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The article discusses a new branch of the theory of disorder: the origin, stability and diagnostics of
deterministic spatial chaos, i.e., the disorder that can be generated by a dynamical system.
Problems are posed, some of which are solved.

Literal translation: "Take care of order,
And disorder will take care of itself

(A piece of advice for everyday use)

1. ON THE SUBJECT OF THE ARTICLE2'
When speaking about "disorder" even physicists have

quite different associations in their minds. Some think of
disordered arrangement of molecules of gas or liquid at an
arbitrary moment of time, others, for example specialists in
solid state physics, recall long-range order in magnetic do-
mains, spin orientation, and so on. Being a complex, irregu-
lar distribution of different elements (or structures) in
space, disorder is a quite traditional object of investigation
that has been analysed by employing, in particular methods
of statistical phsyics. We can refer our reader, for example,
to the monographs of Refs. 1,2,3,4 including J. M. Ziman's
brilliant book "Models of Disorder." The author of this
book considers in terms of theoretical physics not only mod-
els for disordered crystal and nearly crystal structures but
also solid-liquid and liquid-gas transitions and many other
problems.

What we are planning to consider in this paper is, to a
certain extent, a new branch of the theory of disorder. We
are making attempts to describe irregular spatial field distri-
butions, for instance, the distribution of electron density in
crystals or density distribution in galaxies in terms of nonlin-
ear dynamics. We are trying to understand whether spatially
irregular distributions of physically meaningful fields may
have a dynamical origin, in other words, whether there exist
irregular distributions that can be described within dynami-
cal models, for example, partial differential equations or a
little more specific equations for dynamical systems with
several "times" (here spatial coordinates stand for the
"times").

Even the simplest spatio-temporal analogy shows that
"finite-dimensional disorder," i.e., irregular spatial field dis-
tribution described by a dynamical system possessing a finite
number of degrees of freedom must exist in Nature (and it
must be no less typical than finite-dimensional temporal
chaos). We can give many examples, in particular, station-
ary chaotic waves that are observed in different situations.5'6

There arises a natural impulse to use results known from the
theory of dynamical (temporal) chaos for the description of
spatial dynamical disorder. This is trivial to a certain extent

if we are concerned with one spatial coordinate and a static
(or steady-state) regime. However, even in the case of one-
dimensional disorder there arise very difficult questions.
The main one is: Is such a finite-dimensional disorder evolu-
tionary, i.e., does disorder evolve (in time) out of order re-
maining, at the same time, deterministic? When we think
about two-dimensional, the more so about three-dimension-
al disorder of dynamical origin qualitatively new problems
arise.

A pictorial example of how the difficulties are building
up in a multidimensional geometry is the transition to chaos
(or disorder) through quasiperiodicity. The "commensura-
bility-incommensurability (quasiperiodicity)-chaos" tran-
sition is well known within one-dimensional differential
equations. Is such a sequence possible with the variation of
the governing parameter for a two- or three-dimensional
field? What kind of dynamical system may describe such
disorder? We have no definite answer to this question. How-
ever, such a transition is highly probable. The more so that
its first stage—the "crystal-quasicrystal" transition—is
currently being widely discussed.

It is well known that the main requirement on the dy-
namics that results in stochasticity is the instability of indi-
vidual motions. A similar property must also be the basis for
the description of spatial disorder. In order to formalize this
property we must as a minimum introduce for the descrip-
tion of the space series notions such as dynamical system,
phase space, trajectories, and the distance between them.
Then irregular spatial patterns, that are also referred to as
snapshots, will be described by notions such as stochastic
set, correlation dimension, Kolmogorov entropy, ergodicity
and others. We hope that this approach may help us under-
stand the difference between complete disorder that is usual-
ly considered in thermal dynamics and finite-dimensional
disorder. The definition of the term "finite-dimensional dis-
order" will be given below.

We would add to it that, physically, the formation of
finite-dimensional disorder may be interpreted as emergence
of irregular structures. This results from the breaking of the
symmetry of the initial state, as in the case of ordered struc-
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tures. Such a symmetry breaking is possible both in strongly
nonequilibrium media (e.g., hydrodynamic flows, autocata-
lytic chemical reactions, etc.) and in systems with thermo-
dynamic equilibrium (e.g., disorder of atoms in crystals, of
magnetic domains in ferromagnetics, of molecular axes in
liquid crystals, etc.). When we speak about disorder that is
established as f-> oo, then both equilibrium and nonequilib-
rium media must be described by the same models. In this
sense, disorder may be classified according to Ziman (see
Fig. 1).

Most of the problems related to dynamical disorder
have as yet no rigorous mathematical formulation. There-
fore the aim of our article is to outline and formulate particu-
larly attractive and promising problems as well as to bring
together various examples that look optimistic.

Now a few words about the architecture of the paper.
The problem of finite-dimensional disorder consists of three
fundamental aspects. The first one: What is the reason for
disorder of this type to be realized in nature? The second
problem are methods for the description of finite-dimension-
al disorder. And, finally, the third problem is the "identifica-
tion" of dynamical disorder. Imagine that we have a definite
spatial picture: a snapshot of the field or density distribution
of molecules on a polymer film. How shall we find out
whether this picture is generated by a dynamical system and
which equations may be used for its description? In order to
answer the latter question it appears promising to generalize
the approach proposed by Takens and other researchers for
the treatment of the corresponding series, in our case space
series, in terms of nonlinear dynamics. For this purpose we
must, in particular, introduce the notions of the correlation

FIG. 1. a—Lattice order, b—Disorder of structures (topological disor-
der), с—Continuous disorder.

dimension of the space series, embedding space, Lyapunov
exponents, etc.

At present, it is still difficult to realize the proposed
program completely, however we will attempt to answer
these questions making the most of the knowledge we have
today.

2.QUASICRYSTALS

We all have become accustomed to extremes: when
speaking about order we inevitably think about a crystal and
complete periodicity, while disorder is identified with a
chaotic picture that allows only a statistical description.
Therefore the discovery of quasicrystals in the middle of the
eighties7'8 was so unexpected and chalknging. A typical fea-
ture of these media is the presence of several incommensu-
rate harmonics in the spectrum of Bragg scattering, which is
indicative of a quasiperiodic spatial structure. Analogous
spatial pictures are also realized in some wave systems.9

Strictly speaking, these are, of course, ordered media, but
order is rather unusual here. In particular, the spatial length
after which the picture repeats itself may be so large that
externally this medium looks very much like a disordered
one.2'

It is expedient to recall here the well-known Landau-
Hopf model of turbulence within which the turbulence (at
least near its excitation threshold) is a quasiperiodic motion
with a large number of degrees of freedom, i.e., a quasiperio-
dic "winding" on a multidimensional torus.10'11

No significant difficulties occur when we have one spa-
tial coordinate. We take a combination of two periodic struc-
tures and represent the field as a set of harmonics with in-
commensurate spatial periods. However, when we pass over
to a two-dimensional problem there arise some serious ques-
tions: What will the cells of the periodic structure having
such a discrete spectrum look like? In other words, how can
one fill the plane, leaving no "holes" and preserving the
spectrum as a set of a few incommensurate vectors? This
question is quite nontrivial in terms of topology.

Figure 2 depicts a two-dimensional quasicrystal struc-
ture—Penrose tiling.8 It possesses certain properties of or-
der. Here, in particular, you may observe arbitrarily large
fragments with fifth-order symmetry. It is also evident that
this is a quasiperiodic structure: arbitrarily large portions of
the structure are repeated at rather large distances in any
direction. Note, finally, that this pattern possesses scaling
symmetry: changing the scale by д-= (л/5~ + l)/2 times
(golden section) in the neighborhood of each structure we
will be able to find a structure of the same shape but with the
scale increased x times (cf. the boldface stars in Fig. 2). The
symmetry properties enumerated above can be found for ar-
bitrary large spatial scales.

The existence of a quasicrystal is a precursor of dynami-
cal (finite-dimensional) disorder. Actually, open "windings
on a torus" in the phase space of a dynamical system are, as a
rule, structurally unstable and the topology of the trajector-
ies changes qualitatively with arbitrarily small parameter
variations. Either a periodic (closed) trajectory or a sto-
chastic set is formed. Spatio-temporal analogy indicates that
the first case corresponds to a "crystal" while the second
one, to spatial disorder.

It is only natural to suppose that there exist, between
complete order and absolute disorder, numerous states of
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FIG. 2. Penrose tiling: a—location of atoms in a two-
dimensional quasicrystal; b—example of self-similar
structures.

medium or field possessing different degrees of order. Such a
finite-dimensional disorder must be quite typical. Imagine
that we have a governing parameter, for instance, the ampli-
tude of external spatially periodic field. If this parameter is
increased, then it is very likely that the transition from quasi-
periodicity to finite-dimensional spatial disorder will occur,
as in a one-dimensional case, because the open winding on
the torus may break in a certain phase space.

