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The physics of gaseous metals in the vicinity of the critical point is analyzed. A theory is presented
for mixed states of valence electrons in percolation clusters of overlapping atoms, and is used for
the interpretation of experiments. It is shown that the condensation of gaseous metals near the
critical point has a plasma-like nature. The electrical and electrodynamic properties, as well as
plasma oscillations and optical properties are analyzed in the region of the broadened metal-
nonmetal transition. The cases of partial ionization at lower densities and multiple ionization at

very high temperatures are discussed.

1. INTRODUCTION

It is well known that most chemical elements form con-
densed phases with free valence electrons, i.e. solid and lig-
uid metals. Metals usually evaporate in the form of atomic
gases, which are jonized by thermal excitation of the atoms.
However, at densities comparable to those of liquids the gas
phase is also metallic because of the overlap of the electron
shells. Obviously, this statement is, to some extent, a matter
of terminology. However, it takes on physical meaning if two
different metallic phases, a liquid and a gaseous metal, can
exist simultaneously in the vicinity of the critical point. This
situation, the possibility of which was predicted by Zel’do-
vich and Landau,’ is, according to present-day data, a com-
mon one for metals.’

On the phase diagram the region of the critical point of
metals occupies a position between that of the condensed
metal and the partially ionized gas (plasma), at the junction
of the interest of various fields of physics. In principle, the
theory of gaseous metals should be based on the ideas of the
electron theory of disordered media. The most important
problem of the theory lies in the investigation of the metal-
nonmetal transition and its analog in extrinsic semiconduc-
tors. A distinguishing feature of metals is that the transition
is broadened because of their high critical temperatures
(several thousand degrees kelvin at pressures from a
hundred to several thousand bars). In a broad sense the idea
of a gaseous metal encompasses the entire transition region
and is used as the equivalent to the English term “expanded
metals”.

The metal-nonmetal transition has been studied in a
large number of extrinsic semiconductors. Similar studies of
gaseous metals were started considerably later. Moreover,
because of the great experimental difficulties, they have in-
cluded only such easy-boiling metals as cesium, rubidium,
and mercury. Consequently, there is a certain gap between
the physics of gaseous metals and the investigations of pro-
cesses in which they participate, such as the electrical explo-
sion of wires, explosive electron emission, or the action on
metals of intense energy fluxes and of high-speed impact.
For the mathematical simulation of processes of this sort
there exist programs for the calculation of the properties of
metals over a wide region of the phase diagram. The vicinity
of the critical point generally represents the greatest difficul-
ties in broad-range calculations, which frequently are based
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on a model of atomic cells in compressed matter. A theoreti-
cal analysis that provides an understanding of the physical
properties of gaseous metals might help us to bridge this gap.

Interest in gaseous metals is motivated by the unusual
properties that distinguish these systems from systems with
nearly free electrons. It has recently been shown that these
properties admit of a simple theoretical interpretation. At
the same time, most reviews and monographs* in which
expanded metals are discussed were published some ten
years ago. In the present review the primary attention is giv-
en to new physical models used for the interpretation of ex-
periments. Progress in this area is mainly associated with the
concept of percolation of overlapping atoms. Since we are
considering a broadened metal-nonmetal transition, we shall
not discuss the theories of weak and strong localization, ap-
plicable far from this transition. These directions of investi-
gation, which have been extensively developed in recent
years, have been elucidated in the reviews of Refs. 6 and 7.

The outline of this review is clear from the section head-
ings. We examine the electronic properties in percolation
clusters and on this basis analyze the various properties of
gaseous metals in the vicinity of the critical point. In the two
last sections we also consider partial ionization at reduced
densities and multiple ionization at very high temperatures.
Some of this material has been published in Ref. 8.

2. THE METAL-NONMETAL TRANSITION

It is well known that the metallic state occurs in disor-
dered phases because the electron-ion interaction is screened
by the electron gas. If this screening were not present, the
electrons would form neutral atoms with the ions, where
each ion is screened by its own electron. Thus, the metal-
nonmetal transition is associated with a change in the nature
of the screening. In the metallic phase the screening length of
a homogeneous electron gas coincides with the radius of the
ionic cell. In metal atoms the valence electrons (as a rule,
semiclassical) screen the ion around the boundary of the
classically accessible region. Clearly, in the region of the
transition these distances must be of the same order of mag-
nitude. From this consideration we obtain the criterion

en!/3/1 =, (1)

where e is the absolute value of the electron charge, n, is the
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ion density, I is the ionization potential of a valence electron,
and C is a constant of the order of unity.

Essentially, this criterion is applicable also to the metal-
nonmetal transition in extrinsic semiconductors. There, one
must replace e’ by ¢°/¢ in Eq. (1), where £ is the dielectric
constant of the lattice and 7 is taken to be the ionization
potential of an impurity in the semiconductor. According to
Ref. 9, this criterion describes the correlation of the data for
various extrinsic semiconductors in which the ionization po-
tential of the dopant varies over three orders of magnitude.
The average value of the constant is C = 0.52.

If the effective length /21 is replaced by the effective
Bohr radius a5, Eq. (1) becomes the Mott criterion'®

n}/3ay = 0.25.

In this form the criterion is useable only for hydrogen-like
impurities. The weli-known derivation of this criterion uses
the Thomas-Fermi screening length, which is set equal to the
Bohr radius.

In another interpretation, the change in the screening is
related to percolation. If in a random configuration of atoms
the classically accessible regions of the valence electrons
overlap, then the valence shells virtually screen one another
from the ions. Therefore, the overlaps of these regions can be
considered as an indication of the transition between an
atomic gas and a metal. The corresponding criterion is the
percolation threshold of the problem of overlapping spheres

3
“T"(é) n =0.34. (2)

It is easy to see that this equality is identical, up to a constant
factor, with criterion (1). According to criterion (2) the
volume of the accessible spherical regions comprises about a
third of the total volume. Here, the “pure” volume that they
occupyis 1 —exp( — 0.34) = 0.29, and the rest, 0.05, is the
volume of the overlap region.!' The idea of the percolation
of the overlapping electron shells of the atoms has been dis-
cussed by Ziman, who analyzed a model of spheres “filled”
by the wave function.!? In the semiclassical case the role of
this sphere is played by the classically accessible region, at
whose boundary the wave function has a maximum.

If interactions are included which change the probabili-
ty of the various configurations, the transition point is shift-
ed in one direction or the other. Since the limited overlap
possibilities of the atoms lead to an “economy” of their vol-
ume in the filling of space, the percolation threshold can be
lowered by the volume of the overlap region. On the other
hand, for strong interactions (in the vicinity of the melting
line) a lattice is formed. In a randomly close packed struc-
ture the overlap threshold would be increased from one-
third to two-thirds of the expanded volume. This limit, how-
ever, has only a remote relation to gaseous metals. For
example, the metal-nonmetal transition point in mercury,
where the density is 8.8 g/cm® (Ref. 13), corresponds to a
fraction 0.29 of the classically accessible region. It is worth
mentioning that the volume scale is more extended than the
distance scale. Therefore, in terms of the correlation formula
(1), all of this region of the threshold fraction of the accessi-
ble volume does not exceed the spread in the transition
points in extrinsic semiconductors studied in Ref. 9.
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3.QUASIATOMIC STATES

Semiclassical electrons of the s- or p valence shells with
large principal quantum numbers # in atoms of metals move
in the classically accessible region of the Coulomb potential,
screening the ion core. When these accessible regions over-
lap they expand, encompassing the adjacent ion. The over-
lapping atoms form percolation clusters with an interatomic
distance much greater than in molecules. Complete mixing
of the states does not occur; that is, the quasiatomic struc-
ture remains.

