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A review is given of the principles and prospects of directed channeling of neutral particles and
photons in perfect crystals and in crystals containing microchannels of arbitrarily small width. It
is shown that, in all cases (including a homogeneous lattice), the channeling of x rays and 7 rays is
accompanied by the modulation of the transverse structure of the wave and by a change in the
longitudinal attenuation coefficient. The nontrivial special case of Mossbauer radiation
channeling is investigated. A detailed discussion is given of the channeling of neutrons in crystals
due to the 'optical' Fermi interaction with lattice nuclei, and the magnetic dipole-dipole and
coherent Sch winger interactions in magnetic and nonmagnetic crystals. The effects of spin waves,
elastic waves, and domain walls on channeling are examined. A discussion is presented of the
possibility of channeling of neutral atoms with internal electromagnetic resonances by the
induced-dispersive ordering interaction that takes place when the resonance frequency is equal to
a harmonic of the bounce frequency associated with longitudinal motion in the periodic lattice.
Experiments on neutron and \gamma-ray channeling are analyzed.

1. INTRODUCTION

Advances in the physics of charged-particle channeling
in crystals, and the prospects for the future that they offer,
have stimulated searches for mechanisms capable of ensur-
ing similar directed ordered motion of neutral particles and
у rays in single crystals.

Of the many different physical phenomena that deter-
mine particular interactions between photons, neutrons, and
neutrals, on the one hand, and crystal atoms, on the other,
the most important processes are those that 'tie' the motion
of particles or photons to particular crystal planes, axes, and
systems. For short-wave photons, the main (and probably
the only) factor governing their motion is coherent scatter-
ing (followed by interference) by individual centers, disor-
dered ensembles, and the periodic set of crystal planes and
axes. This process is well known and is widely used in dif-
fraction physics. All quantitative characteristics are then de-
termined by analyzing the susceptibility or its Fourier trans-
form. The interaction between neutrons and atoms is
naturally divided into scattering by nuclei and by atomic
electrons. The first category includes both s-wave scattering
by the nucleus as a whole and (under special conditions and
at high energies) by nuclear resonances.

We know that 5-wave scattering is typically described in
terms of the Fermi pseudopotential

V (r) = 4л:Й 2b5(r)/m, d-D

where т is the neutron mass and b is the scattering length.1>2

If we evaluate the macroscopic average over the volume
of the unit cell, we find that the mean potential

V s n I V(r) dv = 4л:Й 2bn/m

accounts for the macroscopic characteristics of the medium.
The very considerable analogy between the Maxwell wave
equation and the quantum-mechanical wave equation en-
ables us to describe the motion of neutrons by introducing
the effective susceptibility x = V/IE.

The other category of phenomena involves the interac-
tion of neutrons with atomic electrons and the nuclear
charge, and reduces to the Schwinger interaction3 due to the
relativistic effect whereby the magnetic lattice gives rise to
the magnetic field H = E X v in the rest frame of the neutron
as it crosses the electric field E of the atom. Since the neutron
has an intrinsic magnetic moment, this field produces a suffi-
ciently strong magnetic interaction that has a significant ef-
fect on the motion of the neutron.

Apart from the interaction with the effective magnetic
field due to the relativistic transformation of the atomic elec-
tric field, there is the direct magnetic dipole-dipole interac-
tion between the neutron and the uncompensated atomic
magnetic moments, and this also affects the motion of the
neutron. The latter effect is particularly significant in or-
dered magnetic structures.

All the processes accompanying the neutron-atom in-
teraction can in principle accompany the interaction be-
tween a moving neutral atom and the lattice. However, the
atomic electron shells give rise to a very significant change in
the effectiveness of the process because the resonance levels
available in these shells offer a fundamentally new mecha-
nism for a coherent interaction with the periodically distrib-
uted lattice atoms.

The central question in the physics of channeling is
whether or not these interaction mechanisms can ensure the
directed channeling of neutrals and photons in crystals.

It is usually conjectured (see, for example, Refs. 4-7)
that the phenomenon of channeling that occurs for charged
particles does not occur for photons, which pass right
through a perfect crystal. Moreover, it is conjectured that
this type of radiation transfer does not take place even in
channels whose width a is much greater than the separation
between the crystal planes, but is less than the threshold
Axmin which amounts to a few Angstroms. How is this con-
cluson arrived at?

The basic argument is as follows. A wave localized
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within an interval AJC of the transverse coordinate x (i.e.,
measured at right angles to the direction of the hypothetical
channeling) has an unavoidable wave-number uncertainty
Д£х >2я-/Ддс. If it is obvious that channeling is possible only
when ДА:Х has associated with it an uncertainty Д0;г Afc* /k
that is less than the angle of total internal reflection
0o=(2|j |)1 / 2,sothat

ч!/2 (1.2)

where j is the susceptibility of the channel wall material.
In the case of nonresonant x rays, x—~ a>l/lu>2 where

a)e = (4тгпее
2/т)1/2 is the plasma frequency and ne is the

mean density of all the atomic electrons for which the transi-
tion frequency is less than the wave frequency. For this type
of radiation, and for typical values coe s;3X 1016-6X Ю16

s ~ ' , we have Дхт1п zz 300-600 A which is greater than the
separation between the crystal planes by more than two or-
ders of magnitude.

For resonant Mossbauer radiation with typical wave-
length A ~ 1 A, the magnitude of the resonant susceptibility8

|^'|max ~Я Зл/8я"2 in a medium with the concentration
и = 1022 cm~3 of Mossbauer atoms is \%' max s;10~4,
which leads to Дхт1п x 100 A.

For neutrons with energy E in the crystal, the mean
effective susceptibility is^ = V /IE. We then have

where V= my2,/2 is the mean potential for a neutron in the
crystal, which is a function of the nuclear scattering length b
and can be expressed in terms of the effective maximum to-
tal-reflection velocity v0 = (8irfi2nb/m2)l/2 of ultracold
neutrons. '~3 For most media, v0 = 3 — 6 m/s, which leads to
Д*т!п ~ 300-600 A and this is of the same order as for nonre-
sonant radiation.

Such estimates can lead to the not wholly correct con-
clusion that nondiffractive directed motion (at angle в = 0)
that is strongly coupled to the crystal is not possible for
short-wavelength photons and neutrons in either natural
perfect single crystals with lattice constant dzz 1-3
A -̂  Дхт1п or in superlattices with lattice constant a > d and
a < Д*тт •

Since the validity of this conclusion seems obvious, all
research into the physics of channeling of neutrals and neu-
trons has been confined to studies of the possibility of chan-
neling by complex structures with a large constant a (Refs.
4—7 and 9-11), by structures with large a and a graded re-
fractive index (Refs. 5-7), and by systems with vacancies or
voids having diameters Z)> 100 A (Refs. 12-15). For pa-
rameter values of this order, the transport of neutrons and
photons is qualitatively similar to the large-scale neutron, x-
ray and y-ray optics of artificially produced waveguides
(see, for example, Refs. 16-20) that have long been success-
fully used in ultracold-neutron transport and in focusing and
monochromatization of x rays, although they differ from the
latter by the smaller number of modes.

On the other hand, and contrary to what has just been
said, there are arguments that offer some evidence for the
possibility of channeling even in channels (gaps) of width
less than Дл:т1п. For example, channeling in crystals can be
approached as the limiting case of an optical dielectric wave-
guide. It is well-known (see, for example, Ref. 21) that this

device has a rich mode spectrum, but only if the width of the
middle layer whose susceptibility is higher than that of the
surroundings satisfies the condition a/A > 1. The spectrum
becomes depleted as this ratio decreases, and only one mode
can propagate in the waveguide when a <A ('mode without
cutoff). The corresponding propagation constant (i.e., the
longitudinal wave number) is21

k =

and is found from the dispersion relation

(1.4)

which is a consequence of the compatibility of boundary
conditions on the surface of the waveguiding layer. This val-
ue of 0 differs from the value for continuous media without
channels by the amount Д0 = k 3a2^2/8.

It is typical of this mode (contrary to the above qualita-
tive argument) that it exists for arbitrarily small values of a.
In a purely formal way, this type of mode should also contin-
ue to exist as s tends to the crystal constant d. On the other
hand, since the entire theory of optical waveguides is based
on macroscopically averaged equations of electrodynamics,
and takes as its basic quantity the volume-averaged suscepti-
bility x — A'((•*)) that ignores the atomic structure of the
channel walls, the above 'direct conclusion' is undoubtedly
incorrect.

A correct and convincing answer to the question of the
possibility of, and mechanism for, the channeling of neutrals
and photons in crystals must rely on the exact and not the
average (over the crystal-plane separation) equations of
quantum mechanics and electrodynamics. This requirement
is also found to emerge from studies of the band structure of
the energy spectrum of channeled motion of neutrals in the
periodic field of crystal axes and planes.

Anticipating the results of numerical calculations, we
note the following. Because the ordering mechanism that
results in the directed motion of neutral particles is specific
and relatively weak (for Coulomb channeling of charged
particles, the typical barrier height or well depth associated
with crystal axes and planes amounts to a few dozen eV,
whereas for neutrals this figure is < 1 eV and often < 1 eV),
the very concept of channeling must be re-examined. With
the possible exception of slightly relativistic electrons,
charged particles can almost always be described with rea-
sonable precision by the classical theory of channeling that
involves the classical periodic trajectory with the oscillation
amplitude limited by the channel width, but this is not the
case for neutral particles. Even for the relatively massive
neutrons, there is usually one energy level (or, more precise-
ly, one energy band), and motion in the transverse direction
is entirely quantum mechanical. Since the channel wall
height is low, the sub-barrier 'tails' of the wave function ex-
tend to distances much greater than the channel width. De-
spite all this, the motion is undoubtedly channeled in the
sense that it is directed, strongly bound (i.e., localized in the
vicinity of the potential well), transversely quantized, and
longitudinally free.

Because of major difficulties in the setting up of experi-
ments, there are no systematic studies of the channeling of
neutrals and photons. Apart from obvious problems such as
the necessity for highly collimated, monochromatic, and in-
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tense beams, the problem is complicated in no small measure
by the lack of a generalizing analysis of channeling in the
case of non-Coulomb interactions. This gap is partially filled
by the review given below.

Our aim is to present a detailed examination of the lead-
ing mechanisms of interaction of neutrals and photons with
ordered systems of atoms capable of producing directed mo-
tion in the lattice. We shall also be concerned with particular
implementations of this type of motion and, ultimately, with
possible experimental studies of the phenomenon.

Channeling can be analyzed in terms of four (at pres-
ent) main interaction mechanisms.

A general formulation of the problem is given in the
Introduction.

The 'optical' interaction of neutrons and photons with
the lattice is discussed in Sec. 2, using the periodic suscepti-
bility mechanism, traditional in optics. This allows a de-
tailed study to be made of the possible channeled motion of
neutrons, nonresonant x rays, and у гаУ8> as well as Moss-
bauer radiation in perfect single crystals and in crystals con-
taining microchannels of arbitrarily small width (including
microchannels in zeolites and in asbestos fibers).

The motion of particles that have a magnetic moment in
a magnetic lattice with a controlled ordered inhomogeneity
such as a spin wave, an elastic wave, or a domain wall is
discussed in Sec. 3.

Section 4 presents an analysis of magnetic channeling of
particles with an intrinsic magnetic moment in nonmagnetic
lattices, due to the coherent Schwinger interaction.

Directed motion of neutrals exhibiting an internal elec-
tromagnetic resonance whose frequency is equal to one of
the spectral lines of a periodic perturbation applied to these
particles as they travel along crystal axes or planes is dis-
cussed in Sec. 5.

The concluding Sec. 6 is devoted to a brief analysis of
the results of the most convincing experiments on the chan-
neling of fast neutrons and hard у rays in perfect germanium
crystal crystals.

2. 'OPTICAL' CHANNELING OF NEUTRONS AND SHORT-
WAVE ELECTROMAGNETIC RADIATION IN PERFECT
CRYSTALS AND CRYSTALS CONTAINING
MICROCHANNELS

2.1. Properties and mode structure of channelled and
quasichanneled wave motion of particles and radiation in
crystals.

Following Ref. 22, we consider the general problem of
channeled motion of photons and particles in crystals. To
begin with, we assume that the crystal consists of two parts
separated by a distance a. Each of these two parts consists of
reflecting planes with plane separation d, all planes being
parallel to the separation boundary. The y,z plane lies in the
space between the two parts, half way between them. This
model can be used to examine the motion of either photons
or neutrals in a wide channel with a^>d but, in contrast to
'ordinary' macroscopic optics, it takes into account the re-
flecting-plane structure of the wall material. It also enables
us to pass to the limit as a -»d and to determine the motion in
an ultrasonic channel or even the homogeneous lattice with
a = d.

