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A series of laboratory exercises in nonlinear wave physics assigned to students of the Physics
Department of the Moscow State University in the laboratory of the Acoustics Section is
described. The series consists of three assignments: 1) experimental investigation of nonlinear
waves in dissipative media; 2) Investigation of nonlinear phenomena in acoustic beams by
mathematical simulation using personal computers, and 3) Experimental investigation of wave
propagation in a medium with dispersion (capillary waves on the surface of a liquid). As a result
of carrying out these assignments, the students become familiar with the characteristic features of
the behavior of nonlinear waves and the modern methods of describing and studying them.

INTRODUCTION

The recent developments in nonlinear wave theory, and
nonlinear optics and acoustics have required their inclusion
in the modern education process. A number of monographs
and textbooks (Refs. 1-8) has been published partly due to
this reason.

We shall describe below the special practical laboratory
exercises which are compulsory tasks for students graduat-
ing in radio physics in the Physics Department of Moscow
State University. These exercises acquaint the students with
the problems of mathematical description and physical
properties in the investigation of nonlinear wave processes.1

They are devoted to the effects of absorption, diffraction and
dispersion in nonlinear wave interaction realized in acoustic
media. Of course these effects are inherent not only in acous-
tic waves but also in waves of another physical nature. In fact
the acoustic waves may be considered as a convenient objects
for a simple modeling process of nonlinear wave propagation
in optics, plasma physics, geophysics etc. So this allows one
to give students an idea about the universal features of in-
tense scalar wave propagation. Moreover performing of lab-
oratory exercises enables the students to master the specific
techniques of physical experiment.

Acoustic media are characterized usually by a quadrat-
ic nonlinearity and a weak dispersion so the propagation of
the wave beam with axial symmetry along the x axis can be
described by the evolution equation

Here р(х,г,т) is the acoustic pressure field, p0 is the mass
density, e is the media parameter of nonlinearity. It is conve-
nient to describe the wave profile distortion using the refer-
ence frame of co-moving coordinates: r=t— (x/c0), here
c0 is the sound velocity, г are the transversal coordinates in
the cross section of the beam, orthogonal to the x axis, Дх/*.
is the corresponding Laplace operator. The linear operator L
describes the frequency dependent absorption and disper-
sion effect.'

Since all three effects (absorption, diffraction and dis-
persion) can compete with nonlinear effects the wave propa-

gation conditions essentially depend on the interrelations be-
tween corresponding the characteristic lengths ха, xd(, xds

and the nonlinearity length х„. The most interesting cases
correspond to the cases when the nonlinearity is expressed
strongly. Accordingly the situation should be considered
when the nonlinearity length xn is smaller then each of the
three other characteristic lengths, whereas the interrelations
between xa, хл(, xds can be arbitrary.

The practical study of the typical cases is organized in
the form of three practical assignments for students in the
Acoustics Section. Two of them use experimental apparatus
while the third one is realized as a mathematical simulation
using a personal computer.

1. EXPERIMENTAL STUDY OF NONLINEAR WAVES IN
DISSIPATIVE MEDIA^

For plane waves in dissipative media we take the situa-
tion when the diffraction and dispersion processes are negli-
gible: Jtdf -» oo and xds -> oo. The mathematical description of
such waves is based on the Burgers equation1'3

wж evdu | ь afy (1Л)
9x c§ ^ 2cjjo0 dr2'

which follows from Eq. (1) р=р(х,т) =p0c0U,
L = (Ь/2сор0)д2/дт2, where t/is the particle vibration ve-
locity, b is the effective dissipation parameter (for water
b = 4-10~2 P, the nonlinear parameter e = 3.5-4,
c0 = 1480 m/s. Such a form of the dissipative term L is typi-
cal for acoustics where viscous and thermoconductive ab-
sorption terms are usually proportional to /2 where

In nondispersive media during the initial (frequency a>)
signal propagation a synchronous generation of higher har-
monics 2a>, 3a> ... takes place (the number of harmonics
И5гхп/л:а>1) and the wave profile U(T) is progressively
distorted as the distance x traveled by the wave increases up
to shock wave formation at x = xs (xs is the shock wave
formation length).

