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This review article is devoted to results of theoretical and experimental investigations of
properties of nanometer metal particles. First, the modern theory of equilibrium structures and
shapes of small particles is presented. The next Section deals with the thermodynamics of small
particles. It reflects the present state of the theory of surface forces for small particles, including
crystalline ones, Validity conditions are pointed out for the standard approach, and an alternative
approach is described which is adequate for particles surrounded by their saturated vapor. In it
the Laplace pressure is not a real physical force, but a formal quantity that describes the size
dependence of the chemical potential. Specific features are described of melting and interphase
fluctuations in small particles. In describing the electron properties of the particles emphasis is
laid on the smoothed level density and the size dependence of the Fermi energy. Some effects
caused by this dependence are presented, in particular the mutual charging of particles of
different sizes which manifestsitself in an anomalously strong attraction between particles and so
on. Magnetic properties of small particles are also described including macroscopic quantum

tunneling of magnetization.

INTRODUCTION

Solid or liquid samples of size in the range from several
nm to several tens of nm are referred to as small particles. In
them the number of surface atoms is not negligibly small
compared with that of bulk atoms: these quantities differ
only by an order magnitude or even less. Since the total num-
ber of atoms in such particles still amounts to 10°-10%, they
possess properties of crystals or liquids. But due to relatively
large fraction of surface atoms these properties may differ
essentially from those of bulk samples.

This difference was discovered long ago, and it is used
for various technical applications. A few examples may illus-
trate how wide is the range of applications of small particles.
Powders of small particles often act as catalysts much better
than bulk samples of the same material. Composite materials
including small metal particles exhibit unique mechanical
properties especially valuable in aero- and space engineer-
ing. Magnetic small particles play a vitally important role in
modern electronics and military technology. The US Stealth
bomber, for instance, which is virtually invisible to radar
when in flight, is covered by a special composite material. It
includes small particles which can trap and virtually absorb
radar beams.

Sometimes one deals with small particles despite one’s
desire. For example, inhabitants of large towns are com-
pelled to inhale small particles of harmful industrial pollu-
tants together with air. In such cases an opposite task arises:
not to produce but to suppress small particles.

Diversity of practical applications suggests by itself
that small particle physics will remain prominent for many
years to come. It suffices to point out the books (Refs. 105,
126, 128, 131) and review articles'*%!2*!3% on this subject
appearing only in the last decade and the vast number of
original publications appearing each year. But the present
review article is not devoted to the task to supplement the
previous review articles with recent information. It overlaps
with them only slightly. Its main subject is the basic physical
properties of small particles: new developments in the ther-
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modynamics and surface force theory, spatial quantization
of the conduction electron levels in metal particles, specific
features of their electrostatics, and phase transitions and
fluctuations in them.

To be more specific, one should note that although the
concept of Laplace forces was formulated already two cen-
turies ago, the problem of the surface forces is far from hav-
ing been finally solved. One might hope that Laplace forces
can explain the properties of small particles, at least qualita-
tively. For example, one might expect that they are all com-
pressed by the Laplace pressure in the thermodynamically
equilibrium state. Meanwhile, the experiment shows that
very often this is not the case: some particles are compressed
but others are dilated. This means that not always the sur-
face forces are equivalent to the Laplace pressure.

When analyzing surface forces one should differentiate
between the equilibrium case when the shape of the particle
corresponds to the minimum free energy, and the nonequi-
librium case. A sample of a nonequilibrium shape tends to
take on the equilibrium shape under the Laplace pressure,
and hereits reality is beyond doubt. But the thermodynamic-
ally-equilibrium case demands much more careful treat-
ment. It shows that the Laplace pressure is a real physical
force for a liquid particle in equilibrium with its saturated
vapor if both the particle and its vapor may be treated ther-
modynamically.? In this case the change in the free energy
caused by a change in the surface area of the particle is pro-
portional to the surface tension and for this reason it can be
expressed in terms of the Laplace pressure.

But the situation for crystalline particles is quite differ-
ent Gibbs® already noted the difference between the energies
of the formation of a new surface due to the crystal splitting
and of change in the area of the already existing surface due
to its deformation. In microscopic terms, in the former case
the number of surface atoms increases, in the latter case it
remains unchanged. Gibbs proved that if in the former case
the free energy change is determined by the surface tension,
in the latter case it is determined by a different quantity
called the surface stress. If the crystalline particle shape is in

© 1993 American Institute of Physics 747



equilibrium its deformation may be caused only by the sur-
face stress. Thus, the Laplace pressure proportional to the
surface tension cannot be a real physical force causing the
crystalline particle deformation.

Another origin of inadequacy of the concept of the La-
place pressure was pointed out only quite recently.'®® The
question arises whether the condition that the particle and
its surroundings should be subsystems of a united thermody-
namic system is always met. Certainly, the condition is ful-
filled for a crystalline particle in its own melt. But when a
crystalline or liquid particle is surrounded by its saturated
vapor, the vapor density is so small under typical conditions,
that the standard thermodynamics described in Ref. 2 be-
comes invalid. This is the case for almost all metals close or
below their melting points.

This is most clearly seen from the case of tin particles.
Using experimental data from Ref. 7 with allowance for the
exponential temperature dependence of the saturated vapor
pressure, one finds that it is so low at 300 K that it corre-
sponds to one tin atom in a volume comparable with the
volume of the Earth. It is clear that there is no coexistence of
the condensed phase with its vapor for particles of any size.
Consequently, a new thermodynamics should be developed
for such cases in which exchange of atoms between particles
and their environment is absent. There are no reasons to
believe that the Laplace pressure retains the meaning of a
real physical force even for liquid particles in such a thermo-
dynamics. The theory of Ref. 189 shows, in fact, that for
liquid particles, too, the surface forces correspond not to the
surface tension but to the surface stress.

The problem of the surface forces is closely related to
the problem of the chemical potential of the finite-size sam-
ples. In the standard thermodynamics, if the particle is iso-
tropic, it is the same as for infinite-size samples compressed
by the Laplace pressure. But this well known result is by no
means self-evident: the surface atoms with energies differing
from the bulk atom energy might contribute to the chemical
potential not via the Laplace pressure but in some other way.
It may seem astonishing but the thermodynamics'® leads to
the same result. This means that in the general case the La-
place pressure is not a real physical force but a formal quan-
tity describing the influence of the surface atoms on the the
chemical potential of the particle.

The problem of the chemical potential for crystalline
particles is much more complicated because atoms in a crys-
tal may be located not only in regular sites but also in irregu-
lar positions (interstices and so on). On the other hand, va-
cancies should form at regular sites. For this reason
expressions for chemical potentials of liquid and crystalline
particles at extremely low saturated vapor pressures differ
very strongly in their form and even in the dependence on the
particle size.

Turning to the electron properties of small particles one
should point out that their specific features are determined
mainly by the spatial quantization of the electron levels.
Whereas in the previous review articles the case of strong
quantization 6> T predominated, here the emphasis will be
laid on the opposite limit of weak quantization, § € T, where
4 is the level spacing. The problem of strong quantization is
extremely complicated for particles of irregular shapes. Be-
ginning from Ref. 79 it was mainly treated using the Dyson
level statistics. But one should keep in mind that conditions
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for its applicability are not known yet though cases of its
validity, certainly, exist.®" The question of applicability of
the Dyson statistics to small particles will be extensively dis-
cussed in what follows.

On the other hand, even if the Dyson statistics are appli-
cable, its possibilities are rather limited. This method is ef-
fective in calculating some low-temperature thermodynamic
properties determined by spatially quantized levels closest to
the Fermi level 1 (the heat capacity, magnetic susceptibility
and so on). But this method fails when one investigates such
important properties of small particles as the size depend-
ence of the Fermi energy and effects caused by it. In such
cases the weak quantization approach turns out to be very
useful.

This approach is based on the use of a coarse-grained
density of states which is a continuous function of the ener-
gy.>> The memory of the discrete structure of the energy
spectrum is retained through a surface correction to the bulk
density of states. This surface correction leads to the Fermi
energy dependence on the size and shape of a particle. This
dependence manifests itself in various physical effects, of
which, first, the size dependence of the work function should
be pointed out. It seems very strange that this fact so far was
ignored by investigators, and the effect was fully ascribed to
Coulomb forces whose role is, at least comparable, and in
many cases much less than the role of the spatial quantiza-
tion. To effects determined by the size dependence of i one
should add also similar dependences of the rates of chemical
reactions on surfaces of small particles, the electric current
flowing through them in electrochemical cells and so on.

It should be noted also that the size dependence of
leads also to a cooperative quantum size effect which is the
mutual charging of particles of different sizes and shapes if
electron transfer is possible through the medium separating
particles.>>?” As a result, particles attract each other much
more strongly than via van der Waals forces which sharply
increases their coagulation rate. Other manifestations of the
mutual charging will also be discussed in the present review
article.

In this review article some problems of the physics of
small particles are discussed which have become pressing
quite recently and are not elaborated sufficiently yet. The
problem of melting of a small particle ensemble belongs to
them. According to Berry’s elegant hypothesis*®' particles
entering the ensemble are divided into solid and liquid ones
in such a way that each of them fluctuates between these two
states being liquid or solid for a sufficiently long time. Such
coexistence of phases is possible only inside a certain tem-
perature range being forbidden outside it.

This physical picture resembles the quasimelting of
small particles already discovered experimentally: well be-
low the melting point a small particle fluctuates between the
monocrystalline and the multi-twinned structures, being in
each of the states for a macroscopically long time.

The quasimelting is, possibly, related to another inter-
esting physical phenomenon which is the macroscopic quan-
tum tunneling. But apparently, it may be most easily ob-
served in investigating magnetic properties of small
particles. As an example, spontaneous switching of the mag-
netization direction in ferromagnetic particles may be indi-
cated. At low temperatures this switching should occur as a
result of simultaneous coherent tunneling of all 10°~10%elec-
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tron spins of the particle.
Below throughout the review we have set /i = 1 and the
temperature is stated in energy units.

1.STRUCTURE AND SHAPE OF SMALL PARTICLES
1.1. Particles of equilibrium shape

If the crystal structure of a particle is the same as for a
bulk sample, the standard procedure for determination of
the equilibrium shape of the particle consists in minimiza-
tion of its surface free energy Fg with the particle volume
being fixed. It is assumed that the surface free energy is given
by the expression?

Fg = $a(n)ds, (L.1)

where « is the surface tension depending on the indices of the
crystal face or, what is the same, on the direction of the unit
vector n normal to the surface. Integration is carried out
over all the surface area of the particle. But one should keep
in mind that in certain cases (for example, due to quantum
effects, Sect. 3.1, 3.4) the relation (1.1) does not hold. If the
situationis typical, i.e. Eq (1.1) holds, the equilibrium shape
of the finite-size crystals is determined from the Wulff geo-
metric construction (see Ref. 2).

But as has been established by Landau® a(n) being a
continuous function of the face direction has no definite val-
ue of its derivative at any point. If @ is the angle determining
the direction of the face, then for any value of ¢ the quantity
a () has different values of da/dg for decreasing and in-
creasing @. If one takes this fact into account, one obtains
that the equilibrium surface may consist not only of a few
smooth faces (i.e. be polihedral) but it may be divided infi-
nitely into more and more small facets and lines. The latter
possibility at 77=0 has been proved rigorously by Bur-
kov.!?!

Changes in the particle shape may occur with rising
temperature. At nonzero temperatures curved interfacial re-
gions may appear in addition to planar facets. As tempera-
ture increases, facets shrink and eventually disappear each
facet at its own characteristic roughening temperature until
at sufficiently high temperatures the crystal shape becomes
everywhere smoothly rounded. From the mathematical
point of view, at any finite temperature a finite number of
surface tension singularities remains. They correspond to
smooth faces connected by a rounded surface.

The problem of the crystal shape at temperatures where
both facets and curved regions are present attracts much
attention. To solve it, first the angular dependence of the
surface tension should be established which was done in Ref.
192 taking into account the thermodynamic repulsion of
steps on a rough surface. Results of Ref. 192 lead to the law
z~x*? for the rounded surface.'?*'"* General features of
the diagram of states and the critical behavior near critical
points of roughening transitions have been established in
Ref. 195. In Ref. 196 a total shape of a rounded surface be-
tween two smooth faces was found, and the size of a smooth
face was related to theoretical parameters using rather sim-
plified models. But some relations obtained in Ref. 196 seem
to be universal.

Though production of particles of the equilibrium
shape is a very difficult experimental task it was successfully
resolved. In Ref. 207 a long annealing made it possible to
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obtain small Pb particles of the equilibrium shape with coex-
isting rounded surfaces and faces. Their detailed investiga-
tion confirms the law z~ x*? obtained for rounded surfaces
theoretically. Coexistence of faces and rounded surfaces in
Pt particles was observed in Ref. 93. The curved region
amounting to 35% of the surface has the structure typical of
thermal roughening. Indium particles investigated in Ref.
148a had practically ideal spherical shape which may be a
result of surface roughening. But in some particles, for ex-
ample gold, the rounded surfaces were not observed, and
transition between faces remains sharp at finite tempera-
tures.”®” In some cases reconstruction of the surface of small
particles was observed instead of its roughening. So, the sur-
face reconstruction of the (001) face of small Au particles
was discovered in Ref. 208 where 5 1 and 3 X 1 structures
were observed.

But the theory of the equilibrium state of a finite-size
crystal based on the assumption that its structure and vol-
ume should remain unchanged may turn out inaccurate for
very small particles, though for larger particles it works. It is
due to the fact that in very small particles the surface energy
is not negligibly small compared with the bulk energy. For
this reason the total energy of the particle may be lowered by
such a deformation of the crystal when a decrease in the
surface energy will compensate increase in the bulk energy.
The simplest case observed very often experimentally con-
sists of a change in the lattice constant occurring without a
change in the structure of the crystal. At first glance, it might
appear that the particle should necessarily be compressed
compared to a bulk sample as according to Eq. (1.1) at con-
stant a(n) the compression decreases the surface energy.
But in reality @ (n) depends on the deformation of the crys-
tal, and for this reason it can not be asserted unequivocally
that the particle will necessarily be compressed (Sect. 2.1,
2.3).

The tendency to lower the surface energy (1.1) may be
realized also by a change in the particle crystallographic
structure as compared with bulk samples. Certainly, such a
change should increase the bulk energy of the particle. But it
may be compensated by a gain in the surface energy if the
surface tension in the changed structure is less than in the
structure of a bulk sample. One may expect that the surface
tension should be minimum for close-packed structures
since for them the number of bonds broken by the surface is a
minimum. For this reason the f.c.c. structure may turn out
to be the most favored one for small particles. This is ob-
served experimentally for many materials. Other changed
structures were observed in small particles, too, in particu-
lar, hexagonal close-packed.

Although the authors of Ref. 46 claim priority in inves-
tigation of this effect, as far as the present author knows it
was first observed in Ref. 209 where a new cubic structure
was found in small Cr particles instead of the usual b.c.c.
structure. It was established in Ref. 210 that Nb, Mo, W and
Ta small particles of size from 5 to 10 nm have f.c.c. or hex-
agonal structure instead of the usual b.c.c. Later numerous
other materials were found which exhibit the size-induced
structure transformation: Y, Gd, Tb, Dy, Ho, Er (Refs.
226-228), Be and Bi (Ref. 211).

One should point out specially that small particles of
some materials lose the crystalline structure and become
amorphous. One may think that amorphization lowers the
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surface energy. This effect was observed in Cd, Se (Ref. 211)
and Fe, Cr (Ref. 212). Formal conditions for stability of a
changed crystallographic or amorphous structure are trivial
and will not be presented here.

One might expect that a new crystallographic structure
may result from adsorption of certain adsorbates on their
surfaces: it tends to establish that structure for which the
heat of adsorption and two-dimensional density of adatoms
are maximum.?"?

Finally, equilibrium particles may have a multi-
twinned structure (Refs. 197, 198). The reason for its exis-
tence is that such a structure may be bounded by surfaces of
lowest surface tension. For example, in f.c.c. latticesa (111)
is, as a rule, the least of all & (/k!) where (ikl) are the Miller
indices. In the Wulff polihedron representing the equilibri-
um shape of the particle not only low-energy (111) faces are
present but also (100) faces with a high surface tension. But
this polyhedron provides a minimum for the particle energy
only under condition of strain nonexistence in it. One may
hope that strained structures are possible in which a loss in
the deformation energy is compensated by a gain in the sur-
face energy. An icosahedron constructed of 20 equivalent
tetrahedrons which are bounded by the triangular (111)
faces. But if the tetrahedrons of which the icosahedron is
constructed, had been undeformed, they could not have been
packed close to each other: gaps would have existed between
them. These gaps are removed by tetrahedron deformation
consisting of an increase of the solid angles of each terahe-
dron. Multi-twinned structures were often observed experi-
mentally in such materials as Au, Pd and so on.!-1%

1.2. Main properties of atomic clusters

The problem of the equilibrium shape of atomic clusters
consisting of several tens or several hundreds of atoms is
quite peculiar. It turns out that the most stable and, hence,
the ones in equilibrium are clusters consisting of certain defi-
nite numbers of atoms called magic. So, the magic numbers
for Pb and the inert gases are equal to 7, 13 and 19. This
suggests that the most stable ones are the clusters with clos-
est packing independently of their electron structure.”'* But
this point of view contradicts the results for Na and K clus-
ters. In Ref. 215, 12 different magic numbers were observed
for them: 2, 8, 20, 40, 58, 92, 138, 196, 260, 344, 440, 558.
The first five of them coincide with magic numbers found in
Refs. 216, 217. This set of numbers is close to the total num-
ber 2n? of electrons in the closed electron shell correspond-
ing to a spherically-symmetrical potential, #» being the main
quantum number. On the other hand, in Ref. 90 quite other
magic numbers were observed for metal clusters: 13, 55 and
147, which are difficult to relate to n.

According to the data from Ref. 215 presented above,
magic numbers exist even for very large clusters. A similar
result was obtained for Au particles: magic numbers exist in
them up to size 10 nm.?'® The maximum stability of clusters
with magic numbers agrees with the fact that the degree of
the surface imperfection is minimum for them while being
very significant for other clusters.*

As for the equilibrium shape of metal clusters, it may be
approximated by a sphere only at the complete filling of the
electron shelis. If the external shell is filled only partially,
ellipsoidal deformation of the particle should take place, i.e.
the Jahn-Teller effect. This is just the origin for Eq. (1.1)
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being invalid (Sect. 3.1). But so far these theoretical predic-
tions have not been confirmed experimentally.

In order to interpret properties of clusters adequately,
one should take into account the fact that, on a decrease in
size, clusters cease to be metallic, unlike bulk samples of the
same materials. Thus, the type of the chemical bonding de-
pends on the cluster size. Experimental data on the size-
induced metal-insulator transition are as follows. Photoe-
mission from 6-atomic Pt clusters reveals that they are
nonmetallic.?'® Au clusters consisting of less than 100 atoms
are nonmetallic, too, which may be inferred from the size-
dependence of the plasmon frequency.!!*'?° But they be-
come metallic in the range from 150 to 500 atoms. Judging
from the photoionization threshold, in Hg clusters the tran-
sition from a van der Waals crystal to a metal occurs in the
range from 20 to 70 atoms.'?! In Na clusters the surface
plasmon frequency increases from 2.4 to 3.4 eV reaching
almost the bulk value when the number of atoms increases
from 10 to 300 (Ref. 122). Tunnel phenomena in Fe clusters
on a GaAs substrate show that Fe,, is a nonmetal but Fe,; is
a metal.2* Tonization potentials of Al, and In, (# < 80) as
functions of the number of atoms 7 exhibit flattening in the
vicinity of n = 5 after an initial linear increase with n (Ref.
221).

In mixed valency materials transition to the insulating
state manifests itself in the valency equal to 2 whereas in
metal clusters it has a value intermediate between 2 and 3.
(This value may be found using the x ray technique). In Ref.
124 clusters of Pr, Nd and Sm in solid argon were investigat-
ed. Dimers and trimers are characterized by the valence of
atoms equal to 2. But that of clusters consisting of more than
20 atoms is very close to 3 as in bulk metals. A change in
valence occurs abruptly at n = 5 for Prand Ndandatn = 13
for Sm. Similar results were obtained in Ref. 125 where Sm
clusters in solid Ne, Ar or Kr were investigated. For
numbers of atoms less than 10 the valence is equal to 2, but at
n = 13 it abruptiy reaches 2.6. The tendency toward an in-
crease in valence with cluster size was discovered in Ref.
123, too, where 3 nm Sm clusters were investigated.

Cooperative phenomena are possible in ensembles of
clusters: one expects superfluidity of parahydrogen clusters
consisting from 10 to 20 atoms.?**

1.3. Particles of nonequilibrium shape

Under real conditions thermodynamic equilibrium may
be reached only partially when producing small particles.
Then crytalline particles may be of nonequilibrium shape
which may remain frozen for an arbitrarily long time. As the
relaxation time for particle shape greatly exceeds other char-
acteristic times one may speak of thermodynamic equilibri-
um for a particle of any given shape. Firstly, the nonequilib-
rium shape may be caused by the procedure of producing
particles. For example, if crystallization of a melt occurs
well below the melting point, not only the shape but also the
crystallographic structure may turn out to be nonequilibri-
um: the nucleation droplet often exhibits the b.c.c. structure
instead of the equilibrium f.c.c. structure.?®' Au particles
deposited on a NaCl substrate have the shape of a pyramid
with a square or rounded basis. In some cases the pyramids
are truncated.”’ Sometimes clusters obtained by deposition
from vacuum are of quite irregular shape.”

