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The theoretical and experimental studies on the transition to dynamical chaos in magnetic
systems are reviewed. Both dissipative and Hamiltonian systems are discussed, with their
fundamental scenarios of the transition to chaos. We discuss the models and characteristics of
chaotic oscillations in magnetic materials upon parametric excitation of spin waves, in NMR
masers, in the dynamics of spin chains, in the motion of a spin in an external alternating magnetic
field, and in nonlinear NMR with dynamic shift of the precession frequency. An analysis of the

problems of quantum chaos in spin systems is presented.

““Chaos is the score upon which reality is written’

1.INTRODUCTION

In recent years the ideas, concepts, and methods of the
theory of nonlinear processes have substantially enriched
many fields of physics, from elementary-particle physics to
biophysics.!? At present an independent field in nonlinear
physics is the study of chaos in various dynamical sys-
tems.>~ Chaos in this case is not associated with the pres-
ence of any random parameters and forces, but is due to the
unstable character of the behavior of trajectories in phase
space."

The aim of this review is to introduce the rapidly deve-
loping study of the phenomenon of chaos in magnetic (spin)
systems. The variety of mechanisms of creating nonlinearity,
the simple methods of controlling various parameters, and
not last, the considerable experience accumulated in study-
ing nonlinear phenomena—all this renders the physics of
magnetic phenomena a natural field for studying such a gen-
eral phenomenon as dynamical chaos. Now new characteris-
tics have been required to describe the dynamics of magnetic
systems—such as the fractal dimension, the Lyapunov in-
dices, the Kolmogorov entropy, and nonlinear resonances
and their overlap, etc. The use of the methods of chaos theo-
ry has enabled finding a new approach to a number of old
problems of the physics of magnetic phenomena. Thus, for
example, it has turned out that the well known Suhl instabili-
ties are elementary bifurcations on the pathway to the few-
mode chaos of spin waves with formation of a strange attrac-
tor.

A common modern tendency in the study of nonlinear
dynamics in physical systems is to separate the study of cha-
os in each individual field of physics into an independent
field (e.g., optical chaos'' ). Apparently the same happens in
the physics of magnetic phenomena, where the study of
“magnetic chaos” or ‘‘magnetic turbulence” is being shaped
in essence into an independent field of magnetism.

Chaos in magnetic systems can be observed both in a
steady-state regime (dissipative chaos, strange attractor),
and in a transitional regime (dissipation-free or Hamilto-
nian chaos). Such a classification of magnetic chaos into
Hamiltonian and dissipative types is, on the one hand, rather
natural and generally accepted in the study of other physical
systems, and on the other hand, it is necessary, since chaos in
Hamiltonian and dissipative systems has a number of sub-
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(Henry Miller, “Tropic of Cancer”’)

stantially different features. This review will discuss exam-
ples of both dissipative and Hamiltonian chaos in magnetic
systems. We have focused attention on systems where mag-
netic chaos has been studied most fully: nonlinear interac-
tions of spin waves in the case of parametric pumping, spin
chains, and a spin in an external alternating magnetic field,
NMR masers, and NMR with a dynamic shift of the preces-
sion frequency of the magnetization. We also discuss the
phenomenon of quantum chaos in spin systems. The order of
arrangement of the material in the review reflects the degree
of study of the discussed systems.

Before we proceed to present the characteristic features
of the transition from regular behavior to chaos in magnetic
systems, we shall take up briefly the main features of chaos
and the criteria for its onset in very simple Hamiltonian and
dissipative dynamical systems.

2.OVERALL CONCEPTS ON THE TRANSITION OF CHAOS IN
DYNAMICAL SYSTEMS

At present the fundamental conditions for transition to
chaos in simple Hamiltonian and dissipative systems are
rather well known."*® Animportant circumstance is that a
large number of degrees of freedom is not required for the
onset of chaos—one degree of freedom suffices when inter-
acting with an external periodic field (1.5 degrees of free-
dom). Conversely, an extensive class exists of the so-called
completely integrable systems,'>!? including an infinite
number of degrees of freedom, in which a transition to chaos
is not realized under any conditions.

As the fundamental characteristics of dynamical chaos
we present the following: local instability of trajectories in
phase space;? fast (especially in the initial stage) decay of
the phase correlation functions, a consequence of which is
diffusion of Brownian type in the slow variable; and a contin-
uous frequency spectrum of the dynamical variables.

Now let us study some very simple dynamical systems
with chaotic dynamics: the Chirikov mapping (or standard
mapping),”* which arises in studying the dissipation-free
motion of a plane rotator interacting with a periodic se-
quence of brief impulses;*’ the Zaslavskii mapping,® which
takes account of the effects of dissipation in the previous
problem; and the logistic mapping—one of the simplest ex-
amples of a dynamical system with chaos, the transition to

© 1992 American Institute of Physics 572




which is analogous in many ways to the transition to chaos in
magnetic systems with a small number of degrees of free-
dom.

2.1.Chaos in Hamiltonian systems. Stochasticity parameter.
Chirikov criterion of overlap of nonlinear resonances

In the theory of dynamical chaos in Hamiltonian classi-
cal systems useful concepts characterizing the transition to
chaos are the stochasticity parameter and the Chirikov pa-
rameter of overlap of nonlinear resonances.>* Let us intro-
duce these concepts here using a very simple example of a
nonlinear system—a plane rotator interacting with an exter-
nal field in the form of an infinite periodic sequence of &-
function pulses. The Hamiltonian of the system has the form

H(J,0, 1) = 512 + €T cos 6-8,(0), @.1)

+ 00 +00
dt)= D, &(t— nT) =lT Y explinvt) (v = 2/T).

n=-—o n=—oc

Here G is the reciprocal moment of inertia of the rotator, £ is
the amplitude of the external field, J and @ are the action and
the phase of the rotator, and T is the period of the sequence
of pulses. The equations of motion for J and 8 have the form

+ o
J=- % = T sin 0-57-(t)>= % 2 cos(@ — mve), (2.2)

n=—oo

. _OH _
6 =55 =Gl =w().