For large Reynolds numbers Re = CQpQUQ/ba>^-1 the
wave profile distortion is similar to the process in an ideal
liquid up to x = xs. In this case the profile distortion process
is described by the Riemann wave equation
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which follows from Eq. (1.) for b = 0.
The Riemann solution of Eq. (1.2) in terms of x, t for

UE/CO<^\ and the boundary condition U(x = 0,t)
= U0 sin cat is1^

£/= <o\t-

(1.3)

It follows from Eq. (1.3) that the wave sectors having differ-
ent particle velocities U propagate with different velocities
c0 + eU, when U> 0 the wave velocity is supersonic, when
U< 0 it is subsonic. Therefore a distortion of the initial wave
profile is developing. For small Mach numbers
Ma = C//c0< 1 (in liquids typical Mach numbers are of the
order of 10"3-1Q-4 (Refs. 1-6, 8) wave profile distortions
are negligible at distances comparable with the wavelength
Я. However these weak distortions have a cumulative char-
acter, i.e., nonlinearity leads to significant distortions at
large distances. This fact is typical for nondispersive media.

Equation (1.3) allows one to illustrate the evolution of
the wave profile in a simple way by means of a graphical
analysis.

In the case Ma<^ 1 the spatial form of the initial wave
near the source will reproduce the temporal one i.e. for
£/(0,0 = l/o sin tat

U(x) (1.4)

After the time interval /, >2я-/а> those points of the profile
for which U = 0 will be shifted to the distance x, = c0t ,, the
other points ( U ^0) will be shifted to the distance

i.e., the relative shift between points for which C/^0 and
C/=Owi l lbe

Ax = e£/<j = eXjt/XcQ = еМалСр (1.5)

The new wave form (after a time tl) can be obtained by
the addition of л;, shift to the initial sine curve along the
abscissa axis. It is convenient for the construction of the pro-
file to draw the straight line U = kx where k = c0/£x, (see
Fig. la) and to shift each profile point by the corresponding
value.

It is clear from this graphical analysis that the nonlinear
distortions have a cumulative character: the forward front of
the positive half-period becomes steeper and the back front
becomes flatter the larger is the wave path *,. At a certain
distance at the point at which U = 0 a discontinuity in the
wave profile occurs. This distance xs which has the meaning
of the nonlinearity length х„ can be obtained from the equa-
lity of the slope angle of the U = kx straight line and of the
sine curve U= U0 sin(2irxM) for U= 0: dU/дх \ r=0 = k
or £/0-2тг/Я = Cf/ex , therefore

*P ~ ea>Un 2леМ (1.6)

where NA = (2ireM) ' is the number of wavelengths be-
tween x = 0 and the point of shock wave formation. The N^
value depends on the media properties which are determi-

FIG. I. Graphical analysis of the nonlinear deformation of a simple wave
profile.

nated by the parameter e and the initial disturbance value
U0.

If one continues this procedure at distances x > xs a
multivalued solution of the equation U(x) = 0 arises (see
Fig. I b-d). In real dissipative media this can not occur. The
presence of even arbitrarily low losses leads to a significant
dissipation of energy along the steep sections of the waves.
Instead of the wave "overturning" a wave front of a small
but finite width Д appears. The relative width of this front is

д I +
( 5 =T= :

aeRe
(1.7)

and(5<lforRe>l.
Therefore for determining the wave profile at distances

•Ox, we can continue our graphic construction neglecting
the wave front width but retaining only those parts of the
wave which do not go beyond the boundaries of the discon-
tinuity (see Fig. Ib). The part of the wave energy corre-
sponding to the shaded areas is absorbed by the medium.