Because of exchange, the atomic core in a percolation
cluster is virtually screened by the atoms of the adjacent
atoms. As a result, mixed states of the valence electrons are
formed, containing a mixture of the asymptotically free mo-
tion above the potential well of the screened ion. This is the
reason for the formation of the continuous spectrum of exci-
tations above the atomic level. The spectrum of the internal
energy of the atom in these mixed states (or of a quasiatom)
has the form'*

Ep=—1+ep‘, ep=p2/2m, ‘ (3)

where [ is the ionization potential of the atom, £, is the exci-
tation energy, p is the momentum of asymptotically free mo-
tion of the electron, and m is the electron mass. The energy of
the atomic level according to the variation principle of quan-
tum mechanics'’ gives a lower bound to the internal energy
of the quasiatom.

In the simplest case, the energy representation of the
density matrix of the quasiatom contains only two diagonal
elements, corresponding to the probabilities of the ground
state and the state of free motion. These matrix elements are
related by

a/ag, = p*/2ml, (4)

where the subscript O refers to the ground state and p to the
state of free motion. One can easily show, using this ratio and
the normalization condition gy, + a,, =1, that the internal
energy of the quasiatom corresponds to the spectrum of as-
ymptotically free motion, formulas (3). It follows from (4)
that weakly excited quasiatomic states differ little from the
ground state of the atom (excluding the asymptotic part),
since the mixture of free motion in them is small.

The radius of localization of the quasiatomic states is
determined by the time of transition of an electron to a vir-
tual hole in a neighboring atom. During this time the elec-
tron wave corresponding to free motion with a velocity v
travels a distance

r=w, (5)

where 7’ is the transition time. Here the primes indicate that
this time is different from the mean free time, and, accord-
ingly the radius of localization is different from the inter-
atomic distance. It must be mentioned that in a partially
ionized plasma the quasiatomic states correspond to atoms
excited above the ionization threshold, and the localization
length usually is the same as the mean radius of the ion cell.
Indeed, these are the ideas on which Menzel based his deri-
vation of Saha’s equation of ionization equilibrium in terms
of the Boltzmann formula for excited atoms.'¢

It was mentioned above that in gaseous metals the met-
al-nonmetal transition is broadened. It is easy to understand
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that this corresponds to the continuous spectrum of quasi-
atomic excitations. If the width of the energy distribution of
the quasiatoms is of the order of the temperature 7, it follows
from (2) that the relative width of the metal-nonmetal tran-
sition is

An/n ~ -3T/1 (6)

As the minus sign in expression (6) shows, the transition is
broadened towards lower density.

At a temperature of the order of the ionization poten-
tial, the gas will, of course, remain in the plasma state re-
gardless of the density.

4.PLASMA CONDENSATION

As is the case for any gas, when the temperature is re-
duced below the critical temperature at a subcritical pres-
sure, a gaseous metal will condense. Figure 1 shows an exam-
ple of a phase diagram for copper. The region of the metallic
state lies above the metal-nonmetal transition line, which
should be considered as being somewhat broadened from
below. The extension of this line in the two-phase region
bounds that part of the latter region around the critical
point, where both the liquid and the gas are in the metallic
state. From the point of view of the theory of condensation
the special feature of this diagram is that the Coulomb inter-
action between the electrons and ions is responsible for the
phase transition in the vicinity of the critical point (plasma
condensation).

It should be noted that the Coulomb type of critical
point of the condensation of gaseous metals is not the only
type. Other examples are the critical point of the condensa-
tion of excitons created during optical pumping in semicon-
ductors,'” and the critical point of the solubility of metals in
liquid ammonia.'®

On the other hand, there have been many predictions of
more complicated phase diagrams of a partially ionized plas-
ma with an additional plasma phase transition not related to
the usual condensation and its critical point.'**® As a rule,
however, the equation of state used for the analysis does not
give the precision required to draw this conclusion. This ap-
pears to be the reason why additional phase transitions have
not been observed experimentally.

The description of plasma condensation is based on the
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FIG. 1. Phase diagram of copper (the boundary of the two-phase region is
shown similar to the case of cesium®?). C is the critical point, OM is the
metal-nonmetal transition line, OL is the boundary of the region of the
two metallic phases.

593 Sov. Phys. Usp. 35 (7), July 1992

analysis of the Coulomb energy of a strongly coupled plas-
ma. In the semiclassical approximation this energy is given
by the Madelung formula

U = —ay2ent/?,

where z is the charge number of the ions. The coefficient in
this expression depends on the model, and is in general un-
known. To obtain the equation of state it is necessary to use
the virial theorem, according to which the contribution to
the pressure from the Coulomb interaction is one third of the
potential energy. In addition, it is necessary to take into ac-
count the repulsion effect. A qualitative description of plas-
ma condensation is given by a modified van der Waals equa-
tion*>?'

p= l—f%,g - gondent’3, )
where n = n_ + n, is the total density of particles contribut-
ing to the pressure, n, = zn, is the density of valence elec-
trons, z is the number of valence electrons of an atom, b, is
the van der Waals minimum volume, and @y is the (renor-
malized) Madelung constant. This equation takes into ac-
count the quasiatomic structure of the strongly coupled
plasma. The parameter b, has the meaning of a minimum
volume per atom

b, ~ (/1. (8)

The second term in Eq. (7), which is related to the Made-
lung energy, describes the attraction of the overlapping
quasiatoms. Clearly, part of the Madelung energy, which in
this model corresponds to the inner energy of the quasi-
atoms, must be excluded. This is reflected in the value of the
Madelung constant. The most reliable estimates® give
a,; =~0.63, whereas the known value for a single-component
plasma is 1.45,

The equation of state (7) allows us to obtain approxi-
mate power-law formulas for the critical points of condensa-
tion of gaseous metals:

T, = 0.04z] eV, 9)

p, == 0.4z’ " bar, (10)
and

p/n T, =0.1, (11)

where the numerical factors are normalized to the experi-
mental parameters of cesium.”” [t must be pointed out that
the critical pressures of different metals vary much more
than do the critical temperatures. The correlation of the
critical parameters, which follows from expressions (9) and
(10) is shown in Fig. 2. It is interesting to note that accord-
ing to expression (11) the strong Coulomb interaction re-
duces the pressure by a factor of ten as compared to the ideal
pressure.