The assumption that there are continuous reflection
planes, averaged along the Oz direction, is based on taking

into account the wave-like motion of photons and particles.
Actually, the change Д/? in the longitudinal wave number on
internal re-reflection, which is the necessary condition for
channeling, is such that Д/7тах = k — /?max ss kO 2/2 where в
is the effective reflection angle. Since #max<(2|;f|)1/2, we
find that the minimum coherence length along the scattering
plane, within which the structure of the scatterer is funda-
mentaly unresolvable, is Дгт1п >2тг/Д/?тах which becomes

This result yields the estimate ДгтЫ >с?.. for all possible
wavelengths A, susceptibility^, and longitudinal lattice con-
stant d.,..

When a harmonic wave is incident at a grazing angle in
the positive direction of the Oz axis, and the crystal planes
extend to infinity in the Oy direction, there are no field varia-
tions in the latter direction, which is formally indicated by
writing d /dy = 0. Maxwell's equation then reduces to the
wave equation

Эх* dz*
(2.2)

It is important to note that this generally accepted structure
of the wave equation, in which the properties of the medium
are represented exclusively by the susceptibility %(x) (but
not its derivatives) is not wholly correct. This question will
be examined in greater detail in Sec. 2.3 in which we analyze
the channeling of Mossbauer photons.

For a set of homogeneous planes, the permittivity can
be written in the form

e(x) =

where % = (%(х)) is the macroscopic susceptibility aver-
aged over the transverse crystal spacing d, which corre-
sponds to the average permittivity e=l +%• Replacement
of the true susceptibility for planes of thickness 2R ssO.2-0.4
A with (2.3), which is valid for infinitesimally thin planes, is
readily justified by the natural condition Axmin >2/? and by
considerations similar to those introduced above that lead to
Axmin~7r(2//:2|;r|)1/2 . Since Д*т(п>2Я for all crystals,
the real spatial structure of %(x) within the thickness 2R
[provided (2.2) is valid] is unimportant and can be approxi-
mately replaced with (2.3). We note that this replacement
cannot be made for superlattices with 2.R> A*min •

Let us write the field in the form Ey = u(x)v(z).\t then
follows from (2.2) thaty(z) = exp(#fe) where /3 is the sepa-
ration constant that can be looked upon as the longitudinal
wave number. The equation for the transverse structure of
the field u ( x ) is

d2*
-^-nd) и+хги = 0,

G = -k\d, x2 = *2-/32. (2.4)

The eigenvalues к and the transverse-structure modes u(x)
can be determined from the boundary conditions. When the
symmetry of the problem is taken into account, the trans-
verse mode structure for x\<,a/2 (i.e., within a channel)
can be characterized by the even solution
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иа = A cos (xx)

or the odd solution

ua = A sin (xx)

(2.5)

(2.6)

We shall show below that for small subthreshold widths
a < Ajcmin, channeling (i.e., subthreshold channeling) occurs
only for the even mode (2.5).

For a/2< \x < (a/2) + d, the solution of (2.4) is

и = В exp(ewc) + С ехр(-йех). (2.7)

Because the susceptibility is periodic, i.e., j (*) =x(x + d),
the solution given by (2.7) must satisfy the condition
u(x + d) =fu(x) of Bloch's theorem, where/= exp(/W)
is the Bloch parameter and v is the quasimomentum.

In accordance with this requirement, and because the
solution must be continuous on the |*j = (a/2) + d plane
between the intervals |*|<(a/2) +2 and |*|>(a/2) +d,
we have

u((a/2)+d-0) = u((a/2)+d+0), u((a/2)+d) =fu(a/2).

(2.8)

Let us now consider the conditions for the derivative. It fol-
lows from (2.8) that u'[(a/2) + d] =fu'(a/2) and, simul-
taneously,

u'((a/2)+d-0) = u'((a/2)+d+0) - Gu((a/2)+d)

where the latter relation can be obtained directly from (2.4)
after integration over the infinitesimal interval around
|*| = (a/2) + d and contains an extra term that is typical
for singular susceptibilities (and, in quantum mechanics,
singular potentials). We then find from the last two equa-
tions that

u'((a/2)+d) =fu'(a/2) + Gu((a/2)+d). (2.9)

The solution of the homogeneous set of equations given by
(2.8)-(2.9) gives nontrivial values for the amplitudes В and
С only if its determinant vanishes, and this leads to the fol-
lowing equation for the Bloch parameter:

r-f[2 cos(xd) + (2G/x) sin(xd) ] + 1 = 0. (2.10)

To find the spectrum of wave numbers к, we use the bound-
ary conditions for the solutions (2.5)-(2.7) on the plane
|дс| = a/2, i.e., on the channel wall:

ua (a/2) = u(a/2), u'a (a/2) = u'(a/2) - Gua (a/2). (2.11)

By eliminating the amplitude С with the help of the relation

С = В ехр(оеа) [/-exp(oed) ]/[exp(-n«0-/]

that follows from (2.8), we obtain the dispersion relation

tan (xa/2) = (G/x) + {[cos(xd)-f]/ sia(xd)} (2.12)

for the even solution (2.5) and

' cot (xa/2) = - (G/x) - {[cos(xd) -/]/ sin(aed)} (2.13)

for the odd solution (2.6).
The expressions given by (2.10), (2.12), and (2.13)

constitute the complete solution of the problem. We shall
first show that, contrary to the direct analogy with the limit-

ing case a = d of the microchannel in ordinary macroscopic
dielectric waveguides with 'solid' walls (1.4), the homoge-
neous lattice does not produce channeling (in the sense of a
mode localized in the transverse direction). Thus, eliminat-
ing G/x from (2.10), (2.11) and also (2.10), (2.13), we
obtain the following expression for even and odd modes, re-
spectively:

/= [cos(xd)+ tan(xa/2) • sin(xd)]~l,
(2.14)

/ = [cos(xd) - cot(xa/2) • sin(xd) Г'.

In the limiting case a = d, the two equations in (2.14) re-
duce, respectively, to/= +1 with real crystal momentum
v. Taken together with (2.8), this conclusion demonstrates
the strict periodicity (with period d or 2d) of even and odd
modes, and also the presence of totally delocalized modes.
Moreover, we recall that the entire calculation was per-
formed for 2R<£d, A*min and is valid only for single crystals.
For superlattices with thick barriers between channels,
2R > A*min, the entire conclusion is invalid and channeling is
possible within the confines of an individual channel.

Let us now consider the solution for an arbitrary chan-
nel with a>d. Eliminating the parameter/ from (2.10),
(2.12), and (2.13), we obtain the following dispersion rela-
tion for even and odd solutions, respectively:

2x/G - sin(xa) + 2 cos2 (xa/2) cot (xd), (2.15)

2x/G = -sm(3ea) + 2 sin2 (xa/2) tan (xd). (2.16)

We shall examine this for the most important and controver-
sial case of a thin microchannel with xa, xd^l.

Direct expansion of (2.15), subject to the last condi-
tion, leads to the following expression for the wave number:

x={(G/d) - G2 И-За-оГ1)2/!!]}172, (2.17)

which characterizes the single nonthreshold mode и (*) that
exists for all values of a up to a = d. Consequently, the
expression for/~ 1 + ivd is then

/« 1 - [G(a-d)/2] = 1 + [k*d(a-d)x/2\. (2.18)

The imaginary part of the crystal momentum
v" = -k2(a — d)%72 for the solution given by (2.17) de-
scribes the reduction in the mode amplitude with increasing
distance from the channel in the transverse direction in the
range [*[ >a/2. It is clear from the structure of the expres-
sion for/ that the total spatial width of a mode is approxi-
mately given by Д so + (2/|v" |. The final overall structure
of the nonthreshold channeled mode of short-wave radiation
has the form

E ((a/2) + nd< \x\ < (a/2) + (n+1) d, z)

(2.19)

z) ],

u(x)=A cos(xa/2) (f sin [x( I x I - (a/2) - nd) \
- sin [x (\ x I - (a/2) - (.ч+1 )d ]} /sm(xd),

Ey(0< \x\ < a/2, z) - Acos(xx) exp($z)

and is illustrated in Fig. 1.
For odd modes and xa,xd^ 1, the dispersion relation

given by (2.16) does not have a solution, so that there are no
odd modes in a narrow channel.
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(n-t)d rid (n+!)d

FIG. 1 . Transverse structure of a nonthreshold photon-channeling mode
in a microchannel of width a>d (1) and in the case of quasichanneling

It follows from (2.4) that the expression for the longitu-
dinal wave number is

= k - (G/2kd) {1 - (l/12)Grf [1 + 3(l-ad~1)2]}, (2.20)

/3' = it (1/24) k2d2

xlfe ') 2 -fe") 2 ]
j-K2i

/3" « ft- {] + (1/6) / Ц + 3(1 -ad')]} /2.

Analysis of the above expressions for v" and /3 shows
that true channeling (i.e., the existence of a transversely lo-
calized mode with decreasing amplitude on either side of the
channel and longitudinal attenuation coefficient that is low-
er by Sp'^h *x"x' (° — <^)2/4 as compared with the homo-
geneous lattice), occurs for arbitrary a>d subject to the
condition %' < 0.

It is important to note that, although in a homogeneous
lattice without a channel and with a = d we have v" = 0 and
the localized mode is absent, the values of (}', /3" and the
wave structure (Fig. 1, curve 2) nevertheless differ by the
following amounts from the values /3' = /c/[l + (дг'/2)],
/?" = kx" /2, deduced from the average macroscopic electro-
dynamic equations for a plane transversely unmodulated
wave:

&рл = k*d2 [frf - СГ)2]/24, %' = k3d2

X'Y/12.

This type of directed wave propagation in the perfect lattice
with a — d corresponds to nonthreshold quasichanneling22

and exhibits a number of properties. In particular, in addi-
tion to the absolute change in the longitudinal attenuation
coefficient by the amount 80 % (%',%"), the coefficient is
asymmetric as a function of frequency on either side of the
absorption-line center, which does not occur in the isotropic
medium.

2.2£xcitation of an 'optical' channeling mode and possible
experiments'

The efficiency of excitation of a nonthreshold chan-
neled mode is characterized by an amplitude that can be
determined from the condition that the wave

Е^т) = exp[/(V + kzz]/Ll/2,

incident on the front surface of the crystal (z = 0) must be
continuous across it, where the incident wave is normalized
to the transverse beam size or the linear dimension L of the

crystal, and the channeled mode Ey (x,z) given by (2.18).
This leads to the following expression for the excitation am-
plitude when the orthogonality of the eigenmodes is taken
into account:

В = (x,0) E* (je.O) d*.

The 'mating' condition does not include the wave re-
flected by the surface, whose amplitude for x-ray and
shorter-wavelength radiation is negligible.

Since the transverse mode size Д ;= a + ( 2/ \ v" \ ) > a,d is
significantly greater than the channel width and the lattice
constant, and the amplitude of the oscillations in the field
Ey (x,z) is very small, the approximate expression for the
field is

In this approximation, the total probability of excita-
tion of a non-threshold mode is

P = \B\2 •

provided L>2/|v"|. In particular, when the incident radi-
ation propagates exactly along the channel axis, i.e., when
kx = 0, the excitation probability Px4/\v" \L is actually de-
termined by the ratio of the transverse mode size to the width
of the crystal (beam width).

Let us now estimate the quantitative characteristics of
channeling. For nonresonant radiation •%' = — a>l/2ct)2,
which leads to v" = cu](a — d)/4c2. The initial conditions

with к — kx1/2 are satisfied for
J2c/(oe =; 150-300 A. For a lattice with rf~2.5

A and typical values a^5-30 A, coe x (3-6) X Ю16 s ', we
find that v"s(0.5-5) xlO4 cm"1, which corresponds to
the total mode width Д ~4-0.4/um. The spatial mode width
falls off rapidly in the neighborhood of resonance. Thus,
near the ЛГ-absorption edge of the diamond crystal with
fey0^284 eV, we have /;=-4xlO~ 3 (Ref. 23) and
Д~0.8-0.08 /дп for the same range of values of a. Still
greater localization of the nonthreshold mode corresponds
to Mossbauer transitions for which \x'\ increases rapidly.
For example, for the tantalum crystal containing in the natu-
ral state 99.9% of181 Та, and if we take &y0~6.25 keV and
fc~3x!08 cm~', we obtain %'~ — 10 at « = Г,
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and the mode size for a microchannel width a ~ 5-12 A falls
to 120-40 A.

It is interesting to note that for radiation in the y-ray
range, whose frequency lies symmetrically on the other side
of the nuclear resonance (e.g., for ш = ca0 — Г), there is no
channeling and instead of absorption we have amplification,
which leads to a distortion of the emission spectrum.