Often particles on a substrate are stressed very strongly.
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In Ref. 225 the shape of preformed spherical clusters with
radii varying from 1 to 6 nm has been studied with the scan-
ning tunneling microscope after deposition onto flat sub-
strates of the same material, i.e. Au. The deposited clusters
are found to resemble spherical caps with radii of curvature
greater than and not strongly correlated with the original
free space radii. Measurements revealed that 80% of the
clusters studied have a radius of curvature lying between 10
and 30 nm. A continuum model to interpret this result indi-
cates that clusters with radii less than a critical value charac-
teristic of the cluster material are stressed beyond their elas-
tic limit and can deform so as to decrease their surface free
energy even at temperatures well below their melting point.

In some cases the nonequilibrium shape may result
from diminished stability of particles as in the case of clus-
ters with nonmagic numbers of atoms discussed in the pre-
vious Section. Finally, particles of nonequilibrium shape
may arise as a consequence of their coagulation. For exam-
ple, in Ref. 155 colloid aggregates of 7.5 nm gold particles
were observed.

To describe the surface roughness phenomenologically,
it was proposed in Refs. 86-88 to use the mathematics of
fractals of which a general theory is presented in Ref. 95.
Such a description is far from being complete and is rather
limited in its applications. Nevertheless, in some cases it may
turn out to be useful. The main parameter determining the
degree of surface roughness is its fractal dimensionality D. It
may be introduced in the following way. Let us cover the
surface by adsorbate molecules modeled by small squares of
side . Under certain conditions the number N(r) of mole-
cules in the multilayer coverage increases as » ~ ° and r de-
crease. Obviously, for smooth surfaces the fractal dimen-
sionality D is equal to 2 since for them N(r) = S /r* where S
is the surface area.

Let us assume now that there are voids on the surface in
which molecules of sufficiently small sizes may hide. Then it
is clear that NV (7) should increase more rapidly than as r 2,
on a decrease in r. Thus, D should exceed 2 for a rough sur-
face.

One may go over from admolecules with the cross sec-
tion ¢ ~ £ toa “ruler” with the scale £ with which the surface
is measured. Then the fractal approach is expressed by the
relation

§~e2™ D,

It makes sense only if the surface is self-similar. This means
that its main features must be reproduced if the scale is
changed. Certainly, the requirement of self-similarity
strongly restricts the class of surfaces for which the fractal
approach is applicable. Much more broad is the class of sur-
faces for which it is applicable in a certain range of scales ¢. It
is the existence of such ranges that makes it possible to apply
the fractal approach to real objects. Certainly, this approach
is justified if the scale of surface defects exceeds the intera-
tomic distance in the crystal. Thus, for example, the fractal
approach is inapplicable to crystal surfaces with vacancies
and other point defects on it.

In Ref. 89 an electron microscope method was devel-
oped which makes it possible to determine fractal dimen-
sionality for small particles, and it was proved that the self-
similarity condition is met for their surfaces. For Au
particles deposited from vacuum onto an NaCl surface the
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value D =2.130 was obtained, and for Pt particles
D = 2.146. After carrying out the methanization reaction on
the surface of the Pt particles, the surface becomes much
more rough: D reaches 2.330. This example shows that the
fractal approach may be quite useful for small particles.

In Ref. 155 the fractal approach was developed for ag-
gregates of small particles which is based on the use of the
density-density correlation function. In Ref. 233 it is estab-
lished that a linear correlation exists between the fractal di-
mensionality and the atomic magnetic moment in aggregates
of magnetic particles. Sometimes the fractal dimensionality
is used for description of irregularity of dendrite-like parti-
cles. In this case it determines the linear size of such parti-
cles. So, it was established in Ref. 222 that the fractal dimen-
sionality of Re supported Au particles is 1.72.

1.4.Size dependence of the wetting angle for supported
liquid particles

The problem of nonequilibrium shape does not exist for
liquid particles as nothing can prevent them from taking the
equilibrium shape. Specific features of small particles mani-
fest themselves only in the size dependence of the wetting
angle.” This dependence is a consequence of size depend-
ence of the surface tension which will be introduced here
phenomenologically. A microscopic theory of this phenom-
enon is presented in Ref. 72. The following assumptions will
be made in what follows:

a;=ap (1 +gH), ag=ag {1+ (b/0)], (1.2)

where ¢, is the surface tension on the liquid-vacuum bound-
ary, a, that on the liquid-solid substrate boundary, H is the
mean curvature, and L is the radius of the contact area be-
tween the droplet and the substrate. The index «o denotes
the corresponding quantity for a bulk sample. Phenomeno-
logical parameters g and & are of the order of the interatomic
distance.

The equilibrium shape of the supported droplet is found
from the condition of minimum free energy with the droplet
volume kept constant. It seems quite obvious that the shape
of the droplet is a spherical segment. Then the free energy
functional with allowance for Eq. (1.1) in the isotropic ver-
sion may be represented as a function of two parameters: the
droplet radius R = H ~ ' and the wetting angle 6,

F=2tR%{ [1 + (g/R)1 (1 — cos B) + nR*(al) — @) sin°d
+ nRbal sin 6 + (ArR3/3) [2(1 ~ cos B) — sin%6-cos 6],
(1.3)

where a, is the surface tension on the substrate-vacuum
boundary, and A is the Lagrange factor.

Minimizing F (1.3) with respect to R and & and elimi-
nating A from the equations obtained, one finds the follow-
ing expressions for the wetting angle:

cos 8 = cos 6, + (g/R) — (ba]; /2Ray sin 6), (1.4)

cos 0, = (a, — ag)/a;.

Obviously, the last two terms on the right-hand side of
Eq. (1.4) determine a correction of the order of 1/R to the
bulk wetting angle 8 < if 8 is far enough from 0 and #. But
this correction becomes anomalously large at -0 or 7. In
the former case (complete wetting), if &> 0, the following
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FIG. 1. Dependence of the wetting angle on the size of Au particles on a
carbon substrate.”

equality should hold

sin(8/2) = (1/2)(barly /Rap)' /3. (1.5)

In the latter case (complete absence of wetting), if b <0, the
wetting angle is given by the expression

cos(8/2) = (1/2)(—baly /Ra)!3. (1.6)

As follows from Egs. (1.5), (1.6), the size dependent
effect is proportional to R ~ ' instead of R ~'. If wetting is
absent for bulk samples it may appear for small droplets.

In Ref. 72 a systematic experimental investigation of
wetting of inert carbon substrates by microparticles of some
metals was carried out which reveals that the size depend-
ence of the wetting angle is quite considerable. For example,
the wetting angle for Au droplets diminishes from 140° to
120° when the droplet size diminishes to 10 nm (Fig. 1).

1.5. Surface relaxation of crystalline particles

So far only those properties of small particles were con-
sidered which may be described phenomenologically. But
some properties of them cannot be described phenomeno-
logically at all, and a microscopic treatment is required for
them. Surface relaxation belongs to them. It consists in a
change of atomic plane spacings close to the surface as com-
pared with spacings inside the bulk. Though the surface re-
laxation decays with growing distance from the surface, it
causes corrections to the particle volume and its thermody-
namic quantities of order of 1/L where L is the particle size.
Thus, their size dependence is similar to that of corrections
caused by such factors specific for small particles as surface
forces and so on. One should keep in mind that surface relax-
ation takes place not only in samples of equilibrium shape,
but also in those of nonequilibrium shape.

Specific features of surface relaxation in small particles
were established in Ref. 24. Firstly, it was found, that in a
model of a crystal with elastic interactions only between the
first neighboring atomic planes ¥, (r) surface relaxation is
nonexistent. It becomes nonzero only if one takes into ac-
count the elastic interaction ¥V, (r) between the second
neighboring planes. If Q= V% (2a) is negative and
P=V7{(a)>4|Q|, then the relaxation decays inside the

bulk exponentially with the inverse length g,
ag =ln!bl,
b=~ [1+ (P21 {1+ @2 -1}'"2, (1.1

where a is the atomic spacing inside the bulk. The sign in Eq.
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(1.7) should be chosen in such a way that |5 |> 1. But if
Q>0, P>4Q, then the relaxation not only decays with the
exponent ¢ (1.7) but also changes its sign with the period a.

Naturally, an exact expression for the positions of dis-
placed atoms is very complicated because of superposition of
relaxations of different faces bounding the crystal. More-
over, in the following range of the parameters tending to zero
as the particle size goes to infinity,

0<0, 2101 {1 +coslra/(L—a)]} < P < 4Q,

the solution exists for which, instead of an exponential de-
cay, the surface relaxation displays a pure oscillatory behav-
ior with the wave vector k = — /Inb. Surface relaxation may
both increase and decrease the total volume of the crystal
depending on its elastic parameters and size.

Surface relaxation in metals displays very interesting
peculiarities: oscillating, it decays not exponentially but in
accordance with a power law.?>¢ Physically, such a relaxa-
tion is related to the Friedel oscillations of the electron gas
caused by the surface. (the Friedel oscillations are caused by
any defects lifting the translation symmetry of the crystal,
including two-dimensional defects, such as the surface). The
electron-phonon interaction transfers these oscillations to
the lattice causing changes in atomic plane spacings with a
similar coordinate dependence. Such a ““Friedel surface re-
laxation” is superimposed on the usual exponential relaxa-
tion. The former depends very strongly on the boundary
conditions imposed on the electron wave function on the
crystal surface. Their change caused, for example, by ad-
sorption changes the phase of the Friedel oscillations.

Indeed, according to Ref. 36 the amplitude of the Frie-
del oscillations in the free-electron model decays with in-
creasing distance from the flat surface according the law

4 2,2 .4
ko + Bkgrg — 2,

2
glky + acg)

4koac0
ac(z) + k(z)

sin(2kyg)

S
© p

cos(2kog) | — K ae(3ed - ky)
+ gZ 2 2 2 242
ko +axy  glkg +2)

, (1.8)

where g> 1is the number of the atomic plane, k = kg a (kg is
the Fermi momentum, a is the lattice constant),
p= (xa) ~ " with the parameter » entering the boundary
conditions (3.10) for the electron wave function. As follows
from Eq. (1.8), phases of oscillations are opposite for the
cases when the wave function or its normal derivative vanish
on the surface (¥x— + o« and x = 0, respectively).

One should point out that oscillating surface relaxation
was also obtained for metals by numerical calculations based
on the pseudopotential theory.>*** But in these papers de-
cay of the relaxation was assumed to be exponential, i.e. the
Kohn singularity leading to the Friedel oscillations was ig-
nored. Relaxation of small particles was investigated in Refs.
70, 71, 199. In particular, it is shown in these papers that
lattice anharmonism may lead to a strong temperature de-
pendence of the surface relaxation.

1

1.6. Experimental data on spontaneous lattice deformation

To begin with, it should be noted that any comparison
of the experimental data on the spontaneous deformation of
the lattice of small particles with the theory presented in
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FIG. 2. Dependence of the lattice parameter of Au(/), Ag(2) and Cu(3)
én the particle size.*%%°

Secs. 1.5, 2.2 can, at best, be only qualitative. Usually experi-
ment gives only the mean lattice constant of a crystalline
particle. Judged by this parameter lattice compression was
observed in many cases, for example, in Ag, Cu, Au, (Ref.
68) (Fig. 2), Pt (Ref. 69). The results of Ref. 55 for com-
pression of Al particles with decreasing size are especially
interesting because a coordinate dependence of the deforma-
tion (Fig. 3a) apart from the mean compression was also
found in this paper (Fig. 3b). As seen from these figures, the
lattice compression of Al particles is subdivided, in an ob-
vious way, into surface relaxation whose magnitude depends
on sample size very weakly, and bulk deformation which
increases with decreasing size.

Unfortunately, experimentalists are not unanimous
with respect to the properties of Al particles. In Ref. 56 the
lattice constant of Al particles was found to exhibit no size
dependence up to 3 nm size. Nor was it found for Pb particles
inan aerosol up to 8 nm.”” Similar results were obtained also
in Ref. 59. Cu clusters in solid argon were investigated in
Ref. 106. The lattice constant of a cluster of 5 nm diameter
was found to be virtually the same as that of a bulk sample,
but for clusters of 0.7 nm diameter it is 2% less.

Particles dilate instead of compressing in some cases
{Refs. 60-63, 107) (Fig. 4). Small particles of diamond and
Si also dilate (Refs. 229, 230). According to Ref. 60, a MgO
particle with a clean surface is compressed, but it dilates
after adsorption of hydroxide on its surface. There are many
factors making the particle deformation depend on the ad-
sorption: it may cause a change in the surface stress, relaxa-
tion and so on. Finally, there are some data on spontaneous
compression of Au films®® and data of Ref. 61 on the same
subject but of the opposite sign (Au films dilate). Compres-
sion of small Au particles was found in Ref. 68. According to
Ref. 62 Pt particles dilate, but according to Ref. 69 they are
compressed. It was established in Ref. 146 that Gd, Tb and
Ho particles of sizes below 30 nm have f.c.c. structure in-
stead of the usual hexagonal structure of bulk samples. Their
lattice constant increases on a further decrease in their size.

Before giving an unambiguous theoretical interpreta-
tion of the experimental data on the size dependence of the
deformation of small particles, it is necessary that the experi-
mental data of different authors should agree with each oth-
er. But at present this is not the case. To begin with, it seems
important to make sure that the particles under investiga-
tion be really in thermodynamic equilibrium which is not
always attained (Sec. 1.1).

Apart from bulk size dependence, surface relaxation
has also been investigated in detail in many papers. As bulk
samples were used data obtained in them seem quite reliable.
In particular, oscillating relaxation was observed in a great
many metals (Al, Fe, V and so on) on various crystal faces
(e.g. Refs. 52-54). But the accuracy of the experiment does
not make it possible to decide whether the relaxation ampli-
tude decreases inside the bulk exponentially or more slowly
{Fig. 5). For this reason their compariscn with the theoreti-
cal results of Sec. 1.5 is impossible.

2. THERMODYNAMICS OF SMALL PARTICLES
2.1. Thermodynamics of isotropic two-phase systems

Discussion of the thermodynamics of small particles
will be begun, as usually, by treating the thermodynamics of
an isotropic particle in equilibrium with its vapor. The main
attention will be paid to the problem which was not dis-
cussed in previous publications: the validity condition for
the standard approach when the particle and its vapor are
regarded as subsystems of a single thermodynamic system.

If the total volume of a single united particle-vapor
thermodynamic system is ¥, and the total number of atoms
in it is &V, the free energy F; of the particle-vapor interface is
given by an expression which is an isotropic version of Eq.
(1.1):

Fg=aS, a=a(T, V, N). (2.1)

where S'is the interface area, and a is the surface tension. It is
implied here that, since the total free energy of the system F
depends on its volume ¥, the quantity Fg5 must also depend
on it. When ¥, and N are given, the coefficient of surface
tension a depends only on the temperature 7 (in the pand T
variables the value of , too, actually depends on only one of
these variables since p and T are related to each other by the
phase coexistence curve? ).

Despite of the apparently self-evident linear relation be-
tween Fg and S, Eq. (2.1) is a thermodynamic postulate
which should be substantiated microscopically. As shown in
Secs. 3.1, 3.4, in some cases Eq. {2.1) is invalid.

Since a transitional region exists between the condensed
phase and the surrounding vapor, the dividing surface (i.e.
the surface separating the phases) is quite arbitrary. For

FIG. 3. a) Dependence of the mean lattice constant a of Al
particles on a MgO substrate on the particle size R (Ref. 55);b)
Dependence of the lattice constant o on the distance Z to the
surface for Al samples of different sizes (Ref. 55).
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FIG. 4. Dependence of the lattice constant of CeQO, on the particle size.'”’

further calculation it will be convenient to use the equimolar
surface. It is defined by the condition that all the atoms be
divided into atoms of the particle (phase c), their number
being N, = n. ¥, and the atoms of the gas phase (phase g),
their number being N, = n, V,, without a transitional re-
gion between them. Thus, the following equalities should
hold: where V, and V are the volumes of the particle and
vapor, respectively. With the accuracy to terms ~ (S/F)
inclusive, a does not depend on the choice of the dividing
surface.’

The basic thermodynamic relations can be derived from
the condition that the total free energy F= F, + F, + F, of
a spherical particle of radius R be minimum with respect to
variations of the volumes 6§V, = — 8¥, and of numbers of
the atoms 8N, = — 6N, in both phases (F, and F, are the
free energies of the condensed and gas phases without taking
the surface into account) With allowance for Eq. (2.1) one
obtains

OF/8V, = —p + pg+p =0, p =2a/R. 2.2)

where
p.= —0dF,/dN_; p, = —JF,/dV,.

After transition from densities to pressures in expressions
for the chemical potentials . and u, the second condition
for minimum free energy takes the form

SF/ON; = py(pg + P) — 1glpg) = 0,
where
Wy =0F,/N,; p.=0F./IN . =p,(n,;)
and the approximate equality is used
Ho(pg) +2aS /3N, =po(py +pL)

(2.3)

42,5,

——y
[ — )
1

—— Al (1),
~——~ AL (3/)

FIG. 5. Oscillations of the surface relaxation of Niand Al (Ref. 54).
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based on the Taylor series and the thermodynamic relation

Although the derivation of Eq. (2.3) just presented is
standard, not always is the fact recognized that it is based on
a basically important assumption of the particle density #,
being fixed in the main approximation in 1/R. This implies
that a change in the surface area may occur only via ex-
change atoms between the particle and vapor. In the absence
of this exchange Eqgs. (2.2), (2.3) are invalid.

According to these equations the size dependence of the
particle chemical potential is completely determined by the
fact that the pressure p, inside the particle exceeds the exter-
nal pressure p, by the Laplace pressure p; . The functional
dependence of the chemical potential on pressure inside the
particle p, = p, + p, remains the same as for an infinitely
large sample with g, = u, (p, ). Thus, the size dependence
of the chemical potential is completely reduced to this de-
pendence of the pressure inside the particle.

Conditions of applicability of Egs. (2.2), (2.3) were
analyzed in Ref. 189 where similar results were obtained by
both a phenomenological and a microscopical analysis. In
the first case one should take into account the circumstance
that the variation 8F, of the vapor free energy caused by the
change §¥, in the vapor volume was assumed to be a ther-
modynamic quantity when deducing (2.2), (2.3). Conse-
quently, the volume 6V, must contain a number of atoms
large enough. As this volume is restricted by the obvious
inequality ¥, <V, this means that the inequality n, ¥, €1
has to be satisfied.

In the second case when treating these conditions mi-
croscopically one should proceed from the requirement that
the pressure exerted by the vapor on the particle should be a
well defined physical quantity, i.e. that its fluctuations are
small compared with its mean value. For establishment of an
isotropic thermodynamically equilibrium compression of a
particle under impacts of atoms from the vapor, the time
interval between two consecutive impacts ~ (n, v, S) "~ !
must be small compared with the time of the deformation
spreading over the particle. The latter is of the order of R /s
where s is the sound velocity in the crystal, v, is the thermal
velocity of atoms in the vapor. Uniting the phenomenologi-
cal and the microscopic criteria just presented, one may
write the following criterion for validity of the thermody-
namic treatment described in this Section:

N, = nch >>max {1, s/vs }.

s (2.3a)

As follows from (2.3a), on decrease in the particle size,
conditions for applicability of this treatment become more
restrictive. The same is true if the pressure of saturated vapor
diminishes. The latter should be expected with allowance for
the fact that the relative fluctuation of the pressure is propor-
tional to p,~ '/, Hence, at p, — 0 the fluctuations of the pres-
sure greatly exceed the mean pressure, i.e., the pressure can-
not be regarded as a thermodynamic quantity. Physically,
breakdown of Egs. (2.2), (2.3) at p, —0is a consequence of
the fact that the atom exchange between the particle and its
vapor is switched off. Breakdown of the inequality (2.3a) as
V., -0 is a consequence of the fact that, at any vapor pres-
sure, the number N, of vapor atoms in the volume equal to
that of the particle tends to zero also. Hence, its relative
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fluctuation increases and so does the fluctuation of the vapor
pressure on the particle surface.

In addition to the thermodynamic derivation of the La-
place pressure, it was also derived using many microscopic
models (see Refs. 8,9).

2.2. Thermodynamics of crystals in equilibrium with their melt
or vapor

Unlike a liquid, the energy of a change in the surface
area of a crystal depends on the way in which this change is
produced. There are two different ways in which the area .S
can be changed. The first way consists in a change of the
number of atoms on the surface of the crystal without stress-
es appearing in it. An increase in the number of surface
atoms entails an increase in the number of interatomic bonds
broken by the surface. The surface tension ¢, by definition, is
proportional to the energy of broken bonds. Therefore, a
change in the energy due to a change in the number of sur-
face atoms (Gibbs® calls it the formation of a new surface) is
determined by a.

The second way consists in a deformation of the surface
without any change in the number of surface atoms. The
energy of the change in the surface area is determined in this
case by elastic forces and for this reason has been described
by a quite different quantity g referred to as the surface
stress.*® Deformation of this kind arises spontaneously, and
its origin is, in effect, the same as that of the surface relaxa-
tion discussed in Sec. 1.5.

First the case of a flat slab will be discussed in order to
clarify this statement. As the elastic bonds of the surface
atoms with neighbors “‘on the other side of the surface” are
broken the interlayer distances near the surface differ the
from bulk ones. But, although the thickness of the slab varies
because of relaxation, the slab itself remains as flat as ever.