The phase diagram of the type shown in Fig. 1 corre-
sponds to those metals for which the normal density is much
higher than at the metal-nonmetal transition point. For
many metals this excess in the density is actually a factor of
five or more, whereas the critical density is only a factor of
four or five below the normal density. A counterexample is
mercury, for which the metal-nonmetal transition line lies
considerably above the critical density. This situation corre-
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FIG. 2. Correlation of critical parameters of gaseous metals (with cesium
used as a reference point). p, ~ T2, 12 (Ref. 2).

sponds to another type of phase diagram, in which there are
two nonmetallic phases near the critical point, as for insulat-
ing liquids. In this case the van der Waals interaction be-
tween the atoms is responsible for the condensation, so that
for a qualitative description one can use the classical van der
Waals equation of state. Thus, there is no plasma phase tran-
sition in mercury, although there is a metal-nonmetal transi-
tion. Since all of this field has been well studied, this state-
ment may be regarded as experimentally proved. This serves
as an illustration to the above discussion in connection with
the prediction of an additional phase transition.

5.EXCITATION OF MIXED TERMS

The valence of the ions in a gaseous metal, as can be seen
from the equation of state, has a large influence on the pa-
rameters of that equation. This influence is well defined for
simple metals with s- and p- valence electrons outside the
last filled inert-gas shell. From the point of view of the perco-
lation criterion, these electrons can be regarded as equiva-
lent, since they have either identical (in the case of the ns?
shells), or nearly equal radii of the classically accessible re-
gion." In transition and noble metals, in which the inner d-
shell is filled, only the valence s-electrons can take part in the
percolation. A property of these metals is that in the percola-
tion clusters the valence can be changed by excitation of
electrons from the d-shell. This corresponds to the excitation
of the so-called mixed atomic terms. The excitation energy is
compensated by the lowering of the Madelung energy, which
is proportional to the square of the valence, so that an in-
crease in valence may be energetically favorable. For exam-
ple, in the case of copper (Fig. 3) in the vicinity of the critical
point the principal term ?S'? of the configuration 3d'%s is
lowered because of the Madelung interaction by the amount
aye’n!”? =1 eV, while the components of the mixed term
’D,,, and ?Ds,,, having the configuration 3d°4s? with two
valence electrons are reduced four times as much, by 4 eV.
Since the excitation energy of the mixed term is about 1.5eV,
the relative energy positions of the terms are reversed; that
is, the excitation of the mixed term is energetically more
favorable. A similar change in the valence of atoms has been
observed to occur as a result of the transition to an excited
state in the formation of a chemical bond."’
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FIG. 3. Energy diagram of an atom with a mixed term.

The excitation of the mixed term changes both the posi-
tion of the critical point, mainly because of the increase in
the valence, and the metal-nonmetal transition point. Actu-
ally, in this case the radius of the classically accessible region
is determined by the ionization potential of the mixed term,
and, consequently, it increases. As a result, the density at the
metal-nonmetal transition decreases by a factor of two in
copper. It is obvious that this has an important effect on all
the characteristics of the gaseous metal,?*

6.DENSITY OF QUASIATOMIC STATES

For a complete characterization of the quasiatomic
states it is necessary to determine, besides the spectrum (3),
also the density of states. It is easy to see that this density of
states is higher than in a homogeneous electron gas, since the
quasiatomic states belonging to different atoms can overlap.
The density of states per atom is proportional to the volume
of the sphere of localization, whose radius is given by formu-
la (5). For nearly-free electrons it would not be possible to
distinguish the overlapping states, so that the corresponding
volume coincides with the ion cell. In the general case the
volume of the sphere of localization is

Q=n"1@'/1)3, r<v (12)

’

where 7is the mean free time of an electron between adjacent
ions. The ratio of the mean free time to the transition time,
which is less than unity, characterizes the degree of localiza-
tion of the electrons.

In the case of well defined quasiatomic states the transi-
tion time of an electron is much longer than the mean free
time, and the volume of the localization sphere is much larg-
er than the ion cell. Atlarge distances the potential of the ion
is screened, and therefore over a large part of the localization
sphere the electron moves as a nearly-free electron. Then the
density of states of the quasiatom also corresponds to free
motion. In this approximation the density of states is

d; 4np’Q
,3§=8."‘L'(27m)3 : (13)

where g, is the statistical weight of the atomic level.

Therefore, by comparison with an ideal plasma, the
continuous spectrum in a gaseous metal is shifted with re-
spect to the internal energy of the atom by an amount — 7,
and the density of states increases in proportion to (7'/7)°.

A direct consequence of the increase in the density of
states is a decrease in the Fermi energy. The renormalized
Fermi momentum in the case of atoms with s valence elec-
trons is
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P;:-=PFT/T', (14)

where #(3m%n, )" is the Fermi momentum of a homoge-

neous electron gas. It is clear that a decrease in the Fermi
energy will contract the region of densities where the elec-
trons are degenerate. In fact, in the case of well-defined qua-
siatomic states, where 7 € 7', Boltzmann statistics is almost
always applicable.”

The increase in the density of states is an effect that is in
some sense inverse to the formation of a pseudogap in the
electronic spectrum around the Fermi level in the well-
known scenario of Mott for the localization of free elec-
trons.?>?® Nonetheless, this effect is responsible for a defi-
nite stage in the metal-nonmetal transition. This topic will be
revisited later.

7.MINIMUMMETALLIC CONDUCTIVITY

In percolation clusters the electrons undergo random
walks, making transitions to virtual holes on the neighboring
atoms. This motion is described by a diffusion coefficient

fogr , (15)

(N e

2
D, = 3

where / is the mean interatomic distance and v is the average
velocity of the electrons. As can be seen, the diffusion con-
stant of the electrons is given by the product of the minimum
gas-kinetic diffusion coefficient times the ratio of the mean
free time to the transition time, which characterizes the lo-
calization of the electrons. According to the criterion of Ioffe
and Regel,?” localization occurs when the mean free path
determined for the gas-kinetic regime, decreases to its mini-
mum value, equal to the interatomic spacing. Using the Ein-
stein relation between the diffusion coefficient and the mo-
bility, one can at once write an expression for the mobility

u==L, (16)

where the first factor is the minimum gas-kinetic mobility.
Because of the localization factor, the mobility of the elec-
trons can be much less than the gas-kinetic value.

If the electrons are degenerate, the mean free time is
inversely proportional to the renormalized Fermi momen-
tum. Because of relation (14), the localization factor in the
mobility is canceled out, so that formula (16) reduces to the
gas-kinetic expression with the usual Fermi momentum.
Thus, in a degenerate gas we would not have anything larger
than the minimum gas-kinetic mobility, and consequently,
the minimum metallic mobility in the Ioffe-Regel sense

Oy = eanI/pF. (17)

The localization in this case occurs indirectly. Specifi-
cally, as has been mentioned, when 7 <7 Boltzmann statis-
tics becomes applicable. Thus, the minimum metallic con-
ductivity is not the lower bound, but only characterizes a
change in regimes of conduction. The more complicated
question, that of the minimum of the conductivity at T=0,
was formulated by Mott?® and thereafter excited a long con-
troversy.®’ At the present time the prevailing point of view,
based on the scaling theory of localization, is that such a
minimum does not exist. This issue, however, lies somewhat
outside the scope of this review.
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8.PERCOLATION MOBILITY OF ELECTRONS

The expressions for the kinetic coefficients, which in-
clude the localization factor, remain rather formal, since this
factor is not determined. Specific calculations are based on
the one-electron model of percolation diffusion and mobil-
ity. It is assumed that an electron, moving in the classically
accessible region of the Coulomb potential of the ion, “sees”
oneion and the rest are screened. The electron can change its
ion when it is in the region of overlap of the classically acces-
sible regions. Clearly, diffusion occurs when the fraction of
the accessible volume exceeds the percolation threshold.