The relative reduction in the absorption coefficient dur-
ing channeling ( as compared with unchanneled motion in an
isotropic medium with the same optical density or in crystals
without a channel) is 8$ "//3 " ~ 10 ~ 4 -10 ~ 2 for resonant x-
rays (in the above case of diamond). Correspondingly, near
the Mossbauer y-ray transition in the 181 Та crystal, we have
80 "//3 " = 5-10 ~ 3 -10 - 2 . These effects can be detected, for
example, by recording the angular dependence of the trans-
mission coefficient. The relative contrast of the transmission
maximum in the direction of channeling is then

- l]/[exp(5j0"z) + 1]
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It increases with the thickness of the medium and, despite
the fact that 8j3" is small, it can reach values in the range 1-
100% forz> 1/1^0" \/5" \. For extended samples, the nonthre-
shold quasichanneling effect should be readily detectable
and should lead to the appearance of a transmission maxi-
mum in the direction of quasichanneling, i.e., exactly along
single-crystal planes.

The channeled propagation of short-wave radiation
should lead to one further spatial effect that is significantly
different from all other known diffraction phenomena. It
follows from the general solution given by (2.19) and from
the field structure illustrated in Fig. 1 that the wave propa-
gating in perfect single crystals without microchannels has a
transverse fine structure with period equal to the plane sepa-
ration d. The probability of excitation of this type of mode at
small angles of incidence, i.e., along the crystal planes, is
close to unity, and the mode retains its transversely-modula-
ted structure when it leaves the crystal. It is clear that the
subsequent emission of this wave into the space behind the
crystal will occur not only in the initial direction в = 0, but
also in a direction defined by the interference conditions

dsine=nA(n = 1,2,3,...).

If we compare this condition with the condition for Bragg
diffraction, we see that the quasichanneling directions and
the Bragg directions 9B are related by sin в = 2 sin 9B,
which can be used to identify the phenomenon of quasichan-
neling.

If we introduce the effective susceptibility % = V'/IE
for neutrons, we find that all the above results on the chan-
neling and quasichanneling of x rays and у rays remain valid
for neutrons in crystals when their motion is described in
terms of the 'optical' nuclear interaction, provided we intro-
duce the obvious replacement E-> Ф. For example, the above
case of the 181 Та Mossbauer isotope corresponds to the
channeling of neutrons with velocity 3 X 104 cm/s in a cop-
per crystal.

We also note that 10-50 A voids in intercalated crystals
can be used as microchannels for the more effective channel-
ing of photons and neutrons.

2.3. Nonthreshold channeling of Mussbauer у rays in crystals

It was noted in connection with the wave equation given
by (2.2) that its structure had to be generalized to the case of
propagation of 7 rays in crystals. This wave equation is wide-
ly used in electrodynamics and in macroscopic wave theory.
It is also valid in the microscopic theory of x-ray channeling,
but can lead to errors in the case of у rays.

The complete set of equations for the microfield takes
the form

terms of the complete equation (2.22). For the one-dimen-
sional function £ we have

The wave equation

ДЕ + V (EVe/e) + *2eE = 0

(2.21)

(2.22)

is obtained by eliminating the magnetic field H from (2.21).
When e is a constant, (2.2) follows from (2.22). However,
in our case, the change in susceptibility in one lattice period
is significant and the magnitude of Ve is nonzero, so that the
propagation of radiation in the crystal must be examined in

эх
: + ̂ î- + £

дх дх У
+ l?eEy = 0.

(2.23)

Let us now estimate the realtive importance of each of
the additional terms. First, we introduce explicitly the spa-
tial structure of susceptibility within each interchannel
'wall' (crystal plane), assuming that the nuclei responsible
for the interaction with the Mossbauer у rays take part in the
thermal motion that is taken into account by introducing
their spatial probability density

X(x) = <x)d exp(-x2/2u2)/V2;r" u\

where (x) is the susceptibility averaged over the lattice peri-
od (i.e., the macroscopic susceptibility) and и is the root
mean square amplitude of the displacement of the nuclei. If
we use the solution given by (2.19), the first of the additional
terms assumes the form

(дЕу/'дх) де/дх « Eyk((x))3/2xdexp(-x2/2u2)/u3T/br.

If we compare it with the existing term in the analogous
structure k 2eEy, we find that the ratio is exceedingly small
(~ 10"3), so that the term can be neglected.

The two other additional terms that contain susceptibil-
ity derivatives can be combined with the previous term
k 2eEy by introducing the effective susceptibility

XQ '"i

which finally enables us to employ the structure of the sim-
plified equation (2.2).

It was shown above that the weak wave interaction of
short-wave radiation with each individual crystal plane en-
sures that it is expedient to replace the true susceptibility
with its layer average. In our case, we find that

(2.24)

It is clear that when the spatial dependence of susceptibility
is taken into account, this results in the additional nonzero
term — ((x))2d/4u3k2j!r in the expression for the effec-
tive susceptibility (XQ) • Let us estimate the magnitude of this
term. If we take и=;2х 10~ I0 cm, &~3x Ю8 cm~ ' , and
c?x2.5 A( which is close to the properties of 181 Та), we ob-
tain (XQ) = (x) - 5X 103((j})2. For the estimated reso-
nance value (x^ = — Ю "" 4 , the additional term produces a
50% change in the average susceptibility, which gives rise to
a significant change in the quantitative characteristics of
channeling. Moreover, it is clear that the additional term is
very small for nonresonant x rays because, in the case of
scattering by atomic electrons, the magnitude of и cannot be
smaller than the root mean square localization radius of
atomic electrons, i.e., ~ 10~9-3X 10 ~9 cm. We thus obtain
<*>;=;- КГ 7-10-9.

We also note that such terms do not appear in the case of
neutron channeling because of the absence of gradient terms
from the Schrodinger equation.
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2APossibility of channeling in natural microchannels in
zeolites and asbestos

Among the analogous systems of crystal structure ele-
ments that are suitable for channeling of short-wave radi-
ation and neutrons, the most interesting is the system of nat-
ural rectilinear microchannels with radii Л~4—10 A in
zeolites.24'25

The utility of these microchannels has frequently been
discussed in the literature in connection with attempts to
develop x-ray resonators with distributed feedback,26 and
also in direct modelling of x-ray lasers with active medium in
the form of a beam of relativistic positrons.8'27'29 Let us
therefore consider the propagation of short-wave radiation
in an ultranarrow channel. The solution of the wave equa-
tion

дг
• + •

ар

for a cylindrical hollow channel R surrounded by a medium
with susceptibility x is

Ez = cxp
L2K\m\

2 l / 2 r), r>R,

where J\m\ (x) is a Bessel function and К \т\ (у) is a Kelvin
function.

Since the tangential components of the electric field and
its derivative must be continuous, we find that the dispersion
relation is

= (-*2Х-эе2)1/2/1т, (**)*'lml ((-k\-*2)l/2R).

For a channel of small radius, e.g., a microchannel in zeolite,
we can expand these functions and their derivatives in the
dispersion relation and obtain the following equation for the
wave number:

2 l / 2 =(A?2/2) In \2/(-k2

X - x ) R ] = 1.

It is readily verified that this equation has no solutions for
nonzero azimuthal wave numbers. The transverse wave-
number structure is obtained by simplifying the last equa-
tion and putting т = 0:

ж = 2/R Hn(-4/k2R2x)\l/2-

If we use the relation between the longitudinal and trans-
verse wave numbers 0 = (k 2 — x2) 1/2 , we readily find the
expression for the longitudinal wave number (propagation
constant)

P~k- [4/kR2 \n(-k2R2

X/4) 1

and the longitudinal attenuation coefficient

P" = -4x"/R2kx' \n2(-k2R2

X/4)

that follows from it. Starting with the mode structure
Ez ~ K0( ( — k2x — x2)1/2r), outside a channel, we find the
condition for the confinement of the propagating wave to a
single channel with a small adjacent region
1R ~ ( — k 2x — я2) ~ 1/2 • This case corresponds to the ne-
glect of wave tunneling into other channels, i.e., true chan-
neling. The size of the near-channel mode localization re-
gion

depends on the channel size, the wavelength Л, and the value

It follows from the general structure of 1R that the size
of the near-channel mode localization region is greater than
the 'thickness' of the skin layer near a plane surface /„ , as
R _, oo > where /„ = l/k( — %)l/2 • For example, for x rays
with Л = 2 A and x = - Ю " 6 , we have /„ ~ 300 A, where-
as for Mossbauer radiation with the same parameters as for
181 Та, we have lx ~30 A. Since the channel separation in
zeolite crystals is dl x 30 A, and is comparable with or sig-
nificantly smaller than /„ ~ 30-300 A, the concept of local-
ized propagation in each individual microchannel is incor-
rect. The propagation of photons in a medium with
periodically distributed microchannels must then be ana-
lyzed with allowance for the two-dimensional Bloch condi-
tions.

For an isolated channel, the reduction in absorption
during channeling as compared with absorption in a contin-
uous medium /?o = ̂ *"/2 in the optimum case of a small
but negative real part of susceptibility, x' < 0> is described by

which predicts a reduction in absorption with increasing
channel size (radius).

For channels in asbestos fibers, the internal radius
R js 40 A satisfies the criterion for single-mode propagation
xR 4,1 and all the conclusions and estimates made above.

Since the effective 'optical' susceptibility for thermal
and faster neutrons x = (V)/2E is characterized by the
same range of values \x\ 5 10 ~ 5 as for x-ray photons, all the
conclusions about the channeling of photons in zeolites and
asbestos apply fully to neutrons.

3. MAGNETIC CHANNELING OF NEUTRONS IN MAGNETIC
CRYSTALS

In magnetic crystals, the effective neutron-crystal in-
teraction can be due to both the purely nuclear mechanism of
neutron channeling, which occurs within the framework of
the 'optical' approximation (see Sec. 2), and the purely mag-
netic mechanism. Neutral particles with a magnetic mom-
ment participate in the same process. They are confined to a
channel by the dipole-dipole interaction between their mag-
netic moment and the ordered but inhomogeneous distribu-
tion of magnetic moments in the lattice.30

To explain the origin and strength of the interaction,
consider the motion a particle in a rectangular channel with
sides a and b in the x,y plane formed by the intersection of
crystal planes consisting of ordered atomic magnetic mo-
ments forming a simple ferromagnetic (or oriented para-
magnetic) dielectric structure with lattice constants a0, b0,
d0. To simplify the solution, we shall confine our attention to
the motion of particles with magnetic moments fi0 aligned in
the positive or negative direction of the Oz axis.

The secular part of the Hamiltonian describing the in-
teraction of the particle magnetic moment Д„ with all the
magnetic moments Д, is

Bn) (1 - (3-1)
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where n = {nx ,ny ,nz } is the three-dimensional site number
in the magnetic lattice. For the system under consideration,
the term Ba that describes the magnetic dipole-dipole inter-
action with mutual overturning of the magnetic moments
must be zero. We note that, for a = a0, b = b0, the problem
corresponds to motion in the elementary crystal channel
formed by the intersection of four nearest planes, and for
a>a0,60 or Ь^а0,Ь0 it corresponds to motion in the gap be-
tween two plane layers of a ferromagnet.

3.1 . Magnetic channeling of particles interacting with a spin
wave

We assume that all the magnetic moments of atoms in
their static positions are aligned along the channel axis (the
Oz axis) . We shall consider the case where a transverse spin
wave of amplitude 8,ц1 propagates in the magnet in the Oz
direction:

= c«2 -
(3.2)

In the coordinate frame moving with the particle velocity vz ,
equal to the spin-wave velocity, we have (Fig. 2)

zn = znt - V' vz = "sw = Oi/k.

If we now introduce the linear magnetic-moment density
H,/d0 along the Oz axis, we can replace summation over nz

with integration with respect to z. As in charged-particle
channeling theory, this replacement is admissible if a typical
change in the particle trajectory occurs within a distance
Az > d0. Because of this, and also because of the rapid reduc-
tion in the strength of the dipole-dipole interaction with in-
creasing distance, we neglect edge effects at the ends of the
channel. The final result is

W = J dz' [1~

x {l-

where rl=r{(nx,ny) = [nxa0+ (a/2) +x]2 + [nyb0

+ (b/2) +y]2 and g= + 1 for parallel and antiparallel
directions of Д0 and /J, , respectively.

It is now convenient to transform this expression to the
form

FIG. 2. Particle in a magnetic channel.
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(l-3r2)
n .n —1

л' у

Xll-(l/4)<52(l+cos/S(T)-cos 2y>

-sin/?(T)-sin 2p) ]dr/r2 , £(т) = 2*г±т/(1-т2)1/2, т = cos (9.