Integration of the equations of motion (2.2) over the time
interval ¢, | — 0=-¢, — 0(t, =nT) leads to the Chirikov
mapping (standard mapping)>*

I, =1, ,+Ksin 6,_ 1

(2.3)
6,=80,_, + I (mod 2x),

Here we have I, =I(t, —0)=G7TJ,, 0,=6(t, —0),
K=¢GT. The discrete mapping (2.3) conserves the area in
phase space: |8({,,6,)/9({, _,,6,_,) = 1. According to
(2.3) each initial point (/,,6,) corresponds to a certain
phase trajectory that depends on the single parameter K,
which is called the stochasticity parameter. Figure 1 shows
the form of the phase space for different values of the sto-
chasticity parameter K. We should immediately note a very
important circumstance—even in the very simple case of the
system of (2.1) with 1.5 degrees of freedom, the phase space,
as we see from Fig. 1, is rather complicated (the points in
Fig. 1b correspond to the single chaotic trajectory!), and it

can be analyzed in detail only by using a computer. Thus at
present the theoretical analysis of dynamical chaos, even in
systems with a small number of degrees of freedom, can be
conducted only within the framework of semiqualitative
methods with subsequent introduction of numerical experi-
ment. Below we shall examine in greater detail one of these
methods based on the concept of interacting nonlinear re-
sonances.

As we see from Fig. 1a, for sufficiently small K the
phase space (£,0) mainly contains two types of trajectories:
1) closed, corresponding to oscillatory motions in the vicini-
ty of resonances; 2) open, corresponding to rotational mo-
tions. The closed and open trajectories are separated by se-
paratrix layers, which contain stochastic trajectories.
However, when K <1 the dimensions of these layers are ex-
ponentially small with respect to action.* Analysis of the
mapping of (2.3) shows that, when K < K, ~ 1, global chaos
is absent in the system of (2.1). That is, the chaotic phase
trajectories lie in regions of phase space bounded in terms of
action.

Let us determine the dimensions in terms of action 81,
of the regions of the primary resonances, whose centers J°
are found from the equation: # = & (J °) = nv. Hence we ob-
tain the following expression for 12 = GTJ2:

Ig = 2nn, n — integer. (2.4)

Let the system at r = Obe in the neighborhood of a resonance
of number n. Then, when K €1, to estimate the change in the
action I(¢), we can neglect the influence of the rest of the
resonances (keep in the summation in (2.2) only the term
with number 7). This approximation corresponds to the res-
onance Hamiltonian:

H,,=§(J—J‘,’,)2+%°°Wm ¥, =60—mt. (2.5)

Equation (2.5) yields an estimate of the width of the reso-
nance in terms of action:

oI, = 2|1, — | = 4eGn'/2, (2.6)
We note that in this case 8/, does not depend on #, since all
harmonics of the external force in (2.2) do not depend on the
action, which is usually fulfilled only approximately.

An approximate criterion for transition to global chaos
canbe derived from the condition of interaction (overlap) of
the primary resonances. For the system of (2.1) the distance
in terms of action between the nearest primary resonances is

AL =L, ~Bl=21 (n=0,%1,..) (2.7)

+1

I
6,28

FIG. 1. Phase plane of the standard mapping. a—K = 0.6. b—
K=42.
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Let us introduce the Chirikov parameter of overlap of non-

linear resonances,>* which in this case can be represented in
the form
-K—____( GT)I/Z K1/2 (28)

When K <1 (K<1), the motion is locally regular, while
when K21 a transition occurs to global chaos. As we see
from (2.8), the relationship holds that K*=K, which, as a
rule, is maintained in the more general case.>* The funda-
mental properties of the system of (2.1) in the region of
strongly developed chaos (K> 1) can be represented as fol-
lows:®

1) Local instability of trajectories:*

{8,/36,| ~ K" = exp(nhy).

The increment hy = In K is proportional to the maximum
Lyapunov index, while the average value of h, over the
phase space is known as the Kolmogorov entropy (Ref. 7,
Ch. 5.2).

2) Decay of phase correlations of the type of

(2.9)

R,=5= f exp(i8,,)d8 ~exp( — nhy/2). (2.10)

3) Dlﬂ'usmnal increase in the mean energy of the system:

2 2
=T l+!<__,o X (2.11)

n 2 2™
Here the bar denotes averaging over the ensemble of trajec-
tories. All the properties 1-3 can be manifested in magnetic
systems (see Sec. 5).

2.2, Chaos in dissipative systems. Strange attractor. Fractal
dimension

In dissipative systems the phase volume contracts. In
this way dissipative systems differ from Hamiltonian sys-
tems in which, according to the Liouville theorem, the phase
volume is conserved. Owing to this contraction, the phase
trajectory is drawn toward a certain set of points called the
attractor. For a steady state the attractor is a point (node or
focus) having the dimension zero. In periodic motion the
attractor (or limit cycle) has the dimension unity. In the
case of quasiperiodic motion with two incommensurate fre-
quencies, the trajectory amounts to an unclosed spiral and
shrinks down to a two-dimensional torus. If there are » in-
commensurate frequencies, then the attractor has the form
of an n-dimensional torus. An attractor corresponding to
steady-state chaotic motion is called a strange or stochastic
attractor. Let us examine how a strange attractor arises us-
ing the example of the dissipative standard transformation
(Ref. 5, supplement 3).

The equations of (2.2) generalized to the case of finite
dissipation have the form

J=—y(J =1y + €T cos §-8,(9), (2.12)

J-1,
b=w(), o()=o0, (1 +a——2|. ]
0

In (2.12) J, is the action corresponding to a stable cycle
with £ = 0. The condition J, #0 implies that, when £ = O in
the initial physical system, a mechanism of pumping energy
also exists besides dissipation. The discrete mapping corre-
sponding to (2.12) has the form
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#=[1—exp(-—-

y-ll+l = exp(_r').(yn + € cos hxn)r
(2.13)

@, Ko
Xppp =X, + —2,,—(1 +apy,) + 008 27x,, (mod 1),

Here we have y, = (J, — Jy)/Jy, x, =6,/27, T =T,
DI/T, Ky =eaw,T. When I'-0, the
mapping (2.13) goes over into the standard mapping of
(2.3). Equation (2.13) implies that |6x,.,/6x, — 1]
~Kyps|sin27x,, |. Therefore the condition of local instability
can be represented in the form