If the fraction of accessible volume is large enough the
diffusion becomes gas-kinetic diffusion, that is, the transi-
tions of the electron between the ions occurs via free motion.

Because of the continuous spectrum of excitations of
the quasiatom, the fraction of accessible volume is a contin-
uous function of the energy

3
=55

where the energy spectrum E, is given by formula (3).
Therefore, the mobility edge corresponds to the percolation
threshold of the problem of spheres. The gas-kinetic value of
the mobility is reached when {(E,) is of the order of the
degree of dense packing, since the major part of the volume is
accessible.

The corresponding excitation energy ¢, is

(18)

A=1- e2(47m1/3Ck)"/3, k=1,2 (19)

where we take, for example, {; = 0.29 for the mobility edge,
and for the minimum gas-kinetic mobility £, = 0.74. At the
transition point the metal-nonmetal gap vanishes. Above
this point A, <0, i.e., the (virtual) mobility edge lies below
the ground state level of the atom.

An estimate of the critical exponent of the mobility in
the scaling theory of localization indicates a linear behavior
of the mobility around the threshold®

y(EP)OC(Ep—Ec)’, vel, (20)

where E_ is the mobility threshold. In this case one can inter-
pret the mobility u, as a linear function over the entire inter-
valfrom A, to A, (Fig. 4). Thus, instead of a direct calcula-
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FIG. 4. Percolation mobility. A, is the percolation threshold, A, is the
minimum gas-kinetic mobility x,, .
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tion of the percolation mobility, normalization to the
gas-kinetic limit is used, which radically simplifies the prob-
lem.

The percolation mobility averaged over the Boltzmann
distribution with the density of states (13), {x,, ), automati-
cally takes the form (16) with a definite localization fac-
tor.*® Above the metal-nonmetal transition point the local-
ization factor has the form

(BT/2) - A
Ay ~4,
A =<0,4,>»>T.

X

“Jw

(21)

Below the transition point this factor is

(22)

The exponential dependence of the localization factor
on the temperature below the metal-nonmetal transition is
due to the vanishing of the activation energy (excitation to
the mobility edge) at the transition. Thus, formula (22) de-
scribes the broadening of this transition. In the region of
applicability of one-electron theory the activation energy
must be much less than the ionization potential of the atom.
Otherwise, the excited electron sees not an ion, but an atom,
and so its percolation in the fields of the ions is not possible.
This condition limits the applicability of the formula in a
certain vicinity of the transition. The extension of this line of
reasoning leads to the separating out of a subsystem of excit-
ed quasiatoms and an analysis of partial ionization.”

For degenerate electrons a layer of width ~ 7" around
the Fermi level contributes to the conductance. Therefore,
when the Fermi level is above the mobility edge the localiza-
tion factor depends only on the position of this level. How-
ever the criterion for degeneracy, €2 = pg/2m> T, is usually
satisfied when the usual Fermi level is £ > A,, since it al-
ready lies above the level of the gas-kinetic mobility. Here
the localization factor tends to unity. Therefore, in addition
to the reduction of the localization factor discussed above,
the factor itself in the case of degeneracy is close to unity.**

9.ELECTRICAL PROPERTIES IN THE REGION OF THE
METAL-NONMETAL TRANSITION

The broadening of the metal-nonmetal transition has
been observed experimentally as a continuous but more or
less sharp change in the electrical properties, in particular in
the conductivity, as functions of the density. According to
the theory of percolation mobility of electrons, the change in
the conductivity is explained by the localization factor.
When this factor is taken into account the Drude formula is
modified

en_zy

= = e T
a—ene(up)— poant

(23)

In the region of its applicability the formula is in agreement
with experiment for various metals with an accuracy to a
factor of 2 or 3. (Figs. 5a,b). The metal-nonmetal transition
point is determined by an extrapolation of the density de-
pendence of the activation energy (Fig. 6). The theory of
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FIG. 5. Conductivity in the vicinity of the metal-nonmetal transition
(shown by the arrows). a) Cesium, 7= 2115 K; 1) experiment*’; 2)
theory**.b) Mercury, T = 1800 K; I) experiment'?, 2) theory'*. ¢) Cop-
per, T = 7600 K, theory.”

percolation mobility also gives qualitative agreement with
the experimental curves.

Since the only specific parameter that determines the
mobility gap in formula (19) is the ionization potential of
the free atom, the formulas for the localization factor, (21)
and (22), make it possible in practice to estimate the con-
ductivity of any metal. In the special case of the excitation of
the mixed term discussed above, the ionization potential of
this term must be inserted into formula (19). For example,
this is the way in which the conductivity of copper was calcu-
lated” (Fig. 5c). We should draw attention to the magni-
tude of the regions of the metallic state in various metals.
While for mercury the unactivated metallic conduction is

Hg

o3k

fnes/aT, 00K

s
;

£
L

1
0 p, g/cmd

FIG. 6. Temperature coefficient of the conductivity of mercury (dashes
are the extrapolation of the activation energy). 7) Experiment'®; 2) theo-
14

ry't.
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retained as the material expands to a factor of 1.5 below the

normal density, in the case of cesium it is retained to a reduc-

tion in density by a factor of 5, and for copper, a factor of 15.
The Hall coefficient is given by the expression?®

{u
R= '%&}% (24)

The distinction between the mean square of the percolation
mobility and the square of the mean in this expression is
important only when there is a threshold, that is, below the
metal-nonmetal transition. The result of the averaging in
this case is

1/2
R=—ﬁ({—) AT A>T (25)

enc 1

Thus, the Hall coefficient below the transition point be-
haves as the reciprocal of the conductivity (Fig. 7).

The thermoelectric coefficient (or the thermal emf, in
units of V/K) is qualitatively described by the formula?®

ky (u e

a=-—-—

°T 3 (26)

where kg is the Boltzmann constant. In this expression the

weighted-average excitation energy, with a weighting factor

proportional, to x,, differs considerably from 37 /2 if there

is a mobility threshold, i.e., below the metal-nonmetal tran-

sition. Here, the thermal emf is
kg A,

A>T,

23 27

a=—

Below the transition point, therefore, the thermal emfis neg-
ative and varies as the logarithm of the conductance (Fig.
8). It is difficult to interpret the positive peak of the thermal
emf measured in the direct vicinity of the critical point of
mercury.”> However, it is possible that the reason for this
anomaly is related to the divergence in the thermal conduc-
tivity at the critical point, which makes it difficult to mea-
sure the thermal emf itself.**

10. OPTICAL CONDUCTIVITY

The metal-nonmetal transition is accompanied by a
change in the spectral distribution of the optical conductiv-
ity from the Drude-Lorentz distribution, which has a de-

~Ren,
g
20

~

10

|

1 i
1?2 p.g/icm?