It follows from Fig. I that at the discontinuity the dif-
ference of velocity will increase and when it reaches the max-
imum value 2t/0 the wave will take on a sawtooth form. The
corresponding distance is referred to as the "forming" dis-
tance xf. It can be determined using Eq. ( 1 . 5 ) and the condi-
tion Д*|И = И|) = Я/4 (see Fig. Ic),

4eM
л

'TV d.8)

With the further shock wave propagation the velocity dis-
continuity will decrease (see Fig. Id). It is easy to show that
at the distance x, = irpcl/2bo)2 from the source with
U = U0 sin cat the acoustic wave becomes almost sinusoidal
and its amplitude does not exceed U'0 = cobe/p0c0, at x > x,
the wave amplitude does not depend on its initial value and is
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determined only by the wave frequency and by the param-
eters of the medium; it is the so-called "nonlinear satura-
tion" effect.2'3

The transformation of the initial sinusoidal wave into
the shock one is equivalent to the production of higher har-
monics in the initial wave spectrum.

The solution of Eq. (1.3) for л: <xs can be written as
follows1-3

MI Г / \ ~\

(1.9)

where Bn (z) = 2Jn (nz)/nz, z = ecoUx/c2

0, Jn is the Bessel
function of the order n. The solution (1.9) is usually referred
to as the Bessel-Fubini formula and allows us to trace the
dependence of the amplitudes of the harmonics on the dis-
tance x < xs (see Fig. 2).

The block diagram of the apparatus for the experimen-
tal investigation of the propagation of plane waves in dissipa-
tive media is shown in Fig. 3. The plane waves are generated
by the power (up to 2.5-103 W) provided by the pulse gener-
ator 1. Radio frequency 1 MHz pulses are applied to the
quartz electromechanical transducer 2 which is fixed to the
end of the special bath 8 filled with water. Both the ampli-
tude and the length of the rf pulses can be varied by switches
placed in the front panel of the generator 1. The bath con-
struction enables establishing the plane wave regime without
any reflection from the opposite end of the bath.

The receiving X-cut quartz plate-with the resonance
frequency of 10 MHZ was attached to the special device
traveling along the wave propagation direction during the
measurements. The amplitude-phase characteristic of the
receiver is almost constant up to 10 MHz therefore the fun-
damental frequency signal as well as the signals of higher
(up to и = 10) harmonics can be received and also the time
profile of the plane wave can be registered. The diameter of
the receiver is equal to 10 A of the initial wavelength there-
fore the received signal is averaged over the cross section
area of the quartz plate. The received signal is directed to the
wide-band oscilloscope 4 and simultaneously to the spec-
trum analyzer 5 so the wave profile and the spectrum evolu-
tion as a function of the wave path can be observed (see Fig.
4). The fast oscillation in the beginning of the positive half-
+ period of the plane wave at x>xs is caused by the appear-

ance in the signal spectrum of the 10th harmonics coincident
with the receiving plate eigen oscillations.

The wave intensity 1 is measured by the calorimeter 6
with the electrical thermometer 7 which are removed from

FIG. 3. The block diagram of the experimental apparatus for studying
plane waves in a dissipative medium.

the bath before the main experiment. From the known inten-
sity the amplitudes of the excess wave pressure
p0 = (2p0c0I)l/2 and of the particle velocity
U0 = (2l/p0c0)

l/2 were calculated and the acoustic Reyn-
olds number 2e • Re was determined where Re = p0/bca. Stu-
dents had to measure experimentally the discontinuity
length xs and the sawtooth formation length x(, to construct
graphically the wave profile at these points (see Fig. 1) and
to compare the theoretical data with the experimental ones
(see Figs. 2 and 4).

The bath length in the wave propagation direction was
too small to observe the dissipative smoothing out of the
sawtooth wave into a sinusoidal one so the influence of the
dissipative processes was studied at small Reynolds numbers
Re < 1; when the nonlinear term in Eq. (1.1) is negligible
this equation can be solved by the method of successive ap-
proximations.

fl П П n
-P 2P 3f 4f Sf f

и
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FIG. 2. The first, the second and the third harmonic amplitudes curves for
Re> 1 as functions of the distance.