No attempts have been made to solve such a two-dimen-
sional problem, moreover no one has even formulated it yet.
We believe that this problem of the generation of spatial dis-
order with an increase of the governing parameter will be
solved in the near future, although, of course, it will need
subtle mathematical notions when we pass over to two- or
three-dimensional space. For example, it is necessary to in-
troduce the notion of an open winding on a torus in some
matrix space.

We believe that there is a simpler formulation of this
problem. We know that many experiments, for instance on
liquid crystals or in Benard convection, reveal intriguing
pictures of irregularly arranged defects. The defects them-
selves can often be fundamentally non-one-dimensional for
example, "rosette"-like (see Fig. 3) but one can also observe
less complicated, wave-type defects like those shown in Fig.
4. Such deivviS can be analysed within a nearly one-dimen-
sional problem taking a few modes along one coordinate
(e.g. in tbe. case of magnetohydrodynamic convection in a
narrow bawl of a liquid crysta) and considering the second
coordinate to be unbounded. Then we obtain a system of
ordinary differential equations along this unbounded direc-
tion. Following this route one can construct a periodic street
of defects3' from a small number of modes. This was done by
Eckmann and Procaccia12 but it was not dynamical disorder
yet. If we apply a controlled external periodic field (here we
are concerned with an open winding on a torus in conven-
tional (vector) phase space of a system of ordinary differen-
tial equations), we will obtain also spatial disorder of such
defects. The picture obtained in this fashion looks very much
like a two-dimensional one and resembles the picture ob-
served in experiments on liquid crystals (Fig. 5).

There arises an interesting question: Why are simple
crystal structures with a relatively simple symmetry so often
encountered in the Nature with the decrease of temperature?
Possibly, this is explained by thermal fluctuations that are
substantial in the process of cooling and "force" the system
out of numerous metastable states with a finite but narrow
stability region. If this hypothesis is true, then, with a rather
fast cooling, very different substances may end us in nontri-
vial quasiperiodic or "finite-ordered' states.

3. FINITE-DIMENSIONAL DISORDER. EXAMPLES AND
DEFINITIONS

There are very many attributes to disorder: topological,
continual, thermodynamical, etc. But these adjectives do
not, actually, describe the essence of disorder, its quality,
whether it is true or not.

Let us recall here the evolution of our concepts of tem-
poral randomness. Discovery of the dynamical systems ca-
pable of generating the time series that look like true ran-
domness was accompanied with many sceptical publications
such as "Dynamical chaos—reality or fiction?" or "Can
there exist randomness produced by a simple dynamical sys-

FIG. 3. "Rosette" defect against the background of hexagonal convective
cells.
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FIG. 4. "Wave" defects12 produced by functions of the form: a—cos x-
+ 1.3cosj>-cos (^fL26x)•, b—cos x + cos .y-cos (1.123x + 1.134y), for

ye[ — 8/2,6/2]. (Positive values of the functions are taken.)

tern?" It was asserted that "dynamical chaos is not true cha-
os." There existed a widespread opinion that real random-
ness has the following typical features: there are only
absolutely unpredictable fluctuations i.e., there are no sim-
ple equations and no "laws of behavior." But the dynamical
chaos follows rather simple rules and regularities, so there
can be no true randomness."

Nevertheless, analysis of the time series, referred to as
dynamical chaos, produced by employing definite laws or
rules showed that the process looked absolutely random: de-
caying correlation function, continuous temporal Fourier
spectrum. It was, actually, indistinguishable from a truly
random process, for example, from pictures produced by
shot noise or temperature pulsations in the atmosphere. A
little later new characteristics of random series appeared, the
most important among them being dimensionality (Lya-
punov, Hausdorff or fractal dimensionality).14

It became clear that any random signal that is produced
by following specified rules, i.e., that is generated by a dy-
namical system, has finite dimension. Sinai referred to such
signals as finite-dimensional randomness. While signals that
are generated by fluctuations, i.e., truly random signals,
typically have a very high or even infinite dimensionality. In

this sense white noise has an infinite dimensionality.
Today we can easily remove the scepticism concerning

the origin of dynamical randomness. Experimental results
on hydrodynamic flows,15 on the processing of electrocar-
diograms16 and electroencephalograms14 which appeared
already in the beginning of the eighties showed that the ran-
dom time series observed in experiments often have finite
dimension and, consequently, may be produced by a dynam-
ical system.

For a better understanding of the peculiarities of the
disordered systems under discussion will now compare two
photos presented in Figs. 6 and 7. One of them depicts an
irregular structure produced by an avant-garde painter. The
other photograph shows soap-suds (or, to be more exact,
what we have when washing in a bath with shampoo). Of
course, we could,take many other examples, in particular, a
picture of irregular domains in a thin magnetic garnet film.n

All these pictures are, essentially, a great amount of cells of
different kinds that are distributed, at first sight, absolutely
at random. What is the difference between disorder in the
two pictures? All classical characteristics will be the same
for both photos if we perform a quantitative investigation by
the usual methods of statistical physics for the description of
random fields. In both cases we will have a continuous spa-
tial Fourier spectrum, and the correlation function will de-
crease with distance. Nevertheless, it seems that the first pic-
ture must be close to the so-called speckle-noise18 because in
principle the circles on the canvas may be arranged absolute-
ly at random. This will be true disorder, absolutely "irregu-
lar disorder."

The situation is quite different in the picture of bubbles.
It is very likely that the spatial disorder observed in this case
will have a different quality. Bubble formation follows defi-
nite regularities: they are closely connected with surface ten-
sion, some typical cluster structures are formed, and so on,
the same is true for magnetic domains. Therefore there is
every reason to believe that this disorder will be not com-
pletely irregular. This is an example of what we will define
below more rigorously as finite-dimensional disorder. So as
to make this definition more clear we will start with a spatio-
temporal analogy and assume, for beginning, that the field is
one-dimensional, i.e., it depends on one spatial coordinate.

It is instructive to recall here come peculiarities of the
procedure for the reconstruction of the dynamical system
characterizing a given stochastic series.14'19 To be more ex-
act, we mean here the reconstruction of a model dynamical
system that is capable of generating the observed signal rath-
er than the actual dynamical system that produces this se-
ries.

The reconstruction procedure is as follows. A contin-

FIG. 5. Single "wave" defects observed for electrohydro-
dynamic convection in a liquid crystal.13
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FIG. 6. Example of hand-made disorder (from the canvas
of Mary Bovermeister 1964, The Whitney Museum of
American Art. N.Y.).

uous series u(x) is made discrete by choosing its values at
the points x,•: ut = и (л:,) and then forming from close points
a cluster

U = {u(x.), u(xt + k), u(x. + 2k), ..., u(xf + k(m - 1))},

that determines the coordinates of an /и-dimensional vector
in some space. For convenience, this space will be referred to
as phase space. Then the shift of the cluster along the trajec-
tory (i.e., the variation of the subscript /') will correspond to
the vector drawing in this space a set of points or a trajectory.
Since we assume that the motion is steady in time, we have

FIG. 7. Bubbles in soap-suds.
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no preferential direction, i.e., we may move both along the
increasing or the decreasing лг-coordinate. The same is true
for motion along the trajectory in our phase space.

The procedure for the reconstruction of the trajectory
that is the image of our space series in m-dimensional
"phase" space may have different details. But it should be
emphasized that we reconstruct not the initial but a model
system that gives a correct description only for the one tra-
jectory corresponding to our space series. This will be of
particular importance when we shall proceed to the descrip-
tion of two- and three-dimensional space series. This factor
is often neglected.

If, for instance, we have constructed a system of differ-
ential equations that reproduces an attractor of the same
type and with the same properties as our space series, it does
not at all mean that this sytem will give a correct description
of transition processes. The transition processes in an initial
dynamical system may be absolutely different, moreover,
they may have a quite different dimension and even be infi-
nite-dimensional. A typical example are low-dimensional
hydrodynamic flows in a steady regime. In particular, ex-
periments on the Couette-Taylor turbulent flow or on con-
vection14'13 demonstrated that immediately beyond the
point of onset of turbulence as the characteristic parameter
(the Taylor number or Rayleigh number) increases, the di-
mensionality grows up to the value of order 4—5. However,
the corresponding model dynamical system that can, in prin-
ciple, be reconstructed by the space series describes only the
motion on a certain inertial manifold. We will speak about it
in more detail. It was shown in the Refs. 20 and 21 that an
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infinite-dimensional (functional) space of an initial dynami-
cal system (Navier-Stokes or Ginzburg-Landau equation)
contains an inertial manifold the motion on which is de-
scribed by a finite-dimensional dynamical system. This
manifold may contain a strange attractor and other trajec-
tories. If the observed trajectory belongs to a strange attrac-
tor, then one can reconstruct the dynamical system to the
phase space of which this attractor belongs. This sytem gen-
erates a space series but it gives no information about the
other trajectories of the original infinite-dimensional sys-
tem.