Now, if the crystal is initially cube-shaped, the atoms on
its edges change their distances from their neighbors simul-
taneously in two mutually perpendicular directions in which
their bonds are broken. The number of bonds broken on the
edges in each direction differs from that far from the edges.
Accordingly, it is as if the cube were stretched by the edges
or, conversely, compressed along the edges, so that its faces
are no longer flat. Such a deformation is proportional to the
relative number of atoms along the edges, i.e., 1/L, where L
is the edge length. Actually, it is proportional to the mean
radius of curvature and in this respect is similar to the defor-
mation brought about by the Laplace pressure. The differ-
ence consists in the fact that in the case discussed the defor-
mation is proportional to the surface stress and not to the
surface tension.

A mathematical description of the deformed surface of
the crystal will be presented following Ref. 10. If the elastic
deformation u; is small, the crystal surface energy Eg
changes by the quantity

6ES = —Ifﬂu'u as,, (2.4)
where f” are surface forces having only tangential (i = 1,2)
components since the normal components are equal to zero
in accordance with Newton’s third law. Integration in Eq.
(2.4) is carried out over the undeformed surface.

The force f can be represented as the divergence of a
certain symmetrical tensor (the surface stress tensor):
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f,=0g,/0x, uy=12 (2.5)

For this tensor the following expression has been derived in
Refs. 4, 6, 21:

8= aé,w + aa/au,w . (2.6)

It has been in Ref. 17 that Eq. (2.6) follows directly from the
definition

Sg,, du,, = d(Sa),
with allowance for the relation
a8/ ou,, = 83, ,

where §,,, is the Kronecker symbol.

Eq. (2.6) assumes that the surface tension a depends on
the surface deformation. In principle, a can also depend on
the bulk deformation but under the equilibrium conditions
this deformation is unambiguously determined from the
equations of elasticity theory if the surface deformation is
known. For a surface with a higher than second-order sym-
metry axis g,, =g5,..

It was not ruled out in Ref. 4 that in the case of low-
symmetry crystals the components g, of the stress tensor,
where n is the index of the normal to the surface, may also
differ from zero. But this point of view is wrong according to
Refs. 10-12. A detailed analysis of the stress dependence of &
is given in Refs. 12,13 where account was taken of the fact
that a transition layer between the crystal and the liquid
exists, the thickness of this layer being uncertain. Results of
Refs. 10 to 13 are confirmed in Ref. 20 where it is shown that
8., vanishes only when the transition layer thickness is zero.

After substituting Eq. (1.5) into (1.4) and adding the
surface energy (1.1), one obtains the following expression
for the surface energy of a crystal (n is the normal vector):

Eg= [(a(n) +g,4,,) 45, - 2.7)
In order to reduce Eq. (2.7) to Eq. (2.1) for the liquid and to
go over from the undeformed surface S, to the deformed S,
one must putg,, = a8, . According to Eq. (2.4) this means
that for a liquid the surface tension is deformation-indepen-
dent. A qualitative explanation of this independence given in
Ref. 4 is inadequate. The compression of a liquid, unlike that
of a crystal, is thought in Ref. 4 to be accompanied by a
decrease in the number of atoms on its surface. In reality,
according to Eq. (2.13) this number for a spherical particle
remains unchanged.

As the sum of the bulk and surface forces should be
equal to zero, the following equilibrium conditions for the
surface (an analog of (2.2)) can be derived from Eq. (2.2):

811, &

ag ag
+82 o, _ 1 % 1 %2

nn wn =R, Oy TR Oy

mt Rt R (2.8)

where 0,,, is the stress tensor, p, is the external pressure, R,
and R, are the principal radii of curvature, ¢, and @, are the
angles measured in the planes of the principal normal cross
sections.

An important qualitative conclusion follows from Eqs.
(2.7), (2.8): whereas @ must be positive in order to ensure
the stability of the crystal, there is no similar constraint for
the signs of the components of the stress surface tensor. Con-
sequently, the surface forces can, in principle, dilate the
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crystal instead of compressing it like the liquid. But only
experiment or microscopic calculations can show whether
such values of g,,, are really possible.

The change of the crystal volume due to surface forces
was calculated in Ref. 14 for crystals of simple shapes and in
Ref. 17 for those of an arbitrary shape. For instance, it was
obtained in Ref. 14 for a cube with edge length L:

AV dxg

v T (2.9
where x is the compressibility of the crystal. As shown in
Ref. 15, under certain conditions it is possible to introduce
an excess pressure foracrystal Ap = — 2(g)/(h ) wherehis
the distance between the fixed point of the crystal which does
not change its position under surface forces and the face of
the crystal, and the angular brackets denote averaging over
the faces. This expression is a generalization of the Laplace
pressure for crystalline systems.

As a generalization of Eq. (2.3) for a crystal in equilib-
rium with its vapor or melt, the following relationship for the
chemical potential should hold:

2 2
-1 a | 1 Fa | 1
gotnlip+|lea+—= |5+ |la+— 5| =u,, (2.10)

where i, is the chemical potential of the bulk sample.

Unfortunately, unlike the surface tension, the direct ex-
perimental methods for determination of the surface stress
are nonexistant so far, and one should rely on its theoretical
estimation using microscopical approaches and models. As
an example, in Ref. 16, neglecting the anisotropy of the sur-
face stress tensor, an expression was obtained relating g to
the Poisson ratio v

-1
1-v~

Rl

(2.11)

Eq. (2.11) allows both positive and negative values of g. At
v = 1/2 (incompressible liquid) it leads to the expected re-
sult g = a. Nevertheless, Eq. (2.11) seems to be doubtful:
since for most metals a is close to 1/3, the surface stress
should be very small for them according to this equation, i.e.
the size dependence of the lattice constant should be nonex-
istent. And yet in many metals it is, in fact, rather strong.

In Ref. 17 a numerical calculation of the quantities g
and a for some metals was carried out using the pseudopo-
tential method and Eq. (2.6). Values of a obtained in Ref. 17
are close to experimental ones. Values of g/a for (111) faces
amount to 1.3 for Al, 1.6 for Ir, 2.5 for Pt and 2.2 for Au.
According to these results, small particles of the above mate-
rials should be compressed even stronger than under the La-
place pressure. :

The problem of dilatation of crystalline particles result-
ing from negative values of g remains unresolved so far. It is
stated in Ref. 231 that g is negative for a-Fe, O;.In Ref. 232
the idea is advanced that g may be negative for those crystal
faces where surface reconstruction occurs accompanied by
an increase in the number of surface atoms. Experimental
results presented in Sec. 1.6 suggest that a possibility for g to
be negative should exist.
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2.3. Thermodynamics of small particles with a fixed number
of atoms

So far- the situation was discussed when particles are
surrounded with their saturated vapor with which they may
exchange atoms. As a result of this exchange, the surface of a
particle may change its area without changing its shape or
density. This fact was used in deriving Egs. (2.2) and (2.3).
Thus, a particle was treated as a subsystem of the united
particle-vapor thermodynamic system in Sect. 2.1.

A quite different situation arises at a vanishingly small
pressure of the saturated vapor which is typical of metals and
their compounds at room and lower temperatures. As al-
ready mentioned in the Introduction, the density of satu-
rated tin vapor at 300 K is of the order of one tin atom per
volume comparable with that of the Earth. The vapor den-
sity remains very low for most metals even in their liquid
state close to the melting point. According to Ref. 7 for tin
n, ~10~°cm ~* at this point, i.e., it is quite obvious that the
standard two-phase thermodynamics is inadequate for lig-
uid tin particles. For other metals #, is of the order of 10°to
10" cm~? at the melting point. Thus, at R ~ 100 nm the
strong inequality (2.3a) given in Sec. 2.1 as the validity cri-
terion for the standard two-phase thermodynamics becomes
reversed here. This means that the fluctuations of the pres-
sure on the surface of the particle are so large that one cannot
speak of its definite value.

At such low pressures the number of atoms in each par-
ticle may be regarded as fixed with a very high accuracy.
Thus, its thermodynamics should be different from that de-
scribed in Sec. 2.1.

One may formulate a sufficient condition for treatment
of the number of atoms in the particle as fixed. It consists in
the requirement that the time of formation and disappear-
ance of the fluctuation changing by v the number of atoms,
t,, be large compared with the measurement time. The num-
ber v should be large enough for the fluctuation to be regard-
ed as thermodynamic.

First, the case v =1 will be considered. The particle
undergoes ~n,v, S impacts of atoms from the vapor per
unit time. If W is the sticking probability for an atom collid-
ing with the particle, then

fh~ 1/ Wnp,S.

The time ¢, (v> 1) may be evaluated with allowance for the
fact that the particle randomly emits and captures atoms
from the vapor. Then, in accordance with the random walk
theory,

2
t,‘, ~v tl'

Unfortunately, in the general case the order of magnitude of
W is unknown. The lower bound for ¢, can be found, putting
W = 1. Then at v, ~ 10° cm/sec, n, ~10° cm =3, R~5 nm
this lower bound should be ~ 10 sec, although its true value
may be several orders larger. If one takes v = 10, then the
lower limit for ¢,, exceeds 10° sec. This time is already
macroscopically large, even without mentioning the true
value of t,, which may be a huge quantity. This estimate
justifies the picture of a particle with a fixed number of
atoms.

If the number of atoms in the particle is conserved, and
there is no vapor, the free energy F of the particle should
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depend on S and the number N of atoms in the particle. This
property of the free energy resembles the free energy of the
particle-vapor system (Sec. 2.1). But the dependence of Fon
the total volume of the system should be replaced by its de-
pendence on the volume of the particle V'= V. Taking into
account the fact that, at the volume given, the surface free
energy F; must be proportional to S, one can write (Refs. 66,
189)

Fy=a(¥, N, T)S =a{N/V, T) . (2.12)

The second of equalities (2.12) follows from the condition
that the surface tension a should be a zero order homoge-
neous function of the additive variables N and V. Basically
important is the fact that « is a function not of a fixed total
volume V, but of the particle volume ¥ which itself should be
determined from the condition of minimum free energy."’
For this reason the quantity  in Eq. (2.12), unlike that in
Eq (2.1), cannot be regarded as constant at a given tempera-
ture: it depends on the particle deformation the role of which
is played by a uniform compression or dilatation.

Detailed dependence of & (2.12) on the atomic density
n = N /Visdetermined by concrete physical models. As par-
ticular cases, Eq (2.12) allows proportionality of Fg to the
surface area as in Eq. (2.1) or to the total number of the
surface atoms determined by the equation

2/3

Ng=5n?"?, (2.13)

(unlike the standard two-phase thermodynamics, Ng does
not mean the number of atoms in the interphase layer. All
the Ny belong to the same condensed phase as the rest of
atoms). If one assumes that @ ~ n*”* one can write instead of
Eq (2.1)

Fg =vNg, v = const. (2.14)

with ¢ being constant at a given temperature. The particular
cases (2.1) and (2.14) are equivalent only when the surface
area changes while the particle density is kept constant.
Then the change in the area is proportional to the change in
the number of surface atoms. Certainly, such a process
should lead to a change in the particle shape. Another way of
changing the area consists in changing the density without
changing the shape. In this case knowledge of the n-depend-
ence of « is vitally important, and Egs. (2.1) and (2.14) are
incompatible.

If a spherical particle of radius R is placed in vacuum or
in a gas of another chemical nature with the pressure small
compared to the pressure p. inside the particle, then the
pressure p.. should be found from the condition of minimum

free energy
F=F +a(ms. (2.15)

with respect to R with allowance for the equality
p.= —dF,/dV:»

N’g’
o.lc..
3[R

Pc=%, y=a- (2.16)
By analogy with Eq. (2.6), the quantity y in Eq. (2.16)
might be called the surface stress of the liquid. If the liquid is
in thermodynamic equilibrium with its vapor, the surface
tension and stress coincide.

According to Eq. (2.16), the pressure p, coincides with
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the Laplace pressure (2.2) only when « is independent of n.
On the contrary, if the coefficient ¢ in (2.14) is constant, the
pressure inside the particle vanishes. But if the inequality

ga, 22 (2.17)
is met, then the surface forces dilate instead of compressing
the particle. Physically, dilatation occurs as, due to the in-
equality (2.17), on an increase in R, S increases slower than
a decreases. Thus, Fg (2.12) also decreases.

Differentiating F with respect to N with .S kept constant
and going over from g (n) to u.(p, ), one obtains the fol-
lowing expression for the chemical potential of the particle
(cf (2.3)):

#c=#o(pc)+%%=#o(pl)1 (2.18)
where p; is the Laplace pressure.

The result (2.18) in the zero order approximation in
n./n coincides with the well-known expression for the
chemical potential of a particle in thermodynamic equilibri-
um with its vapor (2.3) regardless of the character of the n-
dependence of a. But, unlike the latter, in the general case
Eq. (2.18) cannot be interpreted in such a way that the size-
dependence of y. is caused only by the Laplace pressure
acting inside the particle. According to Eq. (2.16) such an
interpretation is adequate only in the case when Eq. (2.1)
holds, i.e., when p. = p, .

One should remember that Eq. (2.18) is obtained only
for spherical particles. For particles of other shapes g, can-
not be directly related to p; evenif Eq. (2.1) holds. As point-
ed outin Sec. 1.3, nonspherical particles are only partially in
equilibrium. The chemical potential of such particles is a
well defined quantity if the relaxation time for the shape of
the particle greatly exceeds all other characteristic times.
According to Ref. 2, the free energy of finite-size isotropic
samples should depend on their surface area S. It loses the
property of additivity with respect to N as the atoms on the
surface are under different conditions than the bulk ones.
For this reason the Gibbs free energy @ is not a first order
homogeneous function of N, and the equality ® = uN does
not hold for such systems. Correspondingly, one should as-
sume that, besides p and T, p should depend also on S'and N.
At S /N -0 this dependence should disappear. Thus, in the
first order in S /N one may write

u=pg+ 25 (2.19)
The coefficient in front of S /N in the second term in Eq.
(2.19) is chosen from the condition that Eq. (2.19) should
reduce to Eq. (2.18) for spherical particles.

As seen from (2.19), the size shift of the chemical po-
tential is minimum at the equilibrium shape. It is nonzero
even for systems with p, = 0 (thin films). This means that
in reality this shift is caused not by compression of the sam-
ple under surface forces, but by the very fact of the existence
of surface atoms which are under conditions different from
those for the bulk ones.

This is still more evident in the case of validity of Eq.
(2.14) when according to Eq. (2.16) the pressure is zero
inside the particle. Then the physical meaning of the result
obtained for x, is deciphered by the binomial formula in Eq.
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(2.18). The first term in this expression is the chemical po-
tential of an infinitely large sample at the acting pressure
p. = 0 and the second term is a correction to it caused by
surface atoms. In fact, it is proportional to the product of the
relative number of the surface atoms Ny/N determined by
Eq. (2.13), and the difference of the energies of a surface and
a bulk atom proportional to a.

Thus, the Laplace pressure in the case under considera-
tion is not a real physical force but a formal quantity which
makes it possible to express the chemical potential of a finite-
size sample y_ in terms of that of an infinite-size sample p,.
The formal character of the Laplace pressure in Eq (2.18)
manifests itself especially strongly at a sufficiently large
da/dn: an apparent paradox occurs as the particle dilates
but the size shift of its chemical potential imitates compres-
sion of the particle under the Laplace pressure.

Thermodynamic results of this Section will be con-
firmed by microscopic models in Secs. 2.4 and 3.6.

2.4. An atomic model of a crystal in vacuum and the chemical
potential of atoms in crystalline particles

First, a microscopic model of a crystal will be discussed
which exhibits neither surface nor bulk spontaneous size-
dependent deformations. This model may be juxtaposed to
phenomenological theories of Secs. 2.2, 2.3 simultaneously.
A crystal is considered with a simple cubic lattice in which
the potential energy of interatomic interaction U(a) goes
through a minimum at g, and then sharply goes to zero as
the atomic spacing a grows. Thus, only the interaction be-
tween the first nearest neighbors is essential. To make the
picture maximally clear, it will be assumed that all the crys-
tal faces are of the (100) type. For such a geometry the sur-
face energy per atom is equal to the energy of its bond with
the nearest neighbor broken by the surface. If the intera-
tomic distances in the directions x and y along the surface
subjected to a deformation u are equal to a, = a, (1 + u,,)
anda, = a, (1 + u,, ) respectively one can write for the sur-
face energy in the linear approximation in ., and u,,:

Eg = — UgNg = alu,,u,,)S, (2.20)
1U,) tU,!
a(uu’u»’) = . = 3 (1 — e — u)')') UO = U(aOrO»O)v
aa, az

where N is the number of surface atoms. In writing Eq.
(2.20) account was taken of the fact that U depends on a,
which is equal to a, here.

In this nearest neighbor model the equilibrium distance
between atoms is a, irrespective of the crystal size and shape.
As Eq. (2.20) is a microscopic analog of Eq. (2.14), this
provides a confirmation, in microscopic terms, of the ther-
modynamic theory presented in Sec. 2.3. According to it, in
a system with the surface energy (2.14) the size-dependent
deformation under surface forces should be nonexistent
which is just the case for the model considered here.

On the other hand, the absence of a size-dependent de-
formation may be associated with the fact that in the model
under consideration the surface stress tensor goes to zero
according to Eqs. (2.6), (2.20). One should keep in mind
that the notion of surface stress is valid not only for the case
when the crystal is in thermodynamical equilibrium with its
surroundings but also for the case of the crystal in vacuum.

Though the crystalline particle is undeformed by the
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surface forces in the model considered, the chemical poten-
tial of atoms in it, nevertheless, is size-dependent. But this
size dependence sharply differs from that described by Eq.
(2.10) which holds for the cases when the particle is in equi-
librium with its environment. This statement will be proved
in what follows, and it will be confirmed that the size-de-
pendence of 1 is caused not by the surface forces deforming
the particle but by the very fact of presence of surface atoms
whose energy of interaction with neighbors differs from that
for the bulk atoms. (This statement is made in Sec. 2.3).

In calculating y it should be borne in mind that, gener-
ally speaking, the thermodynamic relation u = dF /dN can-
not be applied to crystals because their free energy F is a
nonanalytical function of the number of atoms N. The origin
of this nonanalyticity is the fact that the atoms in the crystal
may be located not only in regular sites but also in irregular
positions (interstitial atoms and protruding atoms on the
surface). The energy of atoms at regular sites is different
from that atirregular sites. At 7= O an atom can be added to
the crystal only by placing it in an irregular position and
removed only from a regular site of the crystal. Therefore

aF\ .
(Ei*+=fuv+1)—fny, (2.21)

is not equal to

8@ = F(N) - FIN - 1),

i.e., OF /0N is not determined because there is a gap in the
energy spectrum of the crystal equal to the difference be-
tween the energies of atoms in the irregular and regular posi-
tions.

Thermodynamics can be applied only if the transfer of
atoms from regular to irregular positions may be neglected.
This is precisely the case when atoms leaving the regular
sites of the crystal into the environment play the dominant
role, i.e., in the situation corresponding to Eq. (2.10). But if
the saturated vapor is practically nonexistent the chemical
potential should be found from the statistics. It must be of
the same type as the statistics of electrons in semiconductors
where the Fermi level is determined from the balance of
numbers of elementary excitations. The interstitial atoms
(analogs of the electrons in the conduction band) and va-
cancies (analogs of the holes) play the part of elementary
excitations.” Since their numbers are small the Boltzmann
distribution function is used with allowance for the fact that
the sign of the energy and chemical potential of the vacancy
is opposite to their sign for the atom 5”181

Assuming that all the faces of the crystal are the same,
can be determined from the condition that the number of
bulk and surface vacancies be equal to the number of atoms
in irregular positions (bulk and surface interstitial atoms
and protruding atoms on the surface):

Ny exper—T—,i + N ex[r}lj:}i = kNy exp—T—E-'

#=Ay p=Ay
+ 2Ny exXp—r— + Ng exXp—g— Ny=N~-Ng.(222)

Heree, and A, are the energies of an atom in a regular site in
the bulk and on the surface, respectively. Further, ¢;, 4, and
A, denote the energies of interstitial atoms in the bulk, on the
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surface and of a protruding atom on the surface, respective-
ly. Notations k and »x are used for the numbers of interstices
per elementary cell in the bulk and on the surface, respec-
tively. It is assumed that the number of atoms entering the
surface from the bulk is small compared with the number N
of sites of the first surface layer. This condition is, certainly,
met for particles with sizes less than 100 nm. It is assumed
also, that the roughening of the surface does not occur.

According to Eq. (2.22) in the high-temperature limit
the surface part ug of the chemical potential proportional to
the number of surface atoms Ny is a small correction to its
bulk part p:

1
B = py + g yv=5(er+ei—Tlnk), (2.23)
T Ac=e x g4 &~ 4,
ps =7 (SXP g — g exp T~ pexp )
N
=—N—S. (2.24)

Although ug (2.24) is proportional to 1/L this is the only
similarity between Eq. (2.23) and Egs. (2.10), (2.19): their
dependences on the temperature and the surface tension
a= (A, —€,)/a* are quite different. In addition to a, ug
depends also on the energies of atoms in irregular positions.

Still more drastic is the difference between u deter-
‘mined from Eq. (2.22) and that given by Egs. (2.10), (2.19)
in the low-temperature limit. If ¢, > 4,, A, then the leading
term in the expression for u is the surface one, ug. The bulk
term u, gives a small correction to it which is ensured by the
obvious inequality 4, > €, :

ﬂ=ﬂs+ﬂv,
B A/T (=A,/
#s =7 — g Inlxexp(—4;/T) + exp( ~4,/T)], (2.25)

. 2,
i = T () [eose (F) e ()]

r T
—E€Xp—"— }.
T

A nontrivial size-dependence of 2 (2.25) attracts attention:
pislinearin L, and not in 1/L. But the limit L — o is impos-
sibiein (2.26) since at L large enough the bulk term becomes
dominating so that transition to Eq. (2.23) should occur.

