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The informal aspects, arising in the interpretation of physical experiments, of the theory of
probability and mathematical statistics are discussed. The conditions that verifying experiments
must satisfy are presented and the role of heuristic (extralogical) assertions is analyzed using the
example of mathematical expectation. The principal hypotheses implicit in experiments are
enumerated: the principle of reproducibility (“the past will be repeated in the future”); the
principle of reasonable sufficiency; and, the statistical principle (“better to predict something
rather than nothing””). Considerable attention is devoted to Fisher and multisample confidence
intervals. It is noted that Fisher confidence intervals are inconsistent. The arguments for
introducing contrivances into practical calculations of probabilities are enumerated:
incompleteness of any system of hypotheses; subjective estimates of probabilities; adjoining of
statistical ensembles; nonstationariness and instability; rare phenomena; and, the use of classical
probabilities and the law of large numbers. It is concluded that the relative frequency of
appearance (empirical probability) isa “normal” physical quantity in the sense that it admits
physical measurement. Its “abnormality” is manifested in the fact that it is burdened, more than
other physical quantities, with conventions and hypotheses which must be specially checked

(verified).

1.INTRODUCTION. INFORMAL ASPECTS OF PROBABILITY

To physicists probability is both a physical and math-
ematical quantity. But while as a mathematical concept
probability appears to them to be sound and incontestable,
there is often a sense of discomfort and reticence about prob-,
ability as a physical quantity. It is in this connection that the
question stated in the title arises: is probability a real, “‘nor-
mal” physical quantity, i.e., a quantity which admits phys-
ical measurements, or is it an unmeasurable, fictitious quan-
tity?

If probability is in fact a normal physical quantity, then
why are the results of statistical analysis of measurements
constantly questioned? If, on the other hand, probability is
somehow different from ordinary physical quantities, then
how is its “abnormality” manifested?

Such questions became an integral part of science more
than 200 years ago. In each age answers to them were sought
in accordance with the ideas espoused then about the sub-
ject. Almost all the great physicists and mathematicians
have had something to say, in one form or another, about the
physical meaning of probability.

And yet the question still remains open. Why is it so
difficult to come to an agreement about the physical mean-
ing of probability and the accuracy with which it is mea-
sured? Maybe the impediment is something significant but
difficult to grasp, something always remaining behind the
scene?

We are inclined to believe that the significant element
hidden in the physical interpretation of probability is a sys-
tem of difficult-to-formalize hypotheses, agreements, and
formal constructs which seem naturally, traditionally at-
tached to the formal apparatus of the theory of probability,
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but which in reality are independent hypotheses that must be
verified.

We discovered, to our surprise, that probability-phys-
ical constructs contain many more heuristic elements than
one would expect, even given our many years of experience
in working in mathematical statistics.

In the present paper we wish to discuss specifically the
informal aspects of the concept of probability which arise in
a physical context. We analyze, using the example of defin-
ing the mathematical expectation, the role of heuristic, ex-
tralogical assertions which are made in this seemingly well-
assimilated field of knowledge. Essentially, we discuss the
inconsistency of Fisher’s procedure for analyzing the results
of measurements, which has taken root in the practice of
natural science in spite of doubtful formal constructs, and
we describe an alternative procedure for finding multisam-
ple confidence intervals on the basis of simple and intuitively
acceptable assumptions (see Sec. 5).

In addition, in Sec. 6 we discuss an extensive list of rea-
sons for resorting to formal constructs in statistics, and in
Sec. 7 we discuss probability from the standpoint of the con-
cept of partial determinateness (predictability), which we
feel is in better agreement with the logic of a physical experi-
ment than the concept of algorithmic complexity.

2.VERIFYING EXPERIMENT
2.1. Mathematical “millstones” and heuristic “grist” of
natural-science theories

In discussing probability as a physical quantity, i.e., a
quantity that can be measured, it is helpful to recall the role
which mathematical theory as a whole and the theory of
probability in particular play in natural science. The theory
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of probability functions in natural science in the same man-
ner as other mathematical disciplines.

Mathematics is a rich special language, whose grammar
has a powerful, formal, built-in logic. Natural scientists have
often noted the “incomprehensible effectiveness of math-
ematics’ and its indispensability as a unique linguistic tool
(the best known paper on this subject is probably that of E.
Wigner' ).

At the same time, of course, practical work does not
reduce merely to manipulation of words. Correspondingly,
natural-science theories, being ultimately aimed at practical
applications, do not reduce to mathematical constructs. The
limited role of mathematics in natural science was described
well by T. Huxley: “Like millstones, mathematics grinds
anything that is poured into it, and just as you will not obtain
wheat flour by grinding weeds, you will not obtain the truth
from false assumptions by writing out entire pages of formu-
las™ (Ref. 2, p. 106).

The fact that mathematical millstones require heuristic
grist from without is due to the nature of formal-logical in-
ferences. Such inferences—including mathematical calcula-
tions—always take the implicative form “if ..., then ... .” The
official duties of mathematics in applications reduce, in gen-
eral, to the solution of the following problem: To calculate
an output quantity ¥ = F(X) from a given initial value X
and a given (possibly, in an implicit form) mapping F. The
mapping F represents the millstones—the mathematical
model of reality. Elaborating Huxley’s words, we under-
score the fact that the unavoidable heuristic grist or, as stat-
ed more dryly in Ref. 3, the extralogical component includes
the choice of not only the working value of the starting quan-
tity, but also the mathematical millstones. With poor mill-
stones one cannot obtain good flour even from wheat.

In applications, mathematics also plays an unofficial
role, providing natural scientists the language itself for de-
scribing the quantities X, ¥, and the mapping F. Although
mathematics has no direct responsibility here, this purely
linguistic role of mathematics is no less important than the
above-mentioned official computational role.

The choice of the working value of the starting quantity
X turns out to be essentially heuristic, even when this value is
obtained by means of measurements. After all, measure-
ments and experiments in general are not completely forma-
lized operations for the simple reason that they concern rea-
lity and not some formal system. But then, the investigator
has the right to postulate the starting working value of X
without resorting to measurements of this quantity. With
regard to the output quantities ¥, however, a more stringent
tradition has evolved in natural science: The computed value
of ¥ must always be compared with reality with the help of
measurements. Making such a comparison comprises the ex-
perimental check of the adequacy—the verification—of the
entire theory, including also the choice of the working values
of X. Otherwise, the theory will not be a theory of natural
science, but only a mathematical construct.

2.2. Metrological precepts of a verifying experiment

In the final results of a verifying experiment—figura-
tively speaking, the decision of a court of last instance—
everything must be intuitively clear, immediately convinc-
ing, at least for most specialists in a given field of research.
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For this, it is first necessary to adhere to the following funda-
mental metrological precepts:

1°. Amodel of the object of measurement must be carefully
constructed

Otherwise it will be unclear whether or not the math-
ematical quantity ¥ refers to the physical quantity mea-
sured in the verifying experiment. The construction of a
model of the object of measurement is an organic component
part of verification. We now discuss this in detail.

In performing any measurements the experimenter
mentally replaces the real object of measurement by a model.
The measured quantities are, strictly speaking, parameters
of this model and not of the real object. The true value of the
measured quantity is the value of the model parameter that
would be obtained as the result of an indisputable experi-
ment performed on an ideal object, which is the exact materi-
alization of the model. However, there can always be some
qualitative disparity between the properties of a real object
and that which is taken as the measured quantity. This dis-
parity engenders the ‘“‘error of disparity between the model
and the object” (Ref. 4, p. 14), included in the methodolog-
ical and sometimes also in the systematic errors. If the error
of disparity is too large, then a new model is constructed.

An adequate model of the object of measurement must
guarantee that the concept of the true value of the measured
quantity is itself sensible. For example, suppose that the size
of a spherical body is being measured, say, small pellets or
the earth. Let the model be a sphere. Correspondingly, the
problem is to estimate a unique value of the diameter of the
body. Suppose, however, that measurements of several di-
ameters of the spherical body gave results which differ by
amounts greater than the error of the means chosen to per-
form the measurements. Then it must be stated that in this
specific situation the model in the form of a sphere is not
adequate to the object. Consequently, the problem of esti-
mating the true unique value of the diameter of the body, as
posed above, is meaningless: There is no such value within
the existing accuracy of the measurements. Such a negative
result, obtained in constructing a model of the object of mea-
surement, in itself can indicate that the entire theory being
verified is inadequate.

We give two more examples. Consider an electric signal
generator, whose structure is unknown to us. We shall try to
determine the structure of the generator from the form of the
generated pulses. If the pulse shapes are reminiscent, for ex-
ample, of the process of charging and discharging of a ca-
pacitor, then it is natural to take a relaxation oscillator as a
primary model. Such a model may turn out to be satisfactory
with a rough fit of the circuit parameters (capacitance C and
resistance R) to the shape of the generated pulses. If it is
found later that the difference between the real and model
pulses is greater than the error of the measuring instrument,
then the model of a simple RC oscillator must be acknowl-
edged to be inadequate to the observed process, so that a
more complicated model will be required.

This example illustrates a general characteristic feature
of inverse problems: As data accumulate, first, the param-
eters of the simple model are made more precise; there then
comes a time when the model as a whole is radically recon-
structed.

For the second example, consider the measurement of
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FIG. 1. Illustration for the question of choosing a linear model — ux for
the experimental dependence In[1(x)/1, ]. Too large a spread of the ex-
perimental points indicates that the linear model is unsuitable and the idea
of a constant absorption coefficient 4 is inapplicable.

the attenuation coefficient of a wave field in an absorbing or
scattering medium. Suppose that in the experiment the in-
tensity 7 is measured as a function of the distance x; this
dependence is presented in a logarithmic scale in Fig. 1. As-
suming that the intensity varies exponentially as
I(x) = Iexp( — ux) (Bouguer’s law), the attenuation co-
efficient z can be found by fitting the linear function — ux
to the experimental points (i.e., the logarithms of the mea-
sured values).

If the difference between the experimental values
In(1/1,) and the linear function — ux is greater than the
measurement error, then the interpretation of i as the at-
tenuation coefficient of a uniform medium becomes mean-
ingless. In this case the model of the medium must itself be
reexamined and/or the experiment must be repeated in
greater detail or with higher accuracy (incidentally, the ac-
curacy may be limited not only by physical factors but also
by cost factors).

The development of a model of the object of measure-
ment is, on the whole, an informal operation which requires
deep knowledge about the subject. Calculations sometimes
are so tightly intertwined with the experimental investiga-
tions that one can talk about a single theoretical-experimen-
tal process of construction of a model of the object.

Suppose, further, that an adequate model of the object
of measurement has been constructed and is utilized in a
verifying experiment. Now, in order for the results of this
experiment to be intuitively clear and convincing, the final
quantitative indicators of adequacy of the theory must be
simple and not associated with any complicated formal con-
structs. We are talking about indicators which characterize
the accuracy of the final estimate adopted for the true value
of the quantity Y. After all, the matter has now reached the
point of empirical substantiation of the validity of the
theory!