(3.3)

Let us examine the structure of the integrand in (3.3). It is
clear that for all atomic moments 2, lying within the solid
angle corresponding to \т\ <TO, we have /?(r) x 1, and for
T|>TO the function cos/9(r) exhibits rapid oscillations

with a change of sign, where r0 = (1 + 16^2r^/7r2) ~1/2.
As a result, the integral involving cos/?(r) in the first

interval r| < r0 can be evaluated in terms of elementary
functions, whereas in the second interval it is approximately
equal to zero. Inspection of the integral containing the factor
sin Р(т) shows that it vanishes because the integrand is odd.
All this leads to the following final result:

Evaluation of this sum yields the following expressions for
the force components acting on the magnetic particle in the
channel:

cos Ър •

(3.4)

ak, bk<2,

/ = 0, ak,bk>2,

= a/2, b/2.

For the sake of clarity, we shall now describe the motion of
the particles by classical equations whose validity will be
examined later. The equation of motion of a particle in the
channel is

m d2r/dt2 = F

subject to initial conditions

«0)-*0, z(0) = 0, f |0-«e, -£-|0 = «,= *w .С")

The solution is

(3.6)

where

z = vt, fi = 1/2

It is clear from (3.6) that, for real ft^, the particle exe-
cutes translational motion in the channel while at the same
time oscillating in the transverse direction O£ about the axis.
The path of the particle in the transverse plane takes the
form of two amplitude-limited, independent, and mutually
orthogonal oscillations with frequencies flsg and initial
phases determined by the system parameters and initial con-
ditions. It follows from (3.6) that, in a medium with mov-
ing, periodically inhomogeneous magnetization and comov-
ing magnetic particles, the particles can take part in ordered
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motion that is restricted by the channel size, i.e., channeling
takes place. The corresponding capture angle is
eo = v^/vz=A^/vz.

Let us consider in greater detail the motion in the £,z
plane, assuming that the particles enter the channel along
the Oz direction, i.e., vs = 0. The character of the motion
depends on the phase of the comoving spin wave and the
orientation of the particle moment g. Particles with g = — 1
that travel with spin-wave phases in the ranges
— ir/4 <q> <ir/4, Зчг/4 < <p < 5ir/4 (A<pt) are periodically

focused at

2 = 7fvz(2s + s = 0,1,2 .....

and the beam exhibits maximum broadening for
Z = 1TVzS/£i((p).

It is interesting to consider the integral focusing charac-
teristics of a time-homogeneous beam in a channel of opti-
mum length ZO=Z((JP = 0, 7Г/2). If the total particle current
evaluated over one half of the spin- wave period at exit from
the channel is J0, the current density p (z0, |£, | ) and the total
current J(z0, II" | < | |, | ) for £ | < ||"0| and the same period of
time in the section z0 are given by

л/4

• 2/0 J dy>/6racos[tt(cos2y>)1/2/2],

«••в.)

>f, '

(3.7)

where <p(£) is the inverse of £(.q?). Figure 3 shows the corre-
sponding graphs. The initial homogeneous current is fo-
cused near the channel axis and 40% of all the particles are
localized in the region \g \ <0.05Л|. whereas the correspond-
ing figure for |£ | <0. U^ is 53%.

Similar focusing is obtained for particles with parallel
orientation (g = 1) if they enter the channel within the
phase interval

л/4 <<p < Зл/4, 5л /4 < <f>< 7jt/4 (Ду>2)-

Particles corresponding to phases tp = + тг/4, ± 3v/4,
travel in straight lines. The other particles g = I for A<p2 and

V/

1,0

0,5

0,2 0,6 <,0 /*,/

FIG. 3. Focusing of particles in the channel of optimum length. Curve /—
normalized particle flux density p(zu, |дг,|), curve ^—normalized total
flux/ for |x|<|x,|.

733 Sov. Phys. Usp. 35 (9), September 1992

g = 1 for A^j) have a different motion. For them Re Л = 0,
Imft = |n|,and

£ = I0
 c°sh(|n|z/vz)+(v/IQI)sinh(|n|z/yz).

For the distance z satisfying the condition |£l|z/i>z > 1 we
have

| = {[|0 + (v/1QI) ]/2} exp(IПI z/vj,

which for vz > — ]П||"0 corresponds to particles leaving the
channel without crossing its axis, and for vz < — \£l\£0to
particles that cross the channel axis and leave through the
other channel 'wall'. An interesting situation arises when the
transverse velocity of a particle at exit from the channel is
vz = — |O|!"0. When this happens, we find that, in an arbi-
trary section z,

f =|0exp(-IQIz/vz),

i.e., we have asymptotic focusing with an abrupt rise in den-
sity on the channel axis. This regime can be produced, for
example, by changing the spin-wave phase by -IT near the
point z0.

We must now consider a few numerical estimates. The
characteristics of the system can be determined from the
dispersion relation for a longitudinal spin wave32

ш = уЯ0 + r,k2,

where 17 is the exchange parameter and H0 is the magnetic
field. Wide channels are best used to achieve maximum fo-
cusing. Since the maximum channel dimensions are
a,b < 2/k, it is best to use spin waves with the relatively low
value k~lQ4 cm"1 (these are actually magnetostatic
waves). For the realistic estimates HQ = 103 Oe,
F0=10~2 3 cm3,^ =0.1 (Ref. 33),and/z1=;(2-8)/iB)we
have Птах ̂  (1-2) X Ю5 s ~ ' and z0~2-4 cm.

Much higher channeling frequencies and, hence,
shorter focal lengths correspond to neutral atoms and para-
magnetic molecules. Since, for such particles,
т = 2 x l O ~ 2 4 A where A is the atomic weight, we find that,
for k = 105 and Ss = 0.1, we have Cl(<p0) ^30-130 A -1/2

MHz, z0 ~ (1-0.2 )X 10 ~2 A"2 cm, and for k= 104cm-'
we obtain fldp0)^5-15 A~l/2 MHz and z0=;(1.2-
0.3)XlO-' A1/2 cm.

For the above case of a wide channel with transverse
dimensions in the range 1-0.1 /zm, the maximum capture
angle is 00~2-20 seconds of arc for neutrons and 00;s-10
minutes of arc for atoms and paramagnetic molecules.

Technically, it is much simpler to perform experiments
with channels of length /<z0 but /> l/k, which corresponds
to a ferromagnetic film.

A parallel incident beam is then transformed at exit
from the channel (on the other side of the film) into a con-
vergent beam with a small convergence angle

= 2arctan(£0Q2/cos (3.8)

where / is the channel length. In the course of this transfor-
mation, the transverse size of the beam is reduced so that it
becomes

and the beam is focused at
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2 = z(<p)=g0COtl/r(<p). (39)

Let us now examine the form of the solution for z0 = z(<p0).
Particles with g and Д, |2 corresponding to focusing in a long
channel are focused at z0 for g(z0,<p) <£0( 1 ~ cos 2y>)-
The focusing characteristics/? (zo,!"] ) and/(z0,||' | < ||", |) cal-
culated numerically for this case are practically indistin-
guishable for all values of g from thecorresponding charac-
teristics for a long channel, i.e., a channel of length z = /<z0

focuses just as effectively as one with z = z0. For the param-
eter values estimated above and film thicknesses / = 0.1 cm,
the focal length for neutrons in the case of spin waves with
£ = 2xl04isz0~4-20cm.

The spatial phase locking condition for the progressive
spin wave and the particles channeled in a channel of length z
is

z < n ,

which can be used to estimate the admissible departure of the
stream of particles from the monochromatic state:

In the cases analyzed above, channeling is possible if
| Ду2 /vz <10~4-10~'. We note that when a standing spin
wave is established, an effective interaction occurs with only
one of the two progressive waves forming the standing wave,
i.e., with the wave accompanying the particle flux. In partic-
ular, it is possible to use a spin wave with very high k and
small film thickness /, which happens when a spin-wave res-
onance with z0~ 0.1 is excited in a thin film with /=;10~5-
10 ~ * and the focus is at the point z0~0. 1 cm.

3.2. Directional interaction of particles with an elastic wave in
a magnetic channel

We shall now consider the motion of particles having a
magnetic moment when a longitudinal ultrasonic elastic
wave of frequency со and amplitude Az is excited in the direc-
tion of alignment of the magnetic moments in a saturated
ferromagnet (the Oz direction). This wave modulates the
separation between the atomic magnetic moments in accor-
dance with the expression

- tot <5p =

(3.10)

Proceeding by analogy with spin waves, we obtain solutions
that are identical to ( 3 . 5 ) , but differ from the spin-wave case
by the expression for the frequency, i.e.,

Q = 6 (-Ai0,«1g<5pcos»>*VlFo>l/2

The motion and focusing of particles in the ultrasonic field
correspond to the case of spin waves if we allow for the fact
that focusing and channeling occur for g= — 1,
— ir/2«p<ir/2 and g=l, ir/2 <ф <Ътг/2. Estimates

show that the excitation of an ultrasonic wave with frequen-
cy Ю GHz, velocity yuw = 2ХЮ 5 cm/s, and amplitude
Az = 5 X Ю ~ 9 cm gives rise to channeling with flp =; 10s

^ - 1/2 jjz an£j Zo~, Ю ~ 3 A 1/2 cm for channel dimensions
a,b < 10 ~ 5 cm. Accordingly, for an ultrasonic wave or fre-
quency 100 MHz and amplitude Az;s 2 X 10 ~ 8 cm, we have

-_p ._ l/2Hz,z0 = A l/2 cm;a,b< 10 3 cm. This esti-
mated set of parameters of the ultrasonic wave is quite realis-
tic, which means that it is actually possible to observe orien-
tational features when neutrons synchronized with the wave
pass through a modulated magnet. In the case of a beam of
paramagnetic atoms, all the parameters inprove in the ratio

3.3. Focusing of particles by a domain wall

The foregoing discussion shows that the elastic restor-
ing force responsible for channeling and focusing effects is
due to the alternating longitudinal component of the mag-
netization of the channel walls. This spatial component can
appear not only in spin waves and ultrasonic waves, but also
in the Neel transitional domain wall. We shall now analyze
the motion of a channel consisting of magnetic moments Д/
whose orientation corresponds to the rotation of the magnet-
ization of the domain wall.

Consider a domain wall between two layers (domains)
of a saturated ferromagnet, in which the magnetic moments
are at angles ф1 and ф2 to the axis, respectively. We shall
suppose that the wall (thickness lw) lies between z = 0 and
z = /, and that the variation of the angle ̂ (z) and the longi-
tudinal component of magnetization /ulzn is described by

where к = (f>2 — <pt )//w is the rotational period of the mag-
netization in the domain wall of thickness lw.

If we use the method presented in Sec. 3.1 to evaluate
W, we obtain

w =

+ r (3.12)

where g = + 1 for parallel and antiparallel orientations of
До relative to the Oz axis, respectively.

Transforming to the coordinate frame coupled to the
longitudinal motion of the particle, z — z^ = z^, and replac-
ing summation over nz in (3.12) with integration, we find
that the transverse and longitudinal components of the force
acting on the channeled particle are respectively given by

in (pj + xz) x/V0, a,b < 2/x.

The solution of the longitudinal equation of motion

sin

is

z-b-FjoHsin^j +aez) - s'm<f>l]x l - zcos<f>l}(mxvl) 1 =vzt.

For small/20, the iteration method yields the approximate
solution

(3.13)

2 = vzt -Fz0{[sin (y>j +aeuzO- sinp^x

~ cos f\
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For the usual domain- wall thickness /w^10
and an initial longitudinal particle velocity vz

5-10 6 cm
%, 10s cm, we

The equation of motion in the transverse direction cor-
responds to an oscillation with variable frequency ft(0- To
find the solution in this direction, i.e., the 0£ direction, in the
first approximation, we use the zero-order approximation
for the longitudinal motion z = vz t. The final result is

(3.14)

the nature of the solution depends on the ratio of П0 and
xvz = H0. When |ft0| ><y0, the system then corresponds to
an oscillator with a slowly varying frequency, and the gen-
eral solution becomes

t
£ = Rf) exp[±z J Q(r)dT ], Й(т) = QQ cos(f l + xvj),

о

where the amplitude g ( t ) varies slowly in comparison with
the phase factor. Transforming in (3.14) to the truncated
equation, we find that

t

I = Ilo + ("f/£22(0)]1/2cos{Jfi«z))dz/vz

(v2/Q2<0)]1/2}

which is qualitatively similar to the channeling of spin and
ultrasonic waves in (3.6).