FIG. 4. Experimental oscillograms of the wave profile (a) and the wave
spectrum (b) for different distances.
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With the boundary condition U2ta (x = 0) =0 corre-
sponding to the absence of the second harmonic at the input
into the system the solution of Eq. (1.1) can be written as

U2u> ~ 2 CtexP(~2ctJC) - exp(-4ax) ]sin Ttar, (1.10)

where a = ba>2/2cop0 is the wave absorption coefficient
which depends on the frequency. Figure 5 shows the curve
which illustrates the ratio U2w/U0 as a function of x. The
amplitude of the second harmonic increases initially accord-
ing to a linear law because of the nonlinear pumping of ener-
gy from the wave of the initial frequency, and then begins to
fall off due to the predominant effect of dissipative processes.

For the experimental observation of this process the ra-
diated power was decreased to a value such that the wave
profile was distorted during the wave propagation but the
discontinuity did not appear. The experimental dependence
of the second harmonic amplitude on the wave path mea-
sured with the use of the spectrum analyzer was compared
with the theoretical curve (see Fig. 5).

The experimental device parameters were chosen to
correspond to the nondiffractional case of wave propagation
so that the plane wave approximation could be used in the
calculations.

2. INVESTIGATION OF ACOUSTIC BEAM NONLINEAR
PROPERTIES BY MATHEMATICAL SIMULATION USING A
PERSONAL COMPUTER2'

In the previous section we considered only one-dimen-
sional waves. In real cases we must consider the bounded
sound beams with a non-negligible aperture value. Accord-
ingly diffraction effects must be taken into account. In order
to study nonlinear effects in acoustic beams it is useful to
neglect the influence of absorption (хл -»oo) and dispersion
(xds -> oo ). This corresponds to L = 0 in Eq. (1) and we
obtain the Khokhlov-Zabolot-skaya (KZ) equation1 which
describes wave propagation including diffraction and non-
linear effects

(2.1)

The wave profile distortion described by the KZ equa-
tion (2.1) results from nonlinearity and diffraction. It
should be noted that in contrast to the Burgers equation no
exact solutions of the KZ equation which are of physical
interest are known. Therefore special limiting cases will be
considered.

If we neglect diffraction i.e., set kLp = 0, Eq. (2.1) is
transformed into the equation for simple waves, the solution
of which (the Riemann solution) was completely analyzed
in the previous section.

In another special case when the nonlinear term in Eq.
(2.1) is neglected, i.e., £ = 0, we have

C0A ft TV'-j-Aj_p. (2.2)

For the sinusoidal signal of the form p = A(x,r)
•exp( — йот) Eq. (2.1) can be transformed into the parabol-
ic equation of diffraction well known in wave theory1

d2A 1 dA
dr2 r dr

the solution of which can be written in the form

exp -
i(x/xA

(2.3)

(2.4)

assuming a Gauss-type boundary condition: A(x = 0,r)
= p0 exp( — rVa2). Here

ka2 a>a2

2cn

(2.5)

is the characteristic diffraction length (see Fig. 6). At dis-
tances x^xd{ the beam with an initial plane front is trans-
formed into a spherical wave which is concentrated within a
cone of angle 0df = Л /что.

Using the solution (2.4) of the parabolic equation (2.3)
one can obtain the solution of the linear problem of the dif-
fraction of a sinusoidal signal

P..
PO

X2\

—I*df/
exp

x sin mi + arctg 2 -
x/xd,

L
(2.6)

Equation (2.6) enables one to follow the wave phase
change along the beam axis (r = 0)

<p = an + arctg—, (2.7)

The main result of Eq. (2.7) is: the phase velocity of
acoustic wave propagation depends on frequency and is
somewhat greater than the plane wave phase velocity c0.
This is easy to see in the case x^xd( when
arctg (x/xdf) xx/xa( and Eq. (1.6) becomes

о,5 1,0 лас

FIG. 5. The second harmonic amplitude curve as a function of distance for
Re<l .
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«
(2.8)

where c(u>) =c0-(l — 2(c0/coa)2) ~' .
It follows from Eq. (2.8) that as the frequency increases

(со -> oo) the diffraction effects become weaker and
c(u>)-»c0. The diffraction shift of the phase (2.7) corre-
sponds to the transformation of the plane wave into the
spherical one described by Eq. (2.6). This transformation is
easily observes at distances from x = 0 up to several xdf.

