic theory of diffraction,
the shift of the Bragg resonance is taken into account only
via the second or higher order perturbation-theory
terms.14>21'54 Here, on the other hand it is obtained immedi-
ately in the first approximation. Secondly, the coupling con-
stants x\^' calculated from the MCWT formulas in (32)
also describe multiwave diffraction and, in this sense, are
more accurate than the coupling constants x ± „ in the Ko-
gelnik formulas given by (16'). This is so because the peri-
odically modulated function E(Z) makes its appearance un-
der the integral sign in the expressions for x\^' given by
(32) in a complicated way, so that when these functions are
expanded in powers of the small modulation depth A£/|£O >
the coupling constants x^} involve all the expansion orders
in this small quantity. This actually means that multiwave
and multiple wave diffraction by periodic inhomogeneities
of £(z) has been taken into account.

For example, for a harmonically modulated permittivi-
ty, the formulas given by (5'), and (16') yield the following
expressions for the coupling constant in the Kogelnik theory
(forw^O):

ke.
\ l /2 (33')

where we have put E(Z) = e0 + Ле cos(277z/a) and S± ,_m

are the Kronecker symbols that are equal to 0 for т =^ + 1
and to 1 for т = ±1.

It follows from (33') that, for harmonically modulated
e(z), the Kogelnik coupled-wave theory confines Bragg dif-
fraction to first-order resonances for which n = 1. There is
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no Bragg diffraction in the Kogelnik theory for the higher-
order resonances with и = 2,3,— in the case of harmonically
modulated e ( z ) , since the coupling coefficients к ± „ are all
zero for such resonances. At the same time, in the modified
coupled-wave theory, with harmonically modulated e ( z ) ,
the coupling constants xj;*' in (32) are nonzero for all
Bragg-diffraction orders n. The same result follows from ex-
act numerical calculations (see, for example, Refs. 13, 15,
and 18).

We now turn to the expression given by (32) for a more
accurate comparison between the usual (CWT) and modi-
fied (MCWT) coupled-wave theories. This comparison
shows that, as the modulation depth A£ of the function
£(z) =£0 + A£/(Z) tends to zero, the coupling constants
given by (32) automatically become identical with the cou-
pling constants x ± „ in (16), which appear both in diffrac-
tion theory and the Kogelnik coupled-wave theory. Actual-
ly, since de(z)/dz in (32) is proportional to Ae, we can put
E(Z) ~e0 in the other integrands for A£-»O. We then have

0(z) = k£'/2^k£2
0z and

s£> «

'' l

1
4oi

я
a

1 Яч-— t oz
'°0

- e m
*2Z'

de(z)
dz •exp(-

2ти
a mz>

>

(34)

In the derivation of the last equation, we first integrated
by parts and then used the periodicity of £(z) and of the
expression for em given by (5'). From (34) with the condi-
tion (13) for the тth Bragg resonance and small e% (EQ •<E'O
and £Q ~£Q )> we obtain expressions for лг< *' that are identi-
cal with the coupling constants in Kogelnik's theory because
кп= —ix\~'1 and x_n=ix(_+

a'> and x±n=ke±n/
2(E'0 )"2.

We shall now use the special case of small (A£<£0)
harmonic modulation, [£(z) = £0 + Дг cos27rz/a] to exam-
ine in greater detail the effect of multiwave diffraction in
MCWT. We shall do this by comparing in greater detail the
expressions for the coupling constants х(„ *' in (32) with the
analogous expressions for x ± „ in the Kogelnik theory [see
(21b) and (22)]. When we substitute the harmonically
modulated e(z) in (32), we shall neglect the function E(Z) in
the amplitude of the integrand because Д£<£0, but, in con-
trast to (34), we shall additionally take into account the
contributions due to the first order in A£O to the phase
[i[>(z) + kEQ/2z] of the integrand. If we then use the integral
representation of the Bessel function Jn (x) (see, for exam-
ple, Ref. 36) and its properties, we obtain the following ap-
proximate analytic expression for the coupling contants in
(32):

2л
e" "Ae f / \I dx sin x • exp I ± iQ sin x — inx\*„ = J dт -

0

,.
(35)

where x = 2-rrz/a and f = 2ir£l is the parameter in (12),
which is small both in the dynamic theory of diffraction and
in the Kogelnik coupled-wave theory [see condition ( 2 1 ' ) ] .

5.3. Conditions for the validity of MCWT and CWT

The MCWT expression for the coupling constants giv-
en by (35) for media with small permittivity modulation
depth ( A£<£O) can be analyzed in the following two limit-
ing cases: (1) wavelength Л greater than or comparable with
the structure period a, i.e., ka<,l or A>2ira and (2) small
wavelengthl and large period a, i.e., ka> 1 or A<2;ra. In the
former case, the parameter ft in (35) is found to be small for
A£<^£O and fca<l. We can then use the expansion
/„ (x) zzx" 2" n\ (see Ref. 36) and the Bragg resonance rela-
tion (13), so that (35) gives

: (±

i-1 vtn Де Q
2a F02"-«!

ifcAe Q"~'
2(e'0)

1/22«-n!

an ,2n+l (35a)
•n\

Hence it is clear that, for the first Bragg resonance (n = 1 ),
the coupling constants xf are equal in magnitude to the
constants к ± [ of the standard Kogelnik coupled-wave theo-
ry [cf. (32) ]. When n > 1, the coupling constants are found
to vanish both in the dynamic theory of diffraction ( 16' ) and
the Kogelnik coupled-wave theory (21b) [cf. (33')]. At the
same time, the quantities x(

n

±} in (35a), i.e., in MCWT, are
nonzero for any и, and are proportional to the «th power of
the small parameter £ = 2irfl. This has already been ex-
plained qualitatively as a manifestation of multiwave and
multiple diffraction.

The MCWT formulas given by (35) can also be ana-
lyzed in the opposite limiting case when the structure period
a is much greater than the wavelength, and the parameter ft
in the (35) is much greater than unity. We can then use the
asymptotic properties of Bessel functions36

1/2

to show the approximate analytic estimate for the coupling
constants is

'2ae'0 UlQI

-ГЛ ka(e'0)
1/2 e

e-i
'J

1/2
(35b)

The conditions for the validity of the modified coupled-
wave method, given by (2la), which are a consequence of
the averaging procedure applied to the fast oscillations with-
in the structure period a, signify that I***' | <ir/a. This im-
mediately yields an estimate for the small parameter in
MCWT for Я<a:

1
л/а \ l/2

1/2
«1. (36)

This estimate indicates the validity of (32) in MCWT
for short waves with ka > 1. The last proposition will be illus-
trated by the example of harmonically modulated permittiv-
ity £(z). It is also valid for arbitrary smooth modulations.
Actually, for large-period one-dimensional structures (a^A
or ka > 1), a large number of wavelengths Я will fit into each
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structure period. If the change in e(z) within the structure
period a is Af, the permittivity change for short wavelengths
Я is smaller by the factor Я /a, i.e., it is equal to ДгЛ /a. It is
this quantity that is the small parameter of the theory [see
(36) ] in the case of approximate goeometric-optics type so-
lutions (28). Hence, it follows that condition (36) is more
readily satisfied as the Bragg-resonance number nxa/A in-
creases. The geometric-optics solution is then closer to the
true solution.

It is thus clear that the modified coupled-wave theory
has a wider range of validity than the usual Kogelnik cou-
pled-wave theory, and includes the latter as a special case.