At £, <max{4,,4,} the chemical potential cannot be
separated into the bulk and surface parts. Such exotic terms
as In L appear in the size dependence of u:

(2.26)

H=potuy (Bo>>4y) (2.27)
1
,,0=7[1r+ei—T1n(kL)],
_T & gx G &4
p=3 [Lexp 3 L (kexp T+ exp—— )]

Finally, at intermediate temperatures, if£; >A,, 4, the situ-
ation is possible when the following relationship holds:

B=potuy (Be>>1y),
1 A A
Bo=17 {er— Tln [acexp ( —%) + exp (-—%) ] + TlnL},
(2.28)
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T _ A —¢
,u1=7{L lexp 1T r

, . A
— kL exp (—%’,) [acexp (—%) + exp (—%) ]_l }
(2.29)

As L increases, Egs. (2.27), (2.28) also become inap-
plicable. Thus, Egs. (2.26 to 2.29) are valid only for L not
too large the range of which narrows with increasing tem-
perature. As follows from these expressions, the chemical
potential may not only increase but also decrease, on a de-
crease in L. The chemical potential of the electron gas also
possesses this property, (Sec. 3.5).

It is assumed in the current theory of sintering of small
particles that the vacancy density in the particle follows the
same Thomson law as the density of the saturated vapor (it is
exp(p. /n.T) times larger than over a flat surface’ ). Results
(2.23 to 2.29) show that this assumption is not fulfilled in
reality. Thus, the sintering theory should be revised.

If one carries out a calculation for two or more particles
similar to (2.22) one finds that stationary states of such sys-
tems are possible which correspond to transfer of a relatively
small number of atoms between particles of different sizes.
Such a transfer makes it possible to equalize the chemical
potentials of particles of different sizes. Certainly, such sta-
tionary states are metastable since the stability is reached
when the particles coagulate. But they may influence the
kinetics of coagulation.'*®

It is worth noting that if one “forbids” transfer of atoms
from regular to irregular sites and ““‘allows” their exit from
the crystal into their environment, then an expression for the
chemical potential obtained similarly to Eq (2.22) reduces
to Eq (2.3) only for

A —e . =aS/Ng<<T. (2.30)

In fact, if one assumes that the total number N, of atoms in
the gas phase is small compared with the number Ny of the
surface atoms in the particle, and numbers of atoms in irreg-
ular positions are small compared with N, one obtains:

p=py+Thn {1+ [exp(aaz/T) - 1]L‘1}/2, (2.31)

where u,, is the size-independent part of u. Since aa” for real
crystals is of the order of 1 eV, the inequality (2.30) is abso-
lutely unrealistic. Apparently, the difference between Eqgs.
(2.3), (2.10), on one hand, and (2.30) on the other hand, is
caused by the circumstance that the condition (2.3a) fails in
the case considered.

One might expect that results obtained above may be
extended to liquid particles, if one neglects the difference
between the energies of regular and irregular positions, i.e.,
if one puts £, = ¢; and A, = A4,. But the relationship (2.18)
may be obtained from Eqgs. (2.23), (2.24) only if the condi-
tion (2.30) is also met.

Further development of the theory presented here
should consist in taking surface roughening into account.

2.5. Melting and quasimelting of small particles

The section devoted to the thermodynamics of small
particles should be completed by a discussion of the phase
transitions in them. Strictly speaking, the notion of a phase

E.L.Nagaev 759



transition has only an approximate meaning for them since
genuine phase transitions may occur only in infinitely large
systems. It is just in this sense that one should understand
Pawlow’s statement*** that the melting temperature T, ofa
particle decreases with its size. The corresponding result
may be readily obtained by equating to each other the chemi-
cal potentials of the solid and liquid phases. For them the
expression (2.3) is used with corresponding parameters.
Their expansion in terms of temperature and pressure in the
vicinity of the melting point T,, of a bulk sample with
allowance for the thermodynamic relations

s;=0u; /9T, n'=0du /dp,

leads to the result
(T /Tpe) =1 =207 1 1ay/nRy) = (a,/n,R;) |, (2.32)
Q= Tapo( 52 =5 )

where s; is the entropy of the ith phase per atom, the sub-
script 1 corresponds to the solid, and the subscript 2 to the
liquid state. The surface tension «, for the liquid is essential-
ly lower than that for the solid, a, . But the densities of both
phases are close to each other. For this reason T'is lower than
T,o-

This result has been confirmed by numerous experi-
mental investigations. The melting points of thin films of Pb,
Sn and Bi are considerably lower than those of the corre-
sponding bulk samples, and very large supercooling which
amounts to 20-30% was observed in them, on a decrease in
temperature.”** Still earlier an anomalously large super
cooling of Sn films was observed in Ref. 235. Lowering of the
melting point was observed in investigating small particles of
Sn (Ref. 236), Pb, In (Ref. 237), Ag, Cu, Al (Ref. 238), In
(Ref. 239), Au, Ag (Ref. 240), Au (Ref. 241). The data of
the last paper are reproduced in Fig. 6.

But one may expect that the specific features of melting
of small particles cannot be reduced to only lowering of the
melting point. As they are spatially-nonuniform, their melt-
ing may begin from their surfaces. This idea was confirmed
by a computer simulation of the melting of particles consist-
ing of several hundreds of gold atoms.**? It was established
that if the number of atoms exceeds 350, liquid skin appears
on the surface as a precursor of the melting. A sharp decrease
of the melting temperature with size was found in Ref. 242.
Surface melting was found also by calculations performed in
Refs. 243, 244. 1t exists if there is no reconstruction of the
surface.

rK
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A, nm
FIG. 6. Dependence of the melting point of Au particles on their size.?*!
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Experimentally, surface melting was observed in Refs.
245, 246 where Pb films were studied. Surface melting begins
at 0.75 T, and the thickness of the melted layer increases
with approaching to T, . The effect was observed also in Ar
(Ref. 247), O, (Ref. 248), Ge (Ref. 249), Ne (Ref. 250).

A quite different physical picture of the melting of small
particles was advanced in Ref. 251. Clusters containing a
specific number of atoms N, may exhibit a sharp lower limit
of temperature, T, for the thermodynamic stability of the
liquid form and a higher sharp upper limit T, for the ther-
modynamic stability of the solid form. Consequently, a col-
lection of N-atomic clusters in thermal equilibrium acts as a
statistical ensemble which, at temperatures and pressures
within the coexistence region, behaves like a mixture of the
two kinds of clusters: some solid and some liquid. Being in
thermal equilibrium, these forms occur in a ratio K
= [solid]/[liquid] = exp( — AF /T) fixed by the differ-
ence in free energy AF between the solid and liquid forms.
But this is a dynamic equilibrium, with individual clusters
passing between the two forms. If the two forms are to be
observed coexisting in equilibrium like two phases or two
chemical isomers, the mean frequency of passage between
them must be low enough for the cluster to establish equilib-
rium values of their characteristic properties.

Results of Ref. 251 were obtained analytically by an
analysis of the density of states of the cluster. The limiting
temperatures 7, and T, correspond to achievement by the
free energy of a minimum or a maximum. In various papers
(e.g. Ref. 252) results of computer simulations are described
which confirm Berry results.?*' As for experimental confir-
mation of the Berry theory, possibly, it is given by the results
of Ref. 253. It was found there that spectra of benzene-Ar,
clusters with the number of atoms between 18 and 25 showed
both broad and sharp features in their spectra. These spec-
tral features do not shift with temperature, and the sharp
features become dominant as the temperature is decreased.

The Berry picture resembles a very interesting physical
effect observed in small Au particles well below the melting
point. If particle sizes are intermediate between stability
ranges of single crystals and multiply-twinned crystals (Sec.
1.1) transitions from the single crystal to the multiply-
twinned structure and reverse were observed when Au parti-
cles on the SiO, substrate were excited by an electron micro-
scope beam. The lifetime of the structure was about 0.1 sec
for a 2 nm particle. But the rate of fluctuations diminishes
with increasing particle size, and beginning from 10 nm, the
fluctuations disappear. The changes in the structure de-
scribed above were accompanied by particle rotation or a
motion of translation over the substrate.'® Similar results
were obtained in Ref. 254.

A theory of such a quasimolten state was developed in
Ref. 96. But there were some doubts whether the effect ob-
served in Ref. 104 is a genuine quasimelting or is caused by
the electron beam which not only probes the particles but
also charges and excites them. To elucidate the nature of the
effect, an experimental investigation was carried out in Ref.
97. It was demonstrated that small Au particles on a MgO
substrate sit in deep potential wells. The electron beam
makes them leave these potential wells. Having become
practically free the particles can quasimelt making transi-
tions between various local minima on the shallow morpho-
logical free energy surface. The particles retain the unstable
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state for long intervals of time until they find another well on
the substrate in which they can form a stable Wulff polyhe-
dron shape. Fluctuation frequencies of 1 to 10 Hz were ob-
served for 2 nm particles in agreement with Ref. 104.
Structure fluctuations observed in Refs. 104, 97 are
characterized by macroscopic times. Thus, a question arises
of whether they provide an example of macroscopic quan-
tum tunneling discussed in Sec. 4.7 in connection with mag-
netic particles as appropriate objects for this phenomenon.

3.DENSITY OF STATES AND CHARACTERISTIC ENERGIES
OF CONDUCTION ELECTRONS IN SMALL PARTICLES

3.1. Size-dependent oscillations of the shape and Fermi
energy of aimost-spherical particles

Specific features of the electron states in finite-size sam-
ples are determined by the spatial quantization of their lev-
els. The quantization is expressed most clearly in spherical
particles since due to a high degree of level degeneracy the
level spacing is especially large in them. It will be shown in
what follows that, in addition to the well known size-depen-
dent oscillations of thermodynamic quantities,'*® quite oth-
er size-dependent oscillations are possible: oscillations of the
shape of the particle.

At first glance, in the absence of external forces the
equilibrium shape of liquid particles should necessarily be
spherical. But in reality it may turn out to be unstable for
metal particles, since their surface energy has a singularity
for this shape due to the high degree of degeneracy of the
electron levels. Indeed for liquid metals, as a rule, the al-
most-free electron approximation is quite adequate. For this
reason each electron level is (27 4+ 1)-fold degenerate with
respect to the projection m of the orbital angular momen-
tum. If the radius R of the particle is small compared with
the the electron wavelength k ~ 1, the typical orbital quan-
tum number / is of the order of AR. Thus, the possibility
arises to diminish the electron energy of the system by lower-
ing its symmetry, i.e., by lifting the degeneracy. This should
occur if the highest electron level is filled only partially.

On an increase in the number N of electrons, when the
level with a given / becomes filled completely, the spherical
symmetry should be restored, i.e., and then again disappear
when a new partially filled level appears, i.e., the deforma-
tion of the shape is an oscillating function of N. In reality, an
increase of NV occurs as a result of an increase in R. Although
the electron levels & ,; (R) are R-dependent their systemat-
ics does not change in the zero order approximation in defor-
mation. For this reason states with different sets of quantum
numbers (n,/,m) become occupied in the same sequence as
for a constant R. But one should speak of shape oscillations
as a function of R rather than as a function of N.'®

This specifically quantum effect, in principle, may be
observed even at temperatures so high that the metal is in the
liquid state. This is caused by the fact that the level spacing
ina spherical particleamounts to u/kx R whereu and &y are
the Fermi energy and momentum, respectively. For u ~ 10
eV, kxR ~ 10 this spacing may reach values from 10° to 10*
K. The situation becomes still more favorable for observa-
tion of this version of the Jahn-Teller effect due to the cir-
cumstance that small metal droplets may be supercooled by
30 to 50% in comparison with the melting point."*’

The fact that the surface energy of a spherical particle is
not proportional to its surface area is reflected in size-depen-
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dent oscillations of the Fermi energy. Investigation of these
oscillations is interesting by itself since they differ from their
analog in thin films'*® by their quasistochasticity. It is
caused by the fact that the electron energy in small particles
depends on two quantum numbers # and / simultaneously.
An analysis of the sequence of quantum levels in the spheri-
cal potential well shows no explicit regularity in the change
in quantum numbers 7 and / with a change in the energy &,
in the case of its low values.'® The role of two independent
variables in the appearance of a quasistochastic behavior is
supported also by the well-known fact that such behavior
displays the sum of two periodical functions with incom-
mensurable periods.

The model of free electrons in an infinitely deep poten-
tial well will be used.'® In this model the electron momen-
tum k is given by k = p,, /R where p,, is the n-th root of the
Bessel function J, , ,,, (x). At /> 1 the approximate expres-
sions for p,, are valid:

pm=an+(xl/2) (n>>1),

(3.1)

=1 +27V3Ban 20?3} (n<<l).
Oscillations of u are a consequence of the fact that p,, is
independent of R. In fact, on an increase in R, the value of
pleng, corresponding to 4 remains constant at 7 = O as the
radius changes by R = /. (/. + 1)/27vR? where v is the
electron density. For this reason the Fermi energy
4 =P n./2mR in this range of R diminishes by an amount
Su~ubR /R~u(keR) 3.

On a further increase in R, the Fermi level jumps up as
the electrons begin to fill the next higher energy level. Ac-
cording to Eq. (3.1), states with n </ will be preferentially
occupied. Thus, the value of /i, corresponding to 4, is of the
order of ki R. The maximum jump of u is achieved when the
level (1, /x + 1) becomes occupied after the level (1, /g).
This jump, being of the order of u/kg R is as large as the
parameter kxR in comparison with a similar jump in a thin
film.

The Jahn-Teller deformation of the sphere ¢ is found
from the condition of minimum total energy consisting of
the energy of the higher occupied electron level and the sur-
face energy aS.'® Here S is the surface area, o is the surface
tension determined by the ions and the electrons of the inner
completely occupied electron shells. The assumption seems
quite natural that the deformation should be uniaxial and
occur without a change in the volume of the particle. Then
the principal axes of the ellipsoid obtained from the sphere of
radius R are of length c¢=R(1+4+2¢) and
a =b = R(1 — ¢). Then the change in the energy due to the
deformation is related to the change 65 in the surface area by
the formula

OE = a dS — k( nglymy) (38)"/2. (3.2)

An expression for the coefficient k(n/m) corresponding to a
uniaxial deformation is given in Ref. 19:

i+ 3m?
Knglomo) = o= Ty(2r ¥y Lici+ 1y~ 1) 8ms (33)

where &, is the unperturbed energy of the level with quan-
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tum numbers n and /. It is meant that these quantum
numbers in Eq. (3.2) correspond to the Fermi energy.

If there are 2(2m, + 1) electrons in the upper shell,
then one obtains from Egs. (3.2), (3.3) the following
expression for the deformation:

SI(I+1)(2my+1)p

_ my(mg + 1
¢ = Taasy (21— 1)(2[+3) [

1(1+1)

)]. (3.4)

As seen from Eq. (3.4), if the highest level is occupied
only partially the deformation is nonzero and positive. This
means that the shape of the particle is a prolate ellipsoid. The
deformation vanishes at the complete filling of the highest
level. The deformation goes through a maximum at
iy =~ I /\3. According to Eq. (3.3) the Fermi level does not
practically shift at this m, but its filling decreases sharply:
the electrons go over from it to lower components of the
multiplet split by the deformation. Moreover, at larger fill-
ings the deformation causes not lowering but, on the con-
trary, raising of the Fermi level. Nevertheless, the total elec-
tron energy decreases.

On an increase in the particle size, the deformation
(3.4) diminishes as #1,/S, ~ 1/R. For this reason it may be
noticeable only in small particles. At @ = 60 erg/cm?, (asin
liquid Cs), R = 5nm, u = 5 eV, v = 10*2 cm ~* the quantity
£ may reach 10%. The spontaneous deformation influences
many properties of small particles. In particular, it enhances
their capacity by 2¢ times.

Earlier” the possibility of ellipsoidal deformation of
metal clusters consisting of a relatively small number of
atoms was pointed out although it is not clear to what extent
the spherical or ellipsoidal model is applicable to them at all.
A corresponding calculation was carried out by analogy
with that for nonspherical nuclei in the theory of the atomic
nucleus. The one-electron potential used in Ref. 22 included
several adjustable parameters. Only small n and / were treat-
ed which made it possible to establish the sequence of levels
with different n and /. In contrast to theory of Ref. 19 accord-
ing to Ref. 22 ellipsoids may be both prolate and oblate.
Similar results were obtained in the jellium model.?*

According to Ref. 22, the ellipticity should markedly
increase the polarizability of small particles. It should mani-
fest itself still more strongly in anisotropy of light scattering
in plasma or liquid if an external electrical field is applied.

Elliptic deformation may play an important role for
generation of cooperative electric dipole excitations of the
type of surface plasmons in small particles as was discovered
in Ref. 139. It was pointed out in Ref. 140 that in ellipsoidal
particles of such metals as Na, a specifically quantum mag-
netic state is possible. The magnetism should be of orbital
nature of the same type as in nonspherical nuclei. It is caused
by a rotation of the electron system as a whole relative to the
particle shell.

3.2.Electron level distribution in particles with bulk or
surface imperfections.

If a sample is of a nonsymmetrical shape, then even in
the absence of impurities the systematics of levels in it is very
complicated. Still more complicated is the situation, if the
sample is imperfect: bulk and surface imperfections jumble
up the systematics. But not all problems demand that the
density of states be completely known. For many important
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problems it suffices to know the correlation function be-
tween the nearest energy levels: the ground and the first ex-
cited levels. If one assumes that the probability p(®) of the
distance w between the nearest neighboring levelsis a contin-
uous function of @ due to the level randomness, one may
think that at @ €5 ~u/N the probability depends on o ac-
cording to a power law. The exponent n in the law p ~ " may
be determined from some general considerations. One may
advance plausible hypotheses in order to guess the value of .
Naturally, the proportionality coefficient can be determined
only by a direct calculation.

Considerations which make it possible to determine n,
have already been passing for more than two decades since
the publication of the pioneering papers on the subject
(Refs. 78, 79, 81, 85, 203), from one review article to an-
other. Hence, it is not reasonable to reproduce them again.
The excellent review article of Ref. 129 may, for example, be
recommended to become acquainted with them. But it
makes sense to undertake a test of the statistical hypotheses
adopted in these papers by making some quantum-mechani-
cal calculations and by computer simulations (according to
Ref. 78 n = 0, according to Ref. 203 n = 1,2 or 4).

The main question is, to what extent is the Kubo hy-
pothesis justified, according to which there are no correla-
tions in the level distribution (n = 0), or is the theory of Ref.
203 more favorable according to which level repulsion exists
(n>1). It might seem that the Kubo hypothesis is supported
by exact quantum-mechanical results obtained using a one-
dimensional model of a particle moving in a random poten-
tial.’* A rigorous proof of the inapplicability of the Dyson
statistics®®® to disordered one-dimensional systems is given
in Ref. 282.

Quite similarly, the Poisson distribution for the energy
levels (n =0) is obtained for an ensemble of rectangular
potential wells inside of which the electrons move.®? But the
variables are separable in this model, and practically it also
reduces to a one-dimensional model. On the other hand, the
adequacy of results obtained for one-dimensional models for
real three-dimensional particles is by no means self-evident,

In the opinion of the present author, papers of Refs. 76,
77, 83 deserve special attention. As shown in them, the theo-
ry of random matrices®®® forming the basis for the theory of
electron spectra of small particles’ is valid in the limit of
their very strongly imperfect surfaces. In Ref. 83 a coordi-
nate transformation is introduced which transforms a parti-
cle of an arbitrary shape not very strongly differing from
spherical into an exact sphere. After this transformation a
term playing the part of an effective potential is added to the
initial free-electron Hamiltonian. This effective potential is
taken into account to the second order of perturbation theo-
ry. The difference of the initial shape of the particle from
spherical is described by a linear combination of spherical
harmonics. Its coefficients are considered as independent
random variables for an ensemble of particles. If the surface
is very rough (all the harmonics enter the linear combina-
tion with weights of the same order of magnitude) the ener-
gy level distribution corresponds to that predicted by the
random matrix theory.?®® But if the surface becomes
smoother (the low order harmonics dominate), the level dis-
tribution differs from the Dyson one very strongly.

The same results were obtained in Ref. 77 analytically
by an analysis of the stochastic equation of motion for ran-
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dom matrices occurring in an orthogonal ensemble. But,
possibly, this coincidence is merely a consequence of the fact
that appropriate assumptions were made in Ref. 77.

The paper of Ref. 80 is a very important one. In it the
two-level correlation function is calculated for a particle
with a regular surface but with a randomly fluctuating po-
tential in the bulk. In the special version of the quantum-
mechanical treatment adopted in Ref. 80 the correlation
function is expressed in terms of a convolution of advanced
and retarded Green’s functions of the one-electron problem.
Unlike the density of states, the correlation function di-
verges if it is calculated by an expansion in powers of the
random potential. This difficulty was circumvented by using
the supersymmetry method which makes it possible to find
the correlation function p(w) under the conditions 73 1,
5«7~ ' where 7 is the electron mean free time. It coincides
with the results of the theory of random matrices.?** In par-
ticular, the correlation functions for all three ensembles ap-
pearing in the Dyson theory (orthogonal with n = 1, unitary
with n = 2 and symplectic with n = 4) turn out to be univer-
sal functions of the mean level spacing § independent of the
scattering potential.