We consider now the general situation described by the
KZ equation when both nonlinearity and diffraction are in-
cluded. We shall take into account only two phenomena: the
distortion asymmetry of the compression and rarefaction
half-periods of the periodical acoustic signal and the beam
isotropization effect.

The asymmetry is connected with the nonlinear effect
of higher harmonic generation and the diffraction shift of
phases (2.7), in other words with the small difference of
phase velocity с (со} of the different harmonics (2.8). A
qualitative explanation of the asymmetric distortion of the
half-periods is given by Fig. 7. For simplicity we will take
into account only the two first harmonics: the initial fre-
quency со and the second harmonic 2co. It follows from Eq.
(2.8) that the wave velocity excess over c0 is less the greater
is the frequency. Hence the second harmonic appearing in
nonlinear media has a phase shift relative to the phase of the
initial frequency wave. The resulting wave profile is the sum
of the two harmonic components. The profile is distorted as
follows: the positive half-period is shorter than the negative
one. The areas of the half-periods must be equal because of
the momentum conservation law. Therefore at distances
xzzxd( ~xs the positive pressure amplitude exceeds the ini-
tial value p0. This conclusion will be valid also if a greater
number of harmonics is taken into account.

The isotropization effect is connected with the nonlin-
ear damping of discontinuities. We recall that even in ideal
nonviscous media at x<xs distances (see section 1) this
damping may be essential. Nonlinearity causes a decrease of
the sawtooth wave "amplitude;" this decrease strongly de-
pends on the amplitude and therefore depends on r. Nonlin-
ear damping will be greater near the axis of the beam where
the disturbance is greater. Hence the smoothing of the beam
shape and of the details of the transverse field distribution
will occur (see, for example, Fig. 8a, for distances x > xs).

The smoothing of the transverse distribution of the field
in the radial coordinate r means that the angular distribution
of the field (for small angles 9~r/x between the beam axis
and the direction to the point of observation) will also be

Wave
Profile

1st harmonics

2nd harmonics

FIG. 7. The nonsymmetrically distorted wave profile ( 3 ) as a result of the
sum of the initial wave (/) and the second harmonic (2).

r/a 7

FIG. 8. The smoothing of the beam shape (a) and the isotropization of
the directivity diagram (b) as a result of nonlinear damping.

smoothed out, that is isotropization of the directional pat-
tern of radiation will occur (see Fig. 8b). A similar process is
typical for parametric underwater antennas.5'6

The experimental investigation of nonlinear diffraction
effects under laboratory conditions is connected with certain
difficulties. Therefore this practical laboratory work is based
on the mathematical simulation of the processes described
by the KZ equation using a personal computer.

To solve the KZ equation using a computer, it is conve-
nient to bring Eq. (2.1) to a dimensionless form. Let the
acoustic field at the source be a Gaussian beam and a mono-
chromatic signal:

p(x = 0, r, r) = pQexp(-r2/e2)sin on, (2.9)

where а, со and p0 are characteristic values of the beam
width, the wave frequency and the wave amplitude respec-
tively.

The new dimensionless variables in Eq. (2.1) are

P л „ _ r _ x eП 0 = ttff,

in terms of which Eq. (2.1) takes the form

a /an am jv(a2n i an)
T + д a* '

(2.10)

(2.11)

Here TV = xn /xdf is the ratio of the characteristic nonlinear-
ity length xn [see Eq. (1.6)] to the diffraction length xdf

[seeEq. (2.5)].
The physical meaning of the number N can be under-

stood by estimating the relative contribution of the diffrac-
tion and the nonlinear terms to Eq. (2.1)

(c0/2)Axp

(2.12)

For N^> 1 the diffraction term is predominant and for
the nonlinear term prevails. For example alN = 10 we

have almost a linear problem up to distances z~ 10. In this
case the nonlinear term in the KZ equation is negligibly
small and with good accuracy the solutions of the KZ equa-
tion correspond to the solutions of the linear equation (2.2).
In particular for the sinusoidal input signal (2.9) we have
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the solution (2.6). For the small values N^ 1 the solution to
the KZ equation coincides with the Riemann simple waves
solution for z< 1. For larger z we have to remove the nonuni-
queness of the wave profile by drawing a discontinuity ac-
cording to the law of "equality of areas."