We have already said that a spatio-temporal analogy
holds for one-dimensional random spatial field distribu-
tions. This analogy is undoubtedly true for formal descrip-
tion using the theory of dynamical systems. But many new
physical problems arise here. Indeed, let us take a "random"
function of the x-coordinate whose statistical properties do
not change when — л: is substituted for x. Experiments show
that processing of such a space series gives a stochastic set
with a fractional dimension! How can this happen? The
change of sign of the дг-coordinate does not change the prop-
erties of the space series, consequently, the properties of the
dynamical system generating the space series must not
change either. Such a dynamical system must be reversible
along the coordinate, like a conservative system. Then, the
dimension of the invariant stochastic set of our system may
be some integrals less than the dimension of phase space, but
it must be an integer in any event.

Here we come to a very interesting question. Suppose
we have many snapshots of the space field that depends only
on one coordinate. The snapshots are taken at different mo-
ments of time, like frames of a movie film. There arises a
logical question: do evolutionary mature, i.e., established
static spatial pictures actually differ from evolutionary "im-
mature," i.e., intermediate (in time) pictures (literally,
from snapshots)? Frankly speaking, we have no comprehen-
sive answer to this question. But even now we can say that if
this spatial distribution is "evolutionary mature," i.e., if it
corresponds to the established as t-> oo, attractor of, for ex-
ample, a gradient system, then the dimension of the picture
must be an integer, because the relevant dynamical system
(that is obtained from initial equations for д /dt = 0) is au-
tonomous, conserves its phase space, and is reversible along
the spatial coordinate. Otherwise, if the picture is only an
"instant" in the evolution and the next moment of time will
be different, then the dimension of the picture, indeed, may
be fractional! Actually, the structure of a non-steady-state
solution is determined not only by the interaction of fields at
different points in space but also by the background pro-
cesses. The terms with time derivatives in a non-steady-state
equation play the role similar to that of an external force in a
nonautonomous system. And a nonautonomous system may
have a fractional dimension.

Let us now come back to the two-dimensional pictures
that were considered above: soap films and hand-made dis-
order. How can we find out whether one or the other picture
depicts speckle-noise, i.e., the analog of white noise in the
time series, or is this a picture of finite-dimensional disorder?

Taking a snapshot unbounded in space we will deter-
mine the dynamical system that is capable, in principle, of
generating it. This spatially unbounded snapshot will be
called a single space series of the dynamical system. Since we

have here at least two coordinates, the phase space in which
the dynamical system evolves will, apparently, be different.
In our preceding analysis we operated with a vector space in
which each position of the image point corresponded to a
definite position of the radius vector and the image point in
phase space was specified by a set of numbers which were the
values of our variables. We will follow the same route. But
now each point will correspond to a matrix rather than to a
vector. We will obtain a matrix space, which is rather con-
ventional for a mathematician but not quite usual for a
physicist. So physical intuition has not been developed here
yet.

We will now introduce the notion of phase space for a
two-dimensional space series u(x,y) (ford-dimensional one
analogously). As in a one-dimensional case, for a two-di-
mensional space series u(x,y) we will make the snapshot
discrete, i.e., we will represent it as a grid with the xt, yt-
nodes and consider the values of the space series for each of
them: tijj = u ( x i t y j ) . Each node has two indices, it has
neighbors on the left and on the right, as well as on top and at
the bottom. We will introduce a discrete finite cluster
А &? = {(«,,,), i = K,...,K +m-\,j = L,...,L + т - 1}
that is determined by (m X m) points. By shifting this clus-
ter (which is now not a set of numbers as in a one-dimension-
al case but a square matrix) along the space series we obtain
a trajectory in a matrix space that can also be called phase
space. Actually, in defining the notion of phase space it is
essential to define the term "closeness" of states. To this end
we must introduce the distance between the points mapping
different states.

Using this approach, as in the case of one-dimensional
systems, we can determine the correlation dimension and all
the characteristics that were formerly used for the descrip-
tion of stochastic sets in an ordinary phase space: entropy,
Lyapunov exponents, etc. If the stochastic set determined in
this fashion has a finite dimension, then the snapshot of in-
terest may be referred to as finite-dimensional disorder.

We will now consider this program for ^-dimensional
series using a formal mathematical language.22

Consider a set of continuous (vector) functions u(x),
x € Rd, и е Rp employing conventional procedures of sum-
mation and scaling up. Introducing into this set a distance
we obtain a metric space В that will be referred to as the
phase space of the system. With each rf-dimensional vector
а = (a,,...,ad )e Rd we associate the translation map T":
B->B that is determined by the expression T"u(x)
= u(x + a). Thus we determine the action of the group Rd

on В or, in other words, we have a dynamical system with d
times that will be referred to as a translational dynamical
system.

If the process under study is such that knowing the ini-
tial state (initial field distribution) one can unambiguously
determine the subsequent states at any moment of time, then
a semigroup of evolution operators {5" }/>0 also acts on B,
i.e., an evolutional dynamical system is determined as well.
The behavior of the trajectories of translational and evolu-
tional dynamical systems in the common phase space В gives
a full mathematical description of the spatio-temporal prop-
erties of the nonequilibrium medium of interest. Under the
supposition of translation invariance, the characteristics of
the snapshot u ( x ) will, evidently, be independent of the co-
ordinate system in Rd. In other words, these characteristics
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must describe an invariant set of points along the trajectory
of a translational dynamical system: {Т"и(х)}аела = А.и(х}.

Accordingly, the value C(AU(JC) ) [where C(M) is the
limiting capacity of the set M] will be referred to as the limit-
ing capacity, or the fractal dimension of the snapshot u(x).
The Hausdorff dimension of the snapshot and other mea-
sure-independent characteristics are determined in a similar
fashion. If a measure /z that is invariant with respect to T" is
defined on Au ( x ) , then the //-dependent characteristics (e.g.,
pointwise or correlation dimensions) will also be referred to
as the characteristics of the snapshot.

Note that if, for example, a two-dimensional snapshot is
periodic along x, and x2, then the set Au U ) is merely a two-
dimensional torus; if the snapshot has a quasi-periodically
repeating structure, then Ац ( х ) is also a torus but now of a
higher dimension; while for the patterns chaotically distrib-
uted over the plane, Au(Jt) will be a fractal set. The time
evolution of the snapshots (space series) corresponds to the
motion of the set Au in the space B: Au U )

 slAs,u(x) .
For the sake of simplicity, we will consider the space

and time to be discrete by analogy with ordinary systems,
i.e., we will take Zd instead of Rd and Z+ instead of R+.
Now we are in a position to give a rigorous definition of
finite-dimensional disorder.

The snapshot u = {u(j ), j = (j,,...jd )e Zd} will be
called a finitely generated one if there exists 1 ) a dynamical
system with rf-dimensional time and finite phase space M,
and 2) a Lipschitz-continuous, conjugate, one-to-one map
h: Au -*M such that the inverse map h ~ ' is also Lipschitz-
continuous. We will provide the space of the "sequences"
Д{и} with the following norm

u =

where and «СЛ1

It can be readily verified that В is a Banach space. Let
for a fixed snapshot и the fractal dimension of the set Au be
finite: C( A u ) < oo and Au be a compact set. Let m > 0 be an
integer such that md >2-C( А„) + 1. By Cd

m we will denote
an integral rf-dimensional cube with the side m, i.e.,
Cm = {j= (jl,...jd)eZd: (K/,.</n}. Let Mm be the md-
dimensional subspace of В (e.g., take Mm={u&B:
u(j)=0 foijeZd/Cd

m}). Let Пш: B-+Mm be a natural
projection. According to the Майе theorem, one-to-one
(and bicontinuous) projections are typical for B->Mm on
the set A u .

Assum*-J4iat Пт is a typical natural projection. Then a
dynamical system with ^/-dimensional time that is generated
by the map 7" = Hm • Т"• П ~ ', a e Zd is determined on the
subpace E = Ylm (Au) of set M and the snapshot и will be
finitely generated, provided that П О Т /А Ц ) is a Lipschitz-
continuous map.

Now, generalizing the algorithms presented in Ref. 24,
we can propose algorithms for the calculation of correlation
and pointwide dimensions of the snapshots. Let us take a
two-dimensional snapshot и in the form of an array
{tifj ,ij e Z+}. In practice, the array, naturally, has a limited
size: /<-Wj, j<N2, but Nt and N2 are supposed to be suffi-
ciently large. For each integer m> 1 we will construct from
the array {u(i,j)} (mXm) matrices: A^)={(at > /),

k = K,...,K + m — \,l = L,...,L + m — 1}. Let us define the
correlation integral in the form

C<m>(e) =
[(Nl-m)(N2-m)Y

L),

(2)

(3)

where # (E) is the number of elements in the set E.
Then, for sufficiently small e, the log C(m) (e)/log e ra-

tio will be approximately equal to the correlation dimension
Ds of the two-dimensional snapshot in m -dimensional em-
bedding space.