But the results of Ref. 80 were obtained using a very
particular model in which the scattering potential was as-
sumed to be delta-correlated with the zero average value.
Apparently, proof is still required that there exist physical
situations described by this model (in Ref. 80 this question is
not discussed). Nevertheless, the results of Ref. 80 provide
evidence that the Dyson theory may be applicable in some
cases in contradiction to the opinion that it is inapplicable at
all, expressed in Ref. 205.

At the same time, the results of Ref. 80 reveal also the
nonuniversality of the Dyson statistics. In fact, going be-
yond the framework of the Born approximation leads to a
nonDyson form for the correlation functions, i.e., the Dyson
statistics does not work in the case of strong electron scatter-
ing. Apparently, for its applicability a lower bound for the
scattering intensity should exist. Therefore, one cannot take
for granted the possibility to use the Dyson statistics for
small particles in every case. Every time one should prove
that conditions for its applicability are met for a concrete
ensemble of small particles.

As an example of microscopic calculations which do
not fit within the Dyson statistics, the paper of Ref. 202 may
be pointed out. In it a calculation is carried out of the level
distribution in small particles in the limit of weak electron
scattering by bulk or surface impurities when the shift in the
level positions caused by impurities is small in comparison
with the mean level spacing. Attention is drawn to a very
important fact: if a sample is of a nonsymmetrical shape
(e.g., rectangular parallelepiped with unequal sides), then
its levels are nondegenerate even if the crystal is perfect.
Therefore, the problem of level repulsion caused by impuri-
ties does not exist. But if a sample is of a symmetrical shape
(e.g. two or even three sides of the parallelepiped coincide),
then the unperturbed levels are degenerate, and a nonmag-
netic impurity causes their repulsion with p(@) ~w. But, in
all other respects, the correlation function obtained in Ref.
202 differs from the Dyson one. In particular, it is not uni-
versal and the level correlation length depends on the num-
ber D of defects and the total number N of atoms in the
particles as UD /N where U has the meaning of the point
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defect potential if it is weak or the conduction band width if
the defect is strong. (e.g., a vacancy). The ensemble width of
nondegerate levels in nonsymmetrical samples turns out to
be of the same order of magnitude.

The question arises whether the absence of level repul-
sion in nonsymmetrical samples is a consequence of the fact
that in Ref. 202 parallelepiped-shaped particles were treated
in which, even with allowance made for the periodic atomic
potential, separation of variables is possible in the zero order
approximation in the defect density. But, unlike the model of
Ref. 82, due to defects the systems treated in Ref. 202 are
also genuinely three-dimensional as the variables become
nonseparable. Indeed the absence of level repulsion is a di-
rect consequence of their nondegeneracy in ideally perfect
samples of any nonsymmetrical shape if they are of finite size
(for example, the level degeneracy for a sphere is lifted by its
ellipsoidal deformation, see Eq. (3.3)).

Concretely, the Dyson statistics was applied for investi-
gation of small particlesin Ref. 79. It was assumed there that
the electrons do not interact with each other but that they
interact with defects. The orthogonal, unitary and symplec-
tic ensemble was used for electron scattering by nonmag-
netic impurities, magnetic impurities or in the presence of a
magnetic field, and for systems with strong spin-orbit inter-
action, respectively. But in calculating the response of the
particle ensemble to an external electromagnetic field, in
Ref. 179 the screening effects were not taken into ac-
Count.256'257

3.3. The coarse-grained density of states for long-wave
electrons

The fact that the electron levels in a particle are spatial-
ly quantized manifests itself most clearly at temperatures T’
that are low compared to the typical level spacing § (the
strong quantization limit ). But for particles with numbers of
atoms excceding 1000 the opposite inequality 7> 8 should
be met at room temperatures. But it is wrong to believe that
the effects of spatial quantization disappear at high tempera-
tures. In fact, it is instructive to consider the integral

F=lr#re®)dé, (3.5)

where f( %) is an energy function varying slowly over 6. The
density of states g( &) is a singular function of energy re-
flecting the spatial quantization:

b
g@)=Y3@ -8&,,). (3.6)

In particular, f{€ ) may be a function of &/T. Using the
Euler-Maclaurin summation formula, the following expres-
sion may be written for f'in the one-dimensional case:

b b
F=Yr@,)=ldmr@ )+ (12)rE ) +fBE ). (37

The first term on the right side of Eq. (3.7) corresponds to a
continuous energy spectrum and the second term gives a
quantum correction to it. Since the latter is relatively small,
the case 7> 6 may be termed the weak quantization limit.
But quantum corrections are of vital importance for small
particles and thin films since they are the origin of the sur-
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face parts of the corresponding physical quantities.

One may try to introduce a continuous function (%)
of energy which yields the same values for the integrals of
slowly-varying functions of the energy & as the singular true
density of states g(& ):

F=lr@)@®)at. (3.8)
The function g(&) is called a coarse-grained density of
states and is obtained by averaging of g(& ) over intervals
A& ,such, that T> A& > §. Certainly, as seen from Eq (3.7),
the coarse-grained density of states (DOS) cannot be intro-
duced in the one-dimensional case. But it may be introduced
in two- and three-dimensional cases. The coarse-grained
DOS may be used for a degenerate electron gas at 7= 0 if
one is interested in integral quantities such as the Fermi en-
ergy u or the electron surface tension a,. This is justified by
the very strong inequality > &.

Essentially, averaging of g( &) over the energy is equiv-
alent to the Born—-Oppenheimer approximation. It may be
carried out if the wavelength A(& ) of an electron with the
energy & is small compared with the minimum size L of a
sample. Naturally, for very low-lying levels this condition is
not met, and one cannot introduce the coarse-grained DOS.

A mathematical foundation for the procedure of the
DOS averaging over the energy was given by Weyl.!”® To
avoid dealing with fluctuations of g(&) of infinitely large
amplitude, instead of g(& ) Weyl considered its primitive
G(&)., i.e., the number of states with energies less than &.
As & grows, the primitive varies stepwise but its fluctuations
with respect to the smoothed curve of G as a function of &
remain finite. If the dispersion law is quadratic, the summa-
tion over the energy gives the well-known asymptotic result
G(&) ~V&3? when the volume ¥ tends to infinity.

One may expect that this term is the leading one in the
asymptotic expansion of the primitive G(& ) for the coarse-
grained DOS g( & ). As pointed out in Ref. 25 the real expan-
sion parameter is A /L which proves the equivalence of the
coarse-graining to the Born-Oppenheimer approximation
mentioned above: as A ~ & ~ '/? for the quadratic dispersion
law, such an expansion fails at small &.

Obviously, the expansion is possible up to a term ~ 1,
since it is comparable with jumps of the step-like function
G(&). Moreover, if the sample is of a symmetrical shape,
and electron states are degenerate, the jumps in G( & ) values
are still larger. For example, if the particle is spherical, the
jump of G(&) equal to 2/ 4 1 corresponds to degenerate
states with the orbital quantum number /. A typical value of /
at large energies is of the order of L /4, i.¢., of &'/%, Because
of such large fluctuations of G( & ) in the case of a sphere, the
coarse-grained function G(& ) can be expanded only up to
the terms ~ & inclusive. Accordingly®® g(&) can be ex-
panded only to a term independent of energy for a sphere and
to a term ~ & ! for other geometrical shapes.*’ In order to
obtain terms ~ & ~ 72, it is necessary to average G( &) over
the particle radii in a range of width ~A4 (& ).

If the electron dispersion law is simple quadratic, the
leading term in the expansion of (&) does not depend on
the particle shape being proportional to its volume. The next
term is a surface correction to it which represents the mem-
ory of the spatial quantization. It was first derived for the
Dirichlet and Neumann zero boundary conditions in Ref.
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109. This term depends only on the surface area of the parti-
cle.

It should be pointed out that the situation changes radi-
cally if one takes into account the crystalline structure of the
particle and the band structure of its electron spectrum. Cer-
tainly, in this case the surface correction to the DOS should
depend on the particle shape more strongly: via total areas of
different faces. But much more striking is the fact that at
certain energies an expansion of g(# ) in powers of A /L is
not possible at all.2” This is a consequence of the fact that at
these energies the DOS g, of a bulk sample exhibits the van
Hove singularities (dg,/d# is discontinuous or diverges)
which belongs to the basic properties of the band spectrum.
Definitely, g( & ) is nonanalytical close to the van Hove sin-
gularities. This implies that the particle energy cannot be
divided into the bulk and surface parts if the Fermi level is
close to these singularities.

Investigation of the DOS in the case of a quadratic dis-
persion law pioneered by Weyl'® was continued in Refs.
110-112 and practically completed in the paper by Bloch
and Bal’yan?®® where the coarse-grained DOS was derived
for the wave equation

Ap + kP =0, k*=2md (3.9
under an arbitrary linear boundary condition
%”m(p)zp:o (3.10)

on an arbitrary sufficiently smooth surface (dy/dn is the
normal derivative of the wave function and p is the coordi-
nate of a point on the surface). The surface smoothness con-
dition consists of the inequality A € R, where R, is the min-
imum radius of curvature on the boundary.

The physical meaning of the parameter x in Eq (3.10) is
as follows. If x is positive, it is the inverse decay length for
the electron wave function outside the potential well which
models the metal particle. Obviously, in the general case x
should depend on the electron energy. The case % — oo corre-
sponds to an infinitely deep potential well. But a much more
complicated situation may be realized when the electron po-
tential energy is at a minimum on the surface of a particle
growing sharply outside it. In this case the parameter » may
have negative values. At x <0, apart from solutions oscillat-
ing inside the bulk, there are solutions decaying inside the
bulk. The latter correspond to a surface energy band.

The coarse-grained density of states was found in Ref.
25 using the Green’s function for the problem (3.9), (3.10).
It is represented as the sum of the Green’s function in the
infinitely large space G, and a correction to it G, which
makes it possible to meet boundary conditions on the sur-
face. This gives an integral equation for G, that can be solved
by expansion in powers of A /L. Coarse-graining of g( &) is
carried out using the Lorentz function. The final result of
Ref. 25 for energies above the bottom of the bulk band is
given by the following expression (the spin degeneracy of the
electrons is ignored):

azﬁ:# [Vk+£dp(§_a)+2ik£(%+cos2a

- actg a) (Ri1+Ri2)] =g, +g +8& (3.11)

a=arctgy, & >0,
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where R, and R, are the principal radii of curvature of the
surface .S over which the integration is carried out.

Evidently, the first term, g,, in Eq. (3.11) is the bulk
contribution to the coarse-grained DOS, while the second,
g,, represents a surface correction to it. At constant x it is
proportional to the surface area S. As for the third term, g,,
unlike the second term, it depends on the particle shape quite
strongly. In particular, it changes its form to some extent
when the surface is ribbed. Thus, for a parallelepiped with
edges .¥,, .%, and .&; at x — «» the third term is given by
the expression

1
Ag=—8n—k($l+$2+£3). (312)
When a surface band exists, the density of states is non-
zero also for & <0:

k2= L NV 1 1,1
5 = g L a2+ 3o (o4 7)

9_((—k2)1/2+36)

x [ J

@(x) is the Heaviside step function. Like g, in Eq. (3.11),
the leading term in Eq. (3.13) at constant x is proportional
to the surface area and does not depend on the particle shape.

However, it should be borne in mind that the above
discussion does not take into account the difference between
the electron density in the bulk and on the surface. An excess
surface charge caused by this difference gives rise to an elec-
tric field which is not accounted for in the wave Eq. (3.9).
Therefore, Eqgs. (3.11t03.13) can be used only in cases when
the effects caused by the electric field can be neglected.

The problem of the density of states for electrons with a
quadratic dispersion law in finite-size samples is very similar
to that for acoustic phonons with a linear dispersion law.
The latter was treated in Refs. 113 to 117 but this treatment
is less rigorous than in Ref. 25,

The main difference between these problems consists of
the circumstance that one should take into account three
different phonon modes intermixed due to the surface. If one
neglects the difference between the transverse and longitudi-
nal modes as is done in Refs. 113-115 then the expression for
the coarse-grained phonon DOS differs from g(k?2)/k
(3.11) only by a constant. Just such a result was obtained in
Ref. 113 for a parallelepiped (in that paper a term of a higher
order in 1/L is also presented, but as discussed earlier this
exceeds the accuracy of the coarse-graining method). Only
the values » = 0 and x — « for the parameter » in (3.10)
were considered in Ref. 113 corresponding to a free or to a
pinned surface.

It was pointed out in Ref. 116 that, with allowance for
the difference between the longitudinal and transverse pho-
nons, the expansion of the coarse-grained phonon DOS
should be of the form

+6(( —k2)1/2+ae)] } )
(3.13)

2
_ Vo' 3 Sw 2 w
gph(_w)——zn2 c3 +_87r Cy +Ec1 ,

(3.14)
where C, is the nth order effective sound velocity. In the
leading term in Eq (3.14) the longitudinal and transverse
oscillations are not intermixed and, hence,
e;*=2¢,?+ ¢/ * where ¢, and c, are the velocities of the
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transverse and longitudinal oscillations, respectively. But
the other coefficients in Eq. (3.14) can be found only by
solving microscopic equations of motion.

3.4. The density of states and singularities of
thermodynamic quantities with allowance for the band
structure of the spectrum

The long-wave approximation presented in the preced-
ing section is justified at small electron densities or at tem-
peratures low enough if one deals with phonons or magnons.
To go beyond these limitations, one must investigate how the
finite size of a crystal influences the short-wave part of its
spectrum. It is clear that extrapolation of the long-wave
asymptotic expression into the short-wave region may lead
not only to quantitative but also to qualitative errors.

First, as has been already pointed out, the van Hove and
other singularities directly manifesting themselves in ener-
getic and thermodynamic parameters of electrons will be
lost as a result of such extrapolation. Second, it will be im-
possible to take into account the surface bands lying above
the bulk ones, though the former should contribute signifi-
cantly to the phonon and magnon thermodynamics at ele-
vated temperatures.

Third, the long-wave asymptotic expressions (3.11 to
3.13) of the surface part of the DOS represents it as an ener-
gy function of fixed sign. Thus, this asymptotic expression
might lead to the wrong conclusion that the DOS per atom
for a finite-size crystal should be lower (or higher) than in
the infinite size crystal at all energies. In other words, the
total number of states in the crystal should differ from the
total number of atoms (the spin degeneracy of the electrons
is not taken into account, as well as higher energy bands).
But such a conclusion is definitely wrong as in'the one-band
approximation both these numbers should coincide. This as-
sertion remains in force, even if a surface band exists since its
states arose from states of the bulk band. For this reason, for
example, a decrease in the DOS in the long-wave part of the
spectrum must be compensated for by an increase in the
short-wave part which cannot be described by extrapolation
of Eq (3.11).

Finally, a correct description of the short-wave part of
the DOS makes it possible to take into account the crystal
anisotropy which is ignored in Egs. (3.11 to 3.13).

A general expression for the coarse-grained DOS of a
finite-size crystal with an arbitrary dispersion law was first
derived in Ref. 26 under the assumption that a crystal is an
infinitely deep potential well for the conduction electrons.
The density of states was expressed in terms of a contour
integral of the reciprocal velocity. But this integral can be
evaluated only for a quadratic dispersion law which ex-
cluded taking into account the real band structure of the
spectrum. Not only extrema but also saddle points were
treated in Ref. 26. But the procedure of Ref. 26 does not
make it possible to point out the small parameters of the
theory. For this reason the results of Ref. 26 were used with-
out any justification for calculation of singularities of the
thermodynamic quantities in cases when the Fermi level co-
incides with the van Hove singularity. But the surface part of
the DOS formally exhibits a logarithmic divergence, i.e., the
inequality g, €g, at which the procedure of Ref. 26 should
work is replaced by the opposite one. But in the vicinity of
extrema where the simple quadratic law holds the results of
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FIG. 7. Bulk density of states for the simple cosinusoidal dispersion law
for electrons (3.17).

Ref. 26 coincide with (3.11) in the first order in A /L, as
should be the case.

In Refs. 27, 28 a method was developed which makes it
possible to obtain an explicit expression for the coarse-
grained DOS for the simple cosinusoidal dispersion law with
allowance for the difference of surface and bulk parameters,
for example, for electrons with the Hamiltonian

H=BY aja, . +2BvY, asa (3.15)
gA

Here ag, a, are the creation and annihilation operators for
the conduction electron on the atom g, A is the vector con-
necting the first nearest neighbors, s is the number of a sur-
face atom (the spin index is left out). The integral represen-
tation for the §-function is used when carrying out the
calculation. If there are no surface bands in the spectrum,
then

S(E) <2286 6 @) -leﬂ“g’Zexp( -s@n,
q .
&(q) = 2B( CUs g,a + cos g,a + cos g,a).

(3.17)

The allowed values of the quasimomenta ¢; are determined
from the boundary conditions which should be obtained us-
ing the Hamiltonian (3.15). Summation over g; in (3.16) is
carried out using the Euler—McLaurin formula (3.7) under
the assumption that the second term in Eq. (3.7) is small
compared with the integral term. Such an approach makes it
possible to separate out the bulk contribution g, and the
surface one, g,, to the coarse-grained density of states. The
first of them (Fig. 7) coincides with the well known result of
Ref. 118. It cannot be represented analytically but one sees
singularities at points £ = + 1 (the van Hove singularities).

The surface term g, in some cases (v =0, |[v] = 0.5) can
be expressed analytically as a combination of full elliptic
integrals of the first kind of the form

K([l_geilzz]l/z)

- rK((9_82)iV2>.e=%.

8

(3.18)

If the crystal is bounded by the (100) or (110) faces,
then, as seen from Eq. (3.18) and Fig. 8a,b in which g, is
represented at v = QO and v = — 0.5 for (100) faces, the sur-
face part of the DOS diverges logarithmically at points
£ = + 1, in which g, becomes negative. Obviously this re-
sult is meaningless as the total DOS should be negative at
this point. This means that in reality at ¢ = 4+ 1 the coarse-
grained DOS cannot be divided into bulk and surface parts.

At |v| > 0.5 the surface band appears in the spectrum
(Fig. 8c) It manifests itself not only in the nonzero DOS
outside the bulk band (|&| > 3) but also in a jump in the DOS
inside the bulk band (in Fig. 8c at =~0.125 for v = —2).
Jumps at the surface band extrema is caused by the fact that

FIG. 8. Surface density of states g, for the simple cosinusoi-
dal dispersion law (3.17), 2D?/a? is the number of surface
atoms®® a) Faces (100) or (110), v =0, b) Faces (100),
v= —0.5,c) Faces (100),v = — 2,d) Faces (100),8=2.
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the density of surface levels remains finite at them. Due to
superposition of the bulk and surface bands, the DOS as a
function of £ goes through a maximum inside the bulk band.

If the sample is bounded by the (110) faces, then, as
seen from Fig. 8a and Eq. (3.18), although the surface DOS
differs from that for (100) faces, the van Hove singularities
are still located at points € = + 1.

In Ref. 28 systems were investigated also with the Ham-
iltonian differing from (3.15) in that the surface perturbs
not the diagonal but the nondiagonal matrix element be-
tween a surface atom and its nearest neighbor from the next
atomic layer. If the perturbed nondiagonal matrix element
B’ = Bfis such that 8 *>2, then two surface bands appear
simultaneously lower and higher than the bulk band (Fig.
&d).

The singularities of the DOS just described are directly
reflected in observable quantities since the electron heat ca-
pacity C, = 7 Tg(u)/3 and the paramagnetic susceptibility
Y = &(u) (the Bohr magneton is put equal to 1) are ex-
pressed in terms of g(#% ). The surface contribution to y
which, as seen from Fig. 8, may be of both signs, may be
interpreted as specific surface paramagnetism or diamagne-
tism. Influence of external factors may be observed both on y
and C,. For example, adsorption or an external electrical
field change the surface boundary conditions. Thus, under
their influence the Fermi level may cross one of the singular-
ities of the DOS sensitive to the boundary conditions, for
example, the surface band extremum lying inside the bulk
band. Then, together with a jump in g(u ), C, and y should
reveal similar jumps.

3.5. The Fermi energy and the electron surface energy

Results, obtained in Secs. 3.3 and 3.4 make it possible to
calculate the Fermi energy and the surface energy of elec-
trons in the particle. For the quadratic dispersion law one
obtains from Eqgs. (3.11), (3.12) to the first orderin S /k V
(Refs. 47, 48):

M=ot By,

S
=3y

C=3{k;1 [(ﬂo+-i°%>arctg%—]%yo] —%/]:—2}

1
po = (3n%n)¥ 3=, (3.19)

where n is the electron density. On a decrease in particle size,
according to Eq. (3.19) at %> 1 the Fermi level goes up due
to the spatial quantization of the electron levels which makes
them shift upwards. At x €1 the Fermi level goes down. It is
a result of the surface resonance due to which the DOS in-
creases close to the band bottom, and the electrons ““fall
down,” occupying them.

The quantity u, changes its sign at some »x_ ~ k. Evi-
dently, at » > x_ the charge of the surface is positive and at
% <. negative, i.e., i, is linear in its charge.

In the limiting cases x — o and x = O the surface cor-
rections g, to i, are of the same magnitude but of opposite
signs. Obviously, u, ~uo/kgR. Using numerical values of
the parameters entering Eq. (3.19) taken from Ref. 44, one
finds at R = 5 nm the following values of the surface correc-
tion 2, for some metals: 0.29 eV for white tin, 0.22 eV for Ag
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FIG. 9. The surface contribution g, to the Fermi energy for v = O (faces
(100) and (110)) and v = — 0.5 (faces (100)) (Ref. 28).

and Auand 0.31 eV for Al i.e., the effect is quite significant.