Among the other advantages of MCWT we note that
the theory is convenient for layered periodic media with
power-type variation of £ (z). It is shown in Ref. 30 that the
direct solution of the set of coupled equations in (22) for
x±n = ± ix^J and к(^, described by (32), then leads to
the well-known exact solutions for the reflection coefficients
of a number of familiar one-dimensional periodic struc-
tures. '7 For example, for the two-layer periodic structure in
which E(Z) has the constant value eb over a length b within
the period, and is equal to ed within d = a — b, we obtain the
following expression from (32) [since de/dz = 0 in each
layer, the contribution to x1^ is due entirely to the points of
discontinuity of e(z) ] -.

*(*)- +-]х±п ~ ^2

(37)

where we must use either all the upper or all the lower signs.
The difference between £0

 and £Q ш such media produces a
shift of the center of the Bragg resonance (13) that is propor-
tional to (Дг)2:

2 / r ~ 2 / 1/2 i _ l / 2 \ 2 i

where Де = ed — eb and the coupling constants differ from
zero for all numbers и of the Bragg resonances. For equal
optical thicknesses (kbeln = kd£d

/2) and exact Bragg res-
onances (k£l

0
/2 = irn/a,8 = 0), we have kb£d

/2 = kdEd
in

= trn/2 and <pn = irn/2. For odd Bragg resonances
(n = 2p- l,p= 1,2,...), all the x(fj are then equal to
ln(eb/£d) and the coupling constants for even Bragg reso-
nances (n = 2p,p = 1,2,...) are all zero. As a result, the re-
flection coefficients r£ from this type of layer of thickness
L = Ma(M = 1,2,...; see Fig. 1), calculated from this
MCWT,30 are the same as those obtained from the exact
Born-Wolf formulas17

for n - 2p - 1 and (38)
J/2 .1/2

for n-2p,p-1,2

The first of these expressions describes the reflection of
waves by a set of quarter-wave layers with equal optical
thicknesses, and the second refers to a system of semicon-
ducting layers. These expressions do not involve the thick-
ness L = Ma or the properties of the periodic layers because
the insertion of any number of half-wave layers between the

Т—-т I

a// Of V де/е'д

FIG. 5. Range of validity of different approximate methods used to calcu-
late the diffraction properties of periodic media in terms of the variables
x = &Е/Е'О,У = k0a/ir, ka = k(e'0) "

2, k — cu/c: region / between the x, у
axes and the dashed hyperbola-dynamic diffraction theory (DDT),
CWT, MCWT (for f <1), region 2 between dashed hyperbola and the
dot-dash line — MCWT, region 3 between the dot-dash line and the solid
curve — MCWT for harmonic modulation, region 4 between solid curve
and the dashed hyperbola-requires numerical calculations.

homogeneous media with permittivities £, and £2 does not
affect the reflection coefficient of the structure (see Ref. 17
or 53 or 61). For other layered systems, the approximate
MCWT expressions allow relatively simple numerical calcu-
lations (see Refs. 57 and 59).

For a clearer comparison between different methods,
Fig. 5 plots y = kga/ir^ ka(£o)l/2/tr as a function of
x = Де/£о • This shows the regions of validity of the Kogel-
nik coupled-wave theory (CWT) (or the dynamic diffrac-
tion theory) and the modified coupled-wave theory
(MCWT). To define the boundaries between these regions,
we have followed Rytov's example37 and replaced strong in-
equalities such as x<^a~l with the weaker inequality
ж<0.25д~', and then used (13) to express the Bragg reso-
nance number n in terms of k0 = a [see, for example, the
inequality given by (12) ]. The dynamic diffraction theory
and the Kogelnik CWT described by (27') are valid in re-
gion 1 of Fig. 5, which lies between the x, у coordinate axes
and the dashed hyperbola. In region 2, which lies between
the hyperbola and the dot-dash straight line on which
kffl^^£/£'0, the MCWT inequality given by (36) is satis-
fied. At the same time, the modified coupled-wave theory
(MCWT) is also valid in region / in which (27') is satisfied.
In other words, MWCT has a wider range of validity in re-
gions / and 2 of Fig. 5 than the Kogelnik theory, and in-
cludes the latter as a special case. Figure 5 also shows region
3 which lies between the dot-dash line kga zz b./e'0 and the
solid curves. In this region, \x^ \ <0.25a~', which ensures
the validity of MCWT for harmonically modulated e(z) if
we numerically evaluate the expressions for the coupling
constants in (35). In region 4, we can use neither of these
approximations, and must employ numerical methods such
as, for example, the Floquet-Bloch method discussed above
and involving the numerical solution of (6) [Ref. 14] or the
immersion method38 which reduces the problem to a nu-
merical integration of a nonlinear first-order differential
equation.

We therefore conclude that the modified coupled-wave
theory (MCWT) discussed in this section is valid in a wide
range of parameter values with the exception of the small
region 4 of Fig. 5, i.e., when the more relaxed inequalities
(27') and (36) are satisfied.
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The MCWT formulas can be used to calculate the re-
flection and transmission coefficients of periodic media with
any variation of the real and imaginary parts of permittivity
e(z) = E'(Z) + ie"(z) within the structure period. In partic-
ular, an analytic expression was obtained in Ref. 56 for the
reflection and transmission coefficients of a medium with
periodic step changes in the refractive index and absorption
coefficient. The latter is largely concentrated near the begin-
ning and the end of the period, and is zero on the remaining
part of the absorption period. It is shown in Ref. 56 that,
when the permittivity modulation depth is less than the ab-
sorption modulation depth, we obtain the one-dimensional
analog of the Bormann effect (see Ref. 11): the wave pene-
trates the absorbing medium to a distance appreciably
greater than the distance in a medium with an equivalent
mean absorption period because the absorption maximum
occurs at the minimum of the resultant-field amplitude. In
the opposite case, when the refractive-index modulation
depth is greater than the absorption modulation depth, the
attenuation of the field in the medium is largely due to Bragg
reflection. Both effects are significant in intermediate cases.

6. REFLECTION OF LIGHT BY A LAYER WITH
PERIODICALLY-VARYING PERMITTIVITY

We now return to the reflection coefficient of a layer
(see Fig. 1) of a uniform periodic medium, taking into ac-
count possible permittivity jumps at the separation boundar-
ies: e(z) ^£l and e(L) ^£2. Approximate solutions such as
(28), which involve A( ±' (z) found for the interior of the
layer and given by (23), must then be matched at z = 0 and
z = L to the solutions for the exterior of the layer. We then
obtain the folio wing expressions instead of (24) (see Appen-
dix III):

(39)

where

and the Fresnel reflection coefficients of the layer bounda-
ries are given by

„1/2
r, = •

«i - WO))'

+ wo»

1/2

.1/2 1/2' 1/2 , 1/2
+ £2

(40)

where we note that, in the Kogelnik theory, e(z)
= e(L) = e0 and ip(L) = kel

0
/2L.

Substituting for Л ( ± ) (z) from (23) into the second
condition in (39), we obtain the following expression for the
ratio C2/C, instead of (25):

*п
—— j
ж-п

(41)
1-

where, if we assume small losses (г£ <£Q) and adopt the
resonance condition k(e'0)

l/2 = (irn/a) + 8, we obtain

<pn(L) = j*p(z)dz,

in which xp (x) = kep (z)/2(4)l/2 and ep (z) = e(z) - EO.
When л2 = 0, i.e., when the layer is matched for z>£, the
ratio given by (41) becomes identical with (25).