Following Ref. 25 we will estimate the minimal size of
the array (utj )л-, хлг, that is needed for a correct calculation
of the dimension on the interval [£,,£2]- Because

log2C<m)(e") - '

Iog2e" - Iog2e'
(4)

where С <""(£'^^^•С'""^ Kb then, assuming

£•" = 2* -E', we will estimate the dimension:

(5)

Note that for «/-dimensional snapshots such an estimate has
the form

Thus, when determining the correlation dimension of a mul-
tidimensional snapshot one must bear in mind that the num-
ber of discretization points along each time coordinate may
be much smaller than in the case of one-dimensional time.

Since the construction of the correlation integral needs
a great number of calculations of the distance between the
matrices, we save time and effort calculating the distance in
the form:

/t = A\..., K+m- 1, *' = X',..., A" + m - 1, (7)

/ = I,,..., £ + m - 1; /' = L' L' + m - 1}.

This method for determination of distances allows us to
eliminate operations of multiplication, instead we compare
the contents of the corresponding computer cells.

The number of calculations reduces significantly if all
the matrices A ̂  are compared to the array of reference
matrices

^*Ар£/ * - 'ref * ~ 'ref)' ( 8 )

where /ref andyref are relatively small numbers. In this case
the accuracy of calculation of the correlation dimension of a
two-dimensional snapshot is determined by the estimate
similar to (5):

1,
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The testing of the algorithm (see Ref. 22) showed that the
behavior of the correlation integrals does not, in fact, depend
on turning the snapshot by an arbitrary angle, which indi-
cates that the algorithm is robust. Figure 8 shows the plots of
log2C

(m) against Iog2 r (where r = 210-е/етм) for a two-
dimensional snapshot U(x,y) = sin(x) •sin(VT/2-j>) which
corresponds to a two-dimensional torus in phase space. The
correlation dimension was calculated to a good accuracy to
bel>se[1.96;2.03] even when NltN2 = 256, Jref)/ref =4.

Thus we arrive at the following definition: finite-dimen-
sional disorder is the disorder that can be considered as a
trajectory of a certain dynamical system. In a one-dimen-
sional case, this is an ordinary dynamical system, for exam-
ple, a system of ordinary differential equations while in a
two-dimensional problem we have a dynamical system with
two times. Systems of this type have not, in fact, been consid-
ered in physics. Although it should be noted that a broad
class of such systems (with two times) are, for example, Lie
groups that have widely been used by physicists and there
are a few good books on this topic.26'27 Lie groups are used,
as a rule, for the description of symmetries of different types
and for the derivation of solutions, which follow from other
solutions, by means of different group transforms. Here we
set, in a sense, a converse goal, i.e., we will attempt to find
irregular solutions.

So as to avoid ambiguity in definitions, we will make an
important comment. The fractual dimensional of a space se-
ries calculated by the generalized Takens methods should
not be confused with the fractal dimension of a two-dimen-
sional picture that is produced, for example, by a chaotic
trajectory of a particle in an alternating field.28 In the first
case, we mean the dimension of a stochastic set in the phase
space of a translational dynamical system, while in the sec-
ond case we are concerned with the dimension of the snap-
shot that can be "drawn," for instance, by one line densely
filling certain regions on a plane. Generally, these two char-
acteristics are irrelevant to one another. Actually, the fractal
dimension, for example, of a "quasicrystal tiling" is the di-
mension of the net (boundaries of the cells), i.e., it is equal to
unity. At the same time, such a picture corresponds in the
phase space of a translational dynamical system to an open

FIG. 8. log2C(£-) as a function of Iog2£ for a two-dimensional field
U(x,y) = sin x-sin(j3/2y).

winding on an n-dimensional torus and the dimension of this
set is equal to и. While the dimension of a fractual picture on
a plane cannot be higher than two in any event.

We would like to emphasize that while our disordered
field is described by partial differential equations, dynamical
systems with several times cannot describe the entire class of
solutions of these equations but are capable of describing a
definite particular class of solutions.

4. MODEL EQUATIONS

"In what way must we treat equations of mathematical
physics? Shall we simply draw conclusions from them
and consider the equations as an imperceptible reality?
No, not this way! Equations must teach us, primarily,
what we can and what we should change in them."

Henri Poincare

What we see now in the theory of dynamical chaos and
in the theory of finite-dimensional disorder that is now only
taking shape reminds us of a well-known situation in the
theory of critical phenomena and in other developed
branches of nonlinear physics. Namely, many phenomena
are being investigated by means of equations and models that
do not appear, at first sight, to be relevant to the experiment
described. For example, the basic notion in the theory of
critical phenomena is the model Hamiltonian. Formally, it
may be irrelevant to any particular physical situation. But
this model is universal in that it describes effects typical for a
broad class of critical phenomena. Universality and easy
handling make model equations a good tool in the construc-
tion of a qualitative theory.

What do we understand as "qualitative theory?" When
we are concerned with complex objects such as nonlinear
fields, which are moreover varying in time, to obtain exact
solutions, is merely a freak of chance rather than success or
even a piece of luck. And we must be aware of the fact that we
shall not often have such a chance. Therefore a qualitative
theory is handy for a more or less self-consistent understand-
ing of the phenomena in such a situation. The term "qualita-
tive" does not indicate the absence of rigorousness, it has the
same meaning as, for example, in the qualitative theory of
differential equations.

Such a qualitative theory implies the combination of the
following components. First, selection or construction of ba-
sic nonlinear models relevant to phenomena of different
physical or other origins and, moreover, design of key ex-
periments for verification of a priori hypotheses that these
models are universal. As far as we know there is no other way
to validate the models. We will adopt this approach in our
investigation and analyze it on an example of the well-known
Swift-Hohenberg model.30

The second component needed in the construction of a
qualitative theory is the development of approximate meth-
ods, primarily, asymptotic ones using various small param-
eters. We would like to note here that a small parameter may
not immediately enter basic equations, instead it may be de-
termined by the properties of the solution. For example, it
may be connected with a rather fast field decay at the periph-
ery of some structures so that the interaction of different
structures that is determined by the value of their potential
in the maximal field of other structures may be considered as
a small parameter.

Finally, the third component is, of course, computer
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experiment without which it is often impossible to put two
and two together in a sufficiently complicated problem of
finite-dimensional disorder. But it is to be not a mere finding
of particular solutions, but rather the investigation of the
phenomenon as a whole. We would like to underline here the
word "phenomenon" and not system or model. We are inter-
ested not in the model per se but in the effects it studies. For
example, we investigate the effect of stochastic scattering of
particles or structures of soliton fields or the formation of
finite-dimensional disorder as a result of temporal evolution
and other effects. What kind of model do we choose for this
purpose? Must it correspond exactly to a particular physical
system or may it differ a little from this system? This is often
of minor importance for the investigation of the characteris-
tic features of the phenomenon if we are sure that it is typical
enough. Moreover, with a broad variety of models, qualita-
tively different phenomena appear to be not so great in num-
ber. This allows us sometimes to "violate" the rigorous theo-
ry and to draw on some "truncated" models. If, however, we
advance rather far in understanding the qualiative meaning
of the processes within these models, we later might be able
to complete them, if necessary, and obtain a more exact
quantitative description. Actually, this is the manifestation
of the difference between physical and formally mathemat-
ical approaches. A qualitative physical approach allows for
definite conclusions even for problems that at present cannot
be solved rigorously enough. Such problems are the ones
most often encountered in practice.

We would like to add that the tendency to construct a
qualitative theory is typical for fundamental branches of
physics. In particular, R. Feynman29 emphasized (may be a
little too pompously): "The forthcoming great era of awak-
ening of human intellect will bring about a method for the
understanding of qualitative contents of equations. Today
we are not able to do that. Today we cannot see in the equa-
tions for water flows things such as the spiral structure of
turbulence... . We cannot say whether anything beyond the
equations is needed."

Consider as an example illustrating the possibility of
constructing a qualitative theory of spatial disorder (that is
static when f-» oo) a one-dimensional variety of the general-
ized Swift-Hohenberg equation (SHE):

(10)

that describes ordinary supercriticality when e > 0 and sub-
critical bifurcation when E < 0. The parameter/? determines
the instability threshold for e < 0. Only perturbations with
finite amplitude

(where 1/&0 is the characteristic spatial scale of the field)
increase. This equation is as natural and universal as, for
example, the famous Van der Pol's equation in the theory of
self-excited oscillations. The SHE is popular for the follow-
ing reasons.