For the other limiting case of a very rapid variation in
instantaneous frequency £1(0, when |fl0| <<u0> the system
cannot, even approximately, be interpreted as an oscillator,
and the solution can be found by the small parameter meth-
od with П0Ло0 as the small parameter. The solution is then
given by

+ xz) - cos p, ]ae~'

xz)]

(3.16)

[z[cos<f>l

Let us consider some numerical estimates to enable us to
choose the solution. For the average value /w ~ 3 X Ю ~ ' cm,
we have |П„ ^ 109 Hz and |ft0| =3 X Ю10 A 1/2 Hz for neu-
trons and paramagnetic atoms, where A is the atomic weight
of the atoms passing through the crystal. For all particles
with velocities ur > 105 cm/s we obtain ш0> |{10|, i.e., the
second case occurs and we shall examine it in greater detail.
We note that this situation will also occur for lower veloc-
ities in the case of neutrons.

For an initially parallel beam, the convergence angle
and the focal length are respectively given by

= ~d7 ~ no £o(sin f>2 ~ sin Pi)

and

= £<> cot ф

(3.17)

(3.18)

We must now elucidate the character of this focusing.
When £ = 1 and sin ф>2 > sin 9?] (and, correspondingly,
g= — 1 and sin <p,> sin <p2) we have ̂ >0 and z0>0, which

corresponds to a thin converging lens with a real focal point
at z0. It is clear that the largest beam convergence angle and,
correspondingly, the shortest focal length z0, occur for a 180°
domain wall between two domains with magnetization di-
rections £>, = — ff/2, <p2 = 77/2 for g = 1 and <p{ — ir/2,
q>2 = Зтг/2 for g = — 1. The focal length of this optimum-
system in the case of neutrons is z0 ̂  0.04 cm for yz ~ 2 X 105

cm/s. For light atoms z0^2 X10 ~ 3 cm for vz s: 106 cm/s.
For a different choice of parameter values (g = — 1,

sin <p2 > sin <pi and g = 1, sin <p2 < sin <pl), we have if/ < 0,
which, corresponds to a thin diverging lens with virtual focal
point at z0 < 0.

It is possible to produce in the laboratory a two-domain
magnetic structure of this kind with one domain wall.34 The
unsaturated ferromagnet, even if it is thin, usually consists of
a large number of domains with linear dimensions L0 ̂  I
(im. Let us consider the motion of particles in this type of
multi-domain structure with successive magnetization di-
rections q>i, <fi, tpi,(p2,.--, bearing in mind the fact that, usual-
ly, £0<^z0.We shall assume that the first and the second (in
the direction of motion) domains are characterized by a
combination of values of g, <p,, and <рг, such that the domain
wall will focus, i.e., ф > 0, z0 > 0. The beam aperture falls by a
factor of (1 — 2L0i/>/g0) as the particles cross the second
domain and before they reach the second wall. The second
domain wall, for which we have to substitute £>,-»<p2,
9>2-*9>n is analogous to a diverging lens with divergence an-
gle — ф < 0. Since this domain wall receives a converging
beam with ift > 0, the emerging beam is parallel, but has a
smaller aperture than the incident beam. By repeating this
cycle for each successive pair of domain walls (Fig. 4), we
find that an initially parallel beam traversing a channel of
length z remains parallel (after an even number of domains)
or becomes converging (after an odd number of domains),
and its transverse size is reduced by a factor K0 given by

V = [1 - (2^/£0)]*
/2/-« - exp(-z/z-0).

For example, for a magnet with a total thickness z^:0.2
cm and the above estimated value z0~0.04 cm, we have
#0~150.

This type of motion corresponds qualitatively to the
above asymptotic focusing of particles in the case of spin and

FIG. 4. Asymptotic focusing of a particle beam by a multidomain struc-
ture with alternating directions of magnetization.
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ultrasonic waves, but occurs without any external interven-
tion in the natural multimode structure.

In the other limiting case, in which the first and second
domains are characterized by values of g, <plt <p2 such that
ф < 0 when the beam crosses the first domain wall, we find
that the beam expands and the particles escape from the
channel. In this situation, K^ 'sexp(z/z0).

3.4. Capture of particles into a magnetic channeling regime
and possible experimentation realizations

The above discussion refers to the motion of particles
whose trajectory is confined to a single channel, and it is
clear that this solution can be valid.

The limiting capture angle for such particles

is very small and, for example, amounts to a fraction of a
second of arc for an elementary internal crystal channel.
Nevertheless it follows from the analysis given later that cap-
ture into channeling is also possible for particles incident on
the crystal within the angular range A0>00 relative to the
channel axis.

To explain the 'macroangular' capture problem, we
shall for the moment ignore microscopic variations in the
trajectory of uncaptured particles within the confines of
each elementary channel and consider the averge macro-
scopic motion in which the crystal lattice consisting of a set
of planes is replaced by a continuous medium. It is clear that
this replacement is valid for particles whose transverse ve-
locity У| is greater than the velocity range within which cap-
ture into the channel is possible.

Let us consider the macroscopic motion of particles in-
cident on the surface of a magnet at an angle в = arctan
( vx /vz ) . We shall choose the magnet in the form of a plate of
thickness x0 (Fig. 5 ) . The expression for the two-dimension-
al distribution density of the atomic magnetic moments in
the continuum approximation can be used to show that the
average interaction energy between a particle and the mag-
net30 is given by the following formula (which can be used
directly to evaluate an average over any coordinate):

(W) = - {arctan 8* -

+ arctan [Sfc hr - л; (3.19)

x^

/
1

t

1
t 1

1

\

* /

/

\

/
5 2

FIG. 5. Capture of particles into a magnetic channel: /—reflection of a
slow particle, 2, 3—capture into an elementary channel for particles with
transverse velocity \VK2 \ < \vx} \ < \ Ди™"х|, 4—motion of uncaptured parti-
cle with | vx41 > | Ди™" j .

where P=8l cos 2<p for spin waves and P = 4<5P cos cp for
ultrasonic waves.

The solution of the averge equation of motion for a par-
ticle then takes the form

(3.20)

where

"' {arctan Г8& \-~- + x я *

X0
+ arctan f8fc I-»- - x л ' 1}

It is clear from (3.20) that a particle with orientation g
traveling in step with the spin or ultrasonic wave phase such
that g cos 2#>sw > 0 or g cos tpvw > 0 will become acceler-
ated as it approaches the magnet, and its velocity will reach
its maximum value in the x = 0 plane. Thereafter, the parti-
cle begins to slow down and its asymptotic value v^ ( ± oo)
reaches the initial value v2

x ( + oo). It is clear that, if the
initial velocity exceeds the value v0x = fla/2 necessary for
channeling, the above macroscopic acceleration effect is
even less likely to lead to channeling.

A different sitution obtains for particles whose motion
is such that g cos 2 ŝw <0orgcos^uw <0. The transverse
velocity of such particles decreases as they approach the
magnet. This retardation is physically due to the interaction
between the magnetic moment and the magnetic field of the
propagating spin or ultrasonic wave. In particular, if | Д y™a* |
>|z>.( ( + oo) |, the particle can come to rest (in the trans-
verse velocity space). When this condition is satisfied for
\x\> kol/2. the particle will not enter the interior of the
magnet and its motion will be reversed by reflection (curve 1
in Fig. 5). On the other hand, when |Дрх(;с)| = \vx( ± oo) |
inside the magnet, i.e., for 0 < \x\ < \x0\/2, the transverse
velocity \vx | falls to \v0x \, for which the conditions for cap-
ture into microchanneling begin to be satisfied (curves 2 and
3 in Fig. 5). Since the above phase conditions for channeling
g cos 2<psw < 0, g cos <pvw < 0 are the same as the conditions
for slowing down, such particles are captured into the chan-
nel. We note that the longitudinal velocity of the particles in
the magnet remains unaltered during the transverse-velocity
anomalies.

Thus, the conditions for macrocapture into a micro-
channel are

g cos 2(psw <0, g cos ,psw <0,

IAv™ a x l 2 > v^(±oo) - (flV/4). (3.21)

Let us estimate the retardation effect. For the above magnet
parameter values, we have |Ay™ax|;=;300<5s cm/sand |AiC*l
x 600<5p/2 cm/s for spin and ultrasonic waves, respectively,
in the case of neutrons, and |Ду™ах| s5X 103 <5S cm/s and
\Av™**\ =; 104<5p/2 cm/s for paramagnetic atoms.

It is clear that in the case of thermal neutrons with vz

> 105 cm/s, the magnetic retardation gives rise to channel-
ing with capture angles up to a few dozen of minutes of arc,
i.e., much greater than the critical angle for capture by an
individual microchannel. For atoms with uncompensated
magnetic moments, a very large macrocapture angle of a
magnetic channel will hardly facilitate channeling by means
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of very strong retardation and scattering by lattice atoms.
This type of experiment can probably be performed only
with exotic atoms such as mesic atoms.

To conclude, we must consider the conditions for the
validity of our classical approach to the motion of particles
in microchannels.

Quantum mechanical analysis of the motion of particles
in a magnetic potential well such as (3.3)-(3.4) leads to
quantization in a parabolic potential V= m£l2£2/2, which
results in an energy spectrum of the form En

= fi£l(n + 1/2), n = 0,1,2,.... It then flows from the corre-
spondence principle that the classical and quantum-me-
chanical analyses become identical for л > 1. It is only then
that all the channeling directions form a quasicontinuous
distribution, which corresponds to classical capture into the
channel for all angles smaller than the critical value. By
equating the height of the potential barrier Fmax

= шП2Я 1/2 to £™ax, we readily obtain the following esti-
mate for the criterion that indicates the validity of the classi-
cal solution:

пш а х«тОД|/2Й»1.

It is clear that this condition is compatible with the require-
ment of greater channel dimensions that arises if we require
maximum focusing, for which the only restriction is
ak,bk < 2. Let us estimate the minimum channel dimensions
for which classical channeling can take place. Estimates car-
ried out for neutrons show that for domain walls and mag-
netic helicons, and for spin-wave resonance, the minimum
channel size for the highest possible k is 50 and 5 A, respec-
tively. The latter figure suggests that it may be possible to
achieve 'true' channeling in an internal elementary magnetic
crystal channel with dimensions up to 10 A. Total 'trapping'
of particles in narrower channels is not possible, and all the
properties of magnetic channeling then correspond to the
quasichanneling that was considered above in connection
with photon channeling in crystals.

4. PROPERTIES AND THEORY OF MAGNETIC CHANNELING
OF NEUTRONS IN NONMAGNETIC CRYSTALS

4.1. Coherent Schwinger mechanism for the channeling of
neutral particles in crystals

The magnetic channeling in crystals, considered above
for neutrons and other particles with a magnetic moment,
requires, at the very least, an ordered magnetic structure.
We now present an analysis of a fundamentally different
magnetic channeling mechanism that is equally effective in
magnetic and nonmagnetic crystals. Although, to be specif-
ic, we shall confine our attention to neutrons, the discussion
will be valid for any particles that possess a magnetic mo-
ment.35

Leaving on one side purely nuclear processes, the ener-
gy of interaction between a neutron and a nonmagnetic lat-
tice is determined by the electrodynamics of moving media.
A magnetic field H = E X v is produced in the coordinate
frame in which the particle moving inside the crystal, in the
atomic electric field, is at rest.

Consider a planar channel and the electric field E(r)
pointing away from the crystal plane and in the direction of
the middle of the channel. The average magnitude of this
field, evaluated over the area S0 of a unit cell, falls to zero in

the middle of the channel. Consequently, the mean value of
the field H(r) is then a maximum (in amplitude) near the
plane, but falls to zero and changes sign at the center of the
channel (in the middle of the interplanar channel), and its
numerical magnitude then rises to the same maximum value
when we approach the next channel plane. As we cross this
plane, the change in the sign of the electric field vector pro-
duces a discontinuous change in the sign of the magnetic
field H, and the subsequent spatial variation of this field
repeats its behavior in the preceding channel.

Thermal motion of the lattice naturally broadens these
discontinuous changes in the field across the channel plane.
The final result is that a magnetic moment moving through
the field experiences a sequence of magnetic wells and bar-
riers.

The maximum field H max on a plane can be found from
the formula

= 4iri/c,

since, in the frame in which the neutron is at rest, the motion
of the atomic nuclei and electrons that lie on a crystal plane
is equivalent to a current /. The maximum current corre-
sponds to the case where the contour of integration runs
close to the static ( 'frozen' ) crystal plane. As the size of the
contour is increased (so that it departs from the immediate
neighborhood of the plane and encloses parts of adjacent
channels ) , the contour encompasses not only the nuclei but
also some of the atomic electrons. Since their signs are differ-
ent, this is equivalent to a reduction in the current threading
the contour. Since for a plane of width L, on which nuclear
charges Ze lie at the sites of unit cells of area S0, the maxi-
mum effective current is f™* = ZevL /S0, we have Ятах

= 2irZev/SoC. This field reaches Ятах~105 Ое for reso-
nance neutrons and Ятах;= 108 Oe for fast neutrons, which
should lead to a change in the trajectory in the crystal.