FIG. 7. Hall coefficient (mercury, 7= 1800 K). /) Experiment®'; 2)
theory®®.
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FIG. 8. Thermoelectric coefficient (mercury, 7= 1800 K). 1) Experi-
ment*; 2) theory*® .

scending frequency dependence, to one typical of an insula-
tor, with a window of transparency at low frequencies. These
spectra were obtained as a result of the analysis of an experi-
ment on the reflection of light from the interface between
expanded mercury and sapphire.’> The evolution of the
spectrum can be explained by the theory of percolation mo-
bility.

In the classical case fiw € T formula (23) for the dc con-
ductivity is generalized by modifying the Drude-Lorentz
formula

eny
_fnt ¢
o(w) = m T 1= o

ot

(28)

where @ is the frequency of the external field. In a further
generalization to the quantum mechanical case it is assumed
that the interaction of an electron with the external field
during the diffusion reduces to the absorption (emission) of
photons. From this point of view the major effect in the per-
colation mobility consists of a lowering of the threshold by
an amount #iw as a result of the virtual absorption of pho-
tons. This effect gives a spectral maximum in Re o(w) above
the metal-nonmetal transition, unlike the monotonically de-
creasing dependence of the Drude-Lorentz formula (Fig.
9). Below the transition point the lowering of the threshold
leads to an exponential form of the spectrum at low frequen-
cies*®

Re o(w) = aoe"""/ T

1 g/cm3
/\

107 I
1

hw, eV
FIG. 9. Optical conductivity {(mercury, 7= 1800 K; Ref. 36).
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where o, is the dc conductivity. Thus, the decay of the dc
conductivity below the metal-nonmetal transition results in
the formation of a window of relative transparency at low
frequencies.

In the presence of the window of transparency it is more
convenient to analyze the absorption coefficient, related to
the conductivity by

K = (4n/cn)Re o,

where cis the velocity of light and » is the refractive index. In
addition to the optical absorption we have considered, due to
the diffusion of electrons, atoms in clusters can cause ab-
sorption, undergoing transitions to excited levels (which
also are broadened into a band). A formal indication of in-
terband absorption is the fact that because the localization
factor is included, the modified Drude-Lorentz formula
does not satisfy the optical sum rule

n e

n.e
2m °

}‘Re o(w)dw =
0

Interband absorption is not necessarily associated with per-
colation, since the effect of clusters reduces to a shift and a
broadening of the levels.

11. FLUCTUATION-INDUCED ABSORPTION OF LIGHT IN
MERCURY

The absorption spectrum with a window of transparen-
cy has been directly observed in mercury at densities a factor
of two below that at the metal-nonmetal transition (Fig.
10).%7?® The absorption edge at such densities is formed as a
result of the shift and broadening of the resonance line of the
atoms in the fluctuation-induced clusters.>

Two main broadening mechanisms are considered.®
The first is related to the fact that the levels are broadened
into a band (Fig. 11). The interband transition with a fre-
quency @, is collision-broadened into a Lorentzian shape
with a halfwidth y = 2/7. However the low frequency
branch, corresponding to transitions from the high-lying
levels of the main band, are cut off exponentially by the
Boltzmann factor, so that the shape of the band is

K cm™?

40 36 32 289/cm3,

30
hw, ev

FIG. 10. Absorption spectra of mercury (7 = 1754 K; Ref. 38).
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FIG. 11. Energy bands of quasiatoms.

alw, wg) = - y/x I'(3/2, 5

@ - wg)? + (/22 TG/2) 29

where

FG/2 ) = [ /2 %ax
Y.

is the incomplete gamma function in the parameter
Yy =1fi(w, — @)/T. The edge of this band has an exponential
shape

a(w, wg) « MIT,

The second mechanism involves a shift in the bottom of
the resonance band. In mercury (also in nickel and cad-
mium) the radius of the classically accessible region of an
electron excited to the resonance level increases by a factor
of three. This region encompasses surrounding atoms,
whose polarization also causes a shift. The narrowing of the
gap between the bands is given by the formula

30)

A, =€ —sq,

where £, is the energy of the resonance excitation in the
atom, g is the average polarization energy of the atoms, and s
is the fluctuating number of atoms in a polarization sphere of
radius */(I — ¢,). If interatom correlation is neglected, the
probability of fluctuations is given by the Poisson distribu-
tion

- Py=(W/she N,

where N = n,Q is the average number of atoms in the polar-
ization sphere and (Q is the volume of this sphere. For large s
the Poisson distribution has the form

(31)

P« (eN/s),

so that the probability of large shifts falls off exponentially.

The absorption edge is formed by the summation of the
partial bands with centers w, = A, /#, with weighting fac-
tors proportional to the Poisson distribution of the fluctu-
ations. The results of the calculations for the band edge
(with the summation replaced by an integral by the method
of Laplace) is*

(32)

e —-fw _ :
a(w)ocexp[— —y +N(eﬂ”—1)].

By formula (32) one can explain the experimentally ob-
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served exponential shape of the absorption edge and the ex-
ponential dependence on the density.

At higher energies a plateau in the absorption, some-
times attributed to free electrons*! or electrons captured by
clusters,** appears near the absorption edge. The data of
Ref. 42 indicate, however, that this plateau is related to criti-
cal phenomena. It is shown that a change in the shape of the
absorption edge near the critical point can be explained by a
non-Poisson (a two-humped) distribution in the fluctuation
probability. The plateau is related to the second maximum of
the distribution of the fluctuations, corresponding to drop-
lets of the liquid phase, this second maximum increasing as
the critical point is approached from the gas phase.*

12.POLARIZABILITY OF ATOMS AND BONDS

In addition to the diffusion of electrons investigated
above, the electrodynamic properties of gaseous metals de-
pend on the polarization of the atoms in the percolation clus-
ters. The dielectric permittivity is expressed in terms of the
atomic polarizability, which is divided into two parts: the
polarizability of the atoms themselves and the polarizability
of the atomic bonds (quasimolecules). The polarizability of
metal atoms with s-type valence electrons lends itself to a
simple semiclassical description, which is equally applicable
to atoms in percolation clusters. The principle 1s that the
polarization in an external field is due to the shift of the
classically accessible sphere together with the localization of
electron charge around it. The shift is found from the equa-
tion for the radius of the classically accessible region

(—&/P) - efreosd = —1, (33)

where & is the external electric field and 7 and ¥ are the polar
coordinates. The result for the polarizability of an atom is**

a, =zedx/ & = 2/ 1)}, (34)

where 8x = 8r/cosd? is the absolute value of the shift of the
accessible sphere in the direction opposite to the electric
field. Formula (34) is in agreement with the data obtained
by experimental methods (Fig. 12) for metals with s-type
valence electrons, which indicates the applicability of the
semiclassical approach. An additional contribution comes
from the polarization of overlapping atoms with the transfer
of electric charge between them, or else the polarization of
bonds or quasimolecules. The transport of charge indicates a
virtual excitation of the ion term of the quasimolecule

U(R) =1—§=%1,
where K is the interatomic spacing. The degree of polariza-
tion varies from zero in a free quasimolecule to unity for
complete polarization. For a small degree of ionization & the
excitation energy of a quasimolecule is equal to I8%/2, and
the energy in an electric field is

%162 —det -2§cos ?,

where ¢ is the angle between the axis of the quasimolecule
and the direction of the field. Minimization of this expres-
sion determines the dependence of the degree of polarization
on the electric field, that is, the polarizability of the bonds'*
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FIG. 12. Polarizability of ns and ns® valence shells in metal atoms.™

3 3
a = 4(513) (m‘%)=§(§) , (35)

The total atomic polarizability, including both contribu-
tions discussed is

a=a.+Cab, (36)

where C is the average number of bonds or quasimolecules
per atom, given by the integral

241
.C=2nn, f &(R)R?dR,
0

(37)

and g(R) is the radial distribution function of the atoms. In
this way the polarizability in percolation clusters is a func-
tion of the density and temperature.