The reflection coefficient r£ of the entire structure can
be expressed in terms of the amplitude of the forward,
A (+>(0), and backward, А (^'(0), waves by using the conti-
nuity equation at z = 0 (see Appendix III):

(42)
(C2/Cj)

where we have used the solutions given by (23), which are
valid near a Bragg resonance. The coupling constants PC ± „
of the Kogelnik theory are related to the coupling contants
x'jV of MCWT [see (32)] as follows: xn= - ix<

n~'> and
к_п =/л:(+) so that х„/х_п = — х„ /х1.*? and
х„х_п = х(

п~ 'tt'-V- Since the ratio C2/Cl is given by (41),
the reflection coefficient r of the entire periodic structure
assumes the following final form when the second boundary
atz = L is taken into account (see Appendix III):

exp(-2yZ,) + (x

exp(- 2yL)

хг2ехр(2чр„(1,))}

(43)

where

14 1 + exp(- 2yL)

_„(+)
*- (44)

- [«4- «- « + <§-
1/2

It is clear from these formulas that the backward-trav-
eling wave is formed both as a result of scattering by the
localized boundaries of the OPS (z = 0 and z = L) and by
the distributed reflection within the periodic medium itself,
and that this is essentially an interference effect. The result is
a very complicated spectral dependence of the modulus and
phase of the reflection coefficient r£ in (42). We must there-
fore consider the simple case of a semi-infinite periodic
structure39'40 for which aL> 1 and exp( — 2/L) -»0 where
у = / + iy" and / > 0. It then follows from (44) and (43)
that r| ->Гд and r->r%, and the reflection coefficient in (42)
assumes the much simpler form

(45)

which describes the successive reflection from the front face
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FIG. 6. Spectral dependence of the power reflection coefficient R £ (S/x)
for an unmatched (/•,=0.6, <p = тт/Ъ) semi-infinite periodic medium
with the following absorption coefficients: /—а/к = 0, 2—a/x = 0.1,
3—a/x = 0.25, 4—a/x = 0.5, 5—a/x = 1.0.

of the semi-infinite medium and from its most peripheral
structure.

Figure 6 shows typical spectral distributions of the en-
ergy reflection coefficient /Jx = rf |2 for different values of
the absorption coefficient and the initial permittivity modu-
lation phase <p = arg( ix{_+

n') in the OPS. It is clear that the
function R2 (S) is highly asymmetric. The reason for this
can be readily understood considering the spectral depen-
dence of the phase of the Bragg reflection r% (see Fig. 3). It
is clear from this figure that, as we pass from the long-wave
(8/x< — 1) to the short-wave (8/x> + 1) edge of the
Bragg reflection band, argrj? changes by тт, i.e., the sign of r%
is reversed. This means that the amplitude of the wave re-
flected by the periodic structure will be added to or subtract-
ed from the amplitude of the wave scattered directly by the
OPS boundary. This interference can lead to a substantial
reduction in r|° as compared with r, and r%, and r% may
actually vanish. The effect of the OPS boundary is even
stronger in the case of the spectral dependence of the phase
X = argrf of the reflection coefficient.41 This is seen, in par-
ticular, in the very high sensitivity of the phase % of a change
in the OPS parameters such as the absorption coefficient a
and the initial modulation phase tp. For example, a small
change in the range a/x often leads to a qualitative change in
the character of the function x (&) > whereas R ^ (8) changes
only slightly (Fig. 7). Moreover, since the phase of the
Bragg reflection coefficient r% of a semi-infinite structure
changes by тт as we cross the Bragg-resonance frequency

Of

0,6

0,1

«2

Зя
2

-3 -7 г s/x

FIG. 7. Spectral dependence of the power reflection coefficient R^(S/
x) = | /2 (S/x) |2 and the phase %(5/x) of the reflection coefficient r£ for
an unmatched layer (rt = 0.6, ф = тт/4) for different losses: curves / ' and
2'—R 2 (S/x) for a/x = 0.7 and 0.9, respectively; curves 1 and 2—%(6/
x) with the same values of a/x, respectively.

band (Fig. 3), and the phase of the Fresnel reflection coeffi-
cient r! in (40) is 7Г when E (0) > E i, it follows that as we cross
the Bragg resonance in the coefficient rf in (45), the inter-
ference between r% and rt ensures that the resultant phase of
the coefficient r|° can vary in the range between 0 and 2tr,
which is clearly seen in Fig. 7.

The boundaries of a finite layer of a uniformly periodic
medium can thus significantly affect the spectral depend-
ence of the Bragg reflection coefficient as compared with the
matched perodic structure of finite thickness (see Section
4.2). It then follows from Refs. 39-41 that the effects of the
separation boundary can be observed even for the relatively
low values | rl \

2 S 0.05 of the Fresnel reflection coefficient of
the boundary.

The reflection coefficients calculated in MCWT are
compared in Refs. 57 and 59 with direct numerical computa-
tions based on the differential equations for the layered peri-
odic media and media with a harmonically modulated re-
fractive index. This shows that there is good agreement
(within the given modulation depth) between the reflection
coefficients as functions of frequency and the number of pe-
riods in the structure for different modulation depths (up to
50% modulation depth) and different numbers of the Bragg
resonances. This applies to frequencies both inside and out-
side the Bragg reflection region, so that the spectral depen-
dence of reflection coefficients obtained by the two methods
(exact and approximate MCWT) are in good agreement
with one another for all frequencies between the first and
third resonance, i.e., for a continuous transition from the
Bragg reflection zone to transparency zones and back again.
The higher the number of a Bragg resonance the better the
agreement. The agreement was found to hold not only for
the magnitude of the reflection coefficient, but also for the
positions of the maxima and minima on the frequency axis.
Moreover, the agreement was found to be satisfactory even
for media consisting of only 1, 2, or more periods.

The efficacy of MCWT will now be demonstrated by
considering the example of wave propagation in almost peri-
odic and nonlinear periodic media.

7. APPLICATION OF MCWT TO ALMOST PERIODIC AND
NONLINEAR PERIODIC MEDIA

The approximate modified coupled-wave theory is ob-
tained from the exact set of equations for the amplitudes of
the counter-propagating waves, given by (29). This set of
equations is outwardly similar to the standard coupled-wave
equations except that its coefficients 5( ±' (z) depend on the
coordinates z. It is clear from (30) that these coefficients
contain explicitly in analytic form the permittivity e(z) with
arbitrary (not merely periodic) dependence on the coordi-
nate z. Hence, in the general formulas for S( ±' (z) given by
(30), small deviations from periodicity of the function e(z)
can be taken into account. In this Section, we illustrate typi-
cal examples of such calculations by considering approxi-
mate analytic solutions of (29) for almost periodic and non-
linear periodic media. Problems of this kind were solved
earlier in Refs. 43-45 (see also Ref. 48). However, in these
earlier publications, each of the problems was solved by a
particular method typical for the particular type of deviation
from periodicity. We shall show below that MCWT will en-
able us to solve different problems by the same approach.
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7.1. Almost-periodic media

A periodic medium often contains optical inhomogene-
ities that give rise to additional regular variation in the phase
of the propagating waves, i.e., the permittivity e(z) exhibits
an additional regular variation. A Bragg resonance is then
found to occur not over the entire length of a uniformly peri-
odic medium, but only in certain portions of it. The main
objective of the calculation reproduced below is to determine
the reflection coefficient of this type of structure and to esti-
mate quantitatively the distance over which the above
change of phase takes place.