A mathematical simulation of the KZ equation in the
form (2.11) under the conditions (2.9) at z = 0 which in
dimensionless variables has the form

П(г = 0, R, в) = exp(-*2)sin в (2.13)

is performed using a personal computer. The direct integra-
tion of the problem (2.11), (2.13) performed with the spe-
cially elaborated net methods9 using the powerful modern
computers required heavy expenditure of machine time.
This is unacceptable for student laboratory exercises. So
asymptotic methods of solving the KZ equation were pro-
posed in Ref. 10 which enable one to calculate the wave pro-
file, the amplitude and the phase spectrum as functions of
the dimensionless parameters with the use of personal com-
puters within a few seconds.

Students have a possibility to input the initial param-
eters N, z, R and to observe different situations arising with
the nonlinear beam propagation. As a result of programmed
calculations for certain N, z, and R there appear on a display
the patterns of the wave profile, the amplitude spectrum and
a table of numerical values of amplitudes and phases of the
first ten harmonics of the beam, as well as the asymmetry
characteristics of the wave profile. Then if necessary the ex-
perimental results are printed out on a matrix printer (see
Fig. 9).

The profile and the amplitude spectrum of one period of
the distorted wave which has the initial sinusoidal time form
at x = 0 is given in Fig. 9a. The parameter N = 0 corre-
sponds to the nondiffracting wave with a plane front. The
results relate to the space point R = 0, z = 1, i.e., the obser-
vation point is placed on he beam axis at a distance x = xs

from the source. At the point x = jcs a discontinuity arises
and the tangent to the wave profile atr = 0(0 = 0) becomes
vertical. The numerical values of the harmonics amplitudes
correspond to the Bessel-Fubini formula [see Eq. (1.9) ].

The same profile is represented in Fig. 9b but at a dis-
tance z = 3 (x = 3xs). Here the nonuniqueness of the profile
at the point т = 0 (6 = 0) was replaced by a discontinuity
according to the law of "equality of areas."1 One can see that
a sawtooth wave has been formed by straight-line parts of the
smooth profile of the simple Riemann wave separated by
shock fronts. The amplitude of harmonics with numbers m
and n are related as Am/An ~n/m.

Figures 9c-d illustrate the simultaneous influence of
both the nonlinear and the diffraction processes. For the
sake of comparison the wave profile at Л = 0, z = 1.5, TV = 0
(the case of diffraction switched off) is represented in Fig. 9c
and the wave profile at N = 1.5 (xd( = 1.5xs) is represented
in Fig. 9d. One can see that the diffraction phase shifts be-
tween different harmonics lead to the nonsymmetrical dis-
tortion of the compression and rarefaction parts in every
period of the signal.

By varying the parameter R while the parameter N and
z remain fixed we have the opportunity to investigate the
transverse amplitude profile of the beam, the isotropization
effect, and the amplitude profiles of different harmonics.

3. EXPERIMENTAL STUDY OF SOUND WAVE PROPAGATION
IN A MEDIUM WITH DISPERSION (CAPILLARY WAVES ON A
LIQUID SURFACE)'

The third practical laboratory exercise is devoted to the
properties of nonlinear waves in dispersive media and is
based on an experimental study of propagation of capillary
waves on a water surface.

Oscillations of a disturbed free surface of a liquid are
caused by two kinds of relaxation forces: gravity and surface
tension. In the case of deep water h >Я (here h is the depth)
the corresponding dispersion relation is the following:1

where g = 9.8 m/s2 is the acceleration due to gravity, a is the
surface tension coefficient, and pQ is the mass density. We
note that the value of a depends strongly on the purity of the
water surface and can be about 15-20% less for nondistilled
water.