Introducing the complete correlation function

h(R) = &(R) - 1,

one can rewrite the integral in Eq. (37) as

3
c= l%(é) n+1n, i MR)GQ, (38)

where the integration is carried out over a sphere of radius
twice the classically accessible radius. This integral is related
to the fluctuation characteristics by the known relation*

_{aNy)
n, _£ h(R)dQ ") 1,

where N is the fluctuating number of atoms in the volume (2.
It can be shown*® that

‘w_zsmax N, (39)
N
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where max ¥ is the largest possible number of atoms in the
volume 2. Since the classically accessible regions can over-
lap, there are no less than two atoms in a sphere with the
doubled radius, that is, max N>2.

In an ideal gas or in a macroscopic volume the mean
square of the fluctuations is related to the compressibility by

2 on

ANy _ T(——i .
N p),
Using the difference 7(dn,/dp)+ — 1 as an expansion pa-
rameter, we can use this expression to construct a Padé ap-
proximation that satisfies condition (39). In the case

max N = 2, for example, this approximation is

M_’z_z_L(_az)_

v on
a/r

T (40)
N

It is therefore sufficient to know the equation of state to
estimate the number of bonds per atom on which the atomic
polarizability depends. In the vicinity of the critical point
one can use the asymptotic expansion of the equation of
state. In particular, near the critical isotherm*®

1{ép) _ 3-1 ‘ 3—(18)—1
T(an.)T_DM"lI + FAT|An,|

for |AT|«<|An,|"?, here An, =n, —n,, AT=T—-T.,
8 = 4.8 and § = 0.34 are the critical exponents, and D and F
are positive amplitudes. It follows from this development
that the lower the temperature the larger is the number of
bonds per atom, and, consequently, the higher is the atomic
polarizability. The increase in the atomic polarizability is
responsible, for example, for the dielectric anomaly in mer-
cury.*® This phenomenon will be discussed in the following
section.

13. DIELECTRIC PERMITTIVITY

The electrodynamic properties of gaseous metals de-
pend on two different contributions, due to the polarization
of electrons in nearly localized states and drift in the electric
field. The real part of the permittivity, including these con-
tributions, has the form

Ree=1+e:x(1-;’r)—%-rma, (41

where y is the dielectric susceptibility due to the atomic po-
larizability. According to Eq. (28), Im o varies as 7/t ', and
therefore formula (41) can be considered as the first term in
the expansion of Re £ in powers of the localization factor.
The dielectric term gives the main contribution in the case of
strong localization (when 7/7'—0) but vanishes in the case
of weak localization (when 7/7’ - 1). In the latter case for-
mulas (28) and (41) go over to the usual Drude-Lorentz
expressions, which describe free electrons. The dielectric
permittivity in this case changes sign from positive to nega-
tive.

The dielectric susceptibility is expressed in terms of the
atomic polarizability by the Clasius—Mossotti formula

n.a 4x
®=znga.

(42)
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The direct application of this formula, however, is diffi-
cult because of the presence of a pole at » = 1. Physically,
this pole corresponds to spontaneous polarization, which is
possible for crystalline ferroelectrics.*’ In gases, however,
the pole cannot have any physical meaning, since spontane-
ous polarization is not possible. Actually in the absence of an
external field the induced dipoles satisfy the equations

dy= 3 a,(Ry)d;

where d; are the components of the dipoles, and a,, (R, ) are
coefficients that depend on the interatomic spacings. In the
usual formulation the determinant of the system is nonzero

_la‘k(R”‘) —d,|=0.

Therefore, the only solution to equations (43) is the
null solution, i.e.,d;, =0.

Thus, for a disordered medium the Clasius—Mossotti
formula (42) must be regularized, for instance, with the use
of the expansion

(43)

Q- l=1+n+nt+., xsl.

As usual, in the case of an asymptotic expansion the deter-
mination of the number of terms to be retained involves some
compromise (the number of terms cannot be large; suppres-
sion of new terms must not strongly change the sum).

The dielectric permittivity can be measured using the
reflection of light at the interface between a gaseous metal
and a transparent medium, since the reflection coefficient
depends on the difference between the refractive indices.
Such measurements, carried out for mercury, led to the dis-
covery of the dielectric anomaly—a strong deviation from
the Clausius—-Mossotti equation, which works well in the
case of dielectric liquids.*® Later, a connection was discov-
ered between this anomaly and the critical point.*® Specifi-
cally, for this reason attempts to explain the dielectric anom-
aly by an increase in the polarizability of the atoms resulting
from the shift of the levels was not entirely successful.*® Ac-
tually, the connection with critical phenomena comes from
the influence of fluctuations on the number of quasimole-
cules.

The behavior of the dielectric permittivity can be ac-
counted for by taking into account simultaneously the polar-
ization of the quasimolecules and the diffusion of electrons
(Fig. 13).* The former of these factors causes the permit-
tivity to be larger than that given by the Clausius-Mossotti
formula with a constant atomic polarizability, an effect that
becomes stronger as the temperature is reduced. The latter
factor explains the descending branch of the permittivity
with the change of sign to negative above the metal-nonme-
tal transition.

14. PLASMA OSCILLATIONS

The dispersion of the permittivity at frequencies lower
than the resonance energies of excitation of the atom is main-
ly related to the conductivity. Substituting the imaginary
part of the conductivity into expression (41) one can rewrite
the latter as

o

44
1 +w7-r2?r’ (44)

Ree=¢, -
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FIG. 13. Dielectric permittivity of mercury at T = T: experimental
points, Refs. 48, 50; theoretical curve, Ref. 46.

where £, stands for the “atomic” part of the permittivity,

ea=l+4nx(l-—r1r), (45)

and o, is the plasma frequency of the free electrons

w, = (4re’n /m)'/2,

The frequency at which the real part of the permittivity goes
to zero corresponds to the long-wavelength plasma oscilla-
tions. Under conditions of weak damping, wr> 1, the zero of
the permittivity (44) occurs at the frequency'*

(46)

In this way the plasma frequency is renormalized because of
the atomic part of the permittivity and the localization fac-
tor. The physical meaning of the renormalization is that the
action of the external electric field on an electron is effective-
ly weakened.