For the sake of simplicity, we shall consider this prob-
lem in the special case of a medium whose permittivity is
subject to periodic modulation, but has in addition a small
linear component

ф) =,
m=-°°.

i • \

V mz) + * z'

'

(46)

where L is the thickness of the layer with periodic permittivi-
ty variation. We shall use the modified coupled-wave meth-
od described in Sec. 6. For this, we substitute (46) for e(z) in
the expression for the coefficients S( *•} (z) in (30), and then
substitute the resulting 5( ± > (z) in (29) before averaging
over fast oscillations in precisely the same way as in Appen-
dix II. Instead of the coupled-wave equations of the form
given by (22) we thus obtain a more complicated set of equa-
tions relating the amplitudes of the forward, A (+\z), and
backward, A (~\z), waves:

(48)

wherep = |pcn \
2/a = л:2/сг is a dimensionless parameter and

the constants С ,_2 are determined from the boundary condi-
tions. As <7-»0, the set of equations given by (48) becomes
identical with (23) except for the definition of the constants
С Ь2. Let us determine the power reflection coefficient R „ of
a matched semi-infinite medium with e(z) given by (46) in
the case of an exact Bragg resonance (<5 = 0) on the separa-
tion boundary at z = 0. We must then put Cp = 0 in (48)
and obtain (see Appendix IV)

(49)

*«'- Л-)(0)
^+>(0)

/л а«2>

= th (-у-^г

'.-*.*.-(£)"'•

= an A<- \z) exp [ (a - 2tf)z] exp ( - i| z2) , (47)

= - &_ exp [ -(a - 2tf)z] exp ( i|z2) ,

An analogous result was obtained in a different way in Ref.
43. The quantities LB and Lc in (49), which have the dimen-
sions of length, have the following interpretation. The length
LB = l/x defines the distance within which the Bragg re-
flection from a purely periodic medium is produced. Actual-
ly, it is clear from (26), which gives the expression for r% for
a purely periodic medium with a = 0 and S = 0, but y=x,
that the Bragg reflection coefficient |r£ | is close to unity for
L>LB = \/к. At the same time, the length Lc = (ir/2cr)l/2

determines the distance over which the phase change in the
solutions given by (48) becomes comparable with the Bragg
reflection phase because of the linear increase in the permit-
tivity (46). This occurs for Lc zzLB or x2~2a/ir. Actually,
it is clear from the original set of equations given by (47)
that the presence in (46) of the increment that increases
linearly withz signifies the appearance in (47) of additional
detuning from Bragg resonance, which rises linearly with
distance z, so that the total detuning is <5(z) = S + (l/4)crz.
When 5 = 0, which is the case in this example, we have
<5(z) = oz/4. This detuning then appears in the effective
constant y(z) given by (15), i.e., y(z) = [x2 -<52(z)]1/2,
which determines the effective Bragg reflection coefficient in
the form given by (26). It is readily seen that y(z) decreases
with increasing z, and there is a corresponding reduction in
the effective reflection coefficient of the form given by (26).
When ?c~crz/4, i.e., when z~4x/ff^Lc ~LB y(Lc) and,
consequently, the reflection coefficient rf vanishes, i.e.,
there is no Bragg reflection. This means that portions of the
pe. iodic medium that lie at a distance z from the separation
boundary Lc do not participate in Bragg reflection for
z>Lc. This follows formally from the expression for R „ in
(49). Thus, as a-»oo, i.e., LC>Z,B, we have R^ s;l and
Bragg reflection occurs in the semi-infinite medium. In the

where p = \ х„ \ 2/c = x2/a (see Appendix IV). The general reverse case, when LC4,LB or 0>(тг/2)л:2 we have

where, for example, a = kg/el

0

/2 has the dimensions of the
inverse square of length. The two equations in (47) are writ-
ten on the assumption that the permittivity modulation
depth is small, i.e., Af^£0 for Дг = \em |max and for ££.<£„•
Instead of the coupling coefficients x(

m* > of (32), MCWT
involves the coupling coefficients x( ± „, of the Kogelnik
theory, given by (21b) (cf. Sec. 5.2).

The set of equations given by (47) can be readily re-
duced to independent second-order equations for the func-
tions A( ± ' (z) whose solutions are related (for a = 0 and
8 = 0) to the parabolic cylinder functions42 of the form

solutions of (47) can then be written as superpositions of the
corresponding parabolic cylinder functions entirely. When LC

and Bragg reflection vanishes almost
,LB, we have R ж =; tanh 1 ;s 0.76 and the
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linear inhomogeneity does not as yet affect the Bragg reflec-
tion. It is precisely for such conditions that we have to esti-
mate the reflection characteristics of real periodic struc-
tures.

7.2. Nonlinear periodic structures

Several interesting effects are also observed in periodic
media with a nonlinear permittivity (see, for example, Ref.
48). A strong light field induces a diffraction grating in such
structures, which acts like a stationary periodic inhomoge-
neity and provides an additional contribution to the Bragg
reflection of light. It is clear that the resultant reflection de-
pends significantly on the phase shift between the stationary
and induced gratings. In some cases, this leads to a nonlinear
'transmission' by the one-dimensional medium (OPS) in the
neighborhood of a Bragg reflection. Thus, reflection and
transmission by the OPS at the Bragg frequency then as-
sumes a bistable character that depends on the light-field
intensity.

To be specific, consider the propagation of light in a
periodic medium with permittivity given by

, "bii
m= + »

Ф) = e0 + I ЕШ exp ( ̂  mz) 4ЛХ | £(z) |2

WI—^oo.

(50)

which contains a nonlinear cubic term (% is the cubic nonlin-
ear susceptibility). To obtain the equations for the transfor-
mation of light in the nonlinear and periodic media, we sub-
stitute (as in the last section) the expression given by (50)
into the coefficients S( ± ' (z) in (30), and then substitute the
result in ( 29 ) . These equations are then simplified by assum-
ing that the periodic modulation depth is small (Л5<£0)
and that the change in e(z) in (50) due to the nonlinear
increment is small, i.e., 4тгу |.£(z) |2^£0- The resulting equa-
tions for A( ± ' (z) are then averaged over fast 'oscillations
(see Appendix II). At the same time, if we separate out in
the phase ^(z) in (28) the term that depends on the light-
field intensity, we obtain the following set of coupled equa-
tions for the slowly-varying amplitudes A( ± ' (z) :

<->(2), (51)

where £ = lirkx/e^. When | = 0, i.e., in the absence of
nonlinearity (x = 0), the set of equations given by (51 ) be-
comes identical with the standard coupled-wave equations
given by (22).

The above set of nonlinear equations for the complex
amplitudes of the forward and backward waves is solved by
considering the real amplitudes and phases of these waves,
i.e.,

= aF(z) exp(zVF(z)),

= aB(z) exp(Zy.B(z)). (52)

Substituting these expressions in (51) and separating real
and imaginary parts, we obtain the following nonlinear set of
coupled equations for the real functions AF(z), AB (z) and

daF(z)
sin z)siny>(z),

dz

where

*=

aF(z) aB(z)\
—7T + —ГТ cos У(2)'aB(z) aF(z) rv -"

(53)

f(z) = PF(
Z) ~ VB(Z) + 2<5z - arctg*n.