First of all, within certain approximations, this equa-
tion can be obtained from the Oberbeck-Boussinesq equa-
tion near the threshold of linear instability in the problem of

Rayleigh-Benard convection. This equation was derived in
the papers of Refs. 30, 31 and in the review of Ref. 32. We
must admit, that if we are absolutely precise and neglect no
details, then in the derivation of the equation there appear
additional terms, in particular, squared gradients or their
derivatives, etc. which we have omitted. Mathematically, of
course, this is not justified. But the Swift-Hohenberg equa-
tion describes such interesting and fine details of real experi-
ments that it can be used for a qualitative description of phe-
nomena in a sufficiently broad range.

Another, no less important circurmiance is that the
SHE possesses a number of remarkable properties and is
easy to analyse. It is a gradient equation with a free energy
functional (al D referred to as tl ; Lyapunov functional):

2 n

It may be represented in a gradient form

dt
_

du

dx. (11)

(12)

Because the functional Fcan only decrease along the trajec-
tory:

£-/( dx<0, (13)

the gradient system is able to demonstrate behavior only of
two types at ?-> oo. If the free energy functional has no mini-
ma, then in a large-box problem the front propagation will be
observed as, for example, in the equations describing the re-
action of burning. In this case, the free energy functional will
be continuosly decreasing until the front approaches the
boundary of the medium if it is bounded. An alternative pos-
sibility is realized when the free energy functional has mini-
ma. There may be many such minima. Each minimum corre-
sponds to an equilibium state in time (multistability). Thus,
the limit behavior for gradient systems is always either a
static attractor or propagating fronts. We will consider the
case when the free energy functional has minima. Spatial
field distributions corresponding to different minima may
qualitatively differ from one another: they may be periodic
or quasiperiodic, they may also include many states of the
type of stable finite-dimensional disorder which will be de-
scribed in the next section.

Consider only one example illustrating the potentiali-
ties of SHE for the description of a real situation, for in-
stance, in experiments on Rayleigh-Benard convection.
Computer investigation of the Swift-Hohenberg equation
with different initial conditions yields in a two-dimensional
geometry, for £>0 and/?>#.,, hexagonal structures like the
ones shown in Fig. 9 (Ref. 33). The following interesting
phenomenon was observed in these experiments. If a single
hexagonal cell is taken as the initial condition, it rapidly
"accumulates" neighbors and then the entire "crystal lat-
tice" gradually builds up. It is remarkable that exactly the
same structural growth of a crystal hexagonal lattice was
observed in the experiments on real convection performed
by Ahlers and his group.34 The pictures on a computer dis-
play and those observed in a laboratory experiment (see Fig.
10 a and b) coincide completely! Moreover, the same coinci-
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*••••••• FIG. 9. Growth of hexagonal crystal structure described

by the two-dimensional Swift-Hohenberg equation33
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dence occurs when the medium is close to the excitation
threshold of convection but is a little lower than this thresh-
old (this corresponds to the case of subcritical bifurcation).
A finite initial perturbation is needed to pass across the exci-
tation threshold. Computer experiment shows that this per-
turbation grows, transforms into a universal structure and
exists as a localized state. This phenomenon was also ob-
served by Ahlers and his group34 (see Fig. lOd).

We believe that even these briefly outlined examples
will convince the reader that the Swift-Hohenberg equation
is not merely a convenient and popular model but it does
describe real physical processes, at least, for Rayleigh-Ben-
ard convection near the linear instability threshold.

Of course, the Swift-Hohenberg equation will not be the
only model in our research. We considered it here as an illus-
tration of the efficiency of model approach. No less signifi-
cant and, perhaps, even more universal (because it describes
non-steady-state processes as t-* oo is the complex Ginz-
burg-Landau equation (CGLE):

da/dt = Ra- ifi)a\a\ (14)

and its various generalizations (see, e.g., Ref. 32). This
equation is often cited in the literature, perhaps, because it

can be obtained using a standard procedure as an asymptotic
approximation of initial equations in different branches of
physics and not only physics.

As distinct from the SHE that describes the field itself,
the CGLE refers to the class of the so-called amplitude equa-
tions. In particular, substituting into the Swift-Hohenberg
equation и = a-exp(/kr) yields the Newell-Whitehead-Se-
gel equation35:

da/dt=a+ 1(д/дх-ито)д2/ду*]2а-а\а\2, (15)

that is a particular case of the CGLE with real coefficients.
The CGLE is a gradient equation only when it has real coef-
ficients: я = /? = 0. And it is completely integrable in the
converse limiting case, a, /?-» oo, when it transforms into the
well-known nonlinear Schrodinger equation.

5. THE EVOLUTION OF ONE-DIMENSIONAL DISORDER

When we speak about evolution we are interested in
what happens to the object under study in time. A typical
example are discontinuities in gas dynamics. There exists a
great variety of discontinuities but not all of them are evolu-
tionary, i.e., not all of them result from the transformation of

FIG. 10. Thermoconvection in a thin layer of gaseous CO2

(Ref. 34): a,b—growth of hexagonal crystal lattice for £>0
(b corresponds to later time); с—completely regular lat-
tice; d—stable localized state for £<0 (e = — 1.92-10~3).
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a simple wave. A similar question arises about spatial disor-
der. We have "good," i.e., simple enough regular initial field
distributions. Are regular initial conditions, for example, pe-
riodic along two directions likely to give rise to disorder? It is
a very difficult and unconventional question. Researchers
consider, as a rule, the problem of generation of order from
disorder. It might seem to be a quite independent issue. Ac-
tually, these two problems are closely connected.

Let us take a completely random initial distribution—
inifinte-dimensional disorder. How will it evolve? Will it
also transform into finite-dimensional disorder? Research-
ers have always been interested in the limiting case of this
problem: how does a well-organized order (crystal order,
structures, etc.) evolve from initial disorder? This is a prob-
lem of self-organization. Here we are concerned with signifi-
cantly more complicated—stochastic objects which are self-
organized from completely random initial conditions. Does
there emerge a disorder, not completely irregular but of dy-
namical origin? We will make an attempt (to the best of our
ability) to answer these questions.

An interesting result was obtained in computer experi-
ment with CGLE in a very long one-dimensional system.36 A
random number generator was used to produce initial disor-
der and then the spatial dimension, Ds, was measured as a
function of time. The dimension first descreased rapidly and
then acquired a constant value (Fig. 11). When initial con-
ditions were specified to be nearly sinusoidal, which corre-
sponds to Ds ~ 1, the dimension acquired, after a transition
process, the same constant value! The regime of spatio-tem-
poral chaos whose snapshots are finite-dimensional disorder
with a definite value of dimension is established for quite
different initial conditions.

It is a striking result. Of course, we find nothing re-
markable in the emergence of a stable periodic structure—
"crystal"—because we have gotten accustomed to that. But
now, when something has settled in an unbounded space
where we produced complete disorder, why must this
"something" be finite-dimensional? The number of degrees
of freedom must be infinite in an unbounded medium and it
might appear that individual distant regions do not affect
one another. At first sight, it looks more natural that disor-
der will be infinite-dimensional and its properties will be de-
termined merely be temperature, as in thermodynamics; be-
sides there must be no connection between the fragments
spaced far apart. Nevertheless, we have established a fasci-
nating fact: the disorder that emerges in an unbounded sys-
tem can be described within a finite-dimensional dynamical

5,0

4,0

2,0

system, for example, within a finite number of differential
equations.

Now we come back to convection. We take a large-box
system with convection and consider a situation when the
supercriticality is a little higher than the excitation thresh-
old of a purely periodic ("crystal") convective structure.
First, we will make the system chaotic, i.e., we will produce
absolutely arbitrary initial conditions, for example, by
means of usual mechanical mixing. The resulting picture
will be complete disorder as in Fig. 12a. How will this disor-
der change in the evolution of the system? The answer is not
at all clear. In the simplest case, a regular hexagonal struc-
ture may appear as the one in Ahlers' experiments (see Fig.
Юс). But if the supercriticality is sufficiently large, such a
lattice will, apparently, be unstable and more complicated
non-steady-state regimes will emerge, including trubulent
convection. Disorder sets in this case too. But it is still un-
clear whether it will be finite-dimensional disorder or not.

Consider now a simpler situation. Assume that the su-
percriticality is small and, as time grows, a disordered pic-
ture like the one depicted in Fig. 12c,d (Ref. 37) is estab-
lished. We can see "crystal" domains separated by
boundaries ("cracks"). This disorder into which the origi-
nal irregular picture, extraordinary in its irregularity, has
transformed is undoubtedly a finite-dimensional one. Com-
puter and laboratory experiments suggest that finite-dimen-
sional disorder has, to a certain extent, a higher or a little
more complicated degree of order and like order itself may
emerge from background chaos as t-> <x. It is an example of
self-organization of stochastic structures.