In traditional terminology, the neutron-lattice interac-
tion can be characterized as a coherent Schwinger interac-
tion and constitutes a generalization of the well-known neu-
tron-atom Schwinger scattering.

4.2. Structure of the potential well for the magnetic
interaction of a neutron in a crystal channel

It follows from the preceding discussion that the effica-
cy of the neutron-lattice interaction depends on the form of
the lattice field E that in turn determines the magnetic field
H.

For the sake of simplicity, we shall confine our atten-
tion to an atomic field in the form of the screened Coulomb
potential

Ve = Ze exp(-r/R)/r, R = h 2/mee
2Zl/3.

The use of more accurate potentials would complicate the
solution very considerably without significantly changing
the overall picture of channeling. Since Er = — V Ve , we can
use the above form of Ve to find the field H due to an atom
and acting on the neutron:

Hr = Ze[(\/r2) + (1/rR) ] [er v ] ехр(-г/Д)/с. (4. 1 )

The expression for the magnetic potential energy of a neu-
tron Vp = (ifrHr , where a represents the Pauli spin matrices,
will now be examined in the laboratory frame with the Oy
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axis lying along the channel axis and Ox perpendicular to the
crystal planes (the Oz axis lies in the crystal plane).

The common assumption in the case of channeling is
that the potential V^ that contains the alternating-sign com-
ponents цахНх, цауНу due to the alternating-sign electric-
field components Ez ,Ey, and the constant-sign variable com-
ponent iiazllz associated with Ex, can be replaced with the
average potential (V^}. In the classical treatment, this aver-
aging is due to the insensitivity of the trajectory of massive
particles to rapid and numerically small variations in the
periodic field Hr. Since the neutron-atom interaction is
weak, the trajectory is wholly determined by the average
integral parameters of the field. A quantum-mechanical
treatment will be presented below.

Since the field components Hx,Hy have alternating
signs, and vary symmetrically within each longitudinal crys-
tal lattice period, we have (Hx) = {Hy) = 0. Using the
standard procedure of averaging over a crystal plane by inte-
grating with the weight 1/SQ over the transverse coordinate
p = (r2 — x2)1/2, we obtain the following magnetic poten-
tial of a static ('frozen') crystal plane:

where g is the unit vector along the normal to the.yz plane.
Integration with Hr given by (4.1) yields

< V = (4.2)

which ignores the thermal motion of the lattice. We now
evaluate an average of this expression, using the normal dis-
tribution with variance и2 for the fluctuations in the posi-
tions of the atoms, and allow for the structure of the poten-
tial well produced by two adjacent planes forming the
channel, which finally yields

(4.3)

in which Ф ( a ) is the probability integral and d is the crystal
plane separation. Henceforth we shall denote the double
average «К„» by V(x).

Figure 6 shows a plot of the potential given by (4.3).
The well structure has an interesting dependence on the
crystal parameters. When и 4R, d, the position of the mini-
mum of the potential well is given by

х„ « vTu {1п[уТД/ули [1 + exp(-rf/K)]]}1/2. (4.4)

In the other limiting case, R < и < d, we have

*„ « ull + (R2/2d2) + (u/IR) exp(-d2/2u2) ]. (4.5)

It follows from (4.4) and (4.5 ), and also from the numerical
solution shown in Fig. 7, that an increase in the root mean
square amplitude и of thermal oscillations is accompanied
by a shift of the center of the well away from the plane and
toward the middle of the channel, while the channel depth
decreases. The same shift with a simultaneous increase in the
well depth and barrier height occurs when the channel width
d is increased.

4.3. Wave functions and neutron channeling

The motion of a neutron in the above potential magnet-
ic field is decribed by the following two-compound Pauli
equation that also takes into account the neutron-nucleus
interaction potential:

where

(4.6)

The wave functions *P, 2 represent the two possible orienta-
tions of the neutron magnetic moment along the quantiza-
tion axis (which is parallel to H). The nuclear nucleon-scat-

?/, fm

FIG. 6. Potential energy of a neutron in a planar channel of width q = 5R,
reduced to a static ('frozen') lattice: /—static lattice with и = 0, 2—

FIG. 7. Relative change 17 = V' fV™'* in the shape of the normalized po-
tential well due to neutrons as a function of the ratio (u/R: 1—и = R /6,
2—и = R /3, 3—и = R, 4—ы> = R, 5—spatial distribution of localiza-
tion density for neutrons near the middle of the crystal plane x = 0.
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tering potential Vn is characterized (especially at moderate
energies) by a slightly anisotropic function, namely, the
scattering amplitude/„ (в). In particular, for ^-scattering,
/„ (#) = R0 where R0 is the nuclear radius. The second part
of the potential, which was discussed in detail above, is due
to the Schwinger interaction3'36'37 and finally reduces to co-
herent scattering by a set of atoms. The Schwinger scattering
amplitude is highly anisotropic and, for small angles, is de-
termined by^ (в) = iZfj,e/fic6. We know (see, for example,
Ref. 38) that the channeling of particles, and the use of the
average crystal-plane potential to describe it, is possible only
for small-angle coherent forward scattering by a segment of
a plane, which is much greater (in the longitudinal direc-
tion ) than interatomic scattering, followed by the interfer-
ence of scattering amplitudes. The magnetic part of the po-
tential V(x) in (4.3) is the dominant part in this process.
This is so because for the angles of incidence typical for this
process, в < 10""3, we have | /м//„ | > 1. The zero-order ap-
proximation to the solution of (4.6) can be found by using
the single potential V(x) and without taking the nuclear
interaction into account. The spacial distribution of parti-
cles over the cross section of the channel \i/>(x) \ 2 , found in
this way can be used to calculate the change in the yield of a
nuclear reaction involving the participation of channeled
particles. This remark also applies to the other neutron
channeling (quasichanneling) mechanisms discussed
above.

When the diagonal form of the matrix аг is taken into
account, equation (4.6) splits into two independent Schro-
dinger equations for neutrons of different polarization, i.e.,

ДЧ^ 2 + ~(£ ± F(.v)) Wj 2 = 0. (4.7)

When the neutron polarization is changed, the form of the
magnetic potential transforms as a mirror reflection in the
V = 0 line in Fig. 6.

In view of the complicated form of the potential V(x),
the solution of the problem can be sought by quasiclassical
or numerical methods. The results obtained by both meth-
ods are reproduced below. We begin with the quasiclassical
method.

The standard multidimensional quasiclassical method
yields the following result:

(4.8)

where px = [ p^x + 2mV(x) ] 1/2 is the transverse momen-
tum of a particle on a quasiclassical trajectory between the
turning points x,,x2, determined from the condition

• + т

The criterion for the validity of the quasiclassical ap-
proximation in the multidimensional case is39

- [3(Vp)2/2p2] - f(nVp)V«/p]

[(Vn)2/2]l «2p2/ft2.

This relation establishes the connection between the possible
values of the momentum p and the spatial variation of the
unit vector n = p/p. For two-dimensional motion we have
n = ( ex px + ey py ) , and if we use the explicit form of px , the
above validity condition becomes

dx nih'
(4.9)

It is clear that (4.8) is not valid in the immediate neighbor-
hood Sx of the turning points x, 2 . It is shown in Ref. 35 that

Sx ~ П 2v£ax/8m Vcr0,

where r0~u for the well wall closer to the plane, and r0~R
for the wall closer to the channel center. Direct estimates
show that, for thermal and faster neutrons, &c~10~14 cm
for parameter values in the ranges Z = 5-50, S0 = 1CP 16-
10- 15 cm2, и = 10- 10-2 X 10-910-9 cm, R = ( 1-3 ) X КГ 9

cm. Near the bottom and the top of the well, where dV /
dx~Q, the quantity Sx is smaller still.

There is one further limitation that follows from the
second term in (4.9), which is greater than the first every-
where except for values of Sx near x, 2. Direct analysis of
(4.3) shows that

dV/Эх2 « V%ax/uR

near the bottom and the top of the barrier, and

elsewhere. If we use these estimates, we find that (4.8) is
valid throughout the domain of л: if the longitudinal velocity
of the neutron is

1/3

for energies of transverse motion near the bottom of the well,
and

for all other energies. For the same parameter ranges as
above, this leads to the condition i>> 10~~4 cm/s, which is
satisfied for thermal and faster neutrons.

Since the potential is periodic, the solution given by
(4.8) must satisfy the Bloch theorem У ( х )
=f"b>(x±d), I / ] = 1. Moreover, since Ф 1 2 must be con-

tinuous at all points ( for example, at x2 ) , we find that the
dispersion relation that determines the admissible values of
the neutron energy in the channel is given by

- G(x)sm<p,-sinhtp2
(4.10)

where

G(x) = {[px(x<x2)/px(x>x2)] + [px(x>x2)/-

px(x<x2)]}/2 ,

and

X+d

t

, p2 = j \рх\йх/ПPi

are real functions. Passing to the limit as x ->x2, we find that

G(x2) = 0, |cos?vcosh<p2|<l.

Since the maximum value is

for all possible parameters (which corresponds to highly
transparent barriers between channels and the absence of
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levels of bound motion in the channel), we find that (4.10) is
satisfied if [(kd + 2nn)2 - Я ]

лг

p x dx>

Since the potential curve is symmetric, we find that the last
condition is satisfied only when \x2 — *,|><f/2. It is clear
that this is possible only for the energy of transverse motion
that lies above the middle of the potential, i.e., for F>0 in
Fig. 6. Motion with F<0 corresponds to zero transmission
and is forbidden. In the case of motion above the barrier, for
which <p2 = i\q>2\, G(x2) = 1, condition (4.10) assumes the
form of the identity relation \cos((pi + \<p2\) | < 1 which cor-
responds to the absence of forbidden bands and states in the
quasiclassical approximation.

For <p™*^\, which corresponds to narrow channels
and moderate-energy neutrons, the state of a neutron in the
lattice is delocalized and corresponds to the geometric optics
of a plane-layered medium with a variable refractive index.
For light paramagnetic atoms, the well depth rises rapidly
and may reach a few electron volts for fast particles. In such
cases, <f 7" > 1 and the number of discrete levels in pure
channeled (localized) motion is determined by the number
of nodes of the dispersion relation given by (4.10). The same
result is obtained for very high energy neutrons in wide
channels. Estimates show that, for paramagnetic atoms, the
first discrete levels appear in the channel for longitudinal
velocity v г 106 cm/s and the number of such levels reaches a
few dozen for u~ 109 cm/s. The precise threshold energies
and the number of levels are simpler to determine from the
numerical calculations presented below.

The characteristic angle for near near-barrier motion
(i.e., for transverse energy equal to the barrier height) in the
case of neutrons and the limiting channeling angle (Lind-
hard angle) for paramagnetic atoms is given by

00 = [4V^ax/(p2/2m) ]1/2 = 4(3ifiZerj0/S0mcv)l/2, (4.11)

where rj0~Q.3-Q.l is the relative depth of the potential well
relative to the 'frozen' lattice for all possible values of R and
u,

The reduction in the angle given by (4.11) with increas-
ing longitudinal velocity is due to the more rapid rise in lon-
gitudinal energy as compared with the linear increase in the
well depth and barrier height. It is useful to note that the
reduction in the angle 00, described by 00~ l/v1'2, with in-
creasing velocity in the case of magnetic channeling, which
is slower than the Coulomb channeling of heavy particles,
for which в0 ~ \/v, is found to bring the values of this param-
eter for the two types of channeling closer together; it also
means that magnetic effects have to be taken into account in
the channeling of paramagnetic ions. For the above param-
eter values we have 6?0~3'-5' for u;s4x 106 cm/s, E0^\0
eV and 6>0;= 15"-20" for v к 109 cm/s, £0~ 1 MeV in the case
of neutrons, whereas 00~0.5-1° and в0^У-5' for the same
velocities in the case of light paramagnetic atoms. The spec-
tral problem is solved by numerical methods in Ref. 40 for
the channeling of neutrons and other particles having a mag-
netic moment in a nonmagnetic lattice. The energy spectrum
was determined by a pseudospectral method for the follow-
ing set of equations that are equivalent to the original Schro-
dinger equation:

(4.12)

where Ф„ and Vn _ s are the coefficients in the Fourier expan-
sion of the wave function and the dimensionless potential
V(x) = V0(x)2m/fi2d2, in which k is the quasimomentum
of the particles and Л = 2mEL/ffd2 gives the energy levels
in the channel in dimensionless units. The solution was
sought using N=64 eigenwaves and a variable-step grid.
Figure 8 shows the structure of the energy spectrum in units
of the potential Fmax(x) = Fmax.