The surface shift u, of the Fermi energy in the case of
the cosinusoidal dispersion law (3.17) is found by numerical
integration of the coarse-grained DOS represented in Fig. 8.
As seen from Fig. 9, the Fermi energy depends on the type of
crystal faces. At v = 0, on an increase in the band filling, the
quantity g, goes through a maximum, then changes its sign
and goes through a minimum. Thus, unlike the free electron
model, the sign of 1, depends on the band occupancy.

The change in the sign of , with band occupancy can
be qualitatively explained as follows. At small occupancies
the conduction electrons, and at large ones the holes are the
charge carriers. Due to spatial quantization the Fermi levels
of charge carriers of both signs shift upwards. But the sign of
the chemical potential for holes is opposite to that for elec-
trons. Therefore, the electron Fermi energy is shifted down-
wards at large occupancies. Atv = — 0.5 the surface poten-
tial acts on electrons and holes in a different way. For this
reason the sign of 1, remains unchanged as the band occu-
pancy increases.

Integration of i, over the number N of electrons gives
the surface part &, of the electron energy. One obtains with
allowance for Egs. (3.19) (Refs. 23, 72):

§,=a,s, (3.20)

a, = —(3n/2mhkg) { [ (K&/4) + (22/2)
+ (a*/4k2 ) arctg( kp/x)

— (Skp/12) = (/40 ) — wkE/16 };

ke = (2mp, )1/2.

Asfollows from Eq. (3.20), the electron surface tension a. is
positive as x — «, but negative as »x—0. The latter does not
necessarily mean the instability of the system as the total
surface tension may turn out to be positive due to the lattice
contribution to it. In Ref. 72 corrections to a, of the order of
1/R are found.

Not only spatial quantization but also Coulomb effects
contribute to the size dependence of the Fermi energy of
electroneutral small particles. The latter is caused by the
nonuniformity of the electron density distribution over the
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particle. For example, as % — « the electron density vanishes
at the surface, and the positive charge of ions remains un-
compensated there. For this reason an electric double layer
arises on the surface, its parameters being size-dependent.

It should be pointed out that taking the Coulomb inter-
action into account makes the problem of definition of the
Fermi energy for a small particle quite nontrivial. Its stan-
dard definition as the derivative of the electron gas energy &
with respect to the number N of electrons, strictly speaking,
has only a mathematical but not a physical meaning, as an
infinitely small change in the number of electrons is impossi-
ble. But the minimum possible change in & (i.e., by 1) leads
to charging of the particles. Unlike a bulk sample, the charge
density in a singly-ionized particle is not an asymptotically
small quantity. Correspondingly, the energy of the electrical
field produced by the charged particle is not small compared
to other characteristic energies. Meanwhile, from the point
of view of its meaning, the Fermi energy is a characteristic of
an electroneutral particle. Thus, in determining x one must
exclude the contribution to it of the electrical field of the
ionized particle. This may be achieved by using the equation
validat 7'=0

p=8(N)—8(N-1)+(e2/2Cey) =38 /5N i 5.0,
(3.21)

where C is the particle capacity, and &, is the permittivity of
the surrounding medium. The Coulomb part of (3.21) is
wholly caused by the electric double layer on the surface of
the particle.

To find the size-dependence of the parameters of the
double layer, this problem was solved in Ref. 200 for thin
films, for which C— «, and the entire Coulomb influence on
u is reduced to the double layer. The double layer size-de-
pendence was found taking into account the spatial quanti-
zation of the electron levels in the mean field of the other
electrons. Such a solution was obtained only for the param-
eters of films typical not of metals but of degenerate semi-
conductors. For this reason the quantitative results of Ref.
200 are not valid for metals. Nevertheless, the results of Ref.
200 are useful for metals, providing an insight into the phys-
ical mechanism which leads to the Coulomb contribution to
the surface part of u.

The interplay of the small parameters in Ref. 200 leads
to the result that both as x —» « and as x -0 the Coulomb
effects reduce the size-dependent part of i by a factor of two
(in other words, the kinetic contribution to u, (3.19) is
twice as large as the Coulomb one, but their signs are oppo-
site). It may turn out that the role of the Coulomb effects at
electron densities typical for a metal will be less. This may be
inferred from an analysis of the higher-order terms obtained.
In any case, it is clear that the free-electron model gives a
reasonable estimate for the size-dependent part of u.

It should be noted that the free electron model with
x — oo in Eq. (3.10) was used in Ref. 33 for calculation of the
disjoining pressure in thin films of liquid metals. This prob-
lem is related to the electron surface energy. To make the
electron DOS a continuous function of energy, it was as-
sumed that the energy levels are of finite width 7. But in the
limit ¥— 0 the expression for DOS used in Ref. 33 differs
from the quite reliable Eq. (3.11) by an extra term and for
this reason is erroneous. On the other hand, there is no rea-

768 Sov. Phys. Usp. 35 (9), September 1992

son for the energy levels to be of finite width in a finite-size
sample. Any perturbing potential may change the systema-
tics of energy levels but it cannot transform a discrete spec-
trum into a continuous one. For this reason the results of
Ref. 33 are far from being reliable. Other critical remarks
about Ref. 33 were advanced in Ref. 34 where the same prob-
lem was treated.

Naturally, the free-electron model used above for the
calculation of &, and u cannot lay claim to quantitative
agreement with experiment. Its aim is to establish the main
regularities and to estimate characteristic quantities. Other
methods are also widely used for the same aim. In particular,
the density functional method is very popular. This method
developed in Ref. 178 makes it possible, under assumption of
a uniformly distributed compensating charge (the jellium
model), to account for the nonuniformity of the electron gas
caused by the surface or other factors. It was applied to small
particles and related problems in Refs. 29-31, 145, 165, and
other papers. Sometimes the still simpler Thomas-Fermi
method®’ is used for the same problems as well as the pseu-
dopotential method.*?

Returning to the density functional method, one should
note that although the electron-electron interaction is taken
into account in it, its accuracy is insufficient for obtaining
reliable numerical data for concrete materials, contrary to
claims of some authors using this method. Certainly, this
method, as any numerical method, is inconvenient for ob-
taining qualitative results. Further, the nonuniformity of the
electron gas is taken into account only by the gradient term
which is appropriate only for a very slowly varying density.
But in reality it changes sharply over distances of the order
of the lattice constant near the surface. This excludes the
possibility to obtain numerically accurate results. Strong
limitations are imposed also on the boundary conditions
used in the density functional method. In any case, in all the
papers cited the possibility of surface bands or resonances is
not taken into account. But the main shortcoming of the
method consists in the circumstance that the spatial quanti-
zation of the electron levels is not taken into account in it.
Meanwhile, as shown above, this factor is of vital impor-
tance for the size-dependence of the Fermi energy and for the
surface tension. Similar shortcomings are inherent in other
methods pointed out above.

3.6. Size-variable free electron model for an isotropic
particle and general thermodynamic relations

The free electron model of a metal particle may be
modified in such a manner that it may be used for confirma-
tion of the thermodynamic relations of Sec. 2.3. For this
purpose it is sufficient to treat the particle as deformable of
which the volume should be found from the condition of
minimum energy. Such a model may correspond to both a
liquid or a solid particle. Its ionic frame may be taken into
account implicitly by assuming that it should ensure the sta-
bility of the system against an infinitely large dilatation
which leads to a decrease in the electron energy. The ionic
frame also contributes to the surface energy. Conservation of
the number of electrons and, consequently, of the number of
atoms corresponds to a practically complete absence of the
saturated vapor of the metal.

First of all, Eq. (3.20) manifests the truth of the basic
thermodynamic relation (2.12) according to which the sur-
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face tension a depends on the electron density, i.e. on the
density of atoms. Qualitatively, this statement remains in
force if one takes into account the contribution of the ionic
frame to the particle surface energy. Thus, the surface ten-
sion remains constant in the case of a particle with a fixed
number of atoms only if a change takes place in the particle
shape (i.e. in .S) and not in its density. But if the number of
atoms in the particle is variable, as in the case of equilibrium
between the particle and its vapor, then the surface tension
may be constant also in the case of an unchanged shape of the
particle, provided that the change in its size occurs at a fixed
density.

Further, although the ionic frame, also contributes to
the total surface tension a of the particle, situations are pos-
sible when the electron contribution to a and da/dn exceeds
that of the ions. Then the magnitude and sign of the sponta-
neous deformation of the particle is determined by electrons.
In what follows, only the case of an infinitely deep potential
well for the conduction electrons (k — o in Eq. (3.10)) will
be discussed in detail. Then according to Eq. (3.20) the elec-
tron part of the surface tension given by the expression

a=uykt/16 7 (3.22)

is proportional to n*?, i.e., the absolute value of the electron
part of the internal pressure (2.16) is equal to the Laplace
pressure but their signs are opposite to each other. In such a
case the particle should dilate and not reduce its volume
under surface forces, and this is often observed experimen-
tally (Sec. 1.4).

It should be noted that the possibility in principle was
pointed out earlier of a crystal dilatation due to the differ-
ence between the surface tension and stress (Sec. 2.2). But
the origin of dilatation in the case considered is quite differ-
ent. The conduction electrons which cause the dilatation
form an electron gas and not an electron crystal, irrespecti-
vely of the particle being in the liquid or in the solid state. In
the former case the “crystalline’” mechanism of Sec. 2.2 does
not work at all, but the “electron” one discussed above re-
mains in force.

Finally, the validity of Eq. (2.18) for the chemical po-
tential can be confirmed. A spherical particle of radius R is
considered under the assumption that the electron contribu-
tion to a greatly exceeds the ionic one. Taking into account
that the particle is expanded by surface forces which create
the negative internal pressure p,, one concludes that the sur-
face part u g of the Fermi energy for the deformable particle
is the sum of two terms. The first of them is the correspond-
ing expression g, (3.19) for an absolutely rigid particle
which as x — « with allowance for Eq. (3.22) reduces to

4a

uy = 3muy/4keR = “R

(3.23)
The second term is the difference between u,(p,) and
Ho (0). Since as discussed above p, = — p;, in the case un-
der consideration one obtains for the Fermi energy

1= po(p) + 1(p) = uo(0) + 7, (.24
iy = p(0) + (oug/op)p. = —(pr/n) + 4.
Thus, it follows from Egs. (3.23), (3.24) that
u = po(py)- (3.25)
769 Sov. Phys. Usp. 35 (9), September 1992

This means that although the particle is expanded its
chemical potential imitates that of a particle compressed by
the Laplace pressure. If the relation a ~a, does not hold
then the microscopic model under consideration is a two-
component one and cannot be used for a quantitative com-
parison with Eq. (2.18) derived for a one-component sys-
tem.

The size dependence of the Fermi energy may be caused
by the surface relaxation occuring in deformable particles.*®

4. PHYSICAL EFFECTS IN SMALL PARTICLES
4.1. Work function and Coulomb explosion

Apart from the spatial quantization discussed in the
previous Chapter the specific properties of small particles
are determined by Coulomb effects arising due to the elec-
tron transfer from them or through them. If the appearance
of an extra electron on a bulk sample practically does not
change its electrostatic energy, the appearance of an extra
electron on a small particle changes this energy by the quan-
tity ~e*/R which is large compared to T under normal con-
ditions and for this reason cannot be discarded. In some
cases Coulomb effects appear simultaneously with spatial
quantization and even may be a consequence of the latter.

In this Section the size-dependence of the work function
will be discussed. It is determined simultaneously by the
Coulomb interaction and spatial quantization with both
these factors leading to functionally the same size-depend-
ence on R. We will follow the definition of the work function
® given in Ref. 258:

O=AS/AN=8(N-1)—&(N). (4.1)
Then one obtains from Eqs. (4.1) and (3.21)
@ = —u + (¢8/2C) (4.2)

p=pgtpy tu.

As was already pointed out in Sec. 3.5, the size-depen-
dent terms p, and i, related respectively to spatial quanti-
zation and the electric double layer on the surface, yield cor-
rections ~1/R to the size-independent term p,. But the
second, “field” term in Eq. (4.2) exhbibits the same R-de-
pendence. It is maximum at £, = 1 when, for example at
R = 5nm it amounts to 0.13 eV, i.e., is comparable with the
sumy, + p, (seeSec. 3.5). But, depending on the boundary
conditions (3.10) this sum may be of either sign. Corre-
spondingly, although the last term in Eq. (4.2) is always
positive, the size-dependent correction to ® may be of either
sign. This statement is all the more valid at £,> 1 when the
“field” term gives a contribution to the size-dependence of ®
which can be neglected in comparison with the contribution
of u. In the latter case the sign of the size-effect for ¢ is
completely determined by the spatial quantization.

Historically, in investigating the size-dependence of ®,
attention to the Coulomb contribution was drawn long ago,
whereas the contribution of the spatial quantization has been
ignored by most investigators up to now (apparently, its ex-
istence was first mentioned in Ref. 23). But differences of
opinion still exist between different authors concerning the
description of Coulomb effects.

Some authors'**~*** relate the size-dependence of ® to
the electric image forces although these forces determine
only the shape of the potential barrier and not its height.
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Their reasoning is as follows. The energy AE of the electron
transfer from the point R, = R + & close to the charged
sphere of radius R to infinity is the sum of the Coulomb
energy and that of the images forces

R32 222 P 5 zet
AR K @SR TR (4.3)

Itis assumed that AE= %, — &, ; where &, is the
total energy of a sphere with charge z, . The first term on the
right-hand side of Eq. (4.3) diverging at § -0 is interpreted
as the work function ¢, for a bulk sample. Puttingz = O and
z = 1, one obtains the electron affinity 4 and the work-func-
tion ®, respectively. The result (4.3) for the size dependence
of the work function was obtained also in Ref. 29 using the
density functional method.

The same method according to Ref. 135 gives the fol-
lowing expression for the work function and the electron
affinity

(D=A=(I>01':2—(—§e—+—(zj, (4.4)
which differs from the expression given by electrodynamics
in that a microscopic length @, depending on the density of
the particle, enters the denominator of the second term on
the right-hand side of (4.4). The sign ( + ) corresponds to
the work function and ( — ) to the electron affinity.

The approach of Ref. 135 seems to be more justified
than that used in Refs. 132-134: the work function should
depend on the height of the potential barrier and not on its
shape. In addition, interpretation of the parameter § in Eq.
(4.3) is quite arbitrary. Perhaps, practically the difference
between Egs. (4.3) and (4.4) is not very essential. Much
more essential is the fact that neither of these approaches
makes it possible to take into account the spatial quantiza-
tion of energy levels leading to Eq. (4.2). The same is also
true of the size-dependence of the electric double layer ig-
nored in Refs. 132-135. The linear dependence of ¢ on 1/R
was obtained also in a number of other papers, e.g., Refs. 29~
31, 145, 165 but all they reveal the same shortcomings.

Experimentally, the size-dependence of the work func-
tion was first discovered in investigating gold island films in
Ref. 75 where their photoemission was measured (Fig. 10).
On a decrease in the particle radius from 25 to several A, the
work function falls from 4 to 2 eV. In Ref. 137, on the con-
trary, enhancement of the work function of small Ag parti-
cles was observed which obeys the law
®(R) =4.37 + (5.4/R(A)) eV with &, = 4.3 eV. The or-
der of magnitude of this shift agrees with that given by Eq.
(3.19). Qualitatively similar results were obtained for Ag

sf;‘ev
o
J
g ! 2 3 Fr', nm

FIG. 10. Size dependence of the work function of Au particles.”®
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particles in Refs. 100, 176: the rise of ® with decreasing R is
characterized by the following values: (30 A) = 4.55 eV,
©(27 A)=4.57 eV and ®(20 A)=4.65 eV, with
&, = 4.90 eV. Increase in P with decreasing R was also ob-
served for Na particles.'”® The experimental fact that ® may
both diminish and increase with decreasing R agrees with
Eq. (4.2) but not with the results of other theories described
in this Section, according to which ® can only increase. But
one cannot exclude the possibility that the results of Ref. 75
are due to a transition of Au particles from a metallic to an
insulating state, on a decrease in their size (see Sec. 1.2).

Multiple ionization of small particles or clusters can
lead to their breaking up into singly charged fragments. This
phenomenon is referred to as Coulomb explosion of small
particles. It was first discovered in Ref. 158 where the criti-
cal number 7, of atoms in a cluster, starting from which
doubly charged clusters become stable, was given: n, = 30
for Pb, 20 for (Nal),, 52 for Ag. Later, however, doubly
charged clusters Pb2 ™, Pb2*, Pb};" and Pb?;" were discov-
ered!® with sizes much lower than the critical value, and in
Ref. 160 similar clusters Ag2* with n<19. Their existence
was attributed to a chain structure of clusters. Clusters Pb} *
with n> 45 and Pb?* with n> 60 to 70 are also stable.'*
Quite small doubly charged clusters Ni>*+, Au3* and W3+
were observed in Ref. 157 although Cu3™* are unstable. Ac-
cording to Ref. 177 doubly-and triply-charged clusters are
stable at much smaller n, than obtained earlier: »_ is equal to
3for Pb2+, 5for Bi2*, 9 for Ag2* and Au2*, 22 for Au’+
and Ag2*, 38 for Bi* and 43 for Pb}*. These values
strongly depend on the experimental conditions under
which clusters are produced.

A very simple calculation of charged cluster stability
using a spherical or a chain model was carried out in Refs.
161-164. Equality of the cohesive energy of a surface atom
and a change in the Coulomb energy caused by emission of a
positive ion was taken as the stability criterion of a particle.
The former was found from experimental data or by a calcu-
lation in the strong coupling approximation, and the latter
was evaluated with allowance for a screened potential. The
critical value of the number of atoms at which Coulomb ex-
plosion occurs is found to be equal to 30 for spherical Pb2*
clusters which is in agreement with the experimental data of
Ref. 158. Pb2+ should be stable in the range from 6 to 13
atoms. But for Pb>* and Pb%* ions and for Ni2* ions the
critical values of n were found to be much in excess of their
experimental values.

In Refs. 165, 166 a calculation of charged cluster stabil-
ity was carried out using the density functional method. Al-
though this method is inadequate for calculations of the sur-
face energy and work function, it may give reasonable results
for the problem being discussed. It was assumed in Ref. 165
that the charged cluster emits a singly-charged ion when
exploding. But it was established in Ref. 166 that the most
favorable channel for a Coulomb explosion corresponds to
such fragments which consist of several atoms in agreement
with the tendency that each fragment should contain the
“magic” number of electrons (Sec. 1.2). Ifthis is impossible,
then the magic number of electrons must be in the smaller
fragment. If this is also impossible, then the number of elec-
trons in each fragment should be as close as possible to a
magic number. This approach seems to be quite reasonable
judging from the fact that sizes of maximally stable clusters

E. L. Nagaev 770



of Na and K obtained theoretically in this way in Refs. 167-
170 agree with experimental data of Refs. 167, 168 (these
numbers are 8, 20, 40, 58 and 92). Sizes of such clusters for
Mg and Al are calculated in Ref. 171. For Na2* clusters the
critical value of n should exceed 100.

In Ref. 174 the problem of Coulomb explosion was in-
vestigated theoretically under the assumption that a charged
particle becomes ellipsoidal under electrostatic forces. The
results of Ref. 174 agree with those of Ref. 157.

4.2. Mutual charging of small particles.

Size-dependent effects of Coulomb and quantum origin
manifest themselves in properties not only of separate small
particles but also of their ensembles. If the complete thermo-
dynamic equilibrium between particles, which is reached on
their coagulation, establishes much more slowly than their
equilibrium with respect to electrons then a specific cooper-
ative effect should arise: the mutual charging of small parti-
cles. It is realized via electron transfers between particles
through the medium surrounding the particles. The elec-
trons can go over from one particle to another by means of
quantum tunneling or the usual electrical conductivity pro-
cesses.

First of all, the electron transfer can be caused by the
difference in the Fermi energies of particles of different size
(see (3.19)). (One should keep in mind that a spread of
particle sizes in an ensemble is inevitable). Then the mini-
mum free energy is attained if electrons go over from a parti-
cle with larger u to a particle with smaller u. If the number of
electrons transferred from one particle to another is large
enough, one may speak of equalization of the electrochemi-
cal potentials of the particles.

At sufficiently high temperatures electron transfer be-
tween particles may occur as a result of a thermal fluctuation
unrelated to the difference in the Fermi energies of the parti-
cles.

If the particles are mutually charged as a result of elec-
tron transfer, electrostatic forces arise between them. They
are considerable if the screening length in the medium where
the particles are located is large compared with the mean
distance between the particles. These mutual charging forces
cannot be reduced to the usual Coulomb forces as the parti-
cle charge depends on the particle separation. But up to the
screening length their asymptotic expression is of the Cou-
lomb form. For this reason, at sufficiently large interparticle
distances, the mutual charging forces are much stronger
than the conventional van der Waals forces with asymptotic
behavior ~ r~%. In fact, according to the Casimir formula®*
the latter are given by the expression

F,=r"2g%(r), 4% =10ac(R/r)S. (4.5)

With the minimum number of electrons going over from one
particle to another (i.e., 1), and the permittivity £, = 1, the
van der Waals force F, is less than the Coulomb one begin-
ning from a distance three times larger than the particle radi-
us R.