* '
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FIG. 9. The waves profiles and their spectra (on the
right) for different z and TV for R = 0. a—z = 1, TV = 0.
b—z=3,7V=0.c—z= l.5,N = 0.d—z= 1.5, N= 1.5.
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The phase velocity of surface sound waves is [see Eq.
(3.1)]:

(3.2)

The frequency dependence of the phase velocity Fph (/) in
Fig. 10 corresponds to distilled water (o-=7-102 N/m2,
/>0 = 103 kg/m. At

the velocity Kph (/) has a minimum: Fphmin = (4crg/p0)
1/4

and the corresponding wavelength is /imin = (crg/p0)
I/4. For

distilled water /min = 13.5 Hz, K p h m i n = 0.235 m/s,

For short (capillary) waves/(>/min) the force of sur-
face tension prevails and the first term in Eq. (3.1) becomes
negligible, so

1/3

k ~ 1л-"1 ~ I a-1" I ' (3-3)

3<7*2

~
d*

where Fgr is the wave group velocity.
For long (gravity) waves for/<fm i n the second term is

dominant i.e.:

@
l/2

• '.-5
.

For/~/min both terms are of the same order: it is the
case of mixed gravity-capillary waves.

The group velocity of gravity waves is less then the
phase velocity. On the other hand the phase velocity of capil-
lary waves is less then the group velocity, and anomalous
dispersion occurs (see Fig. 10).

The presence of dispersion causes the essential differ-
ence in nonlinear effects in dispersive and nondispersive
cases (see for example section 1), the phase velocities of
different harmonics are different and phase relations be-
tween harmonics change rapidly as they propagate in space.
Because of the absence of phase synchronism there is no ac-
cumulation of nonlinearity and we have no essential distor-
tion of the wave profile.

1,00

0 2D 4C 60 SO 100

f, Hz

FIG. 10. The phase velocity Fpb and the group velocity Fgr of waves on the
surface of water as functions of the frequency/

The description of the acoustic field in a dispersive me-
dium directly in terms of Eq. (1) is no longer suitable. More
convenient is the equivalent description in terms of the equa-
tion for the slowly varying complex amplitudes of the quasi-
harmonic components of the acoustic field. In particular, if
the dispersion is such that only the first and the second har-
monics can exchange energy effectively one should set in Eq.
(1)

p(x, т) = TjAj £A2exp(i-2a>T) + c.c.

Then if the energy dissipation is negligible, Eq. (1) is equiva-
lent to the pair of truncated equations:'

dA,
(3.5)

л дА л

Here А г and Л2 are the initial wave and the second harmonic
amplitudes respectively, U= V~l(2(a) - Kg7'(«) is the
group velocity discrepancy,

_ » /f\ \ iL / \ 2<y ~ (o ("\ f\\
" Kph (2eo) Kph (<u)

is the wave number difference, and /is the effective constant
of nonlinearity for the surface waves.

The pair of equations (3.5) describes the main features
of the second harmonic generation. The absence of the sec-
ond harmonic at x = 0 implies the boundary condition:

0. (3.7)

We consider now the second harmonic generation in a con-
tinuous regime under the condition |Л2|<|Л,|. Then ac-
cording to the first of equations (3.5) the initial wave ampli-
tude is constant Ai(x)~A0. If also one puts £7=0, the
second harmonic is generated in the presence of the given
field of the initial wave and the pair of equations (3.5) is
replaced by the equation

дА2 2

So integrating (3.8) we obtain

according to which the wave amplitude of the second har-
monic does not remain constant but exhibits beats in space

(3.10)|Л21 - г м/2

In the absence of dispersion, Д& = 0, the amplitude of the
second harmonic grows linearly with the distance (see Fig.
11)

(3.11)

Due to the condition \A2\ <3.A0 this equation is valid also for

In the general case Д& ^0 the second harmonic ampli-
tude increases monotonically within the interval Lcoh (Refs.
1-4)
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FIG. 11. Generation of the second harmonic for different dispersion prop-
erties of the medium.

where Lcoh is the so-called "coherence length," and reaches
the first maximum

(3.13)

The spatial period of beats is

2* (3.14)