Analysis of the^band structure shows that the dimen-
sionless amplitude Fmax is the dominant parameter that, in
the final analysis, determines all the features of directed mo-
tion. The transverse motion is completely delocalized for
small Fmax < 1 (which corresponds to low longitudinal ve-
locities or small particle magnetic moments). The first
bound state (i.e., purely channeled motion) occurs for
Fmax^10. As the potential increases to Fmax~100, the
number of quasidiscrete levels (or, more precisely, bands of
allowed motion), increases to 3, and the correspondence
principle ensures that the problem has an equivalent classi-
cal solution for Fmax > 103.

4.4. Relative efficacy of the neutron-nucleus (optical) and
coherent Schwinger (electromagnetic) interaction of a
neutron and a crystal plane

We noted above that the neutron-nucleus interaction is
described by the Fermi quasipotential V(r) = 2irt?bS(r
— rn)/m, where b is the neutron-nucleus scattering length

and т is the neutron mass. When this potential is averaged
over the area S0 of the unit cell in the channeling plane and
over the thermal oscillations of the lattice, we obtain the
average neutron-nucleus potential of a crystal plane in the
form

Vs = (V2Jtft b/muS0) exp(—x2/2«2). (4.13)

In contrast to the channeling of charged particles, for which
the type of incident particle uniquely determines the type of
the potential (well or barrier) and the character of the inter-
action (attraction, as for electrons, or repulsion, as for pro-
tons and positrons), both attraction (for b <0) and repul-
sion (for b > 0) is possible in this case for the same particles
(neutrons). The potential Vs is usually small.

For example, for typical parameter values и^0.1-0.2
A, Si,s 10-15 cm2, |6|~10-12cm,wehaveF;™x~l(r6eV.

It is clear that this potential cannot ensure the localized mo-

740 Sov. Phys. Usp. 35 (9), September 1992

FIG. 8. Band structure of the spectrum of channeled neutral particles.

V. I. Vysotskif and R. N. Kuz'min 740



tion of the neutron, which will be delocalized but ordered
(quasichanneling).

The moving particle experiences the coherent
Schwinger interaction in addition to the neutron-nucleus
interaction. It was shown above [see (4.3)] that V(x)~v.
At low neutron energies E<E0, we have F™x > ̂ max-

The characteristic energy E0 is determined by the con-
dition F™ax > Fmax and is given by

= [(ft 2bc/iiftZe)2/nm ] ехр(и2/Л2). (4.14)

At low neutron energies (for example, for ultracold neu-
trons), F™ax> Praax. In the opposite case of fast neutrons
with E>E0, we have Fs

m a x<^m a x- In particular, when
E = 10 MeV, we have Fmax~ 103 V™\

For Z^30, и^ОЛ-0.2 А Л -0.2-0.3 A, we find that
£•„;=; 1 00 eV.

The resultant potential for the neutron-crystal interac-
tion is determined by both mechanisms. The final total po-
tential is then asymmetric (especially for E~E0}.

There are several points that can be made in connection
with the energy structure of the scattering length b. It is well
known (see, for example, Refs. 1 and 2) that

A =* *0 + (Tn(E)/ [2k (E-En + i Г) ]} ,

where b0 = R0, R0 is the radius of the scattering nucleus.
Г„ (E) and Г are the neutron and total widths of the reso-
nance with energy En ( Refs. 1 and 2 ) , and k — ( ImE ) ' ' V#
is the wave number of the moving neutron. Since
Гп(Е)~Е112, the second term in the expression for b is
described by the Breit-Wigner resonance

where E is the neutron energy.
For most nuclei, neutron resonances lie in the range En

= 10-100 keV. For thermal and slow neutrons with E<g.En,
the second (dispersive) term in b is insignificant, and b^b0.
It is precisely this result that was used in the above calcula-
tions. The influence of the dispersive term becomes apparent
only in the neighborhood of the resonance with E~En ^E0,
but the attendant very strong absorption makes channeling
very difficult to observe. Moreover, when £>£„, the main
effect is the coherent Schwinger interaction, which makes
the contribution of b relatively unimportant.

5. MECHANISM AND THEORY OF INDUCED-DISPERSIVE
CHANNELING OF NEUTRAL PARTICLES WITH INTERNAL
ELECTROMAGNETIC RESONANCES

5.1 . Particles with a resonant structure in a longitudinally
periodic potential

In addition to the above neutral-particle channeling
rr ichanisms, which rely on nuclear forces or the magnetic
moment of the particles, there is one further mechanism of
ordered focusing and confinement to a channel that is due to
the internal energy spectrum of the particles. The ordering
force is due to the steady interaction between the alternating
magnetic moment induced by the periodic interaction and
the periodic (alternating in the rest frame of the moving
particle) field of the lattice potential that induces this mag-
netic moment.

Specifically, the mechanism is as follows. The excita-
tion of the atom is possible if the transition frequency u>k,

between levels Ek and E, of the moving atom or other parti-
cle is close to one of the frequencies of the external distur-
bance (these are the frequencies of 'collision' with periodi-
cially distributed lattice atoms) con = 2mrv/d, where
n — 1,2,3,..., и is the velocity of an atom and dis the longitu-
dinal lattice period. This effect was first discussed in Refs.
41-43 and, in greater detail, in Ref. 44.

However, in addition to the trivial excitation of internal
degrees of freedom of the atom there is a further previously
unnoticed effect. The point is that the periodic field of the
lattice induces in the atom an electric moment p = aE (in a
magnetic lattice, there is also a magnetic moment), which
interacts with the lattice field E that induces the moment.
Since the moment varies in step with the field, the interac-
tion continues throughout the entire motion. The interac-
tion depends in a complicated way on the ratio u>kl/can , the
transverse structure of the field E(r± ) of the lattice within
the cross section of the channel, and the relaxation param-
eters of the moving atom. The possibility of this induced-
dispersive interaction ( IDI ) was first noted and estimated in
Ref. 45, and in greater detail in Ref. 46.

We now turn to the quantitative consideration of the
IDI potential, assuming that we are dealing with a two-level
atom. Since the particle size can be of the same order as the
lattice constants and the size of the lattice atoms, we have, in
general, a nondipole interaction.

We shall perform the analysis in the frame coupled to
the longitudinal motion of the particle. Consider first the
case of planar channeling. Suppose that the y,z plane is a
crystal plane. The motion of a particle in the^field^due to^the
lattice is described by the Hamiltonian H = H0 + V in
which //„ characterizes the internal state of the particle and
V describes the interaction with the lattice. The latter opera-
tor can be expanded in terms of the two-dimensional recipro-
cal-lattice vectors g = {2irny/ay,2irnz/az} averaged over
the thermal oscillations of lattice atoms at the points rn :

V(R; r,,...,rz; /) = £ Vg exp(KOgf)
g

ОЭ

= (2тги2)-3/2 Jexp(-/-2/2u2) 2, l^*(!r/ - r -- г„1)
-oo n

z

- ]Г еФ( I r, - г - г„ I ) ] dr = (л ZocVi }

-f (u2/2a2)}

x ]T {Zexp[.xyg(-iy']erfc((«vg/vT)+
У=о

exp [ig ̂  H- *, y(- 1 /Y2)

(5.1)

where ay ,az are the atomic lattice constants in the plane of
channeling, ny, nz are nonnegative integers, R = {x,0,0}
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and r, = {x/, p,} are, respectively, the coordinates of the nu-
cleus with charge Ze and the /th electron in the moving
atom, S is the area per atom in the plane of channeling, и is
the amplitude of thermal oscillations, and yg

The expression given by (5.1) was evaluated for the
screened Coulomb potential <p(r) = (ZQe/r) exp( — г/а)
in which a = 0.885ao/(Z2/3 + Z2/3)173 is the screening ra-
dius and a0 = ft/me2. The contribution of the magnetic
Schwinger-type interaction can be neglected in H since the
vector potential is smaller than the scalar potential by the
factor c/y> 1.

It is clear that the main contribution to the IDI is pro-
vided by the resonant components of the expansion given by
(5.1) for which the frequency &>g =<y is close to the transi-
tion frequency between levels 1 and 2, а)12=а>0, and also the
zeroth (steady) component that corresponds to g = 0.

Since the result of the resonant coherent interaction is
that the atom is found in a mixed state, the atom-lattice
interaction potential must be found from the equation for the
density matrix

T>g exp(toO,p} - i0 0 g g , , 0 = Fg=0. (5.2)

Relaxation processes in this system are described by the phe-
nomenologically introduced matrix

(5.3)

where Tl and T2 are the longitudinal and transverse relaxa-
tion time constants, the relaxation process being described
for the two-level system by the rate co2i of the transitions
between states 1 and 2 under the noncoherent influence of
the lattice, the rate Л of 2-> 1 spontaneous transitions, and
the rates /r, and /c2 of phase relaxation of both levels:

1/Г, = 2w2l +A=y, 1/T2 =

In the absence of the external disturbance (yg =0), the
equilibrium level populations are given by

P?i = ("21 + ̂ )/(2w21 + A), />$ = w2,/(2w21 + A).

The evaluation of wl,xl,x2^ will be considered below. The
component form of the operator equation (5.2) is

dt = [(^12Р21-

dt

where

- Г>21, (5.4)

s HQ(x) exp(-icot), Vn >22 = (F0)n >22.

Substituting Дя> = а — a0, а = ( F22 — Fn )/fi and
p ( t ) = pn — p22,p0(t) =рг\ ехр(йя), we find from (5.4)
that

These equations for the three real functions Imp0, Re p0, p
determine the evolution of the two-level system in the crystal
field that acts both as a thermostat and a perturbation. The
final form of the potential representing the interaction be-
tween an atom and a crystal plane is

2

V(x,t) = Sp (Vp) = ]T Vypj, = (Vn(x) + V22(x))/2

ij=i
() + 2Ш Ref>0(x,t). (5.5)

From now on, the potential V(x,t ) and the associated chan-
neling process must be analyzed for a particular particle
(atom). We also note that the choice of the necessary kine-
matic parameters of the particle (velocity and direction)
that ensure a given bounce frequency vg can be substantially
simplified by using the concept, developed in the articles of
Ref. 47 on dynamic chaos, a crystal plane as a set of crystal
axes.

S.ZProperties of induced-dispersive channeling of mesic
atoms

Since the usual type of directed motion of atoms in crys-
tals gives rise to considerable difficulties, and is relatively
ineffective (because of very considerable retardation, scat-
tering, excitation, and ionization), we shall analyze the con-
ditions for IDI in the case of mesic atoms that are relatively
small and very stable. To be specific, we shall examine the
motion of these particles in the field due to the (100) plane of
crystalline LiH. Motion with velocity v under the influence
of the g-component of the perturbation is accompanied by
transitions between the muon energy levels, given by

- = 40 -YP ~ iup.fi = Aw - a.

in which b0 = a0me /m^ , mM is the muon mass and в is the
angle to the x-axis.

The first two terms in the potential given by (5.5) de-
pend on Fu, F22 and describe the purely electrostatic inter-
action between the spatially distributed electric charge of the
neutral mesic atom (localized nucleus and meson space-
charge 'smeared out' with density е|Ф1/2 (г0)]2) and the
average and transversely inhomogeneous electric field due
to the crystal plane. It is clear that, as the effective charge of
the moving atom tends to zero ( b0 -» 0 ) , we have Vll,V22^0,
independently of whether the atom has a static or only an
induced moment. The case of the mesic atom corresponds to
the very small value b0^.2.5x 10~u cm. Simple estimates
based on the obvious relations F™aJ2 < eb^Ex V0b0/a0 lead
to the result F™aJ2 < 10~3 eV, which is identical with the
very unwieldy result of direct calculations reported in Ref.
46. The amplitude of the third term in the potential given by
(5.5), which is due to the pure induced interaction and is
determined by V,2, is calculated in Ref. 46 and is shown to be
up to 0. 1 eV. These numerical results show that we can ne-
glect the elements F, ,, F22 for the mesic atom.

Before we can proceed, we have to know the relaxation
parameters.

The radiationless relaxation rate w2\ is determined by
the interaction between the mesic atom and the nonresonant
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(random) components of the static lattice field transformed
to the moving frame and acting as a thermostat. To calculate
wl2, we must first determine the transition probability for
the muon in the mesic atom under the influence of a single
atom on the crystal plane travelling past the mesic atom, and
then evaluate the average over all the atoms in the plane. If
the position of the perturbing lattice atom at time t is defined
by the position vector R0 = {0, y,vt}, the energy of interac-
tion between the mesic atom and the lattice atom is

= -[Z0e
2/\'R0-'R-T0\

-(Z0e
2/\R0 - R\) {1 4- XX() -R\]}

where

I R 0 - R I = [x2 + y2 + ( v f ) 2 ] l / 2 .