Contrary to scholasticism, in natural science the basic
pragmatic thesis was adopted immediately: The validity of a
theory is ultimately based on experiment and not on some
other theory (say, on the works of Aristotle or K. Marx).

Suppose that for numerical analysis of the final results
of a verifying experiment we nonetheless construct a quite
complicated mathematical theory. Such a secondary theory
will engender, correspondingly, complicated quantitative
indicators of adequacy of the initial theory. These indicators
pertain to reality, evidently, in the same measure as the sec-
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ondary theory is adequate as a whole. We have arrived at
logical cycling: In the process of verifying the primary theo-
ry we have found a more difficult and, more importantly,
hopeless problem of verifying a secondary theory. This new
problem is more difficult than the initial problem precisely
when the secondary theory is formulated mathematically
and is quite complicated. The hopelessness is due to the logi-
cal cycle: If we start to verify, as before, also the secondary
theory, then we shall need to verify the difficult, formalized,
“third generation” theory which arises, i.e., the theory of the
indicators of accuracy of the secondary theory. It is obvious
that by truncating the chain we risk casting doubt on even
the primary theory.

In short, in order to avoid the logical cycling the model
used to compare the final results of a verifying experiment
with the computed output results of a theory of natural
science must be sufficiently simple and informal. The model
used for making the comparison, by its very nature, is the
heuristic grist, an extralogical component, and it is not the
mathematical millstones.

We can state that along the path from theoretical work
to verification the language employed is unavoidably re-
duced to maximally deformalized “language of observa-
tion.” Otherwise, the verification process cannot give intu-
itively and informally convincing results. Traditionally, in
natural science it is desirable that together with the require-
ment 1° two additional requirements be satisfied:

2°. Itmust be demonstrated convincingly that the
corresponding experimental result is reproducible

3°. The systematic errors In the experimental result being
reproduced must be evaluated convincingly

It is sometimes necessary to evaluate, with the highest
possible accuracy, the true values of the input or some inter-
mediate quantities of the theory (and not only of the output
Y). This happens, for example, if one wants to verify or, as it
is often said, identify the model of the object, i.e., the mill-
stones, itself. In such situations it is also necessary to adhere
to the fundamental metrological precepts 1°-3° and the at-
tendant requirement that the final indicators of the accuracy
of measurement be simple and informal.

Thus mathematics and metrology both serve as indis-
pensable supports for the entire quantitative natural science.
The requirements 1°-3° are necessary when performing any
measurements, including measurements of probabilities or,
more generally, mathematical expectations.

We are not belaboring the obvious. The theory of statis-
tical analysis of data, called mathematical statistics and as-
sociated with R. Fisher, has strongly influenced the extant
metrological standards.” This theory is not in complete
agreement with the traditional metrological precepts (see,
for example, Refs. 1218 for a critique of Fisher’s statistics ).
Thus, for verification Fisher proposes that the confidence
intervals be calculated on the basis of a by no means simple
mathematical model of a verifying experiment.

The ideology of Fisher’s mathematical statistics is ana-
lyzed below in Sec. 5. Separate remarks concerning Fisher’s
statistics are made in the course of the exposition even ear-
lier; they are addressed to readers who are familiar with
Fisher’s mathematical statistics.
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2.3. With what is the theory of probability concerned

From the viewpoint of the naturalist, the theory of
probability is concerned with the same thing as any other
branch of mathematics: It invents and provides users with
the mathematical millstones for logical grinding of the heu-
ristic grist.

The character of the grist, the millstones, and the flour
in the domain of the theory of probability is somewhat pecu-
liar to this theory. The basic probability-theoretic concepts
employed in applications are mathematical expectation,
probability, and probability distribution. We refer to them
collectively as probability characteristics (of random quanti-
ties or random events).

On the basis of the statistical interpretation, probability
characteristics pertain to an imaginary object. In physics
this object is termed an ensemble, while in mathematical
statistics and the theory of probability it is referred to as the
universe of objects or trials (observations).

The peculiarity of the theory of probability is that
usually the grist fed into its mathematical millstones and the
output are considered to be the probability characteristics.
In other words, the theory of probability converts one set of
probability characteristics into another.

We illustrate this for the very simple example of a prob-
ability-theoretic relation for the sum of random quantities
Y=23gX,:

m m
MIY)=M[D, aX,1= 3 aMiX,); 2.1
i=1 =1

here M is the mathematical expectation operator, X, are ran-
dom quantities, and g, are constants. In Eq. (2.1) the given
quantities M [X,],.., M [X,, ] and the model parameters
a,..., a,, are the grist; the output is the computed value of
the mathematical expectation of the linear function
Y=3aX,.

In order to determine how probability-theoretic rela-
tions arise and the meaning of such relations, it is necessary
to appeal to physical analysis of the basic concepts. Sections
3 and 4 are devoted to these questions, which are the central
questions in this paper. The theory of probability, as any
mathematical discipline, obviously cannot claim to calculate
the accuracy and reliability of the grist and the millstones
(i.e., the accuracy of the initial quantities) of the model em-
ployed and of the final results of a verifying experiment. It is
precisely such a claim that can be seen in the manner in
which Fisher’s mathematical statistics approaches the prob-
lem of verification.

3.HYPOTHESES IMPLICIT IN EXPERIMENTS

3.1. Principle of repeated reproducibility: “the past will be
repeatedin the future”

We now return to the metrological precepts 1°-3° and
we examine their most important feature: These precepts
ensure, no more and no less, that the natural sciences solve
their main problem—to predict the results of impending ex-
periments.

Quantitative predictions in natural science take the
form of the following assertion: the realization of definite
controllable conditions U in an experiment will always re-
sult in the same (within the limits of the stipulated accura-
cy) measured result Y. We designate this prediction by the
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symbol U— Y (from U to Y). To verify a theory means to
verify the prediction made by it.

The description and realization of the conditions U as
well as the measurement of the predicted result Y are per-
formed in accordance with the precepts 1° and 3°, which di-
rect the investigator to construct carefully a model of the
object of measurement, taking all measures to eliminate sys-
tematic errors and to evaluate those errors that cannot be
eliminated. If these requirements are not satisfied, then one
cannot speak at all about verification of the prediction
U-Y.

According to the condition 2°, in order to verify a pre-
diction the conditions U must be reproduced many times
and, correspondingly, the measurement ¥ must be repeated
many times. In natural science, traditionally, a predicted
result is seriously accepted only if it is reproduced in a quite
long series of uniform trials without any mysterious devia-
tions. All experience in natural science teaches that repeti-
tion of trials is a necessary though not absolute antidote to
random errors, gross blunders, and juggling of facts.

Of course, verification of a prediction even in accor-
dance with the traditional requirement of reproducibility is
not infallible. Such a verification is itself a prediction asso-
ciated with the concept of empirical induction “it has hap-
pened many times in succession and therefore it will also
happen in the future” or more briefly “tomorrow will be the
same as today.” It is well known—at least from everyday
life—that this empirical-inductive prediction is by no means
infallible. In particular, this principle could pose a well-
known danger in the analysis of unique, expensive, un-
planned, and some other experiments, say, experiments in
space, deep in the ocean, and under other difficult condi-
tions. This principle of “tomorrow will be the same as to-
day” is conservative and is organically incapable of revealing
(it is not ““tuned to”’) new trends and changes.

In spite of this, science does not know of any methods of
verification which are more convincing and reliable than
multiple repetition of experiments satisfying the conditions
1°-3°. However, the natural sciences do not claim to be infal-
lible.

3.2. Principle of reasonable sufficiency

When a series of uniform trials is performed, there
arises the question of what the minimum length Q of this
series should be in order for reproducibility of the experi-
mental results to be convincing. It is important to realize
that this question concerns the heuristic grist and thus it
cannot be resolved by formal-logical methods. Apparently,
from time to time a need is felt to recall the fact that heuristic
components are unavoidable in investigations in natural
science. Thus E. L. Feinberg (Ref. 3, p. 35) stated concern-
ing extralogical judgment regarding the sufficiency of a giv-
en experimental check: ... It occurs in any, even completely
ordinary experiment, which remains limited, regardless of
how it is modified or expanded or how many times it has
been repeated. There still comes the time when the investiga-
tor must say: ‘Enough, I am now convinced that such and
such a law is correct.” This ‘I am convinced” expresses an
extralogical judgment in science which is unavoidable and
which is part of the base of the process of gathering knowl-
edge.”

One can only guess the moment when a conjecture or
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hypothesis becomes certain. Most likely, an internal crite-
rion, such as reasonable sufficiency, operates. Judgments ac-
cepted by the community of specialists are accepted as sig-
nificant, so that reasonable sufficiency is oriented, directly
or indirectly, toward the reigning scientific paradigm.

The choice of the acceptable dispersion AY of the mea-
surements of the quantity Y in a series of trials and the esti-
mation of the systematic errors also has to be made, essen-
tially, extralogically. In short, all of this is done according to
the closest precedents. If there are many precedents and they
are uniform, sound empirical induction is in evidence.

3.3. Statistical prediction: ““better to predict something rather
than nothing”

Measurement of probability characteristics is especially
closely associated with prediction. We shall trace this rela-
tion in Sec. 4 using the example of mathematical expecta-
tion. The overall situation here is as follows: Measurement of
probability characteristics of a quantity Y must start with
the measurement of the corresponding statistical character-
istics Sy, which are also often called sample statistics; in
physics they are called empirical characteristics. Thus the
probability characteristics are a kind of superstructure built
on the empirical data—statistical (sample) characteristics.

From the standpoint of prediction, the logic here is
completely understandable. The investigator, having be-
come convinced that the quantity ¥ cannot be predicted ac-
curately enough, arrives from the unsuccessful “dynamical”’
prediction U— Y to a rougher statistical prediction U— Sy,
hoping that the latter prediction will be successful and to
some extent helpful besides. In other words, here the prag-
matic idea “better to predict something rather than nothing”
is followed.

The statistical characteristics of quantities which can-
not be predicted in a dynamical sense are, in reality, often
reproducible, i.e., they remain almost constant from one suf-
ficiently large sample to another, which is why they can be
predicted quantitatively. This version of reproducibility of
an experimental result is called the statistical stability of the
result.

The verification of a prediction of a statistical charac-
teristic should also be made, ideally, in accordance with the
requirement that an experimental result should be reproduc-
ible in a series of uniform trails. There are no grounds for
excepting statistical predictions from this traditional re-
quirement in natural science. The only peculiarity here is
that when a statistical prediction U—Sy is verified, each
trial is a component part and it is secondary compared with
the initial trials in which the values of Y were measured. It
consists of calculating the statistical characteristic .S, for a
series of initial trails. In short, multiple repetition of second-
ary trials means obtaining and analyzing many samples. We
term such verification multisample verification. We note
that Fisher’s mathematical statistics is oriented specifically
toward multisample verification of statistical predictions.