This set of equations has two integrals, namely,

Г2 = aF(z) aB(z)

(54)

For a matched layer, for which the conditions in (24) are
satisfied and o| (L) = 0, the integral Г, = a2

F(L) is propor-
tional to the light intensity leaving the structure at z = L,
whereas the second integral is Г2 = STt/x, i.e., it is propor-
tional to the first integral. The solution of (53) with
allowance for the integrals Г,_2 at the exact Bragg resonance
for which 8 = 0 leads to the following expression for the
Bragg reflection coefficient (see Appendix IV):

R,

nd(2oatL/a"2) -

ad(2axL/a~2') +
(55)

where nd(x/q) is one of the Jacobi functions42 for which
0<?<1. The parameter

-(l +K 1/2

is related to the dimensionless light intensity at exit
JL =a2

F(L)/E2

c. It follows from the solution of (53) that
JL depends on the dimensionless intensity at exit,
J0 = a2

F(0)/E2., through the implicit relation (see Appen-
dix IV)

~2/= /0 = [1 + nd(2axL/a~) } JL,

where

, JL

(56)

1/2

The critical field Ec corresponds to the amplitude of the
light-induced diffraction grating that is comparable with the
amplitude of the stationary permittivity modulation. We
now use the implicit relation (56) to find JL as a function of
/0=/ for specific values of xL and substitute these expres-
sions in (55). We thus calculate the Bragg reflection coeffi-
cient in (55) as a function of the light intensity J0 leaving the
structure. The results of these calculations are shown in Fig.
8 for xL = 2 and xL = 4. The figure clearly shows the bista-
ble behavior of the function RL = RL(I=J0) with well-de-
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FIG. 8. Power reflection coefficient RL (J0) of a nonlinear periodic medi-
um for incident light with normalized intensity /„=/ for different cou-
pling of counterpropagating waves: 1—xL = 2, 2—xL = 4.

fined hysteresis that is typical for nonlinear systems. To ob-
tain the function RL (S) for different values of the initial
intensity J0=I, we have to solve the set of equations given by
(53) for S^O, which is a relatively complex task. However,
if we compare (53) with the set of coupled-wave equations
given by (22) and written for the functions a ( ± ) (z)
= A( *•' (z)exp( ± iSz) with a = 0, we can readily show

that the influence of the nonlinearity in (53) can be de-
scribed in terms of the effective additional detuning

which depends on the forward and backward wave intensi-
ties. Since the quantities 5^*' (z) are always positive, the
spectral dependence of the Bragg reflection coefficient on
the nonlinear periodic medium is asymmetric with the maxi-
mum shifted at low intensities toward the longer wave-
lengths.

For an infinite periodic structure with a nonlinear fill-
ing, the set of equations given by (53) has a 'soliton' solution
at exact Bragg resonance (8 = 0) that is of the following
form (see also Refs. 44 and 45):

<p(z) = — sign (z — ZQ) arccos (57)

where sign x — x/\x\ and z0 is an arbitrary coordinate on
which this solitary wave is centered. It is noted in Ref. 45
that the wave can propagate with a given velocity along the
periodic structure, but analysis of the conditions for the exci-
tations of such solitary waves involves the solution of the
time-dependent electrodynamic problem. We note at this
point that nonlinear periodic structures have not been inves-
tigated in the same detail as the linear structures. For exam-
ple, there is undoubted interest in the generation of harmon-
ics in a periodic medium in which diffraction by a periodic
inhomogeneity produces phase locking (see Ref. 48 for
further details).

CONCLUSION

We now conclude our review as follows. The method
based on the modified-coupled-wave theory provides the
most convenient procedure for the derivation of reasonably

simple approximate analytic solutions for waves propagat-
ing in one-dimensional periodic structures. When the modu-
lation depth is small, this includes as a special case the Ko-
gelnik coupled-wave method and the dynamic diffraction
theory. On the other hand, the formulas obtained by the
modified coupled-wave theory are valid both for small struc-
ture periods, when &аД£/е0<1, and for large periods for
which Де/(&ае0)<1. The latter condition applies to high
Bragg resonance numbers and modulation depths AE/£O

that are not too low.
We have examined in some detail the analytic methods

available for the solution of problems involving the propaga-
tion and transformation of waves in the special case of iso-
tropic media with uniform periodicity, when the waves
propagate in the direction of this periodicity. This occurs for
waves incident normally on the separation boundary with a
periodic medium, when the separation boundary is perpen-
dicular to the direction of the periodicity. The permittivity
of the isotropic medium is then independent of position in
the plane of the separation boundary. The wave reflection
and transmission problem in the case of oblique incidence
can then be reduced by a simple transformation to the one-
dimensional problem with an effective permittivity that is a
function of the angle of incidence (see, for example, Refs. 33
and 53). If the direction of the one-dimensional periodicity
is at an angle to the normal on the separation boundary (see,
for example, Ref. 29), then a periodic structure appears on
the separation boundary and we have to take into account
the entire angular spectrum of propagating harmonics that
arise from the diffraction of the incident wave by the surface
periodicity, even in the case of normal incidence. When the
periodic medium is anisotropic or gyrotropic, the solution of
the oblique-incidence problem is significantly different from
the normal-incidence problem even when the separation
boundary is perpendicular to the direction of the periodicity.
This difference is particularly significant for gyrotropic liq-
uid crystals. Polarization effects then ensure that instead of
the simple system of two first-order equations, we have to
deal with a set of four or more first-order equations, which
significantly complicates the process of fining simple analyt-
ic solutions.

Methods that are valid only for infinite periodic struc-
tures of a particular type were used in Refs. 46 and 47 to find
analytic solutions. However, these methods of solution dif-
fer from the modified coupled-wave theory because they do
not allow us to take into account absorption by the medium
and the finite periodic structure; they are even less effective
for arbitrary modulation or in the presence of small aperiodi-
city and nonlinearity.

We have presented the results of a completed study of
the propagation and transformation of waves in isotropic
media with one-dimensional perodicity. The Kogelnik cou-
pled-wave theory that we have examined together with its
modifications enables us to consider more complicated wave
propagation and transformation problems, e.g., multiperio-
dic media, periodic media with statistical properties, and
periodic media with local anisotropy and gyrotropy. All
these techniques and approaches can also be applied to the
propagation of electron waves in periodic quantum superlat-
tices.

The authors are indebted to V. A. Belyakov and В. М.
Bolotovskii for useful suggestions and fruitful discussions.
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APPENDIX I. DERIVATION OF THE INTEGRAL EQUATION
AND PROOF OF ITS EQUIVALENCE TO THE FLOQUET- fdz<£ (г') E(z') G(z - z')
BLOCH SYSTEM (6) ^ p

1. If we put e(z) =e0 + £p (z) and use the properties of a
S (z - z') we can write (1) in the form = exp(^na) J dz"ep(z") E(z'') G(z - z" - no),

-k2e(z)E(z) (L7)

J dz'ep(z') E(z') G(z - z') = exp(- ifina)

= -k2] dz'ep(z')£(z')<5(z - z'). (I.I) ~(n+1)a
 o

X Jdz"ep(z") E(z") G(z - z" + na).
We now substitute

The first equation is obtained by substituting
z' =

and obtain the following equation for the Green's functionё ч

i- e rs equaon s
E(z) = k2 ] dz'ep(z')G(z - z') £(z'), (1.2) z' = z» + na and the conditions

e (z1) = e (z" + na) = e (z"),

- '\ *n *^e secon(l equation in (1.7), we can substitute
Z> + k\G(z - z') = - <5(z - z'). (1.3) z'=z" - na. Since

dz

Expanding G(z) and 5(z) into Fourier integrals of the form .
Jdz'ep(z')£(z')G(z-z')

" a

= J dxe (x) E(x) exp(- ifia) G(z-x+ a),

), (1.4)

for z' = x — a, we find that these relations yield
substituting these expressions in (1.3), and evaluating the
resulting integrals with the help of the theory of residues on a r
complex plane (e0 = e'0 + ie'^,e'^ > 0) , we obtain J dz Vz') E^ G(-z ~ z'^

(ехрйипа) J dz'ep(z') E(z') G(z - z' - na),

= —i72exP(I'teo/2lzl)- d-5) "*° ° n=+M2te0 ro "_
dz ep (z ) £(z') G(z - z') = > exp(- ^миа)

2. We shall now show how to obtain (9) from (7). We •>-" ^
divide the integral with respect to z' between — oo and + 00 а

into two integrals, namely, one between 0 and + oo and the f , ,.
other between - oo and 0. Each of these integrals is now X J ** Vz } E(z > °<* ~ z + Иа)> (L 8 >
split into an infinite sum of intergals over the period a:

20 This gives (9) withe r

J /(z')dz' = J /(z')dz' + J /(z')dz' + ...
a "-+<e

n=»(n+l)a «(z - z') = ̂  G(z - z' - na)

+ //(z')dz' + ... . £ //(z')dz', "=~°°

"* (i.6) The expression for g(z — z') in ( 10) is obtained as follows.
°( 0 -? 3. Consider the function
J /(z')dz' = J/(z')dz' + J /(z')dz' + ...