K=Ky = (Ky)/T)[1 — exp(-T)] >> 1. (2.14)

In this case the mapping of (2.13) leads to a strange attrac-
tor, whose form is shown in Fig. 2. When I" = 0 the condi-
tion (2.14) is reduced to the condition of strong chaos in the
dissipation-free case, K, > 1. We must note that, for the map-
ping of (2.13), as for the standard mapping (2.3), the fol-
lowing conditions hold: 1) local instability of motion; 2)
decay of the phase correlation functions; 3) a continuous
frequency spectrum of the motion. The geometric structure
of the strange attractor possesses scale invariance, repeating
itself on ever smaller scales. Such structures—fractals—
have a fractional dimension called a fractal dimension.'*!?
A mathematically correct definition, which allows extension
of the concept of dimension from integers (corresponding to
points, lines, surfaces, etc.) to fractions is the definition of
the dimensionality of a set according to HausdorfT:

In N(e)

dy = Um 1 1)

In (2.15) € is the dimensionless length of an element cover-
ing the set (e.g., acube), and N(¢) is the number of elements
necessary to cover the set being studied.

Examples of calculation of the dimensions of different
fractal sets according to the definition (2.15) are given, e.g.,
inRef. 7, Chap. 3; Ref. 6, Chap. 7. For small decay I' € 1 and
developed chaos K> 1, the dimension of the strange attrac-
tor in the Zaslavskii mapping is close to two:
dy=~2—-T/InK’

We must note that the definition of dimension accord-
ing to Hausdorff in (2.15) is difficult to use in processing
experimental data, since it requires excessive computer cal-
culations. Therefore, in practice one often applies other
methods that enable one to estimate the fractal dimension of
the strange attractor. Most often one uses the method of the

(2.15)

—0’5-16.2. | i L L : ! [ L 4 |

FIG. 2. Zaslavskil’s strange attractor (K = 9.03,I" = 5). (Ref. 5).
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correlation integral (Ref. 7, Chap. 5), which one can use to
determine rather quickly a lower bound of the Hausdorff
dimension (this method has been used, €.g., in Refs. 37 and
38 to determine the dimension of a strange attractor in ex-
periments on parametric excitation of spin waves in magne-
tics).

In the general case a dynamical system can have not
one, but several attractors of different types. The character
of the motion that is established in such a case in the system
will depend on the attractor to which the trajectory will be
attracted under the given initial conditions. When the region
of attraction (the so-called basin of the attractor) of a simple
attractor overlaps part of a strange attractor, it becomes
metastable.'® In this case, in the course of a certain time (as
a rule rather long), the trajectory lies on the strange attrac-
tor and the motion becomes chaotic. Then the trajectory
goes over into the region of the simple attractor and steady-
state regular motion is established. Such an effect has been
called the crisis of a strange attractor.'”

All the concepts introduced in this section arise in the
treatment of dissipative chaos in magnetic systems.

2.3. Transition to chaos through a period-doubling
bifurcation and alternation

At present rather many different scenarios of transition
to chaos are already known, which are realized in different
physical systems.®”'> Here we shall study in greater detail
two such scenarios that are most often encountered in mag-
netic systems.

2.3.1. Period-doubiing bifurcations

Let a single dynamic variable x (¢) exist, which is exam-
ined at discrete instants of time n. We shall assume that the
equations of motion can be reduced to the mapping:

Xp41 = fr(x(t)’

Here f, is a certain function, and r is a parameter. For defi-
niteness we shall choose £, in the form f, (x) = rx(1 — x).
The mapping of (2.16) with this form of f is called the logis-
tic mapping, and a detailed analysis of it is given in Ref. 7,
Chap. 3. When r < 1 this mapping has only one stable sta-
tionary point® x¥ =0 toward which the trajectory is at-
tracted. When 1 <7 < 3, the point x¥ becomes unstable and a
new stationary stable point appears, x¥ = 1 — (1/r). When
r=r, =3 this point also becomes unstable and a new sta-
tionary stable point appears, x¥=1— (1/r). When
r = r; =3 this point also becomes unstable and stable mo-
tion arises with period 2, which corresponds to two station-
ary points X, and X, of the mapping f2(x)=f,[f,(x)].
Such a bifurcation is called a period-doubling bifurcation
(Fig. 3). Here any sequence of iterations of the mapping is
attracted as n— « to the points X, and x, (Fig. 4). When
r=r, >r, one observes the next period doubling. Feigen-
baum'® found that the values of #,, at which period-dou-
bling of the mth order occurs satisfy the relationship

(2.16)

- T
Im " Tm=1 , 5 = 4,6692...,

Tm+1 ™ 'm

m-> w, (2.17)
or
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FIG. 3. Bifurcation diagram for the logistic mapping.’

Arpy = é_lArm (m-> ), Ar,= Tm = Tm-1°

The expression (2.17) means that the “bifurcation inter-
vals” decline exponentially with increasing m. When
r>r, =3.5699..., chaos arises. However, even in this region
at certain values of r the motion is regular—these are the so-
called windows of regularity (see Fig. 3). For the logistic
mapping, windows of regularity are observed for which the
motion is periodic with periods p = 3, 5, and 6. The transi-
tion from a window of regularity to chaos can also occur
through period-doubling bifurcations with universal laws of
the type of (2.17). The relationship (2.17) is universal in the
sense that it holds for an entire class of mappings of the form
of (2.16) for which the function f has a quadratic maximum.

The doubling bifurcations that we have examined are
often observed in magnetic systems. An analog of the param-
eter r in this case is, for example, the pump power in ferro-
magnetic resonance (see Sec. 3). Usually in real experiments
one cannot trace a large number of doubling bifurcations
owing to the property of exponential decline of the magni-
tude of Ar,,,. Therefore, already after several bifurcations the
system goes over into chaos.