There also appear to be no grounds for making other
exceptions for statistical predictions ¥/—S, as compared
with the predictions U— Y. Everything we have said above
about verification of natural-science theories and their pre-
dictions must also apply to cases when these predictions are
statistical. Here the final results of a verifying experiment
must also be intuitively clear, which requires that these re-
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sults be described in a simple language and that precedents
be used as the final argument. In particular, here the choice
of the lower limit Q,,;, for the required length of the series of
checking trials and the choice of the acceptable dispersion
ASy in the results of measurements of S are also, essential-
ly, extralogical. Fisher’s mathematical statistics disregards
even these important circumstances.

4.MATHEMATICAL EXPECTATION AND PROBABILITY AS
PHYSICAL QUANTITIES

4.1.Sample average

The measurement of the mathematical expectation
M[Y] of a random quantity Y starts with the measurement
of the statistical (sample, empirical) average

not 1. QL
M,[Y] = -3 Ys); -
s=1
here, for clarity of exposition, we have introduced the sym-
bol not—*‘equal up to the notation™; s is the trial number
and Y(s) is the value of the quantity ¥ measured in the sth
trial. The sequence

{Y(1), .y ¥} = (V)2

is said to be a sample of size n.
Let the quantity ¥(s) be represented by an indicator
I, (s) for an event A4, defined as

(4.2)

0 .
I,(s) = [1] , if in the sth trial event A {dld not occur]

did occur
(4.3)

Then the quantity

not &
0 A) = M,l1,]= %’El 1) =24,

(4.4)

which is the sample average of the indicator /,,,is the relative
frequency of appearance of the event 4 in the sample
{1, (5)}]. This quantity is equal to the ratio of the number of
trials n(A4) in which the event 4 occurred to the total number
of trials n. Everything said about M, [ Y ] is also applicable
to the special case, under consideration, of the relative fre-
quency @,

The quantity M, [ Y ] is one of the statistical character-
istics of the quantity Y, so that according to what was said in
Sec. 3.3 about the statistical characteristics, we must evalu-
ate experimentally the reproducibility of sample averages.
To do this we must obtain, ideally, under the conditions of
the experiment U a sufficiently large number Q of equivalent
samples { ¥, ()}, k= 1,...,Q of size n. Here Y, (s) is
the measured value of Y in the sth primary trial in the k th
sample, so that we enumerate the secondary trials with the
index k.

Equality of the sizes of all these samples is a necessary
condition for the secondary trials to be uniform: We divide
the entire available primary sample { ¥(s)}¥ into Q equiva-
lent subsamples, so that the total number of all measure-
ments (trials) is equal to N = Qn. The number of subsam-
ples @ should not be less than some threshold value Q,_;.,
representing the lower limit of the number of secondary tri-
als: 0> Q....- The value of Q,.;,, is determined by extralogi-
cal considerations and is adopted according to precedents.
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FIG. 2. The relative frequency changes from one sample to another. As
the size n of a sample increases the spread in the quantities ot k=1,.,0
decreases.

The k th secondary trial is completed by calculating the
subsample average according to the algorithm (4.1):

8 n
M, 1Y) 2 -1’;2 Y(s), k=10 (4.5)
s=1

In the case when the measured quantity Y is the indica-
tor I, of the event A, Q series of trials will yield Q values of
the relative frequencies of appearance w),,...o?¢ (Fig. 2).
These values vary from series to series, as is characteristic of
physical measurements.

Thus the relative frequency @} behaves as an ordinary
physical quantity, i.e., a measurable quantity. The “normal”
physical properties of the relative frequency become less ob-
vious as soon as we attempt to interpret o,, in terms of proba-
bility. We return to this question in Sec. 4.5.

4.2. Decrease of the dispersion with increasing sample size

In the scheme under consideration, the primary unpre-
dictable quantity Y(s) is replaced by the secondary quantity
M, , [ Y], which, generally speaking, is also unpredictable.
The point of making this replacement is that the secondary
quantity still turns out to be more predictable, since its dis-
persion for £ = 1,...,Q and n> 1 is usually much smaller than
that of Y(s) for s = 1,..,N.

It is useful to describe the degree of dispersion in the
secondary sample

t
M IYDE = (M, 1Y), . My, I¥]} (4.6)

with the help of some simple quantitative characteristic. The
dispersion of the set of numbers (4.6) is most simply charac-
terized by the interval | Y in» Vo ] which contains all val-
ues of the quantity M, , [ Y] in the sample (4.6):

Y, =minM, [Y], V. = M X 4.7

min = PBM V) Voo max M, (Y] (4.7)
Thus

My Y€ [V, Vo) k=10 (4.8)

The limiting values ¥,,,, and Y, depend on the number of
trials z in a single sample and on the total number of samples
Q.

Adhering to the position presented in Sec. 2.3, we un-
derscore the fact that the dispersion of the subsample aver-
ages must be characterized simply, since we are talking now
about an empirical estimate of the validity of the theory. The
theory itself can be formalized and as complicated as de-
sired. However, in verifying the theory it is no longer appro-

611 Sov. Phys. Usp. 35 (7), July 1992

TABLE I. Actual limits of variation of the quantity
M, ,[Y]inasecondary sample for the die rolling prob-

lem.
Q n N=Qn!| Y., | A AY
8 40 320 2,98 3,72 0,74
8 160 1280 3,31 3,60 0,29

priate to utilize complicated formalisms.

For n> 1 the total range AY = ¥,,,, — Y., of the fluc-
tuations of the subsample averages (4.1) is often indeed
much smaller than the total range of the fluctuations of the
primary quantity Y. As the number 7 of trials in the subsam-
ple increases, the quantity A Y decreases appreciably, even if
the number Q of subsamples is fixed, since the total size
N = Qn of the sample being analyzed increases.

An example of such a manifestation of stability of sub-
sample averages is given in Table I, taken from a report (Ref.
14, Sec. 1.2) of laboratory work performed in a ‘‘non-Fish-
er” course in probability theory.'*'® The primary test was
rolling a standard die and recording the number of spots
obtained Y(s). One can see from Table I that the values of
M [Y1  cluster around the classical average

Vo = (1/6)(1 +2+3+4+5+6) =35, but as the
sample size increases the dispersion relative to this value of

Y., decreases from AY =0.74 for n =40 and Q=8 to
AY =0.29 for n = 160 and Q = 8.

4.3. Interval statistical prediction

We state at the outset that the relation (4.8) was satis-
fied repeatedly and without a single failure in the series of
uniform secondary trials performed (to readers who are
confused by our choice of interval on the right-hand side of
the relation (4.8) we recommend that they imagine that this
choice was made even before the start of the experiment).
On the basis of the principle of empirical induction “it has
happened many times in succession and therefore it will hap-
penin the future” we suppose that the relation (4.8) will also
hold in all secondary trials:

M [YIE [T VE>QandVn'>n. (49)

min® Yamax s

We enumerate the future subsamples by the numbers
k=Q+1,0+2,..

The interval statistical prediction (4.9) is, essentially,
the main result of the multisample empirical estimation
(stability) of averages. This heuristic prediction was ob-
tained on Q subsets of size n. But it was formulated for sam-
plesizes n’ > n because the reproducibility of averages usual-
ly improves as the size of the subsamples increases (in
particular, this improvement is demonstrated in Table I).

4.4. Point statistical prediction. Mathematical expectation

Let AY be sufficiently small, i.e., AY is less than the
allowed dispersion of the subsample averages, which is cho-
sen based on precedents. We call this favorable situation sta-
bility of averages or, more generally, statistical stability. In
the present situation we replace the interval estimate-predic-
tion (4.9) by asomewhat rougher but simpler point estimate

Mk'n[Y]!M[Y], Vk>Qand Vn'>n; (4.10)
here M[Y]

is a number chosen from the interval
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[ min» Yman ] t0 TEpresent this interval. From the standpoint
of the experimenter, this number is what is termed the mea-
sured value of the mathematical expectation of the random
quantity Y.

The rule for choosing the number M[ Y] must be sim-
ple, appealing only to common sense and precedents, but not
to any formal models. The midpoint of the interval can be
used to represent the interval. In our case, this means the
choice MY ] = (Yo + Your )/2. The rule
M[Y]=M,[Y], where N = Qn is the size of the entire
experimental sample, is employed more often. There is no
point in “philosophizing” when choosing the values of
M[ Y]: The error of measurement of M[ Y] must still be tak-
en equal to approximately AY.

4.5, Statistical (empirical) probability as mathematical
expectation

The statistical (in the physical jargon, empirical ) prob-
ability p(4) of arandom event 4 is the mathematical expec-
tation of the indicator 1, introduced by the relation (4.3):

p(A) (4.11)

In short, from the viewpoint of the experimenter, the
statistical probability p(4) is a particular case of mathemat-
ical expectation. This agrees with the relatively new trend of
constructing a theory of probability not on the basis of a
probability measure, as done in Kolmogorov’s set-theoretic
axiomatics, but rather on the basis of an averaging oper-
ation. This trend is most pronounced in P. Whittle’s book of
Ref. 19. To complete the picture, we indicate how the proba-
bility distribution of a random quantity is measured: The
method actually reduces to measuring a finite set of proba-
bilities, i.e., once again measurement of mathematical expec-
tations.

In accordance with the properties of mathematical ex-
pectation, as the sample size increases (the trials U are as-
sumed to be uniform) the dispersion of p(4) often decreases.
This agrees with R. von Mises’s concept of frequency of ap-
pearance.’® One can only agree with V. N. Tutubalin that
“the conditions for practical applicability of the theory of
probability are now interpreted according to R. von Mises”
(Ref. 21, p. 143).

In general, von Mises’s construction of probability the-

SYIAL

Input data

4

ory does not fit within A. M. Kolmogorov’s axiomatics.”> A
critique of this axiomatics is contained, in particular, in the
publications of one of the present authors.'%!32>24

Adopting von Mises’s correspondence between the rel-
ative frequency of appearance and probability

lim w,(A) = p(A), (4.12)
N+

we transfer, at the same time, to probability the explicit and
implicit assumptions about the relative frequency. Not all of
these assumptions fit naturally into Kolmogorov’s set-theor-
etic interpretation,”* which also contains a system of as-
sumptions and conventions. It is sufficient to mention, for
example, the convention about the existence of a statistical
ensemble (universe), satisfying a definite probability mea-
sure, or the convention about random functions (the com-
plexities and conditionalities of this concept are described,
for example, by A. M. Yaglom in Ref. 25).

The coexistence of A. N. Kolmogorov’s abstract set-
theoretic approach and R. von Mises’s frequency interpreta-
tion, oriented toward experiment, also leads to the reverse
process—transfer of the assumptions adopted in the set-
theoretic constructs to the domain of practical statistics. In
practice this means, for example, the formal construction of
an esemble of values (universe) for a limited sample ob-
tained in an experiment. It is obvious that this construction
of an ensemble for a specific experiment opens up extensive
possibilities for arbitrariness, if not for abuse, and by no
means always leads to positive results.