-na в=-к» -ne «(z) =

+ //(z')dz' + ... = X J/(z')dz', «— "
-(n+l)a n=0-(n+l)o

By changing the variables in the sum, we can show that
where f(z') =ep(z')G(z — z')E(z'). We shall show that g(z + a) =g(z)exp(ij*a). This means that function
since ep (z') is periodic and Floquet's theorem (3) applies, /(z) =g(z)exp( — ///z) is periodic, i.e., /(z + a) =/(z).
we have We now expand into a Fourier series:
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J=+oo

/(z) = g(z) exp(- iftz) = ̂ /j exp | =^- sz
J=-00

/=+00
E(z')

/=—00

exp

«-+00

(1.9) (1.12)

Transforming/s by substituting /(2) = g(z)exp( — i
and using

Л= —»

we obtain for z' =z — na

Canceling exp(///z) and using the fact that

a

n=-»0

x exp j^ - v*(z - na)J exp

n= + oo a— na

we obtain

/=-oo m=-o= /'--oo

П= — о» —не
(1.13)

(1.10) where

where

—s, exp(-27rins) = 1.

We now change the summation indices so that
т +1' = 1 and obtain

m=+oo

Substituting (1. 10) in (1.9), we obtain

Multiplying by Л 2£0 — P j and replacing / — т with /и', i.e.,
т = / — т', we obtain

where the summation index s in (1.9) is replaced with и and
z' = j;. When

in which a = №0

/г, the last integral can be evaluated since

> 0:

J dyC(y) exp(- фпу) » j dyC(y) exp(-

a -Pn

Substituting in (1. 1 1 ), we obtain the required formula given
by (10).

4. We shall now show that the integral equation (9)
withg(z — z') given by ( 10) leads to the Floquet-Bloch sys-
tem (6). This can be done by substituting the following
Fourier expansions in (9):

'/-m'^w'C1 ~ a«'/)> (L15)

m'—oo

which is identical with the Floquet-Bloch equations (6).

APPENDIX II. DERIVATION OF THE APPROXIMATE
FORMULAS OF COUPLED-WAVE THEORY AND DISCUSSION
OF THEIR VALIDITY

By differentiating (22') with respect to z, we obtain the
following first-order differential equations for A(±' (z):

(П.1)te(z)A<->(z)exp(-2i*4/2z),

where x(z) = ke (z)/2ei/2. It is readily seen that

18 Phys.-Usp. 36 (1), January 1993 S. Yu. Karpov and S. N. Stolyarov 18



1/2.

Hence, it follows from (H.l) that the field E(z) given by
(19) satisfies the wave equation (1). This confirms once
again its equivalence to the integral equation ( 7 ) .

When £p (z) is a periodic function, and if we consider
the neighborhood of the nth Bragg resonance, we can solve
( 22' ) or ( II. 1 ) by the averaging method, which yields a rap-
idly converging asymptotic perturbation-theory series. Ac-
tually, substituting (5) for ep (z) in (22'), and separating
out the term with the nth resonance, we obtain the exact set
of equations

dz' -

— 00

z

|dz'.
m#(Q,n) -oo

exp [(a - 2tf) z' ]

-mz
V «

'^(m-ф'

с_„ Jdz' Л<+)(г') exp[- (a
z

00

m J dz' Л<-)(г') exp Йр mz

xexp —

or tne following exact differential equations equivalent to
(H.I):

exp [(a - 2#)z)

) exp [-(a - 2tf)z]

It* — *fl*s lit j

— (m + n)z] (II.3)

where л:от = kem /2el

0

/2, e0 and em are complex quantities,
and the sum over m is evaluated between — oo and + oo
with the exception of the special values m ̂  (0, + n).

If the functions^'± ' (z) and exp[ + (a — 2iS)z] vary
slowly within the structure period a, i.e., if

{|аб„|а, (П.4)

where a = -n-n/k(£'0Y
12 = Лп/2(е'0У

п, the solutions сап be
sought in the form of the asymptotic perturbation-theory
series

where the functions /4 £* }(z) can be regarded as constants
within the structure period a. We thus obtain the following
approximate set of equations from (II.2):

z

A<£\z) = «„ J dz' A<b\z') exp [(a - 2«5)z' ], (П.6)

= ix_n Jdz' 4+>(z') exp[-(a - 2«5)z' ]

since the integrals of the rapidly oscillating functions in the
sums over m in (II. 2) are all zero. Differentiating these two
equations with respect to z, we obtain

z)exp[(a-2«5)z], (II.7)

^(z) exp[—(a — 2«5)z].

The same set of equations is obtained from (II.3) by
averaging these equations over the structure period a. It is
identical with the set of coupled-wave equations given by
(22).

The higher-order approximations to the exact solutions
A( *' (z) in (II.5) are most simply obtained from the exact
set of integral equations given by (II.2). This is done by
replacing A( *' (z) with A (

0

 ± ' (z) in the discarded second
and third terms that contain sums over m.

This yields

exp |— (m - n)z' + (a - 2«5)z' 1

exp ^p- (m + n)z' - (a - 2Й)г'J

The convergence condition for the functional series
(II.5) i.e., \ A [ ± ) ( z ) \ ^ \ A <

0

± ) ( z ) \ , enables us to specify
more precisely the original conditions (II.4) for the validity
of the coupled-wave equations.
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APPENDIX III. DERIVATION OF BOUNDARY CONDITIONS
AND OF THE EXPRESSIONS FOR 4 IN THE GENERAL CASE
OF UNMATCHED LAYER
1 . Boundary conditions and their consequences

To solve the boundary-value problem, we must write
down the solutions for E(z) and#(z) = (i/k)dE(z)/dzfoT
z<0, 0<z<L, and z>L, and then join them at z = 0 and
z = L:

It is clear that, in the last case, A{ ± ' (z)/(n(z) ) 1/2 are
similar to the functions A( ± ' (z) in Kcgelnik's theory. The
difference vanishes where there is a relationship between

The continuity condition for E(z) and H(z) atz~L
gives

z £ 0: E(z) = [A0 exp(z/btjz) + A^ exp(-

H(z) = -n{ [A0

0 < z <: L: E(z) =

H(z) = - ^Гj

z) ],

(III.l)

z~>L: E(z) = A2

Я(г) = — «2

where
z

ij>(z) = k Jn(z')dz',
0

and n(z) = (E(Z) )1 / 2 is a complex function.
The continuity condition for E(z) and H(z) at z = 0

gives

. . . 1
•П ~ •**! "~ i /т0 ! («(0))1/2

\l/2
(Ш.2)

x (vl(+)(0) - -

Hence, we can readily show that

i ~ «(0)
i ~ л, + л(0) '