To understand the meaning of the renormalization of
the plasma frequency let us consider a derivation using the
equation of the drift of an electron in an electric field

(47)

dv e?r
ev__£ 2

A
dr mtv T

It is easy to see that the steady-state drift velocity deter-
mined by this equation corresponds to the mobility Eq. (16).
Combining Eq. (47) with the equation of continuity

dp /3t — en Vv =10

and Poisson’s equation

v = drp /e,
where p, = — edn_ is the charge density, we obtain
3%, 1 %,
2 200 _ 48
o2 +wppe+ 5 =0 (48)

Equation (48) describes oscillations in the charge den-
sity with renormalized plasma frequency o, and a damping

601 Sov. Phys. Usp. 35 (7), July 1992

rate 1/27. The concept of a resonant frequency w;, is mean-
ingful if it is much larger than the damping rate, that is, if
o, > 1.

In a similar way, the Debye screening length of a weak
external field by electrons, r, = %, ' is renormalized, where

X, = (Mezne /7-)1/2'

The screening is described by the Poisson-Boltzmann equa-
tion

Vi = —dnp /e,

where @ is the electric potential. The charge density is ex-
pressed by the Boltzmann distribution with an effective po-
tential that takes localization into account:

pe < exXp (% rlr) .

In the linear approximation the Poisson~Boltzmann equa-
tion takes the form

VZp =2, (49)
in which enters the inverse Debye length
. L 1/2
He= ¢‘::/2 (;r) ‘ (50)

Thus, the relation between the plasma frequency (46) and
the electron screening length of a weak external field (50) is
not changed compared to that of free electrons. The Debye
length has a meaning if it is considerably greater than the
average interatomic spacing, i.e., if x/<1.

Finally, it should be noted that the localization factor in
formula (46) for the plasma frequency depends itself on that
frequency because of the lowering of the percolation thresh-
old due to the virtual absorption of plasmons. Thus, this
formula is indeed an equation for e,

The change in the plasma frequency in the region of the
metal-nonmetal transition has received little experimental
study.”®

15. CLUSTER PLASMA

At low densities, as has been mentioned above, it is nec-
essary to separate into distinct subsystems the atoms and the
quasiatoms that overlap each other (electrons and ions). A
new question that arises here is related to the considerable
arbitrariness in this separation, i.e., the indeterminacy of the
ionization boundary. It is most convenient to choose this
boundary at the percolation level. By definition

a(@)’ 1
I

where I, is the ionization potential of the quasiatoms and »;
is the density of quasiatoms (ions). At the same time I, is
equal to the maximum binding energy of the atoms. By con-
vention, a strong interaction means that I, » T. The poten-
tial energy of the subsystem of quasiatoms is

(31)

= —n[, ~ ayen*’3, (52)
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where the first term corresponds to the internal energy of a
quasiatom and the second term to the interaction between
them (with a renormalized Madelung constant a,, = 0.63).

With allowance for definition (51), the two terms in
Eq. (52) depend in an identical way on the density. How-
ever, the roles of these terms are completely different. The
latter statement is related to the principle by which the com-
plete thermodynamic functions, including the contribution
of the atomic subsystem, do not contain an explicit depend-
ence on the ionization boundary.®! Physically, this principle
is quite clear, as is emphasized by the arbitrariness of the
ionization boundary. A direct consequence of the absence of
any explicit dependence on the ionization boundary is that
any partial derivative with respect to I, in a thermodynamic
transformation must be set to zero. .

With allowance for this principle, the first (percola-
tion) term in Eq. (52) gives the contribution to the lowering
of the ionization potential, but not the pressure. Thus, we
have

Al = ~I, - (4/3)aye?n)/3, (53)

Ap = —(1/3)ayen}/3, (54)
Because of this asymmetry in Eqgs. (53) and (54) the lower-
ing of the ionization potential is more important than ther-
modynamic effects of the interaction.

If the atoms of a metal form negative ions, there is yet
another characteristic density besides that of the point of the
metal-nonmetal transition. This is the percolation threshold
for above-barrier propagation of an outer electron of a nega-

“tive ion. The percolation condition for the threshold has the
form

3/4

ﬂ(ﬁ] . (55)

W]

37 | ™

where ¢, is the electron affinity of the atom. For a density
above the threshold the outer electrons of the negative ions
propagate as nearly-free electrons. The electron affinity
serves to lower additionally the ionization potential.*

The next effect, although not the next in importance,
that influences the degree of ionization is the conversion of
atomic ions into cluster ions. Let us denote the fraction of
atomic ions remaining after conversion as

my/n =5, (56)

where n , is the density of atomic ions and »n; is the total
density of positive ions. We assume that there are no nega-
tive ions. Then the electron density is

n,= nles. (57)

Eliminating n, in the Saha equation, we can rewrite it in the

AL, s) : (58)
where A, = (2m#i/mT)'/2. It follows that the degree of ioni-
zation increases with the degree of conversion.

In the simplest model the atoms in cluster ions move in
the mean potential, in analogy with the potential acting on
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an atom in a two-atom ion. Otherwise, the cluster ions can be
considered as fluctuations with a self-consistent potential
acting on the atoms. These fluctuations are described by the
Poisson distribution with a renormalized average number of
atoms. The ratio of the probability that there are s atoms in
some volume () around an atomic ion to the probability of an
empty volume is

Pse1 _ (s)*

[
’ll s.

(39)

where in the absence of interaction (s) = n,). When the
mean potential ® (R) of the cluster ion is taken into account
it is necessary to replace the volume ) by the integral
Jexp( — ®/T)dS}, which contains the Boltzmann factor. In
addition, an atom enters a cluster with a definite spin, and so
n, must be replaced by »,/g,. The integral is calculated by
expanding the potential ®(R) in the vicinity of the mini-
mum. In spectroscopic notation we obtain the average num-
ber of bound atoms

(60)

(s)= g’ Lzeq"/r

8, Bo ’
where A = (47fi?/m, T)'"?, m, is the mass of an atom, Bis a
rotational constant, @, is a quantum of the radial oscilla-
tions, and g, is the depth of the well. The fraction of atomic
ions according to the Poisson distribution is exp( — {s)),
i.e., the parameter S in Eq. (56), which determines the de-
gree of conversion, is equal to the average number of bound
atoms. This analysis is still somewhat formal, since this
number depends on the poorly determined quantities Bw,
and g, in formula (60). On the other hand, the parameters
can be determined by using experimental information.