4.6. Random and indeterminate quantities

Thus, the above-described multisample procedure for
measuring the mathematical expectation M| Y] contains or-
ganically an empirical estimation of the stability of averages
M, ,1Y]. In applied probability theory, only those unpre-
dictable quantities whose subsample averages have been
found experimentally to be stable are now called random.
Consequently, the mathematical expectation exists (more
accurately, it is assumed to exist) not for any unpredictable
quantity, but only for a random quantity.

The result of empirical estimation of the stability of
averages can also be negative: The interval in the prediction
(4.9) is sometimes too large in order to be able to go over to
point estimation (4.10). If, however, Q is small, then the

Selection of conditions ¢/ : J

s statistical
stability present?

No

Yes

Re-exafhinaﬁon of the mode!

FIG. 3. Procedure for measuring the mathematical expectation
M([ Y]. In the procedure, measurements are rejected if ¥ is found to
be an indeterminate quantity. In this case it is recommended that
the model of the phenomenon be reexamined.

Y'is a random variable, T !
M[ Y] is measured itis impossible to measure M[Y)

Y'is an indeterminate quantity.

bt o

612 Sov. Phys. Usp. 35 (7), July 1992

Yu. (. Alimov and Yu. A. Kravisov 612




matter never reaches the point of adopting the prediction
(4.9). Unpredictable quantities, whose subsample averages
are not shown experimentally to be stable, are now custom-
arily called indeterminate quantities (Ref. 21, pp. 6-7, 144
and 145; Ref. 26, p. 24). For such quantities there is simply
no definite mathematical expectation; more accurately, its
existence is doubtful. Here the situation is approximately the
same as in the above-mentioned attempt to measure the sin-
gle true value of the diameter of a body, whose shape, as
becomes clear in the course of the experiment, differs appre-
ciably from spherical.

The scheme of the branching procedure, characterized
above, of measuring the mathematical expectation is pre-
sented in Fig. 3. The controllable experimental conditions,
supplemented by a description of the method for construct-
ing equivalent subsamples, are designated by U.

In short, many traditional concepts of the theory of
probability and mathematical statistics, starting with the
concepts of mathematical expectation and the universe, are
not applicable to an indeterminate quantity. This is how V.
N. Tutubalin expressed himself concerning this point (Ref.
27, p. 7): “All imaginable experiments can be divided into
three groups. The first group consistes of good experiments
in which the result of an experiment is always completely
stable. The second group consists of experiments which are
not as good, where there is no complete stability, but there is
statistical stability. The third group consists of very poor
experiments, when even statistical stability does not exist. In
the first group everything is obvious without the theory of
probability. In the third group the theory of probability is
useless. The second group is the real domain of application
of the theory of probability, but there is hardly any guaran-
tee that the experiment of interest falls into the second and
not the third group.”

Agreeing essentially with this statement, we note that
even in the third group of experiments (which concern inde-
terminate quantities) the statistical (sample, empirical)
characteristics still can be quite useful, though the probabili-
ty characteristics are inapplicable here. The statistical char-
acteristics can also be classified as probability-theoretic con-
cepts. Everything depends on the point of view as to with
what the theory of probability is concerned and how it oper-
ates (sée Sec. 2.3).

Statements of the type “if the trials are uniform, then
statistical stability is present” are encountered in the litera-
ture. Such a statement makes sense, evidently, only if the
controllable experimental conditions are uniform (i.e., con-
stant). It is absurd to speak about constancy of all experi-
mental conditions.

The facts indicate, however, that sometimes a number
of significant circumstances fall outside the field of view of
the experimenter. Then there is no stability, even statistical
stability, though all controllable experimental conditions
are constant.

This happens even in fundamental physics, where ex-
periments as a whole are significantly cleaner than in other
fields. In Rutherford’s laboratory the results of an experi-
ment with a new radioactive substance one day became real-
ly chaotic, though the conditions of the experiment did not
change. The investigators did not immediately suspect that
the new substance was a gas (now called radon). None of the
previously discovered radioactive substances was gaseous.
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The experimental conditions were further refined: Drafts
were eliminated and smoking near the experiment was
stopped. After this, statistical stability was restored. This
episode is described in D. Danin’s book “Rutherford.”

The experimenter is never completely guaranteed to be
free of such surprises. In technology [for example, in reli-
ability and quality control problems (Ref. 26, pp. 24-27;
Ref. 16)] indeterminate quantities, unfortunately, are not
rare. They are encountered even more often in economics
and sociology. For this reason N. Wiener even excluded
these fields from the domain of cybernetics as a highly math-
ematicized “interdisciplinary” discipline. In his last scientif-
ic memoir®® he wrote: “The success of mathematical physics
led the social scientists to be jealous of its power without
quite understanding the intellectual attitudes that had con-
tributed to this power... . Just as primitive peoples adopt the
Western modes of denationalized clothing and of parliamen-
tarism out of a vague feeling that these magic rites and vest-
ments will at once put them abreast of modern culture and
technique, so the economists have developed the habit of
dressing up their rather imprecise ideas in the language of
the infinitesimal calculus... . Difficult as it is to collect good
physical data, it is far more difficult to collect long runs of
economic or social data so that the whole of the run shall
have a uniform significance [the italics are ours—au-
thors]... . Under the circumstances, it is hopeless to give too
precise a measurement to the quantities occurring in it. To
assign what purports to be precise values to such essentially
vague quantities is neither useful nor honest, and any pre-
tense of applying precise formulae to these loosely defined
quantities is a sham and a waste of time.”

The example of the discovery of radon shows that it is
precisely the output characteristic of an experiment—the ex-
istence of statistical stability—and not the input characteris-
tic of the experiment—stability of the controllable condi-
tions—that must be taken as the final criterion for
uniformity of the trials. In other words, perhaps only inverse
statements of the type “‘if statistical stability exists, then the
trials are uniform” are completely acceptable. Such inverse
statements do not claim anything significant. They merely
introduce yet one more term—"‘uniformity of trials”—for
the concept of statistical stability.

For all that, the experience of the natural sciences and
their applications teaches that the main means of increasing
the reproducibility of an experimental result is to ensure that
as many of the experimental conditions as possible are sta-
ble. Otherwise, a contribution due to sloppiness will also be
added to the unavoidable dispersion. Thus, on the subject of
mathematization of quality control it is vividly stated in Ref.
27 (p. 5): **... in order to apply probability theory to produc-
tion quality analysis it is necessary first to create a well-orga-
nized production process, in which there is no drunkenness,
unexcused absences, rush work, unacceptable raw materials,
worn-out technological equipment, etc. The theory of proba-
bility is something like butter in porridge: First it is neces-
sary to have the porridge.”

We note, in passing, that the concept of randomization
of an experiment, characteristic for Fisher’s mathematical
statistics, does not agree with this traditional view of things.

It is a different matter that in applied investigations it is
expedient to choose the controllable experimental condi-
tions at the last stage of laboratory investigation to be the
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conditions expected in future use of the product being devel-
oped.

4.7. Interim summary

We now summarize what we have said about sample
averages and mathematical expectation, utilizing metrologi-
cal categories. The calculation of the quantity M, [y] ac-
cording to the simple formula (4.1) and according to the
measured values Y(s), s = 1,...,n, of the primary quantity ¥
is a form of indirect measurement. The algorithm (4.1) for
measuring M, [Y] is thus distinguished by precision and
indisputability [if, of course, the values of Y(s) have already
been measured]: It is identical to the formal definition of the
sample average. Here it is not necessary to develop a model
of the object of measurement. The algorithm (4.1) is appli-
cable to any quantities Y, irrespective of whether or not sta-
tistical stability exists.

Measurement of mathematical expectation M[Y], be-
ing more indirect, is performed by a much less precise algo-
rithm, which also has a branching structure. This algorithm
includes empirical-inductive estimation of the stability of
subsample averages M, , [ Y ]. Such multisample estimation
is essentially an elaboration of a model of the object of mea-
surement. The result of this elaboration, just as in any other
case, may turn out to be negative, i.e., it could show that the
concept of the true value of the measured quantity is inade-
quate in the given specific experimental circumstance. Here
this result means that the subsample averages are unstable
and, correspondingly, a definite meaning cannot be given
sensibly to mathematical expectation.

The uniqueness of mathematical expectation as a mea-
sured quantity lies only in the fact that the elaboration of a
model of the object of measurement reduces here to realiza-
tion of the fundamental metrological precept 2°—in the form
of estimation of the reproducibility of subsample averages.
When other physical quantities are measured, the construc-
tion of a model of the object of measurement is usually a
more specific experimental-theoretical operation. True, if in
measuring the mathematical expectation analysis and selec-
tion of the experimental conditions U which are capable, in
the opinion of investigators, of providing statistical stability
are included in the construction of the model, then the differ-
ence vanishes completely (it was pointed out above that a
multisample experiment gives a final evaluation of the de-
gree of uniformity of the trials).

We must underscore the metrological ordinariness of
measurements of mathematical expectation because of the
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FIG. 4. The multisample confidence interval [ Y, .Y, | refers toaset Q
of samples (in this case @ = 15). (Ref. 29)
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fact that Fisher’s mathematical statistics is abstracted from
the need to construct a model of the object of measurement.
It assumes that the mathematical expectation always exists
and it can always be evaluated from the results of a one-
sample experiment.

Sometimes the aim is to measure as accurately and reli-
ably as possible the mathematical expectations of the input
or some intermediate quantities of the theory (and not only
of the output quantity Y). Everything said above about mea-
surement of the mathematical expectation also pertains in
toto to such cases, because here the experiments are essen-
tially of the same character as verifying experiments.

5.MULTISAMPLE AND FISHER CONFIDENCE INTERVALS
5.1. Multisample confidence interval

The confidence interval is the key concept of Fisher’s
mathematical statistics. Utilizing the foregoing consider-
ations, we compare this interval with the interval
[ Yain VY ]in Eq. (4.9), arising in multisample estimation
of the reproducibility of averages. The latter interval can be
termed a multisample 100% confidence interval for statisti-
cal averages. If it is sufficiently small, a numerical value
M[Y] of the mathematical expectation is extracted from it.
In such a favorable case, this interval can be called the confi-
dence interval for mathematical expectation also. In this
sense, measurement of a multisample confidence interval
[ Yonin ,T’mx] is a stage in the process of verification of a
probability-theoretic prediction U~ M[Y].

A multisample confidence interval is shown in Fig. 4
(thick line along the Y axis). The secondary sample (4.6)
shows a grid plot of the dependence Y, =M, ,[Y],
k=1,..,0. If so desired, one can introduce, say, a 90%
multisample confidence interval, cutting off 5% of the total
number of points at the top and bottom of the grid plot.