Regular initial conditions is an alternative limiting
case. If the initial conditions are absolutely regular and there
are no perturbations in the system, nothing new will appear
of course. But this is not a physical formulation of the prob-
lem. In practice we must always consider some small volume
rather than a point in phase space. This means that we must
analyse an ensemble of similar initial conditions, for exam-
ple, of the type sin kx + (j,i/>(x), where //<<!. Such an experi-
ment using for instance, model (10), gives an amazing re-
sult. The initial conditions evolve into finite-dimensional
disorder.38

In this connection consider a mechanism of the genera-
tion of spatial disorder through the emergence of localized
static states of the field. This mechanism was discovered in
Ref. 38 and seems to be quite typical. It is realized, not only
in the Swift-Hohenberg model and is essentially as follows.
A nearly harmonic initial field distribution evolves into a
chain of "particles"—solitons—which diverge to an arbi-
trary distance from one another, because of instability, and
form, as t-> oo, a static irregular sequence.

The existence of finite-dimensional disorder within the
Swift-Hohenberg model is almost an evident fact. Indeed,
because it is a gradient system, only static attractors may
exist in its phase space. The number of attractors may be
arbitrary large, as can be easily verified. All static solutions,
that are established as t-> oo satisfy an ordinary fourth order
equation along the .«-coordinate, that can be derived from
(10):

Wtg 30-bn (16)

FIG. 11. Time dependence of the correlation dimension, Ds, of the space
series for CGLE under chaotic (/) and periodic (2) initial conditions.36 where/(w) = — /Зи2 + и3.
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FIG. 12. a) Mixed initial state of a liquid convective
layer, b) "Half-ordered" lattice observed against the
background of convective crystal structure, c) "Do-
main" disorder in Marangoni convection, d) Recon-
struction of "domain" disorder.37

A homoclinic structure (see, e.g., Ref. 39) as well as
periodic and quasiperiodic trajectories exist in the phase
space of this dynamical system in a broad range of param-
eters. The homoclinic structures themselves tend to equilib-
rium states as x -» + oo and, in this sense, they are not an
example of finite-dimensional disorder. However, the homo-
clinic structure contains also a continuous set of nearly ho-
moclinic open finite trajectories which correspond to chao-
tic spatial distribution of the field.

Naturally, not all these trajectories are attractors for
the evolution system (!!)-(12). The trajectories that are
attractors, evidently, have intricately intertwining basins of
attraction in the space of initial conditions. Therefore it is
very difficult to predict the finite state of the field described
by (10) even under trivial initial conditions. Representing
the initial regular field state as a point in the phase space of
the gradient system of interest, we can formulate the prob-
lem in the form of a simple question. Is this point contained
in the attraction basin of the attractor corresponding to dis-
ordered field distribution for Г-»оо? But we must speak
about a set of close initial field distributions rather than
about a concrete distribution. This set corresponds not to a
point in phase space but, instead, to some initial phase vol-
ume with the characteritic size /a. Then the question will
have a different formulation: Will an irregular field state
whose statistical characteristics do not depend опц (includ-
ing ,u->0) be established /-> <x>? A positive answer to this

question was obtained in a numerical experiment.
We would like to emphasize the following. The pres-

ence of a set of homoclinic and nearly homoclinic complex
trajectories in the phase space of the system describing static
solutions does not at all indicate that they are stable (or, to
be more exact, that they may be attractors). An answer to
this question may be found by considering the evolution of
different(l) initial distributions. An approach to the solu-
tion of this problem is proposed in Ref. 38 and is, essentially,
as follows.

Computer experiments show that the evolution of a
smooth initial perturbation is divided into two stages (see
Fig. 1 За). The first (fast) one is completed by the formation
of a chain of localized states the number of which per unit
length is determined by the period of the initial perturbation.
These solitons have decaying oscillatory "tails" (Fig. 13b),
which is important for our furhter consideration. The sec-
ond (slow) stage ends by the onset of a static chain of period-
ic or quasiperiodic structures. The second, slow stage of the
evolution is determined by the stability of the soliton chain
that has been formed at the first stage.

Naturally, initial distributions with different periods
must correspond to different steady distributions—the ef-
fect of multistability. Because of instability, the neighboring
solitons may either move "one minimum" apart or draw
nearer to one another by the same "unit length" or their
tails. Then it seems evident that the degree of disorder may

640 Sov. Phys. Usp. 35 (8), August 1992 Rabinovich eta/. 640



0,010 r

o,oos

0,000

-0,005

-a,ow

-O,U1S

\ a

-V_
1 1 1 1 1

a 20 40 во во wo

2,0

1,0

-1,0

so 100 ISO 2OO

FIG. 13. a) Evolution of free energy in model (10) under initial
conditions of the form sin kx + цф(х) as a function of time:
P = 2.3, e = 0.3, ka = 0.5. b) Distribution of the field of a localized
state for the same parameters.
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only decrease(\) with the growth of the period of the initial
periodic distribution. This guess was wonderfully confirmed
by a direct computer experiment (Fig. 14): the Kolmogorov
entropy decreases and tends to zero as / grows.

These phenomena may be described as follows. If the
distances between the neighboring solitons are not too small
(equal to or larger than their characteristic size), the asymp-
totic method40 allows us to describe soliton motion as the
dynamics of a chain of particles with a specific interaction
potential that is determined by the structure of the "tails" of
localized states:4'

« (17)

a, 40

ff,jff

o,w

\
\

0 10 20 30 40 SO

1/k

FIG. 14. Dependence of Kolmogorov-Sinai entropy, A, for the space se-
ries (described by (10) at r—oo) on the period of initial distribution
/ = "iir/k.
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Here x, is the coordinate of the center of the ith soliton,
M = $(u(m)2dx is the mobility of the soliton having the
structure u(x) (see Fig. 13b), and и, is the potential pro-
duced by all solitons except the /th one at the point x/:

(18)

where v = Re^/ — kg, к = Im^i — k£, and q>0 is a nu-
merical constant. Equidistant distribution of particles along
thex-axis with an arbitrary period l(x = /'•/) corresponds to
the equilibrium state of system (12).

The instability conditions

nl + <p0 < (2n «=1,2 , (19)

for such a periodic chain of particles were found in Ref. 38.
What happens if the period, /, of the initial distribution

is taken within the interval (19) and, consequently, unstable
periodic structure evolves? Under the action of arbitrary
small disturbance, as t-> oo, two situations are possible, ei-
ther regular distribution of particles or chaotic sequences of
particles. Both cases may be realized in experiments (frag-
ments of pictures are shown in Fig. 15).

The considered scenario of the generation of spatial dis-
order through the formation of a periodic lattice of localized
states with a subsequent decrease of the degree of order is,
evidently, quite general. The same scenario must be ob-
served in the two-dimensional analog of (10):

^ = -u + flu2 - u3 + (k\ + V2)2u. (20)
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FIG. IS. Examples of nearly periodic (a) and chaotic (b) spatial distribu-
tion becoming established within model (10) for P = 2.3, e = 0.3,
fc0 = 0.5 and different k (see Fig. 13).

Indeed, as was shown in Ref. 41, there exist within (20)
stable localized structures with exponetially decaying oscil-
lating tails. The interaction of structures is described by a
system of equations which was obtained by means of an
asymptotic method40 in the following form

(21)

6. DISORDER OF DEFECTS. EXAMPLE

Disorder of defects randomly scattered against the
background of a periodic lattice (a crystal lattice of atoms or
a lattice of convective cells) is the type of spatial disorder
that is often encountered in nature. An example of such dis-
order is depicted in Fig. 16. It was observed in the experi-
ment on magnetohydrodynamic convection in a liquid crys-
tal performed by Kramer's group.43 Extended transverse
defects are well pronounced against the background of roll
convection. A single defect of this type may look like two
identical lattices of rolls that fill the upper and lower half-
spaces and are displaced half a period relative to one an-
other. Such defects are also observed in computer experi-
ments on coupled Ginzburg-Landau equations (see, e.g.,

-Fig. 17). These transverse defects are, as a rule, repeated
irregularly along the j>-axis.

The disorder of such transverse defects reminds one of
the disorder of localized structures that was discussed above.
The similarity will be even more complete if we filter the
initial periodic lattice. This can be done by representing the
initial field in the form u(x,y,t) = A(y,t)e'x + c.c. (the lat-
tice period is supposed to be equal to 2rr). Substituting this
solution into the initial equations (we will take the Swift-
Hohenberg equation again) we obtain a fourth-order New-
ell-Whitehead-Segel (NWS) equation for complex ampli-
tude alongj> [cf. (15)]:

дА
(23)

When y/0, this equation takes into account periodic (with
the period ir) inhomogeneity of the medium. In the case of
convection, this is, for example, a periodic inhomogeneous
temperature distribution at the lower boundary of the layer
(see Fig. 18).

where R} is the coordinate of the/th structure on the x,y-
plane. This system has a set of equilibrium states which cor-
respond to stable location of "particles" in the form of a
random lattice. Preliminary experiments (see also Ref. 42)
indicate that the formation of such a statical spatial disorder
may occur as it was described above.