In the alternative means of calculating the degree of
ionization of a cluster plasma we consider the ionization of
fluctuation-generated droplets of liquid metal. This method
is based on the fact that the ionization potentials of the clus-
ters (measured by photoionization of a highly expanded jet
of vapor in a mass spectrometer) are correlated with the
work function of an electron in the metal with a correction
for the curvature of the surface (Fig. 14). Assuming that the
partition functions of the charged and neutral clusters are
equal, we have

s 2 -7 (61)
n, AZ ?

where I_ is the ionization potential of an s-atom cluster. Ac-
cording to the theory of condensation, the concentration of
fluctuation-generated droplets in a saturated vapor is taken
to be an exponential function of the surface energy
n dnoat

S = exp (.— ___7‘&52/3] , (62)

- Ry

where g, is the surface tension and a, is the radius of an
atomic cell in the liquid. The argument of the exponential in
formula (62) in fact corresponds to the first term in the
asymptotic expansion in the reciprocal of the droplet radius.
Estimates based on formulas (61) and (62) are attractive in
that in them one can use the experimental ionization poten-
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FIG. 14. Correlation of the ionization potentials of clus-
ters, I(R) = I, + (3/8)e’/R Ref. 54.

tials of the clusters. It should be emphasized, however, that
the cancellation of the partition functions in (61) is by no
means an obvious approximation, since the electronic terms
of the cluster ions can be quite different from those of the
neutral ones.

The conversion of the ions is assumed to be responsible
for the fact that the electrical conductivity of partially ion-
ized saturated cesium or mercury vapor is an order of magni-
tude higher than that calculated by the usual Saha equa-
tion.”>*® An analysis of the experimental data based on the
various versions of the cluster model with a mean field is
given in Refs. 53 and 56, and an analysis based on the droplet
model can be found in Refs. 57-59. Another model of the
condensation of a van der Waals gas around an ion has been
published in Ref. 60. These papers have also been discussed
in the books of Refs. 5 and 61.

16. MULTIPLE IONIZATION

When condensed matter is heated to very high tempera-
tures and (or) is compressed by a large factor a multiply
ionized plasma is generally formed. This subject goes beyond
the framework of the physics of metals and refers equally to
other kinds of matter that form a high-density plasma with
properties that depend strongly on the interparticle interac-
tion (a strongly coupled plasma). Experimentally, such a
plasma is produced in strong shock waves excited in a solid,
for example, in an intense laser pulse. Aluminum can serve
as an example. In its normal state the valence 3s’p shell is
ionized, since the ionic charge is three. When heated to a
temperature of 100 eV at constant density the ion charge
increases to six. A simple estimate of the average ion charge
is given by the formula of Raizer®

).
z;;i—zexp(— -Ti), (63)
where I, = (I, + I, ,)/2 is the average ionization poten-
tial of the ions with charges z — 1 and z (this formula is easy
to derive by considering two stages of ionization under the
assumption of a symmetric distribution of the ions around
the predominant charge z).

Except for the variable degree of ionization, this plasma
is very much like liquid metals. In principle, the methods of
describing it are also similar. For example, the conductivity
is described by the Ziman formula and depends on the struc-
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ture factor. A feature of the plasma, however, is the large
range of values of the thermodynamic parameters. There-
fore, the possibilities of the parametrized pseudopotential
method, used in the theory of metals, are limited, as is the
possibility of using the experimentally determined structure
factors. The interaction of the electrons and ions in a multi-
ply ionized plasma is characterized by the parameter

T = 2e2/aT, (64)

where a is the radius of the ion cell. At the melting point of
metals, that is, at a temperature of about 0.1 eV, this param-
eter is I' = 170. At temperatures of several tens of eV, even
with allowance for the increase in the ion charge, this param-
eter decreases to the order of unity. Therefore, at the density
of a condensed metal a hot plasma is approximately the same
as a gaseous plasma in terms of the relative-magnitude of the
Coulomb interaction. Consequently, it is possible to describe
the ionization the same way as in a gas.®*

The greatest difficulty comes in the analysis of the elec-
tronic spectrum of compressed matter, which involves a de-
termination of the degree of “‘cold” ionization. Carrying out
this analysis in full detail leads to a model of the electronic
structure of the atomic cells.

It is usually assumed that the potential is statically
screened outside the atomic cell (Fig. 15). The static screen-
ing results in a shift in the edge of the continuous spectrum
and a shift in the discrete levels in the cell potential. In prin-
ciple, the potential inside the cell is determined by the self-

FIG. 15. Cell potential (Ref. 64).
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consistent Hartree-Fock method with the condition
V(r) = — &/r at the boundary of the cell. In practice, the
methods used are the Hartree-Slater local method which
takes into account exchange or the Thomas—Fermi statisti-
cal method,* which are simpler for carrying out the calcula-
tions. The construction of the self-consistent potential,
which depends on the density and the temperature (and, in
general, on the electron state) constitutes an independent
topic by itself.5*%°

If the cell potential is known, one can find the discrete
levels and the density of states of the continuous spectrum.
The distribution of the electrons in the atomic cell over these
levels is given by the Fermi-Dirac function. Knowing the
chemical potential, which depends on the number of elec-
trons in a cell, one can find the number of electrons in the
discrete and continuous parts of the spectrum, i.e., the aver-
age ion charge. Some of the electrons can be found in reso-
nance states that are formed when the p- and d levels, with
nonzero orbital angular momentum, go into the continuous
spectrum. The resonance electrons remain partially local-
ized, and therefore the number of conduction electrons is
sometimes found from the density of states of free motion,
which does not contain the resonance peaks.

The collection of cell potential wells is equivalent to a
muffin tin potential, in which the free electrons are scattered
by the central potential of the atomic cells. The conductivity
of this system is calculated by the formula of Ziman, which is
written in terms of the differential cross section for scatter-
ing by the cell potential (the f-matrix method).

The method of atomic cells is used for the calculation of
the electronic properties of strongly ionized matter over a
large region of the phase diagram.** It must be emphasized,
however, that this method does not really work in the vicini-
ty of the metal-nonmetal transition with partial ionization,
where the properties of the material are governed by the
valence electrons. In this case it is necessary to return to the
quasiatom model. Both these models have astructure, thatis
characteristic of a strongly coupled plasma, made up of neu-
tral atomic elements.

One of the principal applications of the method of atom-
ic cells, and historically the first one, is the construction of
the equation of state of hot compressed matter. The problem
of the equation of state has been treated in the review of Ref.
67 to which the reader is referred.

17.CONCLUSIONS

In this review an attempt has been made to analyze from
a unified point of view a broad range of topics in the behavior
of metals at temperatures of the order of the critical tempera-
ture and above. The phenomena in the vicinity of the critical
point of metals are in some way or other connected with the
broadened metal-nonmetal transition. Save for certain ex-
ceptions, such as the behavior of the thermal emf near the
critical point of mercury, the experimental material is ex-
plained, at least qualitatively, by the physical model, formu-
lated in this paper, of a plasma with a strong electron-ion
interaction. It must be noted that this model is a practical
one, which in many cases makes it possible to carry out di-
rect calculations.

The foundations of this model have received less atten-
tion. It must be recognized that regular methods of calculat-
ing the properties of a strongly coupled quantum plasma do
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not exist. Except for the case of multiple ionization, the pros-
pects for numerical simulation also remain unclear. This sit-
uation shows that the physics of gaseous metals can in no
way be considered complete. However, the level of under-
standing of the properties of gaseous metals that has been
attained is sufficient for an adequate analysis of the physical
processes in which they are involved. This success gives us
confidence that the ideas presented here concerning the
physics of gaseous metals will be useful for various applica-
tions.
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