In accordance with the antischolasticism thesis of natu-
ral science being presented (the validity of a theory is ulti-
mately based on experiment and not on another theory), an
ideal account of measurement of a multisample confidence
interval could consist of the following three points (Ref. 12,
pp- 49; Refs. 13-18):

1) Q subsamples of size » were obtained under control-
lable experimental conditions U (these conditions must be
described in detail);

2) it was found that the subsample averages M, ,[Y],
k=1,...,Q, fall within a definite interval [7min Y ]; an
empirical-inductive prediction is made that they will also
fall into this interval for all k> Q,

3) the nearest precedents are: ... here it is desirable to
compare with previous measurements of a multisample con-
fidence interval under conditions analogous to U. If these
measurements were performed in the process of verifying
theories, then the practical results achieved with the help of
the statistical predictions adopted must be reviewed.

For example, in the case when a physical theory is being
checked, it is expedient to confirm the data obtained by dif-
ferent groups of investigators or indicate positive (negative)
results obtained in related experiments. In the case of ap-
plied theories, concerning technical setups, one may be deal-
ing with information concerning fault-free operation or,
conversely, breakdowns.

We point out that no probability-theoretic hypotheses
enter into such a report. If the verification of the probability-
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theoretic prediction U/— M| Y] is made on the basis, once
again, of a probability-theoretic model, then logical cycling
obtains: This model must then be verified. After all, as soon
as it is acknowledged that the primary probability-theoretic
model giving the prediction U—M[Y] must be verified,
there are no grounds for taking, under the conditions U, the
secondary probability-theoretic model “at its word.”

5.2. Fisher confidence intervals

We now consider the Fisher confidence interval for the
mathematical expectation M[ Y]. In practice, the interval

[Yy— N, Z)Sy, Yy + HN,2)Sy] (5.1)

is calculated from the entire available sample {¥(s)}{; here

not

Yy = M, [ Y] is the sample average, 7 is the chosen value

of the confidence probability,
N :

s=1

is the sample rms deviation, and t(¥,Z ) is Student’s coeffi-
cient.

Users of Fisher’s mathematical statistics usually as-
sume that the computed specific confidence interval (5.1)
covers the unknown mathematical expectation M[ Y] with
the probability &7 . Metrological standards’ require precise-
ly such an interpretation. For example, according to the
state standard GOST 8.207-76 the interval (5.1) must be
taken as the interval “in which the total error of measure-
ment falls with an established probability.”

Meanwhile, such an interpretation of the interval (5.1)
is meaningless, even purely syntactically. After all, the spe-
cific interval (5.1), calculated for a single sample, either
does or does not cover the unknown value of the mathemat-
ical expectation M[ Y] as soon as it is judged to exist. Thus
here the probability of covering is either unity or zero, and it
cannot equal Z,if0 < # <« 1.

Actually, Fisher confidence intervals of the type (5.1)
still make a certain sense. Suppose that Q> 1 subsamples
{Y o, O}, k= 1,...,0, of size n have been extracted from a
normal universe with the help of independent trials. Suppose
further that for each subsample a Fisher confidence interval
has been calculated:

Vo TIPS, Y+ U, 2)Sy ), k=100 (5.3)

not

here _)—’k,,, =M, , [Y] is the subsample average and S , is
the subsample rms deviation, calculated using a formula
similar to (5.2). Under the assumptions made the inequal-
ities '

?k.n - 1n, ?)Sk.n <M, lY]ls ?k.n +HnZ )8y (5.4)

will be valid approximately for 7 -Q “good” random inter-
vals (5.3), while for the other, “bad” intervals these inequal-
ities are violated. More precisely,

ProblY, , = Hn, #)S, , S My (Y= ¥, , + 1(n.2)8; 1= 2.
(5.5)

The theory contains no indications of which random inter-
vals from the set (5.3) are good.
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FIG. 5. Fisher confidence intervals for the data presented in Fig. 4. This
figure shows that in the present example the multisample average M| Y]
falls within the Fisher confidence intervals only for half of all samples. It is
this circumstance that indicates the trouble in Fisher’s procedure for de-
termining confidence intervals.

This isillustrated in Fig. 5, taken from Ref. 29 (p. 235).
As in Fig. 4, the circles indicate the values of the subsample
averages. The Fisher confidence intervals are represented by
the thick vertical bars. These confidence intervals were
found for Z = 0.5, Q = 15. The horizontal dashed line indi-
cates the value of M[Y].

Figures 4 and 5 illustrate the important difference be-
tween a multisample confidence interval and the Fisher con-
fidence intervals: The former interval is measured once for
the entire existing set of subsamples, while there are as many
Fisher confidence intervals as there are subsamples.

One can see from Fig. 5 that the inequalities (5.4) are
valid for approximately half of the Fisher confidence inter-
vals. Here the value of M[ Y] turned out to be known, prob-
ably because it was incorporated beforehand in the normally
distributed pseudorandom number generator, with whose
help the subsamples were simulated. In a real experiment the
value of M[ Y], naturally, is unknown. We recall also that it
is unknown beforehand whether or not the concept of math-
ematical expectation is applicable in a given situation.

The randomness of the position and size of the Fisher
confidence intervals, calculated for a set of subsamples from
the same universe, is indicated in many sources. However, a
clear graphical illustration that would help in gaining a com-
plete understanding of these concepts is rarely presented.

It is instructive that Ref. 9, a handbook on applied sta-
tistics, which contains a large number of illustrative compu-
tational examples, does not give any examples in the section
devoted to Fisher confidence intervals. The authors did not
undertake a calculation of an individual Fisher confidence
interval in the handbook, probably because such a calcula-
tion is meaningless. A set of confidence intervals (5.3) for
several subsamples was not calculated in the handbook
probably so as not to perplex users of the handbook: It is not
clear what one should do with a set of confidence intervals
such as the set presented in Fig. 4 (moreover, State stan-
dards do not prescribe the calculation of a set of Fisher confi-
dence intervals).

The thought process leading to the incorrect interpreta-
tion of the Fisher confidence interval as some fixed intesval
into which something falls with probability # can be fol-
lowed, for example, in Ref. 30. First, one considers the prob-
ability
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Yz
7 =Prob(Y, S¥<Y) = f w)dY (5.6)
Y,

1

that a random quantity Y, having a probability density
w(Y), falls into the fixed interval [Y,,Y,]. Into formula
(5.6) one can indeed substitute any specific numbers Y, ,
and it does not become meaningless [in Ref. 30 the probabil-
ity Z, calculated using the indisputable formula (5.6), is
also called the confidence probability]. Next, the relation
(5.5) [in Ref. 30, Eq. (36)] is considered to be completely
analogous to the formula (5.6) and the specific numerical
values of Yy and Sy, found for the available sample
{Y(s)}Y, are substituted into it. Ultimately, in Ref. 30 rela-
tions of the type (5.5) are replaced, for example, by the equa-
lity

Prob(31,0 < M[Y] = 31,4) = 0,86 (5.7)

[the notation is ours—authors], which is meaningless, since
M[Y] = const.

A simpler example of such a mixup is as follows: If a
specific realization of a random number Y, say, ¥ = 31.0, is
substituted into the inequality Prob(Y<u) =2,
0<Z <1, where 4 and Z are constants (possibly, un-
known), then the meaningless result Prob(31.0 <pu) = Z is
obtained. In reality, the number 31.0is or is not less than the
constant yu, so that the probability that the inequality
31.0 < p is satisfied is equal to unity or zero, but certainly not
to the number 0.86.

In considering the Fisher confidence intervals, we en-
countered a characteristic feature of the Fisher mathemat-
ical statistics. On the other hand, the basic concepts of this
theory are quite sensible, similarly to confidence intervals,
only in application to many subsamples. They are not appli-
cable literally to one sample, though, alas, this is done. On
the other hand, the interpretation which Fisher concepts are
given in the case of many subsamples is not likely to be suit-
able for the user. Thus, the entire set (5.3) of Fisher confi-
dence intervals is not likely to be suitable for anyone. It is in
this that the above-mentioned inadequate adaptability of
Fisher mathematical statistics to a multisample scheme of a
verifying experiment manifests itself.

5.3. Extralogical components of Fisher statistics

We now sum up our results. The calculation of Fisher’s
confidence interval (FCI) for M[ Y] is based on the follow-
ing complex of probability-theoretic hypotheses (we denote
this complex by H):

A) the quantity Y is random, so that its mathematical
expectation exists;

B) moreover, the probability distribution of the ran-
dom quantity Y exists and it has a definite form: normal for
the continuous random quantity Y, binomial for the binary
indicator-quantity ¥ = I;

C) the tests are independent in the probability-theoretic
sense.

As a result, the verification of the prediction U—M[ Y]
separates into three components, which we designate for
clarity by the symbols U= H, H—= FCI, and FCI=5 M| Y].
The arrow = indicates a formal logical implication oper-
ation. The adoption of the concept of a complex of hypoth-
eses H on the basis of analysis of the conditions U is extralo-
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gical. The Fisher confidence interval in the component
H=FCl is calculated on the basis of a formal model. The
adoption of a final estimate for M[Y] on the basis of the
computed FCI (the operation FCI—= M| Y]) is once again
extralogical, at least because the adoption of the value % of
the confidence probability is extralogical.

In short, we have not, of course, escaped from extralogi-
cal components, but rather we have merely wedged between
them a formal-logical conclusion from the by no means tri-
vial premise H. The premise itself must be verified, and it is
much more difficult to verify than the prediction U—M[ Y]
(which, by the way, is the only one of interest to us in the
context under consideration). Moreover, the procedure for
verifying correctly the premise H will necessarily include the
measurement of M[ Y]. This must be performed according
to the branching procedure described above (see Fig. 3) al-
ready when verifying the hypothesis A. After such a mea-
surement one should stop, since the prediction U= M[Y]
would then, strictly speaking, have turned out to be verified.
Meanwhile, the hypotheses B and C... would remain unveri-
fied.

With regard to verification of the hypothesis B we note
the following. Suppose that we are required to establish reli-
ably a measure of the agreement between the statistical dis-
tribution of the sample { Y(s)}{ and a hypothetical distribu-
tion, which we assume to be the normal distribution

wY) =

exp[—(Y - M{Y]D?¥/22[Y]]. (5.5)

1
V270l Y]

According to common sense this problem cannot be solved
without first estimating for the sample { Y(s)}¥ as accurate-
ly as possible the parameters M[Y] and o{ Y] (the off-set
and the scale, respectively) of the distribution (5.5). This
means that the hypothesis A must still be verified first (but
then, once again, the job is already done, and the hypotheses
B and C will be superfluous).