The idea of mutual charging of particles with different
sizes was first advanced in Ref. 43. It was suggested there
that particles of different sizes should have different Fermi
energies due to the circumstance that the Laplace pressures
for them are different, and the mutual charging should
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equalize their electrochemical potential. But the assump-
tions used in Ref. 43 are wrong. Surface forces acting on a
crystalline particle are determined not by the surface tension
but by the surface stress and for this reason cannot be re-
duced to the Laplace pressure (Sec. 2.2). The Laplace pres-
sure has the meaning of a real physical force for small liquid
particles only far from the melting point (Sec. 2.3), so that
practically the assumption of Ref. 43 is inapplicable to them
also. But if the Laplace pressure had been a real force it
would have been insufficient to cause real interparticle elec-
tron transfer, as the difference in the Fermi energies of the
particles caused by the Laplace pressure would have been
too small for this purpose (see below).

But the situation changes drastically if one takes into
account the spatial quantization leading to much stronger
size-dependence of the Fermi energy. Obviously, this mech-
anism of the size-dependence of the Fermi energy is not re-
lated to surface forces and the spontaneous deformation of
the particle caused by them. The idea that spatial quantiza-
tion may cause the mutual charging of particles was ad-
vanced in Ref. 13. It was shown there that if the surface
repels electrons (i — o in Eq. (3.10)) then electrons should
go over from the smaller particle to the larger one. But if the
surface attracts electrons (x— 0 or %<0) then the direction
of the electron transfer is opposite.

The treatment of the mutual charging presented below
is based on the thermodynamic expression for the probabili-
ty W that N, excess electrons are located on the i-th particle
of an ensemble consisting of M particles. In the limit, when
distances r, between particles greatly exceed their radii R,,
the probability is given by the expression (see (3.21)) (Ref.
206)

F{N;}

W{N}= Z_lexp< —'T—)
-1 1 . 82 231 .
=Z Cxp[—‘T‘Z(Niﬂi"!-‘,z_[—.ENi)l, (4.6)
i v -
Z=3 W{N;}.
{N}

At not very high temperatures for not very small work
functions and not very large volumes of the surrounding me-
dium one may neglect the electron transitions from particles
to this medium. Then Eq. (4.6) must be supplemented with
the condition of conservation of the electron number

M

> N =0.

i=1

(4.7)

As T—-0 the set of numbes N, should be realized for
which the exponent in Eq. (4.6) is a minimum:

2 2
e°N,; e'N; .
T _ N . i\ 2, ‘_—1 i
* !_(uiﬁ- E—ORi) <‘u/+—_L£0R/->_| z (e 20)(R;  +R;).

(4.8)

Evidently, for N; > 1 relations (4.8) reduce to the con-
ditions of equality of electrochemical potentials of all the
particles of the ensemble. But for N, comparable to 1 these
conditions lose their meaning. One should take into account
that N, are discontinuous functions of particle parameters.
For example, at M = 2 for transfer of N electrons from one
particle to the other the following equalities should hold
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= (4.9)

where 7.,> R, R, is the interparticle distance. The terms of
the following order in R /r are taken into account in writing
Eq. (4.9) (Ref. 180). As follows from Eq. (4.9), as the parti-
cles approach each other, jumps of their charge should occur
at certain distances. If one of the particles is spherical, then
size-dependent oscillations of its Fermi energy (Sec. 3.1)
should case similar oscillations of its charge.

Not the numerical estimates of the mutual charging will
be presented. If the size-dependence of u had been caused by
the Laplace pressure then repeating the considerations pre-
sented in Ref. 43 one would have obtained that for any R,
and R, the number of electrons going over from one Ag par-
ticle to the other would not have exceeded 0.05 tog, = 1. It
follows from the fact that in the case under consideration the
quantity £ in Eq. (3.19) should be put equal to 4axu,/3
where x is the crystal compressibility. These quantities for
Ag are as follows (see Ref. 7); % = 107° atm, a = 930 erg/
cm?and y, = 5.5 eV (Ref. 44). Use of the condition of equa-
lity of the electrochemical potential instead of (4.8) as has
been donein Ref. 43 then gives the estimate presented above.
Meanwhile, the notion of electron transfer makes sense only
if at least one electron goes over from one particle to the
other. Thus, it is clear that the above mechanism of mutual
charging does not work. Much more favorable estimates of
the effect obtained in Ref. 43 are due to the fact that the
deformation of Ag particles was overestimated by an order
of magnitude there> (by the way, in Ref. 46 the estimates
are close to those presented here).

The mechanism of spatial quantization is much more
effective: the number of electrons going over from one Ag
particle to the other should exceed 1 at¢, = 1,if R, >R,.In
media with £, > 1 this number may amount to several tens or
even several hundreds. This follows from (4.8), (3.19).

As follows from (4.6), (4.8), the mutual charging
forces are cooperative: since under conditions of thermody-
namic equilibrium the electrochemical potential should be
the same for all the particles of the ensemble, the equilibrium
charge of each particle should be determined by the radii and
positions of all the particles. Therefore, the interaction be-
tween any pair of particles should depend on the rest of the
particles. Obviously, if an ensemble consists of two particles,
the mutual charging forces are, by necessity, attractive. But
in an ensemble consisting of a larger number of particles, a
part of the particles has a charge of the same sign, and they
repel each other. Nevertheless, attraction between particles
predominates.

In order to estimate the cooperative effects in an ensem-
ble with M > 2, let us assume that particle radii R; are dis-
tributed uniformly over the range from R —p to R + p.
Then one obtains for averaged quantities with allowense for
Egs. (4.7), (4.8):

N} = (M~ 1) NN, =%} /3¢°R2. (4.10)

As seen from Eq. (4.10), on an increase in M, the charge of
each particle remains finite (V2 does not depend on M). But
the averaged force proportional to N, N,,being attractive,
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diminishes, vanishing as M — o

Mutual charging may also occur if the particles are of
the same volume, but of different shapes. This follows direct-
ly from Egs. (3.19) (4.9). Its origin may be the different
degrees of imperfection of the particles that are otherwise
identical, or even the differences in the distribution of an
equal number of defects within them.2%

Now another mechanism of mutual charging of small
particles will be discussed which was called fluctuation
charging.?® It is significant, as a rule, only at sufficiently
high temperatures. But the fluctuation mutual charging, un-
like the thermodynamically equilibrium one discussed
above, is nonzero even in the case of identical or of nonmetal-
lic particles. At low temperatures the fluctuation mutual
charging is significant if the electrochemical potentials of the
particles change only slightly after the electron transfer be-
tween the particles.

To estimate the fluctuation mutual charging, one may
putallR; = R, u, = u. Then one obtains with allowance for
Eqgs. (4.6), (4.7) the following result for the thermodynam-
ically averaged values at T'> ¢’/£,R:

(NN,) = ~(N Y/(M = 1) = =TeoR/€"M. (4.11)

ForR = 10nm, ¢, = 80, T'= 0.03 eV the average number of
electrons going over between particles is close to 10. As
M - o the fluctuation mutual charging forces

2
'ﬂ = € .
Fi —_<€0rij NN; ),

just as the equilibrium mutual charging forces proportional
to NN, in Eq. (4.10), disappear.

A calculation of particle motion in a vicsous liquid lead-
ing to their coagulation was carried out with allowance for
the mutual charging forces in Refs. 27, 50. It was shown that
these forces may accelerate the coagulation very strongly. In
Ref. 45 the electrostriction caused by the mtual charging was
investigated. This study reveals that, since the charge of a
particle depends on its Fermi energy and this energy depends
on the particle deformation, not only the standard expansion
of the particles, but also their compression, is possible. Al-
though the possibility was discussed in Ref. 45 of the Cou-
lomb explosion of small particles due to their mutual charg-
ing, with realistic values of the parameters this problem does
not infact arise: numerical estimates of the effect in Ref. 45
greatly overestimate it.

4.3. Screening by immobile particles

Keeping in mind subsequent comparison of the theory
with the experimental data available, a situation will be stud-
ied here which corresponds to a very specific physics pro-
cess: the mutual charging of particles in the case when all the
particles of nonstandard sizes are located in a closed region
surrounded by particles of a standard size.”> Naturally, the
charge inside the nonstandard particle rgion is distributed
nonuniformly, and a layer of compensating charge should
arise outside this region. In some sense one may say that the
standard particles screen the nonstandard ones. But the
problem of the potential distribution inside the small parti-
cle system differs essentially from the conventional problem
of screening in a conducting medium. In the latter case the
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screening arises as a result of change in the density of charge
carriers in motion in the vicinity of the screened charges. But
in the case considered here the screening arises as a result of
change in charges of motionless particles. Thus, unlike the
standard situation, kinetic parameters cannot enter an
expression for the screening length.

Strictly speaking, to ensure charge transfer between
particles leading to equalization of their electrochemical po-
tentials, there should be a number of electrons in the medium
surrounding the particles. They should cause the conven-
tional screening of charged particles. But in what follows, its
number is assumed to be so small that the conventional
screening length is very large compared with the size of the
nonstandard particle region and with the screening length
corresponding to immobile particles. For this reason the
conventional screening will be neglected.

The model used below corresponds to a spherical region
of radius p containing randomly distributed particles of radi-
us R, and with the Fermi energy u, = u(R,). Particles of
radius R, and 4, = (R, ) are distributed randomly outside
this region. The condition of the electrochemical potential
equality between the particles can be represented as follows

(/tl/e) + (qi /EOR1 )+ (pl(rl.)
= (uy/e) + (qj/soRz) +(p2(rj) = const,

Zqiz—ij;
: J

(4.12)
(4.13)

Here g, is the charge of a type 1 particle at point r,, @, (r;) is
the potential at this point produced by all the other particles,
g, and ¢, (r;) are the corresponding quantities for the type 2
particles. The equality (4.13) accounts for the electrical
neutrality of the system.

At rather high densities n, and n, of particles 1 and 2
spherically symmetric distributions of the charges and the
potentials can be assumed allowing for the slow falling off of
the Coulomb potential. Then with £ = 1,2

(k=1,2).

a(r) a3 ny Tayrn)dir
; +2] ,
Ir' —ri EOP br—r't

n, £
Pr= %o J
80 o
(4.149)
Then using well-known electrostatic theorems one obtains
from Eq. (4.14)
ﬂ/qu(f’)dsr‘
£ ’

14
n N 43,
(pl(r)=£—0rjq1(r)dr + "
0

r

© w33,
n, cqy(r’ydr (4.15)
+£—0£ -r, (r<p),
n, £ n, ©
o= f o 4 72 f e e
o 5 o,
my Tay(r) &
20T (e p). (4.16)

EO . r

As one sees from Eq. (4.16) with allowance for (4.13),
@2 (o) =0

The integral equations (4.12), (4.15) and (4.12),

(4.16) can be reduced to exactly solvable differential equa-
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tions by double differentiation with respect to the coordinate

172

Ag, =schl, 2, = (4nm Ry )77, 4.17)

/2
Ag, =30y, %, = (4nnyRy) 7. (4.18)

Their solution subject to the finiteness of the charge, the
electrical neutrality condition (4.13) and the vanishing of
g, (0 ) is given by the expression

sh(ra
A (ra) C

g, = T = exp(=xyir—pl),
"13‘:::
C=——""— [aclpch(aclp) —sh(z;p )]A
ny( 1 + a0 Yot
- i R(l+2
A=#2 #q i » )Eg (4.19)

e xich(ap)+ash(xp)’

As seen from Eq. (4.19), for x, p> | virtually the entire
charge of the internal region is concentrated close to its
boundary and falls off inward inside the region over a length
~ ;" '. This length depends only on the geometrical param-
eters R, and n, and drops off with increasing particle den-
sity as n; /2. The particle charge at the internal boundary of
the region is equal to

g9y — 1y )R (1 +ap)

(4.20)
ep(x +2,)

n(p)= ,
i.e., its typical order of magnitude is the same as for the
particles that do not form regions but rather are distributed
randomly among particles of normal size (see the preceding
Section).

Outside of the boundary the potential falls off over the
screening length »; '. This screening length vanishes as
n, — . The particle charge will also vanish: g, (p) ~n, 2.

Using Eqgs. (4.19), (4.15) and (4.16) one obtains the
following expressions for the potential at the centre and
along the boundary of the region:

1
p(0)y=(py—my) 5

® och(x0) —sh(xp)
woth(x,p ) + prosh(ep )’

Ha—

e(p)=—— (4.21)

As one sees from Eq. (4.21), the potential remains
nearly constant throughout the entire nonstandard particle
region r <p for %, > x,. On the other hand, it changes ab-
ruptly within this region for x, > x, .

4.4. Experimental proof of mutual charging of small
particles

Apparently, the very first evidence for the existence of
mutual charging has been given by the results of Ref. 51
concerning coagulation of small Ag particles (R ~5 nm) in
plasma. They reveal that their coagulation time is four or-
ders of magnitude less than what it would be if the coagula-
tion were governed by the van der Waals forces. But the
coagulation rate of nonmetallic carbon particles of the same
size was just the same as it should be the case for van der
Waals forces. The fact that the plasma electrical conductiv-
ity is finite makes the mutual charging of Ag particles of
different sizes quite possible. In carbon particles only the
fluctuation mutual charging can occur but it is very weak in
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plasma and, hence, cannot significantly influence coagula-
tion kinetics. At the same time if the spread in the sizes of the
Ag particles is considerable, can become mutually charged
quite strongly. Unfortunately, no direct experimental con-
firmation of the Ag particles being charged was obtained in
Ref. 51. Further investigations using an external electric
field are required.

In Ref. 74 an attempt was made to explain the anoma-
lously high coagulation rate of Ag particles found in Ref. 51
by adsorption on their surfaces greatly increasing the van
der Waals forces between them. It is assumed in Ref. 74 that
this increase is caused by interaction between surface plasma
oscillations and electric dipole oscillations typical of ada-
toms. But concrete estimates, leading to the possibility for
the van der Waals forces to increase by 3 to 4 orders of mag-
nitude, were obtained only for a quite hypotethical case
when a considerable part of adatoms is in an excited state
with the excitation energy close to the surface plasmon fre-
quency. Even if one allows for a high degree of coverage of
particles by adatoms it is quite unrealistic to believe that
these adatoms are very strongly excited.

A direct proof of the mutual charging of small particles
was obtained in Ref. 73. We begin with a presentation of the
results from visual observation of charged regions in island
films. The studies were carried out at 300 K on island gold
films fabricated by thermal deposition on the (001) cleaved
faces of an NaCl crystal. Since the crystal surface is nonideal
due to the cleaving process (for example, edge irregularities
occur on the surface), the small-particle formation condi-
tions differed throughout the surface. Therefore the island
film may have had areas where particle sizes differed signifi-
cantly from the averaged particle sizes. Electrical neutrality
does not hold in such regions in accordance with the con-
cepts outlined in Secs. 4.3, 4.4.

The studies were carried out using a scanning electron
microscope and an electron-beam energy spectrometer. This
method employs a comparison of the energy spectrum of the
secondary electrons of the probed region with a reference
spectrum of secondary electrons. Electrodes were attached
to the film and the spectrum of the grounded electrode was
used as the reference spectrum. The secondary electron spec-
trum may deviate from the reference spectrum for two rea-
sons. First, any deviation of the local potential of the probed
region from the reference potential will cause an energy shift
of the local spectrum relative to the reference spectrum
equal in magnitude to this potential which is then registered
asasignal (the vertical beam deflection during its horizontal
sweep). Second, electrically neutral substrate defects may
also serve to distort the spectrum, and these also produce a
signal. However, the apparent potential associated with such
defects can be easily differentiated from the true potential by
the behavior of the signal in an external electrical field ap-
plied to the electrodes.

Figure 11 shows the potential contrast signal plotted as
a function of the coordinate along the scanning line. Curve /
corresponds to the case where no voltage is applied to the
film. The features appearing on this curve have different
physical origins. Indeed, when a voltage is applied to the film
(curves 2 and 3 are obtained by applying a 0.5 and 1 V vol-
tage to the film, respectively) the feature labeled by an arrow
vanishes while the other features remain. When the voltage
is removed the feature indicated by the arrow reappears. The
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FIG. 11. Potential contrast cutves (a) for an island gold film deposited on
the (001) cleaved face of a NaCl crystal at 7= 300 K and a film voltage
U, =0 (1),0.5(2) and 1 V (3); the left electrode is grounded. (b)—
repeat measurements showing the reproducibility of results.”

potential contrast curves are recovered in their entirety in
repeated measurements (compare Fig. 11a and 11b), are
stationary in time and are independent of the energy and
intensity of the probe electron beam. This suggests that they
reflect the natural properties of the film and do not follow
from changes in its state during the measurement process.
Specifically, film charging by beam electrons is excluded.

Therefore, the potential contrast curves as a function of
the coordinates reveal two types of features. Features of the
first type remain unchanged upon application of a voltage to
the film. Consequently, they are not related to film charges
and are wholly determined by its morphology. The second
type (itis the only one labeled by an arrow in Figs. 11a,b), on
the other hand, exists when no voltage is applied to the film
although it vanishes when the voltage level is raised. Conse-
quently, it can be attributed to the electrical charges that
accumulate in a specific region of the film. Given the electri-
cal neutrality of the films, they must be screened by charges
of opposite sign in the adjacent regions.

A drawback of this approach is that the measurements
are carried out along a single scanning line. If a given step is
selected and the spectal shift of the secondary electrons is
converted into a digital signal and is then used to modulate
the luminance of a television cathode-ray tube, it is possible
to carry out measurements across the entire surface with the
results presented as equipotential lines.

Figure 12 shows the equipotential lines from the appli-
cation of a U; = 3 V voltage to the film as alternating dark
and light lines. The potential difference between two neigh-
boring light (dark) lines is 0.3 V. If the film were to contain
no charged regions the equipotential lines would form a fam-
ily of parallel lines. However, Fig. 12 clearly reveals a film
region surrounded by a closed equipotential line (as indicat-
ed by the arrow). This behavior of the potential can be at-
tributed solely to charges in this region. In order to avoid
confusion, it should be emphasized that the results shown in
Figs. 11 and 12 were obtained on different specimens. The
fact that, unlike the first specimen (Fig. 11), the external
field applied to the second specimen (Fig. 12) does not break
down the charged region can be attributed to its geometrical
proximity to the “B > electrode which is used to stabilize the
specimen (the center of the region is negatively charged,
while the “B ” electrode is positively charged). Changes in
elecrode polarity will cause the charged region to vanish;
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FIG. 12. The equipotential lines in an island gold film, U, =3V, T =300
K. The contact-island boundaries are designated 4 and B (Ref. 73).

this effect was observed in many specimens. It is important
that the charged region shown in Fig. 12 does not vanish
when the external field is removed, i.e., as the region in Fig.
11 it is produced by the intrinsic properties of the film.

The specimen whose equipotential lines are shown in
Fig. 12 was also analyzed by scanning electron microscopy.
It was established that the particle size within the charged
region amounts to a few tens of angstroms, while it is an
order of magnitude higher outside this region. Hence, the
natural explanation is to attribute the charged region to the
difference in the Fermi energies of the electrons in the local-
ization region of the smallest particles and in the rest of the
film.

Qualitatively, the experimental situation discussed here
corresponds to the theoretical model investigated in the pre-
ceding section apart from the fact that the region occupied
by smaller particles is here two-dimensional and not three-
dimensional. If one compares the theoretical results ob-
tained there with experimental data just described, one
should conclude that they correspond to the case x; >, .

The mutual charging effect can also be used in practice.
If a dispersed metallic film is deposited on a dielectric sub-
strate with the size of film islands varying monotonically
from one electrode to the other, such a film will have diode
properties due to the mutual charging of the particles. In-
deed, the charge-induced initial potential relief of the film is
added to (or substacted from) the applied voltage depend-
ing on its polarity, thereby producing asymmetry in the con-
ductivity of such films. A necessary condition for this phe-
nomenon is that the electical conduction of the medium
through which which charge transfer from particle to parti-
cle occurs, i.e. the substrate, be of semiconductor nature.””

The I-V characteristic shown in Fig. 13 corresponds to
an island gold film with island sizes varying from several
tens to several hundreds of angstroms. The characteristic is
given for the + 0.1 Frange since the asymmetrical behavior
of its branches corresponding to different voltage polarities
across the film is particularly clearly expressed in this re-
gion.” This is consistent with the theoretical analysis out-
lined in Ref. 73. The forward current direction is the direc-
tion where current flows from large islands to small islands,
as would be expected with the charge sign established for the
small particles visually. At higher voltages both branches of
the I-V characteristic converge and are accurately superim-
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FIG. 13. The I-V-characteristic of a film with asymmetrical inhomogen-
eous island structure at 7= 300 K (Ref. 73).

posed. In the initial section of the I-V characteristic the rec-
tification ratio for the gold films exceeds a quantity of the
order of 10 in individual cases.

4.5. Current through small particles and chemical processes
in them

In what follows, some transport phenomena in which
small particles take part, and in which effects of the spatial
quantization or the Coulomb size-dependent effects mani-
fest themselves will be discussed. First, the tunnel current
through an insulating layer separating two electrodes in the
cases when small metal particles are located inside the layer
will be considered. Such a system consisting of two Al films
separated by an Al,O, film was investigated in Ref. 182.
Small Sn particles were inside the insulating film close
enough to one of the electrodes (correspondingly, far
enough from the other one). This tunnel junction behaves at
high temperatures like a conventional ohmic resistance. But
at low temperatures (but exceeding the transition point to
the superconducting state) the differential conductivity
o = dV /dIreveals a sharp peak as V-0, i.e., current flow is
hampered at small voltages V.

Qualitatively, the origin for this consists in the fact that
the electron transition between electrodes occurs in two
stages. At the first stage the electron goes over from an elec-
trode to the small particle, and at the second stage from the
small particle to the other electrode. But the electron trans-
fer to the particle increases its Coulomb energy by ¢*/2¢, R
(see Eq. (4.2)). This fact hampers the electron transfer: it
becomes possible as 7— 0 only when the voltage between the
electrode and the small particle exceeds this Coulomb ener-
gy. This effect is referred to as Coulomb blockade.