In accordance with first-order time-dependent pertur-
bation theory, the total transition probability is given by

If we now evaluate the average over y, and take into account
the time аг /v spent by a particle in traversing the unit cell,
we find that the incoherent transition probability per unit
time is

(5.6)

The transverse relaxation time T2 is expressed in terms
of the probability of dephasing of the ground and excitated
states Ф1>2 by the moving mesic atom. The method used to
analyze this dephasing can be related to the variable-fre-
quency oscillator model.

A particle flying past a lattice atom gives rise to a time-
dependent perturbation. In accordance with the approach
first proposed by Lenz and Weisskopf,48 this perturbation
shifts the energy levels of the incident particle which subse-
quently (after the flypast) return to their original positions.
This shift is accompanied by the following increment on the
wave function (in addition to the usual Ej 2 t/fi)

Successive random interactions of this kind result in random
phase fluctuations that lead to a reduction, and then total
destruction, of the coherence of the states. In accordance
with general theory (see, for example, Ref. 48), the dephas-
ing process can be described quantitatively by introducing
an effective collision cross section cr(rj) whose form we shall
now determine.

The dephasing process is characterized by the correla-
tion function

B(r) s <ехр(-й;(0) exp (»;(/ + r))) = <ехр(в7(т))).

The equation for В (т) can be found by the Anderson meth-
od described in Ref. 48.

This is done by constructing the difference

В(т + Дт) -В(т) = ДЯ(т) whose explicit form has the
structure

АВ(т) = <exp(»7(T)) exp («?(Ar))> - (ехр(^(т))>.

Since the dephasing process is obviously ergodic and Marko-
vian, we finally have

ДВ(т) = -B\(\ - ехр(-Й7(Дг))>].

The moment <1 — exp( — /7/(Дг))} can be calculated by
averaging the phase term ( 1 — exp( — irj)) over the possi-
ble coordinates of all the thermally oscillating atoms in the
crystal plane that fly past the mesic atom (in its rest frame)
in time Дт:

<1-ехр(-п;))==Дт-б(х))

e(x)=v{n)ax

0 0

x exp {- lx - (p/cos f>) ]

where x is the distance from the plane, (n) = l/Sax is the
average concentration of the atoms of the crystal, and ax is
the separation between planes. The final result is the differ-
ence equation Д5= — ДтД0(х) which, for Дт-»0, be-
comes a difference equation with the solution
B = e\p[- «9' + /<?"]•

The quantity 0 ' = (и ) wr, expressed in terms of the colli-
sion cross section

и) J dtp j pdp(l — cosa =

Xexp {- [x - OQ/COS <p) ]2/2u2},

specifies the required coherent-state dephasing time for the
mesic atom and determines the parameters of the correlation
matrix

1,2 Vffl,2(ll,2)/Sax- (5.7)

The rigorous but much more complicated expressions for
w2i (5.6),/c, 2 (5.7), and the spontaneous transition proba-
bility A = (2e/3)s/bafi

4c3xl.3XlOu s~l can be found in
Ref. 46. The resulting parameter set enables us to analyze the
structure of the potential well (5.5) and the motion of the
mesic atom.

The resonance condition con =2irnv/az ^(О2\=(о0 for
«2,^5X Ю18 s"1 and the specific longitudinal period az is
satisfied for v^6x 109 cm/s which corresponds to mesic-
atom energy of about 25 MeV.

If we use the dechanneling length Azd ~ 1-30/zm that is
determined below and satisfies the relation 7<u/Azd <Г,
we find from (5.5) that the potential assumes the following
quasistationary form over the entire stable part of the trajec-
tory v/Г <z< Azd:

V(X):
4AQ*

4QT + у(Г2

'* -J_ A * ч.-1

Леи2)
Т ft.

+ C2)

(5.8)

where Я, Д2Д3 are the roots of the characteristic equation of
(5.4):
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Я3 + С^2 + С„А + С0 = О,

in which

CQ = Г2у + 4Й2Г + 02у, Cv = 2Гу + Г2 + 4Q2 + ft2,

С0 = 2Г + у.

Figure 9 shows the form of the induced-dispersive po-
tential calculated from (5.8) for the interaction of a mesic
atom and two crystal planes for the two symmetric values of
detuning Ли) = ± <u21/5. In the first case ( Д« > 0), the po-
tential well that ensures stable directed motion lies next to
the crystal plane. Because of the considerable analogy with
the structure of the potential well for negatively charged par-
ticles, we shall refer to it as the ID" potential. Similarly,
ID+ will represent the potential corresponding to Аю<0.
We must now determine the quantitative characteristics of
the channeling of mesic atoms.

If we approximate any of the ID~ potential wells by the
function

where а' -'г 1.47 eV/A2, ^'^ к 1.08 eV/A3 and x0 is the
position of the minimum, we find that this kind of well con-
tains the single bound state

with energy E(

0 ~ > = H^a(~^/2M ^ — 0.04 eV where M is
the mass of the mesic atom. The probability that this level
will be populated by a particle incident at angle в = 0 is
PO ~ ' ~0- 14. Since there are two such wells in the space be-
tween the two planes, the total probability is twice this.

The ID+ potential contains in each period two wells of
equal depth, but different width. The wider well can be ap-
proximated by the parabola

and the narrower one by

^0.09 eV, / j « 0 , l A ,

and, in this case, we find that each well contains only one
quantum state

41+> ^0.05 eV, w(,1+> = exp[-!2/2 (/<+>)2]

where / ( + >= [Я(2а(+)Л/)ш]1/2

2/Й 2) + (1/4) ]1/2 - (1/2) * 0,36.

The probabilities that these levels will be populated are46

0.33 and 0.1 8.
The dechanneling length for these states, calculated

from quantum theory,49 is z^1 + );s30 /j,m, z^2+)~z^~'

It is readily shown that the retardation of the particle
during its directed motion does not lead to a significant
change in the chosen detuning for either ID + or ID ~~ poten-
tials. The 'detuning length' zp can be estimated, starting with
the condition for equal frequency shift of the resonance by
the retardation

<5w(zp) = u>08v (zp)/c = Zp# cos (P0(-de/dz)e /Me

and the average width of the resonant transition

(Г) = J Г(г) ! % (x) \ 2dx « 1016 s- '.

FIG. 9. Potential energy and allowed energy levels in induced-dispersive
channeling of neutral atoms of muonium for Д<и > 0 (У { + \ EQ + ') (a) and
Д<у<0 (V(~\Ea~}) (b).pt(x) is the normalized average electron den-
sity of the lattice atoms on (100) planes.

It is clear that, in specimens of length z<zp, the shift is
'masked' by the line width and does not affect the resonance
characteristics. The condition 8<o(zp) = (Г) then yields
zp ~ 70-700 /xm, so that zd < zp and the shift of the resonance
is of little significance throughout the entire path of directed
motion z<zrf .

We note that longitudinal velocity (and energy) neces-
sary for resonance can be substantially reduced by using the
higher harmonics of the bounce frequency &>„ = 2тгм/аг or
by exploiting the transitions between the sublevels that are
produced by splitting of the Is state in the external magnetic
field and are associated with the different orientations of the
muon spin.

6. EXPERIMENTS ON SMALL-ANGLE DIRECTION MOTION OF
NEUTRAL PARTICLES AND PHOTONS

There have been several experimental studies50"52 of the
channeling of fast neutrons and hard ^rays50 as well as soft x
rays.51 The most convincing experimental results that, to a
large extent, confirm the possibility of channeling of fast
(2.5 MeV) neutrons and, to a lesser extent, hard photons
with energies of about 3 MeV, were reported in Ref. 50. The
measurements were performed in the horizontal channel of
the VVR-M reactor of the Institute for Nuclear Research of
the Ukrainian Academy of Sciences.

The incident neutron beam and its small divergence
were defined by normalized-steel collimators, 2 m long, with
a channel of 3 X 3 mm2. A suitably oriented germanium sin-
gle crystal ( mosaicity less than 40" ) in the form of a cylinder
56 mm in diameter and 20 mm tall, was mounted on a goni-
ometer head between the collimators. Figure 10 shows the
measured angular distribution of the fast-neutron transmis-
sion factor close to the [HO] direction. Because there are no
theoretical calculations of small-angle motion of neutral
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FIG. 10. Fast-neutron counting rate as a function of the angle of
rotation of the Ga single crystal relative to the beam. The angle в is
measured from the [ 110] direction (marked by the arrow).
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particles near the axis, these experimental results are diffi-
cult to interpret from the point of view of channeling (the
theoretical basis for this experiment was the assumption of
coherent single scattering by one or a few chains36-37 which is
valid for short channels), although the main features of the
angular distribution can be explained in terms of the theory,
developed in Section 4, of planar channeling due to the co-
herent Schwinger interaction.

The same apparatus was used to investigate small-angle
near-axis motion of hard у rays accompanying the emission
of fast neutrons from the reactor pile. The angular distribu-
tion obtained for у rays near the [ ИО] axis is shown in Fig.
11. In contrast to the neutron channel, there is a well-defined
peak with relative amplitude of 2% near the axis. Unfortu-
nately, this result cannot be unambiguously interpreted as a
direct demonstration of channeling because of the lack of
theoretical results on the axial channeling (more precisely,
quasichanneling) of photons. Direct application to this
problem of the theory of planar channeling developed in Sec-
tion 2 yields a possible peak with a relative amplitude of
0.5%. Nevertheless, it is clear that this discrepancy by a
factor of 4 is not too large and can be explained by the theory
of axial quasichanneling. We note that our own interpreta-
tion50 of the peak as the result of diffraction during strictly
axial motion is somewhat unconvincing. First, diffraction
should occur well outside the half-width of the transmission
peak. Second, diffraction can be accompanied not only by a

4450
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4300

4250

4200

40 SO 70 80 Г

FIG. 11. r-ray counting rate for fua < 3 MeV under the same conditions as
in Fig. 10.

reduction in the intensity of the direct beam due to the trans-
fer of energy to the Bragg peak, but it may also be enhanced
by the two-wave anomalous transmission effect (Bormann
effect). It is likely that an unequivocal interpretation will
have to await the advent of the necessary theory.

It would be desirable to formulate experiments with ge-
ometry allowing adequate interpretation within the frame-
work of existing theory.

7. CONCLUSION

Our review shows that although the interaction be-
tween neutral particles and photons on the one hand and the
regularly distributed atoms on crystal planes and axes on the
other is clearly weak, there are several sufficiently effective
mechanisms capable of ensuring strongly coupled directed
motion such as channeling, or the more loosely coupled qua-
sichanneling, with obvious experimental consequences.

The typical situation is that of only one (occasionally
two or three) energy levels in the interplanar (axial) chan-
nel or a narrow channel of width of the order of 1 nm or less.
In the transverse direction, the particle (photon) can be-
come localized in a region significantly larger than the chan-
nel diameter, which leads to small quantitative differences
between the final beam-transport characteristics during
channeling and during undirected motion.

All this imposes much greater (as compared with
charged particles) demands on the incident-beam collima-
tion and—most importantly—on the statistics of the asso-
ciated experimental data. There are also cases in which a
small change in the transverse structure of the wave function
(with or without channelling) can lead to large final differ-
ences (for example, in the channeling of resonance and slow
neutrons in a multi-atom lattice containing an alternation of
nuclei with strong and weak absorption). Moreover the very
nature of channeled motion enables us to formulate experi-
ments with new, nontraditional geometries. An example is
provided by the possibility that channeled photons could be
identified by the presence of a diffraction peak in a direction
differing from the usual Bragg.

We note that we have not covered in this review the
exceedingly weak ordering effects that cannot give rise to the
observed phenomena (for example, effects due to strong and
weak interactions, the higher-order multipole moments of
the neutron that tend to push it toward regions of high lat-
tice-field gradients, the susceptibility anomalies in the scat-
tering of у rays with energies close to the electron-positron
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pair production threshold, and so on).
Further studies of channeling and new applications of

the phenomenon would benefit from experiments on planar
channeling of neutrons by the coherent Schwinger mecha-
nism at high energies and the 'optical' Fermi interaction at
low energies. The most promising systems for induced-dis-
persive channeling include zeolite crystals in which micro-
voids periodically interrupt the microchannels and can act
as a trajectory-shaping periodic disturbance. It is clear that
the channeling of hydrogen atoms is possible in such struc-
tures. In all cases, it is desirable to use more highly collimat-
ed beams with divergence at the very least smaller than the
Lindhard angle.

It seems to us that by satisfying the entire set of optimiz-
ing conditions it will be possible to develop practical applica-
tions of the channeling of neutral particles and photons in
structure analysis and in focusing, transport, and control of
neutral beams, including beam rotation by slightly curved
crystals.
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