Fisher’s mathematical statistics does not take into con-
sideration this natural hierarchy of estimation problems. We
can say that it proposes checking somehow the similarity
between the above-mentioned sample and hypothetical dis-
tributions, and then it considers it acceptable to base on the
results of such a rough check the further quite complicated
deductions of the theory of Fisher confidence intervals. We
offer, in this connection, the words of I. Grekova (the liter-
ary pseudonym of E. S. Venttsel’, a well-known specialist in
applications of the theory of probability in aviation): “A
quite subtle apparatus, based on the assumption that the dis-
tribution of the observed random quantity (normal distribu-
tion) is known, has been developed for calculating FCI. And
again there arises the question: And on what basis, strictly
speaking, is this known? How accurately is it known? Final-
ly, what is the practical value of the “product” itself—the
confidence interval? Few experiments means little informa-
tion, and we are in a bad predicament. Whether or not the
confidence interval in such a case is a little larger or smaller
is not so important, especially since the confidence probabil-
ity is assigned arbitrarily” (Ref. 31, p. 111) (the last phrases
in this statement allude to the fact that the theory of FCI is
oriented primarily toward a ‘“miscalculation” involving
small samples).

To I. Grekova’s statement we can possibly only add a
reminder that an individual Fisher confidence interval (5.1)
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generally does not have the meaning which users of math-
ematical statistics seek in it.

The hypothesis C is the most difficult one to check, at
least for the reason that in determining the probability-
theoretic independence both multivariant and univariant
probability distributions are present. Moreover, it is much
more difficult to check the independence of trials than it is to
give a probability-theoretic proof of the independence of
random quantities (see, for example, Ref. 12).

A more detailed critical analysis of Fisher confidence
intervals and the principles of mathematical statistics was
presented in Refs. 12-18, 23, and 24. The programs for mea-
suring M| Y], presented in Sec. 5.1 (points 1-3), offer a con-

structive alternative to Fisher mathematical statistics.'*"
18,23,24

6. ARE THERE ENOUGH DATA FOR A RELIABLE
PREDICTION?

6.1. Incomplieteness of the system of hypotheses

We shall list and, where possible, comment on other
extralogical relations brought into the calculation of proba-
bilities. We begin with the general question of the role of
hypotheses in probability calculations.

Any system of hypotheses is incomplete. This incom-
pleteness principle finds many confirmations in life: No mat-
ter how far-sighted and scrupulous we are in constructing
scenarios of the behavior of a complicated system, there are
still many (even infinitely many!) factors which can affect
the resulting behavior.

An example of incompleteness of hypotheses are virtu-
ally all the defects appearing in nuclear power plants, space
systems, and other complicated technological devices. In es-
timates of the reliability of a nuclear power plant, one would
think that all imaginable reasons for malfunctions and acci-
dents are accounted for. Estimates give such low probabili-
ties for malfunctions that one can only wonder at how mal-
functions arise at all.

But the entire point is that the calculation of probabili-
ties is always based on an incomplete system of hypotheses.
The fire at one of the American nuclear power plants is an
instructive example which P. L. Kapitsa gives: The fire was
blamed on an electric lamp that burned out in a room where
aleak occurred in a water faucet and the metal worker could
find nothing better to do than to light a candle in a dark room
and thereby created the focus of the fire.

In the construction and operation of the Chernobyl nu-
clear power plant it hardly occurred to anyone to include
among significant factors the incompetence of the personnel
and their inability to understand the amorality of unsanc-
tioned experiments. Incidentally, this is not the only exam-
ple when the moral responsibility is just as important (if not
more important) a safety factor as the technical characteris-
tics of complicated systems. How short does the path turn
out to be from moral principles to the operational reliability
of complicated systems! And how spontaneously parallels
arise with the activity of previous criminal structures in the
Union which could not waive their principles... .

6.2. Subjective estimates of probabilities

Subjective (expert) estimates of probabilities are most
often resorted to when there are too many indeterminate (in
Tutubalin’s sense) factors, which cannot be inserted either
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into a determinate or a statistical model of the prediction.
Subjective estimates are based on the previous experi-
ence of an expert, which, in practice, often cannot be forma-
lized. As a rule, it is pointless to subject such estimates to
verification at the level adopted in natural science. The prac-
tical results of economic, technical, etc. activity are most
likely subjected to verification. The criteria for such verifica-
tion are usually unclear, just as, by the way, the forecasting

-éstimates of experts, and it is difficult to include them in the

natural-science paradigm. This is why no success has been
achieved (and is it necessary?) in constructing a bridge be-
tween the natural sciences, on the one hand, and astrologers
and psychics on the other.

6.3. Formal construction of a statistical ensemble

The construction of the statistical ensemble (universe)
from a finite experimental sample is one of the most compli-
cated questions in the practical theory of probability.

Suppose that we have measured the statistical charac-
teristics of a process on the interval [0,77]. The entire com-
plexity of the construction problem reduces to the formal
construction of the statistical characteristics outside of the
interval [0,7]. In most cases the simplest method is em-
ployed—the principle “tomorrow will be the same as today”
is used, making the assumption that the statistical character-
istics for ¢ > T will be the same as for 0 <7 < 7.

Of course, no one can guarantee that this will be the case
for an infinitely long time, and for this reason where possible
and expedient the statistical information must be constantly
renewed and the appearance of significant changes must be
monitored.

The use of experimentally measured time averages as
the characteristics of a statistical ensemble has been termed
the ergodicity hypothesis. In esser:ce, the property of ergodi-
city reflects nothing more than our belief in the validity of
using time averages as parameters of a hypothetical statisti-
cal ensemble. Any change in the time averages can serve as a
signal for reexamining the characteristics of the statistical
ensemble.

Of course, this is demanding. But, if instead of a pains-
taking analysis of the properties of the real system some
words are uttered about the ergodicity of the system, then
the investigator seemingly obtains an indulgence for the case
when possible deviations occur from the adopted hypothesis
and is thereby absolved from the need to adjust the imagined
statistical ensemble to the changing conditions.

We now examine some dangers facing the investigator
“gambling” on a definite statistical analysis.

6.4. Nonstationariness

Any efforts to expose the nonstationariness of the statis-
tical characteristics of a process must be restricted at the
outset to the case of slow nonstationariness. The point is that
statistical characteristics are nonlocal, they are formed over
longer or shorter time intervals.

Suppose a multisample average M| Y] is determined
with uncertainty AY over a time 7. Then experimentally
only nonstationary changes not less than AY are revealed
over the time 7. Thus the minimum degree of nonstationari-
ness, “‘decomposed” on the interval [0,77], is
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dM|Y]
dr

_ AY (6.1)

min .
T

At the same time the observation interval T must be
short compared with the time of nonstationary evolutionary
change

levot ~ IMIY]|/|dM[Y1/dt}. (6.2)
With the help of the condition T'<,,,, we obtain from the
relation (6.1) the inequality

aMiy) -
dr AY

min‘
deI 2™
de

(6.3)

which means that the error with which the derivative
dM[Y]/dt is determined is always greater than the error of
measurement of M[Y].

Thus the interval of multisample measurement cannot
be too short (in this case, the error AY increases) or too long,
for otherwise the nonstationariness effect being sought could
be missed. The minimum time for measuring nonstationari-
ness [it is estimated from the relation (6.1) with a prescribed
valueof min|dM /dt | ] restricts the rate of nonstationariness.

On the whole, this question has not yet been adequately
elucidated in the literature. We note only that by adopting
the hypothesis of ergodicity, we can assign (adjoin) a statis-
tical ensemble not only to a stationary, but also to a nonsta-
tionary process.

6.5. Instabilities

Instabilities are especially dangerous for predictions,
since they begin to develop out of sight, buried in the noise
accompanying any measurement. Initially, after the instabil-
ity is generated, the rapidly growing exponential is still hid-
den in the noise. As a result, the growth of an instability
becomes observable only sometime after the instability ex-
ceeds the noise level. After this, the unstable process contin-
ues to grow rapidly and reaches macroscopic values over a
finite time, sometimes literally within several measure-
ments. The statistical characteristics of the process under
investigation correspondingly also change.

The discovery of instabilities of one or another nature
beforehand is a problem of enormous importance in many
fields of science and technology, for example, in the problem
of controlled thermonuclear fusion. Sometimes the instabil-
ity is not exponential, but rather explosive, and then the
growth time of the instability can be even shorter. Finally,
we mention also processes such as earthquakes, which arise
as aresult of the accumulation of static stresses and are man-
ifested in the form of short-duration releases of stored ener-

gy.

6.6. Rare phenomena

In many problems there is no hope not only for repro-
ducibility, so as to be able to verify the statistical characteris-
tics of the process or phenomenon under study, but even for
a single repetition of an observation. We are talking about
some natural phenomena occurring in space (supernova), in
the ocean (unusual flows), and in the atmosphere (rare opti-
cal and weather phenomena), as well as rare phenomena
occurring in laboratory experiments (detection of rare
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transformations in high-energy physics, detection of high-
energy cosmic rays).

In such situations statistical predictions are customar-
ily constructed according to the ethical rules of physical ex-
perimentation, i.e., maximum self-criticism is exercised and
all alternative hypotheses are considered. It is due to these
unstated rules that even the data and hypotheses that engen-
der legitimate doubts are usually analyzed in a quiet atmo-
sphere with the desire to achieve maximum objectivity. This
is how, or approximately how, the hypothesis of the exis-
tence of a neutrino rest mass, which was later not confirmed
(but not rejected either!), was discussed.

Of course, sad exceptions also occur, examples being
the case of publications on cold nuclear fusion and on the
biological effect of pure water.

6.7.“Side dishes”

While within the framework of the modern scientific
paradigm there is sufficient strength to maintain ‘“‘ethical
health” in verifying even rare and unique phenomena, in the
quasiscientific environment, centered on UFOs, telekinesis,
the Bermuda triangle, and psychics, assertions are very often
encountered with regard to which the term “pseudoscience”
will not seem exaggerated.

We are talking not so much about the boldness of the
hypotheses under discussion (bold hypotheses are by no
means rejected by modern science), but rather about the
level of discussion of them. 1t is precisely the unrestricted
treatment of hypotheses and complete ignoring of the ethical
rules of experimentation that relegates pseudoproblems to
the distant periphery of natural science, to the level of medi-
eval thought." Of course, the problems of metrological sup-
port, verification of hypotheses, and probabilistic interpreta-
tion do not arise here at all—for the conscientious natural
scientist there is simply nothing to verify here.

6.8. Classical probabilities

Probabilities corresponding to the classical definition
(ratio of the number of favorable outcomes to the total num-
ber of possible outcomes), from the modern viewpoint, stan-
dout simply as the simplest hypotheses concerning the fre-
quency of appearance in idealized systems—a coin, a die,
etc.

Depending on the conditions under which an experi-
ment is performed, real frequencies of appearance can differ
from the classical frequencies. Thus the actual results de-
pend on the positions of the center of gravity of the die, the
area of the faces of the die, the smoothness of the angles, the
quality of surface of the table, and other physical character-
istics of the object and the experiment. In addition, as J.
Keller recently analyzed for the example of flipping a coin,
the result depends on the initial linear and angular velocities
of the flipping.** It was found that heads and tails are ob-
tained with equal probability only asymptotically for high
initial velocities.

Thus even classical probabilities sometimes require ex-
perimental verification, especially if a game is suspected to
be dishonest.