^*

(Ш.З)

The difference by (и(0) ) 1/2 in the first boundary condition
is due to the different form of the solutions in the Kogelnik
coupled-wave theory where

£(z) = A<-+\z) exp(tV*(z)) + ̂ ~\z) exp(- tyfr))

for if>k = ke}
0

/2 and a similar expression in the modified cou-
pled-wave theory

where

20

1/2

\L) exp(- л = A

- A~L) exp(-

Hence, the boundary condition at z = L assumes the form

= (n(L) - пг)/(пЩ + И2)- (Ш.5)

2. Derivation of the formula for /7£

It follows from (23), which gives the expressions for
A1 ± ' ( z ) , and from the formula for r given by (III.3), that

(Ш.6)

The ratio C2/C, can be determined from the boundary con-
dition given by (III.5) by substituting for A1- *' (zL) from
(23):

С, ж. _

(Ш.7)

where
i,

- f (f - tf) = f «L + J*p(z)dz,

V '

and we have assumed the condition for the Bragg resonance
&(£o)1/2 = тт/а(п + 8) and that the losses were small
(f'o^fo)- When r2 = 0 (layer matched at the rear), the
expression for C2/C, given by (III.7) becomes identical
with (25) in the main text. Substituting (HI. 7) in (III.6),
and rearranging, we obtain

- =
1 - («/«-,) ('в)2

r, exp(2w>n(jL))
2

(III.8)

where

- exp(- 2yL)
B 1-(«/«-я) ('в)2 ехр(-2у/)

(Ш.9)
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and in the modified coupled-wave theory we must introduce
the following replacements: xn = — ix(

n~
),

x_n = — ix^*, so that xn/x__n = — х(

п~
}/х(„+> and

xnx_n = xn x_n.
For a layer matched at the rear, for which s(L) = e2 we

have r2 = 0 in which case r — r^, i.e., f becomes identical
with the Bragg reflection coefficient in (26). For reflection
by a semi-infinite periodic structure, we have r = Гд. Actu-
ally, when the absorption coefficient a is as small as desired,
the quantity

is always complex and

r 2 \ 2

is always positive. As L-> oo and exp( — 2yL) -»0, we then
obtain

fl = lim f=

for any r2.

APPENDIX IV. THE COEFFICIENTS Я, and ff^ in (49) and (55)

1. For an almost-periodic medium, we can substitute

(IV.l)

in (47), so that these equations reduce to the form

dzz

The solutions of this equation take the form of the parabolic
cylinder functions.42 When a — 0 and S = 0, we can take the
independent solutions to be the Whittaker functions

v(-ip±\, za'/ 2exp(/f)),

wherep = \х„ \2/cr, which for г-» oo take the form of waves
propagating in the positive and negative directions of the z
axis. The general solution of (47) with (IV.l) taken into
account can then be written in the form of the superposition
of these waves, given by (48).

For a semi-infinite periodic medium for which the
Bragg resonance, i.e., S = 0, occurs directly on the separa-
tion boundary at z = 0, we can put C2 = 0 in (48). To show
this, we must apply the boundary conditions (24) to the
general solutions in (48), and then by introducing a small
negative increment into p, pass to the limit as L -»oo. If
C2 = 0, then (48) with (IV.l) taken into account immedi-

ately yields the expression for the reflection coefficient for a
semi-infinite OPS:

V(ip - (1/2). 0)

Since, according to Ref. 42,

(IV.3)

(IV.4)

and if we recall the properties of the gamma functions Г(х),
we immediately obtain the formula given by (49) for the
Bragg intensity relfection coefficient Rm = \r%\2.

2. The expressions for RL given by (55) and the relation
given by (56) are obtained from (53) in the following way. If
we introduce the dimensionless function у = a2

F/E2 and the
dimensionless variable x = 2xz, where Ec = (2х/Ъф)112,
then (53) and (54) yield

(IV.5)

where/i = rt/E2

c^a2

F(L)/El. The solution of this equa-
tion can be expressed in terms of the Jacobi elliptic func-
tions.42 In the simplest case 8 = 0 and we introduce the new
function v ( x ) =y(x) — (Ji/2) and the parameters
A 2 = 1 + (Л./4) and b2 = JL/4, so that equation (IV.5)
can be written in the form

(IV.6)d*

Integrating this equation and transforming to the variables
y(z) and z, we obtain

Xz) =JL[l+ nd(2a*(z - L)/a~2) ]/2, (IV.7)

where nd(x/q) is one of the Jacobi functions42 0<<?< 1. Sub-
stituting z = 0 in (IV.7), and introducing /0=/=д|
(Q)/E2

C, we finally obtain (56). Hence, it is readily shown
that the reflection coefficient RL is given by (55).

'R. Kronig and W. G. Penney, Proc. R. Soc. London A13, 499 (1930).
2 A. Ya. Shik, Fiz. Tekh. Poluprovodn. 8, 1841 (1974) [Sov. Phys. Semi-
cond. 8, 1195 (1974) ]; L. V. Golubev and E. I. Leonov, Superlattices [in
Russian], M., 1977.

3A. P. Silin, Usp. Fiz. Nauk 147, 485 (1985) [Sov. Fiz. Usp. 28, 972
(1985)]; E. A. Andryushin and A. A. Bykov, Sov. Fiz. Usp. 154, 122
(1988) [Sov. Fiz. Usp. 31, 68 (1988)].

"R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography, Aca-
demic Press, N.Y., 1971 [Russ. transl, Mir, M., 1973].

5M. Miler, Holography: Theory, Experiment, and Applications [in Rus-
sian], Mashinostroeniye, M., 1979.

6Yu. V. Gulyaev, V. V. Proklov, and G. N. Shkerdin, Usp. Fiz. Nauk 124,
61 (1978) [Sov. Fiz. Usp. 21, 29 (1978)].

7I. B. Yakovkin and D. V. Petrov, Diffraction of Light by Surface Acoustic
Waves [in Russian], Nauka, Siberian Division, Novosibirsk, 1979.

8T. Tamir (ed.), Integrated Optics, Springer-Verlag, Berlin 1979 [Russ.
transl., Mir, M., 1978].

9M. K. Barnoski, Fundamentals of Optical Fiber Communications, Aca-
demic Press, N.Y., 1976 [Russ. transl., Mir, M., 1980].

IOR. G. Hunsperger, Integrated Optics: Theory and Technology, Springer-
Verlag, Berlin, 1984 [Russ. transl., Mir, M., 1985].

"Z. G. Pinsker, Dynamical Scattering of X-rays in Crystals, Springer-Ver-
lag, Berlin, 1978 [Russ. original, Nauka, M., 1974].

I2A. N. Andreev, Usp. Fiz. Nauk 145, 113 (1985) [Sov. Fiz. Usp. 28, 70
(1985)].

21 Phys.-Usp. 36 (1), January 1993 S. Yu. Karpov and S. N. Stolyarov 21



I3L. Brillouin, Wave Propagation in Periodic Structures, Dover, N.Y., 1953
[Russ. transl., IL, M., 1959].

14C. Elachi, Proc. IEEE64, 1666 (1976) [TIIER 64(12), 22 (1976)].
"E. WhittakerandG. N. Watson, A Course of Modem Analysis, Cambridge

University Press, Cambridge, 1927 [Russ. transl., GIFML, M., 1963,
Part 2, Chapter 19].

16M. I. Rabinovich and D. I. Trubetskov, Introduction to the Theory of
Oscillations and Waves [in Russian], Nauka, M., 1984, Chapter 11.