2.3.2. Transition to chaos via aiternation

Alternation means the existence of rather long time in-
tervals of motion with regular behavior, interrupted by ran-
dom beats. An example of such behavior for the logistic
mapping is shown in Fig. 5. When r = r, =1 + 82, one ob-
serves a window of regularity with period 3 (Fig. 5a). When
ris a little smaller than 7, alternation arises (Fig. 5b). The
reason for such behavior consists in the fact that the system
near r, conserves memory of the vanished stable stationary
point, alongside which the motion is strongly retarded, so

FIG. 4. Form of the iterations of the initial point when the mapping has an
attractor of period 2. (Ref. 7).
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FIG. 5. Form of the iterations of the logistic mapping for r, — r= —0.02
(stable cycle of period 3) (a) and r, — r = 0.02 (alternation) (b). (Ref.
.

that the system departs for a long time from the laminar
phase of motion (Ref. 7, Chap. 4). The mean duration of
regular motion as a function of the distance from the critical
point has the form"’

Tpeg = I =] 712 (2.18)

The features described above of the transition to chaos
in Hamiltonian and dissipative systems are illustrated using
the example of very simple mappings. Naturally, the funda-
mental properties of chaos in mappings extend to continuous
systems. However, discrete mappings not only are far
simpler to study analytically and numerically, but mappings
often arise naturally in experimental situations. This is pos-
sible when a periodic sequence of short pulses acts on a sys-
tem, and also when one is studying successive intersections
of the phase trajectory of some hypersurface in phase space
(Poincaré section). In an experiment one most often studies
the dependence of the intensity of the (# + 1)th peak of the
realsignal ¥, , ; ontheintensity of the nth peak ¥, (reverse
mapping). Such a construction fixes the mapping on the
Poincaré section as determined by the condition that the
given coordinate should be maximal in phase space.

3.CHAOS IN THE PARAMETRIC EXCITATION OF SPIN
WAVES

At present the greatest number of studies on magnetic
chaos are devoted to the theoretical and experimental study
of chaos in the parametric excitation of spin waves in magne-
tically ordered materials. As we see from the preceding dis-
cussion, the transition to chaos, even in the simplest cases,
occurs via a sequence of various types of preliminary instabi-
lities (bifurcations). Typical instabilities of this type in mag-
netic systems are the Suhl instabilities,'® which are manifest-
ed in the creation of wave motions of magnetization upon
increasing the pumping energy into the system. Upon
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further increase of the pump power, such regular motions as
have already arisen prove generally to be unstable with re-
spect to creation of new low-frequency motions and chaos.
This scenario of transition to chaos in magnetic systems
differs to a considerable extent from the pattern of weak
turbulence of spin waves.'>* In the latter case a large num-
ber of weakly nonlinear waves is excited, the interaction
among which leads to chaotization of their phases and to the
possibility of using the kinetic approach in describing mag-
netic turbulence. However, such a pattern of excitation and
interaction of waves is not always realized. References 21
were devoted to problems of the stability of weakly turbulent
spectra and the accompanying phenomena that arise here.
Here there is no need to dwell on the details of the different
approaches to studying the dynamical properties of magnet-
ic systems. A detailed review of the results existing in this
field is contained in Refs. 19 and 20. We shall present only
some characteristic properties of Suhl instabilities, which in
anumber of experiments are typical preliminary instabilities
on the road to chaos.

3.1. Suhlinstabilities

Usually the theory of the parametric excitation of mag-
netically ordered materials is constructed on the basis of
concepts of elementary excitations—magnons or spin
waves. The Hamiltonian of the system has the form

H=Hy+H,+H ; 3.1

H, = 2w, afa, describes the free spin waves (a, and af are
the complex amplitudes of the waves); &, is the parametric
interaction of the magnons with the external field; A,,, de-
scribes the nonlinear interaction of the magnons. One takes
account of the linear decay of the waves by introducing into
the equations of motion terms containing ¥, a, (¥ is the de-
crement):

i, = g—‘i - ya,. (3.2)
The Hamiltonian A, has a different form in the cases in
which the alternating field #(?) = ko exp( — iw,t) is per-
pendicular or parallel to the constant field H,, (transverse

and parallel pumping of spin waves).

3.1.1. Transverse pumping of spin waves. Suhl instabilities of
the firstand second kinds

In transverse pumping the interaction of the magnons
with the field is described by the following Hamiltonian:'®

Hp = Vho[aoexp(iwpt) +c.c.]. (3.3)

Here we have V= g(SN /2) 2, where g is the gyromagnetic
ratio, and N is the total number of spins §S'in the system. At
low levels of excitation homogeneous resonance arises under
the action of the pump of (3.3). As Suhl first showed, as the
amplitude A, increases, the interaction of the homogeneous
mode a, with the inhomogeneous mode a, leads to the ap-
pearance of inhomogeneous spin waves. If the fundamental
role in the interaction is played by three-wave processes with
H, ~2(U,, _ia%a,a_, +cc.), then the homogeneous
precession breaks down into two magnons with momenta k
and k' and energies Aw, = hw,/2. Such a process is called
Suhl instability of the first kind. The threshold of this pro-
cess is determined by the expression (Ref. 20, Sec. 14):
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[Up k- 8 (ks g) = 7 (3.4)

The groups of spin waves with the defined direction k (Ref.
20, Sec. 14) have the maximum coupling with the pump
(minimum excitation threshold a,, ). The critical value of
the field 4, ,, can be very small, and for YIG crystals can
amount to 10~ °-10 " Oe, depending on the detuning of the
pump frequency from the ferromagnetic resonance frequen-
cy. 20

As H, is increased or @, is decreased, the situation can
be attained that three-wave decay processes will be forbid-
den. However, if four-wave processes are allowed, then Suhl
instability of the second kind 1is easily realized:
20, = (k) + o( — k). This process can be effected as fol-
lows: the external field excites homogeneous precession at
resonance @, =~®,, and then a four-magnon parametric pro-
cess occurs: 20, = @ (k) + @( — k). The threshold of this
process is minimal at points on the resonance surface
6, = 0,7 (0 1is the angle between k and Hy).

3.1.2. Instability in parallel pumping of spin waves

The Hamiltonian of the interaction of a system of mag-
nons with the alternating field 4 (¢) parallel to the constant
field has the form!%?°

H, = %}k: [hoViaga_gexplio, ) +c.c.). (3.5)
Here we have ¥V, = gmrM sin’0, /w,, M is the saturation
magnetization, and 6, is the angle between k and H. In this
case the threshold of parametric instability is determined by
the expression

ho Vi =Y

The threshold is minimal for magnons of frequency
w, =,/2 and with 6, =7/2. The magnitude of the
threshold field A, , for parallel pumping coincides in order
of magnitude with the threshold field for transverse pump-
ing far from ferromagnetic resonance.