6.9. Fiction of the law of large numbers

In the physical literature there still reigns the belief that
as the number of trials (the sample size) N increases because
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of the central limit theorem the relative frequency of appear-
ance approaches its limit, which is the empirical probability.
Meanwhile, experiments very often indicate that for large ¥
the dispersion of the data does not decrease. On the contrary,
at some value &, it increases. A more detailed and serious
exposition of this problem is given by P. E. El’yasberg.?¢

Without being too precise, the reason the dispersion in-
creases is that for N> N, the systematic error arising due to
the fact that the base hypothesis does not include some sig-
nificant factor which, at first, for a small sample size, would
give an insignificant contribution and then, as data are accu-
mulated, would become increasingly more noticeable.

Thus if the model of a phenomenon does not include
any significant systematic factor, then the dispersion will not
necessarily decrease with increasing sample size.

Another possible reason for the fact that the dispersion
does not decrease (or does not decrease sufficiently rapidly)
could be the character of the fluctuations. The conditions,
presupposed by the central limit theorem, though they are
not too burdensome, still are not always automatically satis-
fied. For this reason, verification of the conditions of appli-
cability of the central limit theorem is, in many cases, not
only desirable, but simply a necessity.

We can thus state that a decrease of fluctuations with
increasing N, viewed as a physical fact, is not a trivial conse-
quence of the central limit theorem, but rather it occurs only
under certain definite conditions which must be specially
checked.

7.ALGORITHMIC COMPLEXITY AND PARTIAL
DETERMINATENESS

7.1. Physical experiment and the concept of algorithmic
complexity

A system of conventions arises not only in the measure-
ment of probabilities, but even at a still earlier stage—at the
stage of definition of the concept of randomness. The set-
theoretic approach refers to those quantities as being ran-
dom, that are equipped with a probability measure. The ap-
plied theory of probability distinguishes the class of random
quantities according to the stability of the statistical charac-
teristics.

The algorithmic theory of probability identifies
randomness with algorithmic complexity. Finally, random-
ness is interpreted in the theory of partially determinate pro-
cesses as unpredictability.“ As we can see, even in the ques-
tion of what should be termed random, there are at least
several conventions (a more complete list is given in Ref.
36).

We have already discussed above the relation between
the empirical and set-theoretic averages. We now briefly dis-
cuss the relation to the algorithmic theory of probability and
the theory of partial determinateness.

Contrary to expectation, the algorithmic theory of
probability strictly speaking is not concerned with the calcu-
lation of probability. The problem addressed by the algorith-
mic theory is to establish a criterion for randomness, inter-
preted as the algorithmic complexity of a sequence of
numbers (the results of measurements are a sequence of
numbers). In the context of this paper, the algorithmic theo-
ry of probability is interesting in that it explicitly relates ran-
domness to algorithms, i.e., ultimately hypotheses and for-
mal constructs.

34,35
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Complexity is defined as the shortest length /_,, (num-
ber of operations) of an algorithm that converts one se-
quence of numbers {x} into another sequence of numbers
{y}. Wenote that here there arises a new condition, associat-
ed with the existence of a set of hypothetical algorithms that
convert {x} into {y} and with the need to search for the
shortest algorithm.

If the length /(N) of an algorithm remains finite in the
limit N> o, more precisely, if

N+
then the sequence is declared to be algorithmically simple
and, consequently, not random. If, however,
[(N)/N - const, then the sequence is algorithmically com-
plex and thereby random.

In spite of the attractiveness of the concept of random-
ness as algorithmic complexity, proposed by A. N. Kolmo-
gorov** and developed by his followers, on the whole it is
unlikely to be of interest for the problem of physical mea-
surements. First of all, this concept invloves the limit N — oo
and requires the performance of tests, which become longer
and longer, in order to reveal first simple and then more and
more complicated algorithms. Such a sequence of tests of
increasing length should ultimately approach Martin-Lof’s
“universal test.”** It is obvious that such an operation of
testing for all imaginable and unimaginable algorithms is
unrealizable in practice, while the concept of algorithmic
complexity itself, in principle, requires passage to the limit
N-oo.

Second, the concept of randomness as algorithmic com-
plexity contradicts the view of natural phenomena as it is
developed in physics. It is difficult for the naturalist to ac-
knowledge a sequence (process) as being random if its algo-
rithm is known, even though it is complex.

Third, there exists a hardly surmountable difficulty as-
sociated with the presence of noise in measurements. In
physical measurements, as a rule, noise is filtered (discri-
minated), otherwise the noise and not the process under
study will be the object of measurement. In the algorithmic
approach, if it is applied to measurements, noise is not distin-
guished from the measured process; in any case we do not
know of any such attempts. Ultimately, even with a relative-
ly simple algorithm of the process under study, the mixture
“signal 4+ noise” acquires the complexity of the noise.

Thus the logic of a physical experiment is, in a signifi-
cant way, hardly compatible with the concept of algorithmic
complexity.

(7.1)

7.2. Physical experiment and the concept of partial
determinateness

In the part concerned with determining the dynamical
(determinate) laws in the process under study, the logic of
an experiment is closer to the concept of partial determinate-
ness.*® The latter concept judges the observed process y(¢)
to be determinate or random according to the degree to
which the process is similar to a model predicting process
z(n).

The degree of determinateness®®

= D) (0}
PO = B0 o) w0 - o) 7>

where 7 = t — ¢ ®is the time which has elapsed from the start

(7.2)
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of observations and the braces indicate the operation of com-
paring (projection), can serve as a quantitative characteris-
tic of coincidence. In comparing the observations y(¢) with a
model process z(¢) it is presupposed that the initial condi-
tions for z(¢) are the same as for the recorded process y(¢),
namely,

%) = ().

Because of this, at 7 = 0 the degree of determinateness (7.2)
is equal to unity, however the comparison operation {-} is
defined.

The equality D = 1 corresponds to complete determi-
nateness (complete predictability) of the observed process
»y(¢) relative to the model process z(¢). In the opposite case,
vanishing of D is interpreted as complete randomness (un-
predictability) of y(¢) with respect to z(#). The values of D
such that 0 < |D | < 1 describe partial determinateness. The
interval during which the degree of determinateness D ex-
ceeds a certain level, say, D>»1/2, characterizes the time of
the determinate behavior or, which is the same thing in the
present context, the time of predicability 7,,.,.

In the original publications*®**’ the operation of statis-
tical (empirical) averaging of the product y(¢)z(¢) was cho-
sen as the comparison operation:

(9 2(09} = (D)),

so that the degree of determinateness D is the correlation
coefficient between y(¢) and z(¢). Statistical averaging can
be combined with the integration over time,

Piz

b0)-20 = [
I

and then the measure (7.2) characterizes not the local, as
does the relation (7.4), but rather the integral coincidence
between the observation and the prediction over the entire
segment [£%¢° + 7].

The concept of partial determinateness formalizes the
actually existing relations between the experimenter and the
experimental material. The experimenter puts forth hypoth-
eses z(#) and checks the experimental data y(z) against
them. In the real world no model z(¢) can claim prediction
over an infinitely long time, and for this reason for any phys-
ical processes

(7.3)

(7.4)

((Dz(9))dt, (7.5)

de < oo,

This gives us an opportunity to look at the algorithmic
approach from a somewhat different viewpoint. First of all,
from the physical standpoint it is pointless to subject the
testing process to infinitely long tests—it is sufficient to con-
fine the tests to finite times 7 < 7;eq -

Second, there is no need to pursue universality (accord-
ing to Martin—~Laf, these are all imaginable tests and all tests
that future generations of people can suggest). It is much
more practical to consider existing tests (= hypotheses,
models), i.e., to estimate the degree to which the observa-
tions y(¢) coincide not with all imaginable hypotheses, but
only those hypotheses which are actually available to the
experimenter.

Finally, the concept of partial determinateness radical-
ly solves the problem of noise, which is always present in the
observation y(¢): The comparison operation (7.5) includes
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filtering. The specific weight of the components of the obser-
vation y(¢) which originate from the noise decreases with a
prolonged accumulation with weight z(¢), just as, by the
way, do the components of y(¢) which do not agree with the
adopted model z(¢). For this reason, repeated accumulation
of data makes it possible to separate the signal {i.e., “com-
prehended” part of y(¢)] from the noise. In the algorithmic
approach, however, as we have seen above, noises are not
subjected to sensible filtering. With these significant addi-
tions, the concept of partial determinateness can be viewed
as an elaboration of the algorithmic approach to real phys-
ical objects of investigation.

7.3. Empirical probability as the degree of determinateness

The concept of partial determinateness turns out to be
very flexible and universal. As evidence of this flexibility, we
point out that in defining the operation {y(z)-z(¢)} as the
number of coincidences between the values of y(¢) and z(¢)
the degree of determinateness (7.2) becomes the empirical
probability.

In order to verify this, we discretize the readings both in
time (the sth reading is taken at the time sAt after £°) and in
magnitude: The values of y and z are taken with a sampling
interval £. We define the comparison operation {y-z} as the
number of £ coincidences between y and z within a strip of
width €. It can be expressed as the number of events 4, which
consist of the fact that the modulus of the difference y — z
does not exceed £/2:

{y -z} = n (v); where A: |y —z| <¢€/2. (7.6)

If the indicator function I, (s), defined by the relation (4.3),
is introduced, the number of e-coincidences #,(7) in the
interval [¢°¢° 4 nA¢ ] is given by the sum

(1) z(0)}. ='nA(r)'= i I,(s), ¥=nAL (7.7
s=1 '

Since for y=z we always have 7,(s)=1 and
{y-y} = {z-z} = n, the degree of determinateness (7.2) be-
comes the ratio of the number of coincidences n, (7) to the
total number of readings performed over the time 7 = nAt:

(7.8)

The relation (7.8), as one can easily see, is the relative fre-
quency o, () of coincidences between y and z within the
strip ¢, i.e., it is the empirical probability p.

In spite of the existence of a direct relation between
D(7) and the sample probability p, the quantity D, as a mea-
sure of the degree of coincidence between y and z, still has
some additional flexibility, consisting of the fact that in the
comparison process the values z, = z(¢,) = z(¢° + sAf) can
change together with the observed quantity
vy, = y(t,) =y(t° + sAt). If the model (predicted) value is
constant, z =z, [in this case the requirement (7.3) on the
initial condition z(# °) must be removed], then the quantity
(7.8) is simply the relative time (relative frequency) the
observed quantity y(¢,) occupies an £-neighborhood of the
fixed value z,, :

D(T) = wo = w(ly— Z‘ I < 5/2)'
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Now suppose that we can predict the value y,, i.e., there
exists a satisfactory law (rule, algorithm, guess, secret infor-
mation, etc.) for constructing the prediction z,. Then an ¢-
coincidence between all terms of the sequences

Yis Ypr wos Yy and 2y, 2y, oy 2, (7.10)
will mean that
D) =1 (7.11)

Comparing the values (7.9) and (7.11) we can see that there
seemingly exist hidden conditionalities in the simplest oper-
ations, such as counting the number of events. We are talk-
ing about comparing the frequencies of a definite fixed event,
say, obtaining a six in the case of a die, with the frequency of
coincidence between the observed quantity y; and the (vari-
able) prediction z,. Continuing the example of the die, in the
case of an “honest” die, for a sufficiently large number of
rolls # the frequency of obtaining a six (z, = 6) will ap-
proach 1/6. This means that the numbers in the observed
sequence y, ,...,y, will coincide with z_ = 6, on the average,
one out of six times.