17M. Born and E. Wolf, Principles of Optics, Pergamon Press, Oxford, 1970
and 1980 [Russ. transl. of an earlier ed., Nauka, M., 1973].

'"N. W. McLachlan, Theory and Application ofMathieu Functions, Claren-
don Press, Oxford, 1947 [Russ. transl., IL, M., 1953].

19M. B. Vinogradova, O. V. Rudenko, and A. P. Sukhorukov, Theory of
Waves [in Russian], Nauka, M., 1979, Chapter IV.

20T. Tamir, H. C. Wang, and A. A. Oliner IEEE Trans. MTT-12, 324
(1964).

21D. L. Jaggard and C. Elachi, J. Opt. Soc. Am. 66, 674 (1976).
22S. F. Su and Т. К. Gaylord, ibid., 65, 59 (1975).
23B. Beularbi, D. J. Cooke, and L. Solimar, Optica Acta 27, 885 (1980).
24A. Yariv and Rochi Yeh, Optical Waves in Crystals, Wiley, N. Y., 1984

[Russ. transl., Mir, M., 1987].
25S. N. Stolyarov, Kratk. Soobshch. Fiz. (FIAN) No. 11,12 (1987) [Sov.

Phys. Lebedev Inst. Rep. No. 11 (1987) ].
2T.K. Gaylord and M. G. Moharam, Proc. IEEE 73,894 (1985). [TIIER,

73(5),53 (1985)].
27R. B. Vaganov and B. Z. Katsenelenbaum, Fundamentals of the Theory of

Diffraction [in Russian], Nauka, M., 1982, IV.
2BS. Yu. Karpov, O. V. Konstantinov, and M. E. Raikh, Fiz. Tverd. Tela

(Leningrad) 22, 3402 (1980) [Sov. Phys. Solid State 22, 1991 (1980)].
29H. Kogelnik, Bell Syst. Tech. J. 48 (9), 2909 (1969).
30N. N. Martynovand S. N. Stolyarov, Kvant. Elektron. (Moscow) 5,1853

(1978) [Sov. J. Quantum Electron. 1056 (1978) ].
31N. N. Martynov, Kvant. Elektron. (Moscow) 6, 1798 (1979) [Sov. J.

Quantum Electron. 9, 1062 (1979) ].
32N. N. Martynov, Radiotekh. Elektron. 25, 1851 (1980) [Radio. Eng.

Electron. Phys. (USSR) 25 (1980)].
33V. L. Ginzburg, The Propagation of Electromagnetic Waves in Plasmas,

Pergamon Press, Oxford, 1970 [Russ. original, Nauka, M., 1967) ].
34N. N. Bogoliubov and Yu. A. Mitropolsky, Asymptotic Methods in the

Theory of Nonlinear Oscillations, Gordon and Breach, N. Y., 1964 and
1985 [Russ. original, Nauka, M., 1963 and 1974].

35A. H. Nayfeh, Introduction to Perturbation Techniques, Wiley-Intersci-
ence, N. Y., 1981 [Russ. transl., Mir, M., 1984].

36G. A. Korn and Т. М. Korn, Mathematical Handbook for Scientists and
Engineers, McGraw-Hill, N. Y., 1961 and 1968 [Russ. transl., Nauka,
M., 1968 and 1970].

37S. M. Rytov, Izv. Vyssh. Uchebn. Zaved., Fiz. No. 2, 223 (1937).
3SV. I. Klyatskin and K. V. Kosher, Zh. Eksp. Teor. Fiz. 84, 2092 (1983)

[Sov. Phys. JETP57, 1217 (1983)].
39Yu. V. Zhilyaev, O. V. Konstantinov, and M. M. Panakhov, Fiz. Tverd.

Tela (Leningrad) 19, 1798 (1977) [Sov. Phys. Solid State 19, 1049
(1977)].

*°S. A. Gurevich, S. Yu. Karpov, and E. L. Porshnoi, Pis'ma Zh. Tekh. Fiz.
10, 945 (1984) [Sov. Tech. Phys. Lett. 10, 396 (1984)].

4IS. A. Gurevich, S. Yu. Karpov, and E. L. Porshnoi, ibid., 11,989 (1985)
[11,409(1985)].

42M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions,
Dover, 1965 [Russ. original, Nauka, M., 1979].

43O.V. Konstantinov and M.E. Ratkli, Zh. Tekh. Fiz. 49,703 (1979) [Sov.
Phys. Tech. Phys. 24,408 (1979)].

"H. G. Winful, J. H. Marburger, and E. Garmire, Appl. Phys. 35, 379
(1979).

45Yu. Voloshchenko, Yu. N. Ryzhov, and V. E. Sotin, Zh. Tekh. Fiz. 51,
902 (1981) [Sov. Phys. Tech. Phys. 26, 541 (1981)].

46S. M. Wu and C. C. Shin, Phys. Rev. A 32, 3736 (1985).
47V. K. Ignatovich,Usp. Fiz. Nauk 150,145 (1986) [Sov. Fiz. Usp. 29,880

(1986)].
4"V. A. Belyakov, Diffraction Optics of Periodic Media with Complex Struc-

ture [in Russian], Nauka, M., 1988.
49F. G. Bass, A. A. Bulgakov, and A. P. Tetervov, High-Frequency Proper-

ties of Semiconductors with Superlattices [ in Russian ], Nuaka, M., 1989.
50V. A. Belyakov and A. S. Sonin, Optics ofCholesteric Liquid Crystals [in

Russian], Nauka, M., 1982.
51O. S. Eritsyan, Optics of Gyrotropic Media and Cholesteric Liquid Crystals

[in Russian], Aiastan, Erevan, 1988.
"V. A. Belyakov and V. E. Dmitrienko, Soviet Physics Reviews 13, part. 1

(1989).
53L. M. Brekhovskikh, Waves in Layered Media, Academic Press, N.Y.,

1960 [Russ. original, Nauka, M., 1957 and 1973].
54S. N. Stolyarov, Bragg Wave Transformation in One-Dimensional Period-

ic Structures, Including Higher Perturbation- Theory Orders [ in Russian ],
MFTI.M., 1989, pp. 37-41.

5SS. N. Stolyarov, in Pulsed Lasers and their Applications [in Russian],
MFTI, M., 1988, pp. 120-122.

56S. N. Stolyarov, Optical and Electronic Methods of Data Processing [in
Russian], MFTI, M., 1990, pp. 85-90.

"B. M. Bolotovskii, V. E. Volovel'skii, N. N. Martynov, and S. N. Stol-
yarov, Preprint FIAN [in Russian], No. 101, M., 1989.

MB. M. Bolotovskffand S. N. Stolyarov, Usp. Fiz. Nauk 159, 155 (1989)
[Sov. Phys. Usp. 32, 813 (1989)].

59V. E. Volovel'skii, Thesis [in Russian], MGTU, M., 1990.
'"N. N. Martynov, Thesis [in Russian], MFTI, M., 1979.
MS. N. Stolyarov, Kratk. Soobshch. Fiz. No. 6, 21 (1989) [Sov. Phys.

Lebedev Inst. Rep. No.6 (1987)]; Kvant. Elektron. (Moscow) 15,1637
(1988) [Sov. J. Quantum Electron. 15, 1021 (1988)].

62L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-Relativistic
Theory, Pergamon Press, Oxford, 1977 [Russ. original, GIFML, M.,
1963].

Translated by S. Chomet

22 Phys.-Usp. 36 (1), January 1993 S. Yu. Karpov and S. N. Stolyarov 22