Now let us proceed to study chaotic dynamics in the
parametric excitation of spin waves.

(3.6)

3.2. Theoretical models
3.2.1. Parallel pumping
The possible existence of a strange-attractor regime in

the parametric excitation of spin waves was first demon-
strated in the study of Astashkina and Mikhaflov.?*® The
following model was treated: parallel pumping excited para-
metrically in an antiferromagnet a pair of primary spin
waves with wave vectors =+ k,, each of which in turn breaks
down into two secondary waves with wave vectors + k, and
=+ k, . The authors of Ref. 22 chose the Hamiltonian of the
system in the form

H=o (14 17+ 14, 1) + lh¥ exp(~iw,)A; A%, +cc]
+ T4 14+ |A_k0|4) +254, 1714_, |7
+3(PAL a%ah +xc) toylay,)?+ ooy, 2
(3.7)
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In addition to the parametric excitation by the external field
h(t) = hyexp( — iw, 1) of the primary waves (with ampli-
tudes A) and their decay into secondary waves (with ampli-
tudes a), this Hamiltonian also describes processes of non-
linear interaction between the primary waves (T and S are
the amplitudes of the interaction). Here the resonance con-
ditions are satisfied: ko =k, +k,, @, = @, + @,,. The
damping of the waves was taken into account in the equa-
tions of motion [see (3.2)]; it was assumed that
Yk, = Vi, =7 Under some simplifying assumptions that
were confirmed in a numerical experiment, a system of four
real differential equations was derived in Ref. 22, and its
stability was analyzed. Upon variation of the parameter

xg= [(he/yI V)2 = 11172, (3.8)

which characterizes how far the threshold of parametric in-
stability (x, = 0) is exceeded for the primary waves 4 , ,
one observes the following sequence of bifurcations. When
0<x, <x, =2|S |y/|®]|? astable stationary point Pexists in
phase space (a stable focus), to which the phase trajectories
are attracted. This regime corresponds to excitation of pri-
mary spin waves with 4 , , 70 and to absence of secondary
waves (@, =0) for which the primary waves are the
pumping source. The value x, = x, defines the threshold for
creation of secondary waves. When x, = x, the point P loses
stability and a stationary stable point P arises. In this regime
the amplitude of the primary waves is frozen at the level
|4 Q| = (¢/|®])? and the steady-state value of the ampli-
tudes of the secondary waves a ki #0 is maintained owing to
the energy flux from the primary waves. As x, increases
further up to some level, the point Pbecomes unstable, and a
limit cycle arises. The onset of this instability involves the
fact that the primary waves, through which energy is trans-
mitted from the external pump to the secondary waves, are
not able to transmit a very large energy flux, keeping their
amplitudes frozen thereby at the level |4 0, |. With a
further increase in x,, as numerical experiment showed, the
limit cycle breaks down. Here the system goes over into cha-
os (Fig. 6). A calculation was performed?* of the magnitude
of the maximum Lyapunov exponent A as a function of the
parameters of the system. The value of 4 reached a maxi-
mum at x, ~4x,. When x, > 6x,, an alternation was ob-
served of stable limit cycles and regions of chaotic behavior.
The authors of Ref. 22 advanced the hypothesis that the dy-
namical chaos that they had discovered in the simple model

FIG. 6. Form of the phase trajectory in chaotic motion (x, = 4x, ) in the
model of Astashkina and Mikhailov.??
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system of (3.7) can take place in various ferromagnets and
antiferromagnets under various methods of excitation and
will draw attention to the study of chaotic oscillations in the
parametric excitation of spin waves in magnetically ordered
crystals. This prediction has been fully confirmed.?**?

We must note that the transition to chaos described in
Ref. 22 can occur when the decay of the parametrically ex-
cited spin waves into two spin waves, into a paired spin wave
and a phonon, or into two phonons, is allowed by the conser-
vation laws. However, in magnetically ordered materials one
often encounters a situation in which such processes are for-
bidden and contribute only to the damping of the spin waves.
If four-wave processes are allowed, then in this case the
Hamiltonian has the form (3.1), (3.5), and>*

1
Hg, = —2-2’ (Sgpaya’ gapa_y + 2T, .aiap.a.a,). (3.9)

It was shown numerically in Refs. 23 that in this situation
chaos can also occur. A very simple model was proposed in
Ref. 23 that took account of only two modes with wave vec-
tors directed perpendicular to the field. It was also assumed
that all the coupling coefficients of the field with the waves
Vi, and ¥V, of the nonlinear interaction of the spin waves
Ty, and S, ;,, and of damping y, are the same for both

waves, and the detunings of the frequencies of the waves
from the pump frequency o, coincide:
Ao, = (i, —0,/2) = Ao, =(0,, — 0,/2)=Aw. Such a
symmetric model is the simplest one in which chaos can oc-
cur with parallel pumping.

The magnetization and the absorption are expressed in
terms of pair correlators of the form n; = (ata,) and
o; = (a,(ja _ ,(j)exp(iwpt) (j = 1,2). The problem of the the-
ory actually reduces to writing the kinetic equations for
these quantities. It was shown?’ that the solutions of these
equations describe stationary states, periodic motion, period
doubling, and chaos. There are three types of stationary
points: 1) n, =n, =0, =0, =0; 2) n, =0, =0, n;#0,
arg g; £0 (i#£)); 3) ny = n,#0, arg o, = arg 0,#0. Above
the threshold of Suhl instability (3.6) the trivial stationary
point of type 1 becomes unstable. When 1<hV /¥ <4, the
trajectories are attracted to the stationary points of types 2
and 3. When &, V /y>4, limit cycles arise. Here a hysteresis
phenomenon can occur, in which, at a fixed 4, depending on
the initial conditions, the trajectories are attracted eithertoa
limit cycle or to a stable state. With further increase in 4,, a
sequence of period doubling of the oscillations was observed,
which led to chaos (a strange attractor) at s,V /y=5.53.
The similarity parameter § =4.675 determined numerically
proved to be very close to the universal Feigenbaum param-
eter for one-dimensional mappings in (2.17).