(see Fig. 11).
The block diagram of the apparatus for the experimen-

tal investigation of capillary waves is shown in Fig. 12. Sur-
face waves are generated in small bath 1 by the sharp edge of
the light aluminum plate 2 firmly attached to the electrody-
namic transducer 3. The electromagnetic oscillations are
generated both in the continuous and the pulsed regimes by
the generator 4 in the frequency range 40-200 Hz. The water
depth in the bath of h ~ 5 cm was sufficient to justify neglect-
ing the influence of the bottom on the propagation of waves
in the frequency range of 40-200 Hz. A 5V constant voltage
battery is attached to the receiving circuit which contains
the adjusting resistor R0, the thick copper plate 5 on the bath
bottom and the thin gold electrode б (Fig. 12). The changes
in the depth to which the electrode is submerged due to wa-
ter surface oscillations result in oscillations of the receiving
circuit resistance. The alternating voltage across R0 which is
proportional to the surface wave amplitude is selected and

FIG. 12. Block diagram of the experimental apparatus for the investiga-
tion of capillary waves on a water surface.

FIG. 13. The experimental method for the determination of the capillary
wave group velocity.

amplified by the selective micro voltmeter 7 and then the
output signal is applied to the Y input of the oscilloscope 8.
During the experiment the receiving device travels in the
direction of the surface wave propagation and its displace-
ment is measured with a micrometer.

This experimental device is suitable for the investiga-
tion of Kph and Fgr dispersions as well as the second harmon-
ic generation process. When measuring the Fph (f) depend-
ence a continuous alternating electric voltage from the
generator 4 is applied to the transducer 3 and to the X input
of the oscilloscope. The phase difference between the initial
and the received signals is measured by using the ellipsoidal
Lissajoux patterns. The distance between two closest points
of the receiving device at which the Lissajoux patterns had
the same shape is equal to the wavelength Я that corresponds
to Kph =fA. Making measurements at different frequencies
one obtains the dispersion curve Vph (f) in the frequency
range/= 40-200 Hz.

In order to measure Fgr the continuous regime of gener-
ation is changed to the pulsed one. The oscilloscope is syn-
chronized by an external rectangular pulse which is also
used for the electric signal modulation. Due to strong disper-
sion the initial rectangular wave packet is transformed into a
Gaussian one. Measurement with the oscilloscope of the
time shift Д? of the maximum of the wave packet caused by
the spatial shift Д/ of the receiving system allows one to esti-
mate Fgr (f) = Д//Д? (see Fig. 13).

The experimental dependences Fph (f) and Fgr (f) were
compared with the theoretical ones. Experimental values ap-
peared to be less then Fph and Kgr fromEq. (3.3) because of
the smaller value of a of nondistilled water. In addition the
air dust absorption by the water surface and the products of
electrolysis in the receiving device also decreased the value
of a.

The continuous regime of generation mentioned above
is used for the measurement of the second harmonic ampli-
tude. The selective micro voltmeter is tuned to double the
frequency of generation. The fine tuning of the receiving sys-
tem is carried out using the optimal "figure of eight" Lissa-
joux pattern on the oscilloscope screen.

The monotonic increase of the value of A2 was observed
up to the distance £coh between the transducer and the re-
ceiver, then space beats of A2 were observed (See Fig. 11).
Students measured the experimental Д2<ц value which was
compared with the estimated value from Eq. (3.14).

CONCLUSION

The three practical laboratory exercises described in
this paper are associated with nonlinear phenomena that in
our opinion are the most interesting ones. Students graduat-
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ing in radio physics study the modern experimental method
of nonlinear acoustics when working on these practical exer-
cises.

All the experimental set-ups are based on commercially
produced type blocks. Their reliability was confirmed dur-
ing several years of exploitation in the Physics Department
of Moscow State University. The second exercise was car-
ried out using personal computers both of domestic produc-
tion (DUK-2, 3, "Electronika-60," and Iskra 1130) as well
as of foreign production (compatible with IBM PC).

More detailed information is available from the Acous-
tics Section of the Physics Department of the M. V. Lomon-
osov Moscow State University.

We thank Prof. I. A. Yakovlev for his interest in this
article and for helpful and stimulating discussion of it.
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