Treating the problem more accurately, one should take
into account that at zero current an equilibrium charge
transfer from the electrode to the particle should occur in
order to equalize their chemical potentials. But their com-
plete equalization is impossible, as only an integer number of
electrons may take part in the charge transfer (see Sec. 4.2).
As a result, a random equilibrium electrode-to-particle vol-
tage arises which influences the detailed shape of the I-V
characteristic. Existence of such quantum potential fluctu-
ations leads to the conductivity dependence on the frequency
o of the external electrical field'*® and to quantum noise in
the tunnel junction.'®* Experimental and theoretical investi-
gations'®>'8¢ show that up to the region where the spatial
quantization of levels is essential (eV, 7€§), the conductiv-
ity o depends on w/T as V—-0and onw/Vas T—0. Here § is
the mean level spacing.

Recently quantum effects eroding the Coulomb block-
ade have been investigated intensively (e.g. Refs. 259-264).
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In particular, it was established that in moderate magnetic
fields amplitude and peak positions of the tunnel junction
resistivity reveal a periodic dependence on the magnetic field
which is attributed to the field dependence of spatially quan-
tized electron levels in small particles.>*

If small particles serve as electrodes of an electrochemi-
cal cell, then the current density should depend on particle
size.*”* In fact, the current in an electrochemical cell is
described by the Tafel equation:'®’

Ap=a(ly)+bnl, (4.22)

where Ag is the potential shift from its equilibrium value, I,
is the equilibrium atom exchange current between the parti-
cle and the electrolyte (in the electrolyte these atoms be-
come ions, i.e. charge carriers),

Iy~ exp [—*IT-(#C —u)l (4.23)

where p, and p, are the electrochemical potentials of the
activated surface + atom complex and of the same atom in
the adsorbed state, respectively.

At least one of these quantities, namely g, , should de-
pend on particle size. For example, if adsorption of metal
atoms from the electrolyte occurs according to a mechanism
including electron transfer from the atomic level &, to the
Fermi level 4 of the small particle then the binding energy of
the adatom with the particleis Q= &, — u + E, where E,
is the energy of interaction of the adatom ion with the parti-
cle.

The chemical potential of adatoms is linear in the ada-
tom binding energy:

#,=Q+Tlno, (4.24)

where o is the degree of covering of the surface. Therefore,
the size dependence of i, is opposite in sign and of the same
order of magnitude as u. Using estimates of the size-induced
shift in i presented in Sec. 3.5 this means that uz, for a parti-
cle with R ~ 5 nm should differ from that for a bulk sample
by a quantity ~0.1t00.3eV. Accordingto Eq. (4.23) sucha
shift may cause a corresponding change in the exchange cur-
rent at 300 K by 4 orders of magnitude. This current may
bothincrease and decrease with growing R dependingon the
sign of the derivative du, /dR.

The same estimate remains in force for the desorption
rate, which also is proportional to exp( — Q /T). This is the
simplest model of a chemical reaction, and it shows that
chemical kinetics depends on the size of particles on surfaces
of which a chemical reaction takes place. It is clear that the
rate of a chemical reaction on small particles may be both
higher or lower than bulk than on bulk samples, depending
on the sign of the size induced shift in 2. There are numerous
experimental data which give evidence of size-dependence of
catalytic activity of small particles. They reveal that, really,
its dependence may be of both signs. !*® But it is impossible to
elucidate the microscopic mechanism of this dependence at
present.

It should be noted that the boundary conditions for
electrons on a metal surface change as a result of adsorption.
For example, it may cause appearance of surface resonances
if they were nonexistant before adsorption or, on the con-
trary, cause their disappearance if they existed before ad-
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sorption. In connection with the adsorption-induced change
in the boundary conditions the possibility arises of self-accel-
eration or self-deceleration of a chemical reaction if it in-
cludes adsorption as one of its stages. If, for example, the
reaction accelerates with decreasing Fermi energy, and ad-
sorption diminsihes it, then acceleration should take place
with increasing covering of the surface. But if, on the con-
trary, adsorption enhances the Fermi energy, the reaction
should decelerate.

4.6. Magnetic properties of small particles

For a long time the main direction in the study of mag-
netic properties of small particles was paramagnetic suscep-
tibility of nonmagnetic metals. Information on it makes it
possible to draw some conclusions concerning the level sta-
tistics in smal particles (Sec. 3.2). Theoretical and experi-
mental results on magnetic properties of nonmagnetic metal
particles are fully discussed in the review articles of Refs.
129, 130 and its makes no sense to repeat them here. In what
follows, the main emphasis will be laid on cooperative mag-
netic phenomena in small particles. They are possible not
only in materials with spontaneous magnetic ordering of
bulk samples but also in those without magnetic ordering.

The first problem to be discussed is the spin ferromag-
netism of small particles consisting of nonmagnetic atoms.
In fact, if the external (n,/) electron shell of a spherical parti-
cle is occupied by electrons only partially, then the spins of
these electrons may form a united spin due to exchange in-
teraction between them. It should be maximum for a given
filling of the external shell and, hence, may amount to / /2.
With allwance for the condition /~ kzR> 1 the magnitude
of the united spin greatly exceeds the electron spin although
it is small compared to the maximum possible spin of the
particle (i.e., N/2).

The spherical shape of the particle favors the ferromag-
netic ordering. For this reason this ordering competes with
the Jahn-Teller effect which manifests itselfin the ellipsoidal
deformation of the particle (Sec. 3.1). The energy lowering
in both cases is of the same order in 1/kzR. Indeed, accord-
ing to Egs. (3.2)-(3.4) the maximum change in the energy
due to the deformation with allowance for /~ kR is of the
order

| 2,2 ”2k127

E; o5 p ( since I~ kpR).

In the case of ferromagnetic ordering if one evaluates the
exchange integral J using wave functions for an electronin a
spherical potential well one obtains J~ ¢’/RI. Correspond-
ingly, the magnetic ordering energy Ey is of the order of
1% ~e*ke. Thus, in both cases the energy lowering does not
depend on R.

Both these channels of energy lowering are mutually
exclusive. For this reason the possibility exists when with the
magnetic field nonexistent, the Jahn-Teller deformation oc-
curs without ferromagnetic ordering. But a magnetic field
causes an abrupt transition to the undeformed shape and
ferromagnetic ordering.

Considerations just presented may explain the very in-
teresting experimental result of Refs. 141, 142. The para-
magnetic susceptibility of an ensemble of highly-symmetri-
cal Hg,, clusters in the zeolite matrix in a field of 15 kOe is
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FIG. 14. The magnetic moment of Hg,, clusters as a function of tempera-
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low and depends on temperature weakly. But in a field of 25
kOe as the temperature drops below 80 K, y rises sharply
and as T—0 reveals a 1/T temperature dependence (Fig.
14). The fact that the return of the system into the weakly
magnetic state takes place with a hysteresis, points to the
existence of two states, one of which is absolutely stable at a
given field, and the other metastable. This effect should be
justaposed to the fact that both zeolite and mercury bulk
samples are diamagnetic.

Results strongly resembling those of Refs. 141, 142
were obtained for Na clusters in zeolite:**>2%7 at all field
strengths, even at those when a complete alignment of mag-
netic moments of Na atoms should be achieved, y obeys the
Curie law. Meanwhile, metal clusters should behave as Pauli
paramagnets.

Still more astonishing are the results obtained for Ag
clusters in zeolite:*® in the temperature range from 4 to 300
K their susceptibility obey the Curie-Weiss law with the
paramagnetic Curie temperature equal to ( — 80K ). Similar
behavior is also exhibited by Ce clusters in zeolite, but their
paramagnetic Curie temperature is equal to ( — 40 K).

These results can be explained on the basis of the facts
presented in Sec. 1.2: very small clusters of metal atoms are
nonmetallic. Their external s-electrons are localized each on
its own atom. For this reason the conventional exchange
interaction is possible between atoms entering clusters
which align their spins. This point of view is supported by
the results of calculations in Ref. 143 according to which a
moment of Sug corresponds to the ground state of highly
symmetrical Na clusters. The results of Refs. 141, 142 may
be related also to other theoretical papers. An enhanced val-
ue of y for a small metal particle was obtained, for instance,
in Ref. 145 using the density functional method. According
to Ref. 145, this effect should increase with increasing y of a
bulk metal sample, so that an almost-ferromagnetic metal
being dispersed may become ferromagnetic. But the results
of Ref. 145 should be treated with caution since the density
functional method does not take into account surface effects
related to spatial quantization (Sec. 3.5)

There are also other experimental data resembling
those of Refs. 141, 142. Coexistance of the Pauli and the
Curie-Weiss paramagnetism was discovered in small parti-
cles of Vin Ref. 269. According to the NMR results of Ref.
270, this coexistence should be attributed to the conduction
electron behavior in the bulk and on the surface of the V
particle being different.

A considerable rise in the low-temperature susceptibil-
ity of Cu and Al particles of size of 6 to 10 nm with increasing
field was observed in Refs. 153, 154 (actually the Knight
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shift proportional to y was studied in Refs. 153, 154 using a
NMR method). But the authors of these papers relate this
enhancement of y not to the almost-ferromagnetism of small
particles but rather to the randomness in the level distribu-
tion in small particles. As levels are separated from each
other by a gap ~ &, the initial susceptibility of systems with
an even number of electrons should vanish as 7— 0. But for
ppH> 8 the level systems in spin subbands are displaced
very strongly with respect to each other. For this reason
levels of different subbands may be arbitrary close to each
other, and in strong fields y could tend to a finite value as for
bulk samples. Experimental results on Al are more informa-
tive than those on Cu since, unlike Cu, in Al the spin-orbit
interaction intermixing spin subbands is very weak. No ther-
mal hysteresis is reported in Refs. 153, 154 which suggests
that the physics of the effects studied in these papers differs
radically from that in Refs. 141, 142.

The paramagnetic susceptibility of 1.5 nm Mg particles
at not very low temperatures considerably exceeds that of
bulk samples. As T—0 the susceptibility decreases sharply
as should be the case for a system with an even number of
electrons. A similar increase in y with decreasing size was
observed also for Os particles.'”?

Now we proceed to materials with spontaneous mag-
netic ordering of bulk samples. Sometimes the spontaneous
magnetization of small ferromagnetic particles should ex-
ceed that of bulk samples. In Ref. 147 it was established
using the Monte-Carlo method, that small particles reveal
no distinct phase transition to the paramagnetic state and at
high temperatures the spontaneous magnetization increases
with decreasing particle size. An analysis carried out in Ref.
148 shows quite satisfactory agreement between theoretical
results'*” and experimental data'*’ on Ni clusters of size up
to 1.2 nm.'**

Enhancement of the magnetization with decreasing size
may be caused also by a decrease in the role of magnetic
dipole interaction. Because of it the magnetic state of a parti-
cle large enough cannot be uniform.'* According to Ref.
151, a critical radius exists beginning from which a moment
twisting should arise.'*> A relatively small spontaneous
magnetization component arises which is twisted along the
particle surface. This component is superimposed on the
uniform magnetization. But at radii less than critical the
magnetization should be uniform.

On the other hand, there are experimental data accord-
ing to which the spontaneous magnetization of small ferro-
magnetic particles is lower than that of bulk samples: for Fe
clusters of 50 to 500 atoms®’' Co clusters of 20 to 200
atoms.?’> In Ref. 65 the saturation magnetization of small
Ni particles is found to be less than that of bulk samples.
Similar results were obtained in Ref. 146 for small Gd, Tb
and Ho particles. The effect is significant even for R > 30 nm
which, possibly, may be attributed to a very large indirect
exchange length in these materials. Particles of smaller size
exhibit a structure transformation from the hexagonal to the
f.c.c. modification. Then the spontaneous ordering vanishes
completely, and the magnetic susceptibility follows the Cu-
rie-Weiss law with the paramagnetic Curie temperature
about ( — 10K). These results have not obtained a theoreti-
cal explanation as yet. Possibly they are related to a high
degree of imperfection of small particles leading to their
spin-glass state.
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The results of Ref. 146 should be juxtaposed to the re-
sults of Ref. 273 on magic numbers for magnetic properties
of Gd,, clusters with n from 11 to 92. Magnetic moments of
3uy per atom were found in clusters with magic numbers
and their Curie point greatly exceeds that of bulk samples.
These clusters behave normally, i.e. as superparamagnetic
particles. But clusters of other sizes reveal a qualitatively
different behavior including the deflection of a beam of them
to the lower magnetic field side in passing through a Stern-
Gerlach device. Possibly, this may be explained by the
precession and nutation of clusters occuring under the con-
dition of the magnetic moment being rigidly bound to the
crystal lattice.?”®

In the opinion of the author of this review, contradic-
tions in experimental results on properties of ferromagnetic
particles may be explained at least, partially, by a difference
in temperatures and cluster sizes used in the experiments. At
temperatures, exceeding the Curie point of a bulk sample,
when its spontaneous magnetization is zero, that of clusters
may remain large enough. But at low temperatures the mag-
netization of small particles may decrease more rapidly than
that of bulk samples, on an increase in temperature. This is
caused by the fact that the relative weight of surface atoms
tends to zero for bulk samples but remains finite for small
particles. Meanwhile, the exchange interaction of a surface
atom with its neighbors is reduced in comparison with a bulk
one. One should also keep in mind the tendency of small Fe
particles to amorphization (Sec. 1.1) due to which in some
experiments particles were ordered and in other experiments
disordered.

4.7. Macroscopic quantum tunneling of magnetization

Small ferromagnetic particles are single-domain. The
magnetic anisotropy allows as a minimum two different di-
rections for the magnetization at which the anisotropy ener-
gy is at a minimum (the easy axis case). Usually, the mag-
netization direction will switch from one easy axis direction
to the other via a process of thermal activation. This process
relies upon the system receiving thermal energy from its en-
vironment so as to surmount the energy barrier that sepa-
rates one energy well from another. As the temperature is
lowered, the available thermal energy obviously decreases.
In fact, the switching rate, P, for this process decreases ex-
ponentially with the ratio of the energy barrier U to the ther-
mal energy T.

The energy barrier is proportional to the particle vol-
ume. Thus as the temperature is lowered the thermally acti-
vated switching will be blocked for ever-smaller particles.
But it was observed experimentally, that even at 1 K switch-
ing takes place. Obviously, it should be ascribed to a quan-
tum subbarrier tunneling of magnetization. A single-domain
particle consists of about 10° to 10° electron spins which are
constrained by the exchange interaction between electron
spins to behave dynamically as a single quantum spin. The
result is that the single-domain particle can tunnel from one
“macro-spin” state to another. Because of the huge number
of degrees of freedom acting coherently, the tunneling pro-
cess is an example of what has been recently referred to as
macroscopic quantum tunneling.

Mathematically, if one considers the magnetization M
as a spin operator, then the projection (M-e) onto one of the
easy directions e does not in general commute with the Ham-
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iltonian. This means that eigenvalues of (M-e) are not con-
served quantum numbers, which is not surprising because
the magnetic anisotropy appears as a result of relativistic
interactions. Consequently, M can tunnel between the ener-
gy minima.

Two mechanisms for the tunneling processes were sug-
gested. The first one applies to relatively large particles
whose size is greater than the domain-wall width. It consists
of nucleation of a domain wall which subsequently sweeps
across the particle switching the direction of its magnetiza-
tion. Since the energy barrier between the two states is pro-
portional to the volume of the particle, the tunneling rate
due to this mechanism is extremely small. For particles of
size smaller than the domain wall width, uniform subbarier
rotation of the magnetic moment may take place. This is an
analog for a particle subbarier tunneling if one takes into
account that a moment of inertia associated with the rota-
tion of M should exist.

A calculation of the latter process was carried out in
Ref. 274. In particular, there a case of uniaxial anisotropy
was considered, the energy of which is expressed in terms of
the angles 8, which determine the direction of M (x is the
easy axis):

E(6,¢) = K,c0s%0 + K,sin’0-sin’p,

K> K,>0. (4.25)

The rate of subbarrier tunneling in this case is given by
the expression
_ 172
,e [1 A _] M

A=KyK,. (4.26)

1 +AY2| 2ug’

Since the ratio M /2uy is very large, tunneling is possible
only for A € 1. In the treatment presented above the dissipa-
tion of the energy due to the interaction of the system with a
heat reservoir is not taken into account since it is very small.

The tunneling rate can increase in the presence of an
external magnetic field directed along the easy axis which
decreases the energy barrier. If this rate is large enough, the
system may exhibit repeating tunneling back and forth be-
tween the two wells in a coherent fashion. This is a case of
what is referred to as macroscopic quantum coherence
(MQC). But, if the field is sufficiently strong, the system
will end up trapped within the deeper well. Trapping re-
quires some way of getting rid of excess energy, usually via
dissipation. The general problem of the macroscopic quan-
tum coherence (MQC) is discussed in Refs. 275, 276.

The physical manifestation of this phenomenon is as
follows. In the absence of a magnetic field, given that the
energy wells are deep, there is negligible probability to find
the magnetization in other than an up or down direction.
Furthermore, initially, there is equal probability for a single-
domain particle to be in either of these two states. With neg-
ligible dissipation present, coherent tunneling back and
forth between the two states leads to a sinusoidal oscillation
of the two-time correlation function for the magnetization
C(t) = (M(:)M) at double the MQC tunneling rate P. Ac-
cording to the Kubo formula the frequency-dependent mag-
netic susceptibility y (@) is essentially the Fourier transform
of C(¢). Thus, this susceptibility should exhibit a resonance
at frequency 2P. But dissipation should strongly affect this
resonance.
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FIG. 15. Dependence of the coercive force of Tb, s Ce, s Fe, on tempera-
ture for different measurement times 7 (Ref. 280).

A number of possibilities exists for the behavior of C(¢)
as the time approaches infinity, among them being the fol-
lowing: 1) The resonance can be “underdamped,” so that
C(t) decays to zero in an oscillatory fashion. The resonance
peak in y (@) will then essentially be merely broadened. 2)
The resonance can be “overdamped,” so that C(t) decays to
zero without oscillations. 3) C(#) remains equal to its initial
value for all time. This case is special in that the magnetiza-
tion is trapped with its initial orientation. Most theoretical
studies indicate that with sufficiently strong dissipation,
trapping will occur at absolute zero temperature.

Switching is also a very important process in small anti-
ferromagnetic particles. As is shown in Ref. 277, quantum
tunneling in them should be more intensive: the temperature
T, of crossover from the thermally activated regime to the
quantum tunneling regime should be two orders of magni-
tude higher than in ferromagnets. To observe the tunneling
process, no bias magnetic field is required.

There are already some experimental data which, ap-
parently, confirm the existence of quantum tunneling in
small particles. In Ref. 278 a sharp peak in y(w) was found
when studying ferromagnetic particles containing 10° spins.
The resonance frequency decreases with increasing particle
volume. Such behavior agrees with the picture of quantum
tunneling. The same is true for the temperature dependence
of the height of this peak: it increases with decreasing tem-
perature, reaching a more or less constant value below a tem-
perature of about 0.1 K. But a numerical analysis of the
results of Ref. 278 carried out in Ref. 279 casts doubt upon
their correspondence to the theory of macroscopic quantum
tunneling.

More definite are the results of Ref. 280 where the tem-
perature dependence of the coercive force H_ of small ferro-
magnetic particles of Tb, s Ce,, s Fe, was studied. An analysis
shows that at T> T the coercive force should strongly de-
pend on temperature, but at T< 7. it should be temperature-
independent. Both these regimes were observed experimen-
tally with the crossover temperature T, equal to 1.2 K (Fig.
15). Estimates of the tunneling volume show that it is much
less than the particle volume but larger than the domain wall
volume. Thus, it was suggested in Ref. 280 that quantum
tunneling consists here in sweeping of the domain wall
across the particle. The domain wall appears as H— H_, be-
ing, apparently, pinned to the particle surface. It means that
it is in a state of metastable equilibrium.
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D To avoid misunderstanding, it should be stressed that the dependence of
a (2.12) on ¥ has nothing in common with the formal dependence of a
(2.1) on ¥ which follows from the ambiguity in the choice of the surface
separating the phases (see Ref. 9). The point is not that the latter de-
pendence is very weak ( ~ (S /¥)?):in the one-phase case the notion of
a separating surface has no meaning at all.

2By analogy with g (2.6) the quantity ¥ in (2.16) may be called the
surface stress of a liquid. For a liquid in thermodynamic equilibrium
with its vapor the surface tension and stress coincide.

¥ Their density under typical conditions, actually, may greatly exceed the
density of atoms in the vapor which in the vicinity of the melting point
amounts to only 10°-10'° cm ~* (Sec. 2.3). The bulk vacancy density
may reach 10'° cm ~ ® according to Ref. 44. Conditions for the formation
of surface vacancies are much more favorable than for bulk ones.

4) In order to obtain terms ~ & '/*for a sphere, one should average G(% )
over radii in a range ~A(%)

) The authors of Ref. 43 refer to experimental data of Yu. F. Komnik on
thin films obtained in 1963, 1964. Unfortunately, there are misprints in
the references to these papers presented in Ref. 43. This hinders us in
using the original Komnik papers for elucidating the origin of such a
huge effect. But it is clear that it cannot be related to the Laplace pres-
sure. According to recent experimental data,® the relative compression
of Ag particles of 5 nm size amounts to only 0.2% which is only half of
what would be obtained according to the expression (2.2) for the La-
place pressure.
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