An “asymmetric” generalization of the two-mode mod-
el has been discussed in Ref. 24. The existence of different
parameters for each of the waves can, in particular, lead to
the appearance of other ‘“subharmonic” scenarios of the
transition to chaos that differ from period doubling. Experi-
mentally such scenarios, just like the Feigenbaum scenario,
havebeen observed in crystals of yttrium iron garnet (YIG).

3.2.2. Transverse pumping

A theoretical study of the transition to chaos in trans-
verse pumping was first carried out in Refs. 25-27. The
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FIG. 7. Bifurcations of the oscillations of the density of magnons of the
homogeneous mode 7, with increase in the pump power r = hy/h, . a—
Period 1 (r = 7.36), b—Period 2 (r == 7.64), c-Period 4 (r =17.72), d-
Onset of chaos (r = 7.77), e-Period 3 (r = 8.197), f-Period 6 (r = 8.21),
g-Period 12 (7= 8.22), h—Chaos (r = 8.24). (Ref. 27).

Hamiltonian of the system has the form of (3.1), (3.3), and
(3.9). References 25-27 proposed and analyzed a very sim-
ple model in which a homogeneous mode with X = 0 is cou-
pled only with a paired mode with wave vectors k and — k.
Numerical analysis of such a system showed that a strange
attractor arises upon excitation above the threshold of Suhl
instability of the second kind. These theoretical studies were
conducted in connection with an attempt to explain the pio-
neering experiments of Gibson and Jeffries,** and the values
of the parameters were selected from these considerations.
The obtained results agree qualitatively with the experimen-
tal results (see the following section on the possibility of
quantitative comparison). In the numerical simulation in
Refs. 26 and 27 a transition to chaos was observed via period
doubling (Fig. 7a—d), with a similarity parameter § =4.53.
With increasing field a window was observed with a period
of 3T x 2" (Fig. 7e-h). The reverse mapping®’ proved to be
similar to that found experimentally.

Under conditions of an experiment to observe spin-
wave chaos, the magnetic specimen is placed in a resonator.
Naturally the presence of the resonator can substantially af-
fect the nonlinear dynamics. References 28 and 297’ were
devoted to taking account of the effect of electromagnetic
modes on the spin modes. The presence of the electromag-
netic modes led to the appearance of a new transition to
chaos via “oscillations with irregular periods”.?®

The case of an arbitrary “oblique pumping” of spin
waves®’ was studied in Ref. 30 (here also the electromagnet-
ic modes of the resonator were taken into account). In this
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TABLE L.

Substance Type of excitation, gl‘::lg;re' H, kOe .k Dimensions, mm Chara?eristic fr}elqubenc)’ Year |Reference
i ili ’ nlinear oscillations
type of instability GHz of no cil
Ga-YIG and YIG |M(®) L H, instability- 1,3 0,46 300 Sphere f=250 kHz 1984 [34]
of the 2nd kind R=0,47 f=16 kHz
YIG 1, 1st kind 9,2 <4 300 Sphere 16 kHz 1988 {301
. R=0,33 10* - 106 Hz
YIG 1, 1st kind 2,5 0,76 300 Sphere 5 — 400 kHz 1987 [39]
. : R=10
YIG 9.4 1,54 300 Spheres and disks| 50 — 300 kHz 1986 (24)
R=1
YIG i 8,86 1,935 4,2 Disk — 1986 [35)
R ='0,64,
. . H=04 :
CsMnF, - 1 18 1,5§—2,5 1.4 —1,6 Cylinder ~ 100 kHz 1986 [41)
R=1, 1988 [42]
- H=1
CuCl,-2H,0 [ 8,91 6,3 1.4 1,1x1,5%3,9 35 MHz 1984 - [36)
(CH3NH,),CuCl, | 9,4 1,05 + 1,15 1.65‘ ) Disk 8 kHz " 1986 [37]
' R=4S5, 1987 [38]
By H=0,15 '
[NHy(CH,)NH,] CuCl, | 9,36 8,9 1,7 — ~1MHz 1986 [29]
(C;H,NH),MnCl 1 70 7—9 <2,2 - 2—5kHz 1989 [40]

study also an attempt was undertaken to extend the two-
mode approximation further. It was shown that taking ac-
count of a third mode leads, in particular, to the appearance
of a quasiperiodic scenario of transition to chaos.*® Recently
atheorem was proved*® under rather general conditions that
states that the solutions of the dissipative Landau-Lifshits
equation have an attractor of finite dimension. This theorem
implies that, after some “transition time”, a finite number of
modes suffices for describing spin-wave turbulence. How-
ever, this theorem does not allow one to predict reliably the

number of necessary modes. Therefore this question remains
essentially open (see also the discussion in Refs. 32 and 33).

3.3. Discussion of experiments

Starting with the pioneering study of Gibson and Jef-
fries,* in which transition to chaos via period-doubling bi-
furcations was first observed, up to now already rather many
experiments have been performed on various magnetic ma-
terials, in which a variety of approaches to chaos in the para-

%l a Us .
t .t
v, v, f
st b s
7 7 FIG. 8. Types of oscillations in the experiment of Gibson and
%l e N Jeffries.™ a-Auto-oscillations with frequency f; ~250 kHz. b—
/> =16 kHz. c-Bifurcation f, /2. d-Bifurcation f, /4. e-Chaos.
f-Period 3. g-Bifurcation to period 6. h-Period 4, differing from
r.
¢ ¢
Yg d Ug h
w MMMMMW l
7 7
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FIG. 9. Phase portrait in the coordinates of the signal (¥, ) against
its derivative (¥, ). a-Chaos* . b—Auto-oscillations with period 3.

metric excitation of spin waves was demonstrated (see Table
D).

3.3.1. Chaos in Suhl instability of the second kind in YIG
doped with gallium

Owing to its record-making low damping of spin waves,
high Curie temperature, and excellent crystal quality, YIG
has always been the most popular object in studies of para-
metric resonance. The use in Ref. 34 of gallium-doped YIG,
which has a lower magnetization than pure YIG, enabled
lowering the resonance field and the resonance frequencies.
Chaos was not observed in the case of parallel pumping, ap-
parently owing to the insufficiently high power of the alter-
nating field that was used. For this reason the fundamental
measurements were performed under conditions of Suhl in-
stability of the second kind.