It should also be emphasized that the found steady-state
irregular solutions of the gradient model (12) are, at the
same time, steady-state solutions of its conservative (Hamil-
tonian) analog

^J = ~ U• <22>

However, while the stability of an irregular chain within
(12) follows from the fact that the functional F has a local
minimum on the solution of interest, the problem of stability
for such a chain within (22) is much more complicated and
challenging. It reminds one of the problem of the excitation
spectrum in a one-dimensional model of a liquid proposed by
Kronig-Penney (see, e.g., Ref. 1). This analogy (including
the phenomenon of localization of eigenfunctions) may be
very helpful if there are no resonances between collective
excitations of the chain and eigenmodes of the localized
structures. When these resonances are substantial, the evo-
lution of instability may result in a completely different state
of the system, perhaps without localized structures.

FIG. 16. Transverse defects against the background of roll structure ob-
served in magnetohydrodynamic convection in liquid crystal (Ref. 46).
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FIG. 17. Transverse defects in a computer experiment with coupled Ginz-
burg-Landau equations (Ref. 46).

The solutions of (23) that describe jumps of the phase
A(y)byir correspond to defects. The absolute value of A (y)
then tends to constant A0 as j>-> ± oo. Equation (23) is also
a gradient model.5' Therefore all regimes that are established
in our system as t~> oo (also including the ones with de-
fects—jumps) must be described by the ordinary differential
equation

Using Devaney's theorem39 we can show that there exists in
the phase space of this dynamical system a countable set of
homoclinic trajectories. These trajectories are the ones that
correspond to localized structures of phase and amplitude.

Our model describes transverse defects of two types: I)
the absolute value of amplitude turns to zero (Fig. 18) along
the line of the phase jump and 2) the phase simply turns (as
in Fig. 19) while A \ remains finite. These defects are called
Ising wall and Bloch wall (Refs. 44,45) by analogy with the
walls between ferromagnetic domains. The defects are stable
for Y > Ycr and f°r 7 < 7cr. respectively.44

Single defects correspond only to the simplest homo-
clinic trajectory in the phase space of (24).6) We have al-
ready seen on the example of the analogous equation (10)
that (24) must describe, besides simplest localized states,
more complicated combinations of "solitons," including
their chaotic sequences like the ones presented in Fig. 15.

Note that such chaotic distributions of transverse de-
fects also exist in the absence of periodic inhomogeneity
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FIG. 18. Ising wall.
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FIG. 19. Bloch wall.

along x, i.e., when у = 0. They agree qualitatively with the
picture observed in experiments (see Fig. 16).

Of course, the one-dimensional model considered above
has many weak points: the transverse defects are not infinite-
ly extended along x, they are encountered, as a rule, in com-
bination with other defects (e.g., pointwise defects), and
they are not always at rest, etc. However, we would like to
emphasize that this model has been a handy tool in under-
standing and qualitative description of a new phenome-
non—finite-dimensional disorder of defects against the

(24) background of a regular lattice.

7. FINITE-DIMENSIONAL DISORDER IN THE x~y AND x-1
SPACES

What is more astonishing: the existence in nature of
finite-dimensional spatial disorder or true irregularity to
which, in our language, corresponds a very high (formally
infinite) correlation dimension? Frankly speaking, both
these phenomena are amazing.

The examples of the generation of finite-dimensional
disorder within one-dimensional gradient models would
seem to be an obvious confirmation of the existence of such
disorder. Indeed, what else may it be if the field distribution
along л: is described, for /-» oo, by ordinary differential equa-
tions [e.g., (24)]. But, when we take into account the sec-
ond spatial dimension, the field distribution for r-> oo is de-
scribed by partial nonlinear differential equations, even in
the case of a gradient model. In principle, the fields u(x,y)
that are solutions to these equations may also have infinite
dimension. However, this is not likely in real media. Let us
again turn to experiment.

What dimension, D,, can the irregular field distribution
shown in Fig. 20 have? In the figure you can see the snapshot
of turbulent capillary ripples (Faraday ripples) in a very
large cuvette.46'47 We remind our reader that here we speak
about parametrically excited capillary waves on the surface
of a horizontal layer of fluid in an oscillating gravity field
(technically, this means that the layer of fluid is on a plane
surface that oscillates with the pump frequency a>p and am-
plitude Af). When Av >Acr, the regular lattice of capillary
cell is destroyed—turbulence is generated. Results of pro-
cessing a series of snapshots of turbulent capillary ripples, by
empoying the procedure considered in section 3, are present-
ed in Fig. 21. The dimension, Ds, of this two-dimensional
spatial disorder is finite are relatively low.

It is significant that as supercriticality, At/Acr, in-
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FIG. 20. Turbulent capillary ripples.4

creases, the dimension, Ds, grows too. However, prelimi-
nary experiments show that this growth is rapidly saturated,
which is, evidently, explained by the cell structure of the
"capillary medium."

This is, no doubt, a useful example. But maybe this is a
unique case? Perhaps, most real two-dimensional irregular
field distribution have a very high (infinite) dimension? For
instance, what is the dimension of a disordered density dis-
tribution of magnetic fields in the Universe where the char-
acteristic spatial scale of inhomogeneity is about 3-104 km
(Ref. 48)? The same question arises about a two-dimension-
al picture of microcracks that emerge in a material before
failure, etc. We are not in a position to answer these ques-
tions now. But it is highly probable that even "purely chao-

tic" initial field distributions evolve into finite-dimensional
disorder for most fields described by partial differential
equations. In other words, various disturbances of the medi-
um cease to be independent, and this is what permits us to
describes the snapshot by a finite-dimensional system (with
three or two times, correspondingly).

Let us consider again the one-dimensional spatial disor-
der but now changing in time. In this case too we will have a
two-dimensional irregular picture on the x,t-p\ant. Can we
find the dimension of this disorder knowing the dimension of
the time series (dynamical chaos) and the dimension of the
space series? Apparently, we cannot do it in a general case.
We can only say, using, for instance, results of the investiga-
tions of a one-dimensional CGLE model

7 2 3 4 5 Б 7 8 1 2 3 4 5 6 7 8 FIG. 21. Determination of Ds for snapshots of capil-
lary ripples with increasing supercriticality; a—
Ds = 6.2; b—Ds = 6.3; c—Ds = 7.2; d—D, = 7.8.
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FIG. 22. "Chaos-chaos" phase transition and hysteresis on the D,, p-
plane in model (25) (s = V/9/a = 1.15 and R = 10").

The corresponding two-dimensional pictures of disor-
der on the x.Nplane are given in Figs. 25 and 26. Such pic-
tures contain information on the prehistory of one-dimen-
sional spatial disorder and on the degree of its homogeneity
in time. Note that such a time evolution of spatial disorder is
readily observed in laboratory when the wake behind a long
inhomogeneous cylinder placed across the flow is visualized
by smoke.52'53 The.y-coordinate (Fig. 27), along which the
vortices generated near the cylinder drift, corresponds to the
time axis directed from right to left. The spatio-temporal
disorder that is established in this case can also be described
within a CGLE model but now it wil have the coefficients
varying along x.52

(25)

that there is an (unknown) relation between Ds and Dt.
The dependence of the space series dimension, Ds, on

p — -/oJ8~ is shown in Fig. 22. This dependence has two re-
markable peculiarities: a stepwise increase by almost one
and a half times of D, near the critical point/»" and hystere-
sis.49 Note that the dimension of the time series, Dlt also
changes in a jump at the same value of the parameter/? = p".
Thus, in this case there apparently is a relation between Ds

and Dt. This relation, however, does not seem to be robust
and can be represented in the form of an inequality Ds <Z>, .7)

The jump in the spatial dimension in Fig. 22 has the
following explanation. The field described by (25) may have
two, qualitatively different irregular states. One of them is
"phase turbulence" when the phase changes chaotically and
the amplitude weakly pulsates near its average value (see
Fig. 23). The other state is "strong" turbulence when both
amplitude and phase are strongly irregular (Fig. 24). In the
course of formation of spatial disorder, new spatial perturba-
tions (amplitude pulsations) emerge in the transition across
the point/»" and this transition can be considered, in a sense,
to be critical phenomenon.

The onset of one or another chaotic regime in the region
of the parameters p1 and/?" depends on initial conditions [in
this case two strange attractors co-exist in the phase space of
the dynamical system (25)]. This explains the hysteresis
phenomenon: in the transition through the critical point/»"
from right to left, we remain in the attraction domain of a
multidimensional attractor. While starting from regular ini-
tial conditions on the interval [p',p" ] , we enter the regime of
low-dimensional chaos.