The situation is different in the case of a die that is con-
trolled, for example, with the help of magnet, when the ma-
nipulator organizes the values y; known to him. If these val-
ues are taken from a table of random numbers, then
coincidence with the fixed value z, = 6 will be observed, as
before, in approximately 1/6 of the throws. An objective (or,
more accurately, honestly naive) observer, making judg-
ments assuming an ‘“honest” die, will say that the results of
the rolls correspond to his intuitive expectations. At the
same time, the manipulator, i.e., the informed observer, for
whom the result y, of rolling the die is known beforehand,
will predict the result based on the ‘“‘dishonest” model
y, = z,, where z, is the number which he himself has set. In
this case

D(r)=1.

In the intermediate case, when the manipulator does
not completely control the result, the quantity D can fall
between the valuesw, = 1/6 and D = 1.

Manipulation can also consist of using a “dishonest”
die, for which @, > 1/6. Then the strategy of a **dishonest”
player will reduce to predicting a six more frequently. It is
interesting that in the case of false information, obtained by
the manipulator from the controlling apparatus, the predic-
tions can give values D < 1/6. For example, if the apparatus
is “harmful,” i.e., it always gives what is not required of it,
then in general D = 0.

We intentionally used the example of games of chance
in order toillustrate the main idea. The point is that the work
performed by the naturalist is in many ways similar to that of
a decipherer, who tries to extract from the set of received
messages laws which operate in nature. The experimenter
interprets the obtained information on the basis of hypoth-
eses. The example we have just considered shows that the
object demonstrating “random” behavior (the probability
of obtaining a particular face of a die is equal to 1/6), can
still obey some algorithm, a determinate law of behavior.

Here we once again encounter multiple meaning of
terms. In the present case, determinateness, interpreted as
the compliance of a process to a more or less complicated
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law, does not contradict randomness, interpreted as equal
probability of obtaining any face of a die.

On a general level, this indicates a profound difference
between internal probability characteristics of a process y(t)
(mathematical expectation M[y], higher order moments
M [y.y;yi--]) and external characteristics, revealed by
comparing y(t) with the model processes z(¢).

As strange as it may seem, physicists are interested not
only in internal (in the sense indicated above), but very of-
ten also in external characteristics, i.e., they are interested in
the degree of correspondence between the observation and a
model process (theory). The measure of comparison dis-
cussed here (7.2) [with the correlation (7.4), integral (7.5),
or probabilistic, more accurately, “coincidence” (7.7) oper-
ations of comparison | meets exactly the requirements of an
experiment.

In the interpretation of an experiment the comparison
operation always presumes the existence of a hypothesis,
model, and even guesses (the extralogical, according to
Feinberg, principle in natural science). This corresponds
completely to the central theme of our paper—the most im-
portant role of hypotheses and conjectures in analyzing the
data of an experiment. We recall also that it is precisely the
“Art of Guessing” (Ars conjectandi) that Jacob Bernoulli
called his book, the first book in the world on the theory of
probability.*®

8.CONCLUSIONS

We now list the basic results of our analysis:

1) The relative frequency of appearance @y, interpret-
ed as the statistical probability, as well as the statistical
mathematical expectation My [Y ] or M, , [Y ] are normal
physical quantities (i.e., they can be measured and their error
can be estimated), when we are dealing with random (in
Tutubalin’s sense) quantities, which, in contrast to indeter-
minate quantities, have stable statistical characteristics.

2) The “‘abnormality” of empirical probability and
mathematical expectation consists of the fact that more than
other physical quantities they are burdened with conditiona-
lities and hypotheses, which require special checking ( verifi-
cation).

3) Fisher’s mathematical statistics contains hypoth-
eses, which cannot be checked experimentally (or do not
stand up to such a check) and are even not subject to syntac-
tic analysis, and this indicates that these statistics are un-
sound.”

4) The traditional and intuitive acceptable alternative
to Fisher’s statistics is multisample processing of data (Refs.
12—14; Secs. 4 and 5), which is based on a reasonable mini-
mum number of assumptions.

5) Formal constructs are involved in the practical cal-
culation of probabilities in many cases including:

—Ilisting (and deliberately omitting!) factors affecting
the reliability of complicated systems;

—subjective estimation of probabilities;

—reconstruction of a statistical ensemble from a limit-
ed experimental sample;

—assumption of ergodicity;

—prediction under conditions of nonstationariness and
instability;

—interpretation of rare phenomena;
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—use of classical probabilities as models of physical
phenomena;

—invoking the law of large numbers for analysis of
physical phenomena.

V'V, L. Ginzburg’s article on this subject in the paper Izvestiya in 1991 is
very pertinent.

2 It will be interesting to see how much time passes before the Russian
authorities correct the State standard recommending Fisher’s proce-
dure. Will they manage by the end of this millenium?

'E. Wigner, Commun. Pure Appl. Math. 13, 1 (1960).

2 A. N. Krylov, Memoirs [in Russian], Sudostroenie, Leningrad, 1979.

*E. L. Feinberg, Vopr. Filosofii, No. 8, 33 (1986).

*E. M. Dushin [Ed.], Fundamentals of Metrology and Electrical Mea-
surements [in Russian], Energoatomizdat, Leningrad, 1987.

* Fundamental Standards in the Field of Metrological Support [in Rus-
sian], Goskomstandart, Moscow, 1983.

®M. Kendall and A. Stuart, Distribution Theory, The Advanced Theory of
Statistics, Vol. 1, Hafner Publishing Co., N.Y., 1963 [Russ. transl.,
Nauka, M., 1966].

"M. Kendall and A. Stuart, Inference and Relationship, The Advanced
Theory of Statistics, Vol. 2, Hafner Publishing Co., N.Y., 1961 [Russ.
transl. Nauka, M., 1973].

8 M. Kendall and A. Stuart, Design and Analysis, and Time Series, The
Advanced Theory of Statistics, Vol. 3, Hafner Publishing Co., N.Y., 1963
[Russ. transl. Nauka, M., 1976].

°S. A. Aivazyan, L. S. Enyukov, and L. D. Meshalkin, Applied Statistics:
Fundamentals of Modeling and Primary Data Processing [in Russian],
Finansy i statistika, M., 1983.

199. A. Aivazyan, L. S. Enyukov, and L. D. Meshalkin, Applied Statistics:
Investigation of Relationships [in Russian], Finansy i statistika, M.,
1985.

'S, A. Aivazyan, I. S. Enyukov, and L. D. Meshalkin, Applied Statistics:
Classification and Reduction of Dimension [in Russian], Finansy i stati-
sika, M., 1989.

2Yu. I. Alimov, Alternative to the Method of Mathematical Statistics [in
Russian], Znanie, M., 1980.

3Yu. I. Alimov, in Semiotics and Information Science [in Russian], VIN-
ITI, M., 1985, No. 24, p. 58.

“Yu. I. Alimov, in Statistical Analysis of Experimental Data [in Rus-
sian], Novosibirsk Electronics Institute, Novosibirsk, 1986, p. 15.

*Yu. I. Alimov, Measurement of the Moments of a System of Random
Variables [in Russian], Ural Polytechnical Institute Press, Sverdlovsk,
1984.

622 Sov. Phys. Usp. 35 (7), July 1992

'*Yu. I. Alimov, Measurement of Spectra and Statistical Probabilities {in
Russian], Ural Polytechnical Institute Press, Sverdlovsk, 1986.

Yu. 1. Alimov, Prediction of Probability Distributions [in Russian],
Ural Polytechnical Institute Press, Sverdlovsk, 1986.

'"®Yu. I. Alimov and A. B. Shaevich, Zh. Anal. Khim. 44, 1983 (1988) [J.
Anal. Chem. (USSR) (1988)].

' P. Whittle, Probability, Penguin, Harmondsworth, 1970. [Russ. transl.
Nauka, M., 1982.]

20R, von Mises, Mathematical Theory of Probability and Statistics, Aca-
demic Press, N.Y., 1964 [Russ. transl., Gosizdat, M., 1930].

21V, N. Tutubalin, Theory of Probability [in Russian}, M., 1972.

22 A. N. Kolmogorov, Foundations of the Theory of Probability, Chelsea
Publishing Co., N.Y., 1956 [Russ. original, Nauka, M., 1974].

2 Yu. I. Alimov, Avtomatika, No. 1, 71 (1978).

24Yu. I. Alimov, Avtomatika, No. 4, 83 (1979).

* A. M. Yaglom, Correlation Theory of Stationary Random Functions [in
Russian], Gidrometeoizdat, Leningrad, 1981.

6 P. E. El'yasberg, Measurement Information: How Much is Necessary?
How Should It Be Processed ? [in Russian], Nauka, M., 1983.

¥’ V. N. Tutubalin, Theory of Probability in Natural Science [in Russian},
Znanie, M., 1972.

28 N. Wiener, God and Golem, Inc., MIT Press, Massachusetts Institute of
Technology, Cambridge, Mass., 1964, pp. 89-91 [Russ. transl. Prog-
ress, M., 1966].

29N. V. Smirnov and I. V. Dunin-Barkovskii, Course in the Theory of
Probability and Mathematical Statistics [in Russian |, Nauka, M., 1965.

*® A. N. Zaidel', Errors in Measurements of Physical Quantities [in Rus-
sian], Nauka, Leningrad, 1895.

1. Grekova, Vopr. Filosofii, No. 6, 104 (1976). )

2P. L. Kapitsa, Theory, Practice, Experiment, D. Reidel, Boston, 1980
[Russ. original, Nauka, M., 1984].

*J. B. Keller, Am. Math. Monthly 93, 191 (1986).

3* A. N. Kolmogorov, Sankhya Indian J. Statist. Ser. A 25, 369 (1963);
Probl. Peredachi Inf. 1, 3 (1965); both papers are also contained in A.
N. Kolmogorov, Information Theory and Theory of Algorithms [in Rus-
sian], Nauka, M., 1987, pp. 204 and 215.

5P, Martin-Lof, Inf. Control 9, 602 (1966).

*Yu, A. Kravtsov, Usp. Fiz. Nauk 158, 92 (1989) [Sov. Phys. Usp. 32,
434 (1989)].

37 Yu. A. Kravtsov, in Nonlinear Waves. Vol 2: Dynamics and Evolution
[in Russian], Nauka, M., 1981, p. 81.

*8J. Bernoulli, On the Law of Large Numbers [Russ. transl., Nauka, M.,
1986, Part 4.]

Translated by M. E. Alferieff

Yu. 1. Alimov and Yu. A. Kravtsov 622