A rich pattern was observed of complex oscillatory re-
gimes and transitions among them: stationary states, oscilla-
tions with a period of 250 kHz and then 16 kHz, sequences of
period doubling, chaos, windows with periods of 3 and 5,
and doubling of these periods. Some of the results are pre-
sented in Figs. 8 and 9. The analysis demonstrated the varied
structure of the strange attractor. In particular, the reverse
mapping constructed from the data of Fig. 8¢ has the form of
a quadratic parabola and is well simulated by the one-dimen-
sional logistic mapping (see Sec. 2.3).

Under supercritical conditions that exceeded the
threshold value by about a factor of 30 (4, /A, =30), auto-
oscillations arose with the frequency f~250 kHz. With in-
creasing A, the amplitude of these oscillations declined, and
when hq/hy o, =31, new oscillations appeared with the fre-
quency f, ~ 16 kHz (Fig. 8a,b). The nature of these oscilla-
tions has aroused discussion in the literature. Therefore we
should discuss them in greater detail.

Let us start with the concept of the authors of the exper-
iment. Owing to the finite width of the lines of homogeneous
resonance, the broadened homogeneous mode can excite a
wave packet of width Aw, that moves as a whole with the
velocity dw, /dk. In a sphere of radius R the minimum mo-
mentum of the standing wave is Ak = #/R, while the
corresponding  frequency of  auto-oscillation is
Q = (7/R)dw, /dk). In the case being discussed the disper-
sion law has the form

W2 = (@g — W/ 3 + gDKD)(@g — /3 + gDI? + w,,sin%0)),
(3.10)

Here we have w,, = g-47M =5.27-10° s !, g = 17.58- 10°
(Oe's) ™!, w, =8.16-10° s~ !, D=5.4-10"° Qe-cm® In
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Suhl instability of the second kind the threshold is minimal
for waves with 8, = 0, and the corresponding frequency of
the auto-oscillations is determined by the formula

f=Q/2x = (1/2R)dw,/dk = (1/R)(gDw, /32 (3.11)

When R = 0.46 mm, the frequency f; is approximately equal
to 275 kHz, which is close to the experimental value of 250
kHz. The measurements performed on specimens with
R = 0.33 mm showed that the frequency f; varied propor-
tionally to R ~'. In the case of spheres of pure YIG with
R =0.33 mm, the measured frequency was f~900 kHz,
which is close to the value 920 kHz obtained from (3.11).
Analogously an attempt was undertaken to explain the fre-
quency f, = 16 kHz. However, in this case it was necessary
to assume that waves were excited with 8, = 60°, since it is
precisely for this value that the formula f= (1/2R)dw, /dk
yields 16 kHz. On the other hand, the condition @, _, = o,
implies that 8, = 60.4°. Therefore the hypothesis was ad-
vanced that the wave vector of the corresponding waves is
close to zero. Unfortunately there is no information on the
behavior of the frequency f, as the parameters of the system
are varied, e.g., R.

Another viewpoint on the nature of the auto-oscilla-
tions is presented in Refs. 24 and 25. It was assumed that one
of the two observed frequencies arises as a bifurcation of
creation of a cycle as a result of the nonlinear interaction
between the homogeneous and inhomogeneous modes (see
Sec. 3.2). However, numerical estimates were obtained two
orders of magnitude larger than the actual values: 5.5 x 10°
Hz,** and 0.9 x 10° Hz.?°

3.3.2. Chaos in Suhl Instabillty of the firstkind in YIG

The dependence of the observed transitions to chaos on
two parameters of the constant field, H, and the pumping
power P, is shown in the diagram (Fig. 10).%® We can see
in this diagram: the threshold of Suhl instability with genera-
tion of one spin-wave mode of width < 0.5 G; auto-oscilla-
tions with a characteristic frequency of 10°-10° Hz; transi-
tions to chaos via period doubling and quasiperiodicity;
rapid transition to turbulence with hysteresis; irregular re-
laxation oscillations and aperiodic pulsations. Most of these
oscillations were observed in finite-mode models (see the
previous section).

As has already been noted in Sec. 2.2, a strange-attrac-
tor crisis can occur. In the experiment of Ref. 39, above the
threshold of Suhl instability of the first kind, a strange at-
tractor was observed (with dimension =2.7), part of which
intersected the basin of a simple attractor (nonchaotic) of
dimension 4 or 5, depending on the pump power. The system
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spent part of the time on the strange attractor, and then went
over into the region of attraction of the periodic attractor. As
aresult the observed signal (Fig. 11) had the form of chaotic
oscillations for the duration of the time ¢,,, and then periodic
oscillations were established exponentially rapidly. Here ¢,.,
which can be very large, depends as a power function on the
reciprocal pump power.**

3.3.3. Chaos in YIG with parallel pumpling

Chaos in YIG with parallel pumping has been studied
by two groups.?*?*** In Refs. 24 and 26 the YIG spheres at
room temperature were placed into a resonator of frequency
S =9.4 GHz. The alternating field was parallel to the con-
stant field and parallel to the [111] axis. The constant field
H, = 1.54 kOe was close to the curve A, ,, (H, ) where waves
were excited with k=0 and 8, = 0. Auto-oscillations arose
atr = hy/hy,, = 1.5. Their frequency = 100 kHz increased
linearly with increasing r. Period doubling occurred at
r=1.62, and then chaos set in without further doublings.
Further, oscillations with the new frequency f= 160 kHz
arose at r = 1.84, periods of 277and 47 at r = 1.04 and 2.24,
and then immediately periods of 37, 67, etc., and finally
again chaos at r = 3.43. Moreover, for certain values of the
direction and magnitude of the field a scenario was observed
of the Feigenbaum type. The authors attribute such rather

vV, mv
200 -

100

=100

- 200

complex behavior of the system to the fact that it is really
multidimensional and cannot always be described by a one-
dimensional mapping.