8. DIAGNOSTIC OF FINITE-DIMENSIONAL DISORDER
AGAINST THE BACKGROUND OF SPECKLE NOISE

The consideration presented above was concerned with
an ideal situation: finite-dimensional disorder, if any, existed
"all by itself," i.e., no uncontrolled inhomogeneities were
taken into account. Whereas in real snapshots, there always
is present some kind of noise whose spatial Fourier spectrum
is rather broad and the origin of which is unknown in most
cases. The noises may be produced by technical peculiarities
of the diagnostics, by noisy channel through which the signal
is transmitted, by the inhomogeneities in the photographic
material, and so on. It is extremely difficult to detect finite-
dimensional order against the background of spatial noise
employing traditional methods. However, our experience in
the investigation of space series shows that the use even of
simplest forms of dynamical treatment of pictures (calcula-
tion of Ds, spatial entropy, etc.) makes solution of this prob-
lem quite promising.

Let us explain how it may be solved. Spatial dimensions,
D%, and entropy, Hs, are formally, defined by the expres-
sions

= lim lim ds(m, e),
m-»oo «-»0

' lim limAs(m, e), ^f.)

where £ is the diameter of the "spheres" filling the phase
space (possibly a matrix one) to be reconstructed and m is
the number of points in the space series which determine the
dimension of this space (see also Section 3).

Of course it makes not sense to take the (m -> o>, £-»0)
limits when processing real time and space series. We pro-
ceed in an alternative way: we plot C™ against e and ds

against m and analyse the graphs. We must bear in mind that
the d, (m) is usually saturated at some m * for the time series

И
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FIG. 23. Amplitude distribution along x at
"phase turbulence" (solution of (10) for the
values of the parameters R = 104, a = 1.0, and
/9=1.3).
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tions in the regime of strong turbulence [model
(10),a= 1.1,/8= 1.44, and Л = 104].
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of dynamical origin. The value m* is referred to as the di-
mension of embedding space of a stochastic set (it can also be
determined using a different algorithm). When w>m*,
dt xDt • The relation Dt <w*<2Z», + 1 holds here (Mane
theorem). The closeness of m* to the left and right limits of

this inequality indicates the complexity of internal structure
of the stochastic set. To be more exact, it shows the excess
(as compared to the dimension of the set) of the number of
geometrical variables needed for its structure to be constant
for m -»oo. What is said above must also be valid for dynami-

FIG. 25. Amplitude distribution at phase turbulence on the x, t-
plane within model (10) the parameters are the same as in Fig. 23).
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FIG. 26. Amplitude distribution at strong turbulence on the x, t-
plane (the parameters are the same as in Fig. 24).

FIG. 27. Defects in the wake behind a cylinder (see Ref. 51 for details).

£mnx £.>dV

FIG. 28. a) Correlation integral Cm (E). (eN is the level of
speckle noise and £max is the maximal amplitude of the
signal. Transition regions are hatched.) b) The depend-
ence of correlation dimension Df on embedding dimen-
sion m.

FIG. 29. Stable co-existence of regimes with different
finite-dimensional disorder within model (10). The
values for the Kolmogorov-Sinai entropy are indicat-
ed on top (cf. Fig. 15, the parameters are the same).
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cal systems with several times, i.e. as applied to multidimen-
sional space series.

When processing the space series corresponding to fi-
nite-dimensional disorder, we can observe on the log C"
(log £) plot (cf. Fig. 20) several linear sections with differ-
ent slopes on different intervals of the (£,,£2)e(0,£max)
scales. The curves break sharply at the joints of different
regions.

The situation is quite different when the space series
corresponds to speckle-noise. In the reconstructed phase
space, with the finiteness of the spatial spectrum band due to
inevitable filtration taken into account, the distribution of
points will no longer be "structured", instead, it will be uni-
form at any embedding dimension. In this case, ds^m and
weakly depends on el

What happens if our space series is a mixture of finite-
dimensional and "idea" (speckle) disorder? We will calcu-
late for such a space series a family of correlation integrals
C" (e) for successive values of т = I,...,m0 and construct
cross-sections of this family at different £ (see Fig. 28). Ap-
parently, the behavior ofd(m,e) at sufficiently small EN will
be a signal8' of the presence of a noise component for any real
disorder, including a finite-dimensional one. The value eN

may be considered to be an estimate (although a not too
accurate one) of the amplitude of the noise component of
disorder. The £e(eN,£max) range determines the domain of
finite-dimensional disorder. A hierarchy of irregular pat-
terns having different values of Z)s may, in principle, exist
within this domain.

This procedure has been developed in ample detail for
ordinary dynamical systems (see, e.g., Refs. 19, 54). We
believe that there is a need, and necessary knowledge too, to
generalize this method to dynamical systems with several
times (see, in particular, Ref. 55) where results of experi-
ments on the effect of stochasticity on the formation of dif-
ferent types of structures in Rayleigh-Benard convection are
presented).

9. INSTEAD OF A CONCLUSION

Finishing a lecture on finite-dimensional disorder it is
highly tempting to speak about its significance in physics
and on the extent to which it occurs in nature. However, we
will refrain from that and just formulate several problems
which may, possibly, attract the attention of young (and,
perhaps, not only young) researchers to this fascinating and
very promising field of knowledge.

1. Any settled disorder bears imprints of its past. For
example, what can we say looking at the one-dimensional
disorder shown in Fig. 29? We know that these patterns that
are chaotic along x result from the evolution of a certain
initial field distribution within the Swift-Hohenberg model
(10). Analysis shows that the Kolmogorov entropy is differ-
ent at different sections of x (the sections are long, see, e.g.,
Fig. 29) and varies stepwise at different points. We know
also (see Sec. 5) that the value of entropy depends on the
density of localized states, which are determined by the spa-
tial period of the initial field distribution. Thus, we can say
that our disorder has evolved from "pieces" of distribution
with different periods. Jumps of entropy are observed at the
boundries of these regions.

This is an amazing fact. Actually, we have discovered

FIG. 30. Moving front between disordered and ordered phases of magnet-
ic domains in a thin film (observed experimentally in Ref. 17).

an absolutely new phenomenonon: stable existence of do-
mains with different kinds of finite-dimensional disorder!
The sharp boundary between the domains is also a defect. In
the two-dimensional case, the boundary between such do-
mains may be very complicated.

There arise the questions: To what extent can we dimin-
ish the size of the domain for the mosaic disorder to remain
stable? and Does the stability factor of the mosaic depend on
the shape of the domain? Similar questions arise also with
reference to defects at the interface of finte-dimensional dis-
order and crystal order (for example, in magnetic films (see
Fig. 30)).

2. We have almost neglected the problem of finte-di-
mensional disorder in "oscillating media" (we have only
mentioned it in the discussion of the "phase-amplitude" tur-
bulence transition within CGLE). In this case also there
arise very unexpected problems related to the effect of tem-
poral dynamics on spatial disorder. For instance, different
regions of disorder may be partially or completely synchro-
nized in the course of formation of a steady-state spatio-
temporal picture. This leads to the change of the boundary
between domains to which different values of Dt corresond.
It is not clear yet whether such a stochastic synchronization
may result in stable static boundaries between such spatial
domains having different chaotic dynamics (see, e.g., Refs.
56, 57, 58.

3. Computer experiments performed using different
models show that the degree of disorder of the field increases
with the growing number of localized states. Apparently, if
such states do not interact with one another, the dimension
Ds will be infinite, as for complete thermodynamic disorder.
The question arises: What kind of particle interaction trans-
form infinite-dimensional disorder into a finite-dimensional
one? Finally, is there any relation between thermodynamical
and dynamical characteristics for finite-dimensional disor-
der?

The authors are grateful to H. Abarbanel, V. S. Afra-
imovich, A. V. Gaponov-Grekhov, K. A. Gorshkov, and
Ya. G. Sinai for helpful discussion of many problems exam-
ined in this article.

"This is an expanded version of M. I. Rabinovich's lecture (prepared
together with A. L. Fabrikant and L. Sh. Tsimring) for the International
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School "Teaching Modern Physics-Statistical Physics" (Badajors,
Spain 1992).

2)We would like to remind our reader that according to the Poincare re-
turn theorem, the return period grows exponentially with the increase in
the number of incommensurate harmonics.

3)One can easily observe single defects of this type (see, e.g., Fig. 5, Ref.
13).

4'The interaction force in gradient systems determines the velocity of lo-
calized states and not acceleration (see also").

"Averaged equations for the function A (y,t) are gradient by virtue of the
gradient initial system for u(x,y,t). The free energy functional describ-
ing the field A follows from the free energy fuctional for и as a result of
averaging along x (Ref. 44). The same is true for equations for the
centers of localized states.

"'Because this fourth-order equation has the energy functional ,
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this dynamical system has a three-dimensional phase space.
"It is a very interesting and significant question and it will be easier to

answer it by considering a discrete model of the medium, for example, in
the form of a chain of coupled nonlinear elements. An approach to the
solution of this problem for a chain of Feigenbaum maps can be found in
Ref. 50. For related results concerning cellular automata see Ref. 51.

"'Because a few points will enter the £-neighborhood and the asymptotic
behavior of the correlation integral will change.
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