In Ref. 35 experiments with disks were performed at
liquid-helium temperature. Bifurcations were observed,
T—2T—chaos, and reverse: chaos -47-27—-T7. In this
study the value of the Lyapunov exponent was determined
from the experimental data: 4 ~0.34 > 0.

3.3.4. Parallel pumping in the antiferromagnet CuCi,-2H,0
(Ref. 36)

The first observations of period-doubling bifurcations
in parametric excitation, besides the experiment with
YIG,** were performed on the antiferromagnet
CuCl, -2H, 0.%¢ This crystal has not been studied as exten-
sively as YIG, but the results that were obtained have anum-
ber of interesting features.

The specimens were kept at liquid-helium temperature,
while parallel pumping was carried out in a pulsed regime
with the parameters: rise time of the pulse = 20 ns, pulse
duration = 10 ms, repetition frequency of pulses = 100 Hz.
Oscillations of the imaginary component of the susceptibil-
ity were observed over a rather narrow interval of magnetic
bias fields in the vicinity of the value 6.3 kOe with pumping
of P/P,, =12 dB. The dependence of the Fourier spectra on

FIG. 11. Observed signal as a function of the time.*°
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the pumping level showed the appearance of a distinct peak
at half the frequency (7—27T transition) when the critical
value was exceeded by P/P,,, = 14.4 dB. For comparison the
theory*® yields P/P,, = 14.66 dB (T-2T), 14.87 dB
(2T-+4T), and 14.908 dB (47— 8T). Unfortunately, since
the period of the oscillations =~ 0.25 ms proved to be compar-
able to the pulse duration 10 ms, only damped oscillations
were observed. Therefore it was possible to note only hints of
quadrupling of the period, while the hypothesized further
sequence of doubling bifurcations and chaos was not ob-
served.

3.3.5. Layered magnetic materials

The layered magnetic materials (CH,NH, ), CuCl,,
(NH, ), (CH, )CuCl,, and (C,H;NH, ),MnCl, are char-
acterized by unusually weak relaxation and correspondingly
alow level of threshold power. Therefore one can study these
compounds in the far superthreshold region without fearing
overheating of the specimens.

The ferromagnet (CH,NH,),CuCl, was the most
thoroughly studied one.*”*® Parallel pumping at the fre-
quency 9.39 GHz was carried out at 7= 1.65 K. Oscilla-
tions of different types were observed in the region of mag-
netic bias fields of 1050-1150 Oe. In particular, a transition
to chaos was observed owing to the appearance of irregular
peaks. In this case both the amplitude and the distance be-
tween peaks are irregular. Oscillations with an irregular pe-
riod but practically with fixed amplitude were observed in
the antiferromagnet (NH, ), (CH, )CuCl, (Fig. 12).%° The
same type of oscillations were obtained in models that took
account of the electromagnetic modes in the resonator.?®

The fractal dimension was determined from the experi-
mental data obtained in crystals of (CH;NH, ),CuCl,,*®
which increases with increasing pump level from 1.6 + 0.4
to 3.4 + 0.3. The authors of Ref. 38 consider a possible cause
of the large error in determining the fractal dimension at
pump levels near the threshold for forming a strange attrac-
tor to be the influence of noise and fluctuations in the experi-
mental apparatus. Also the Lyapunov exponent and Kolmo-
gorov entropy were calculated in this study. All these data
indicate that dynamical chaos was actually observed in the
case under discussion.
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FIG. 12. Oscillations in the case of parallel pumping in

(NH,), (CH, )CuCl,. (Ref. 24).
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FIG. 13. Alternation of cycles of period 3. (Ref. 41).

3.3.6. The antiferromagnet CsMnF ,

The transition to chaos upon parallel pumping in
CsMnF, at T'= 1.4 K was studied in Refs. 41 and 42. Refer-
ence 41 studied the scenarios of the transition to chaos upon
varying the constant magnetic field H, and the pump power
P,_,. In magnetic fields H; < 2.3 kOe a transition to chaos via
period doubling was observed upon increasing P,,. This
transition is close to the Feigenbaum scenario. Here win-
dows of periodicity with periods of 3, 4, 5, and 7 were ob-
served inside the region of chaos. When the pump power was
maintained constant at a level insufficient for doubling of the
fundamental period, the transition to chaos occurred at
H, > 2.3kOe by broadening of the fundamental line. A more
detailed analysis enabled the conclusion that the transition
to chaos in this case occurs via alternation (Fig. 13, cf. Fig.
5). The topology of the strange attractors that arise was
studied in Ref. 42. It was shown that, in the range of the
parameters P, and H,, near which the chaotic regimes devel-
op through a cascade of period doubling, the complication of
the regime (i.e., the increase of the amplitude of the chaotic
component of the pulsations of magnon density ) occurs with
a constant number of degrees of freedom involved in the
motion, and is accompanied by a complication of the topo-
logical structure of the strange attractors. In another scenar-
io of the transition to chaos, a strange attractor is inserted
into a space having a dimension that varies from 3 to 5, de-
pending on the parameters of the system.

4.CHAOS INNMR MASERS

Another example of a spin system in which a transition
to dissipative chaos has been observed is the NMR maser or
raser (raser-Radiowave Amplification by Stimulated Emis-
sion of Radiation). A raser consists of a nuclear spin system
with negative polarization that interacts with an oscillatory
circuit. The transition to chaos involves the modulation of
one of the parameters of the system: the Q-factor of the cir-
cuit, the exciting field, the nuclear magnetization, or the
width of the NMR line. Here, following Ref. 43, we shall
study the latter case, which has proved very effective from
the standpoint of the transition to chaos (for other results,
see, e.g., Ref. 44 and the references cited therein).

In the experiments of Ref. 43 a high-quality ruby single
crystal Al,O,:Cr**+ was placed in a resonator. The observa-
tions were performed at 7= 1.6 K with a constant field
H, =1.1xX10* Oe (NMR frequency in Al w,/27 =12
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MHz). A coil was wound around the specimen that was part
of an oscillatory LC circuit with a frequency
0= (LC) ~ '? =w,. The microwave resonator was tuned
to a frequency o’ close to the EPR frequency w, ~ 30 GHz.
When o' < w., the dynamic nuclear polarization has a nega-
tive sign, i.e., a raser is realized. The voltage in the circuit
was measured, which is proportional to the total magnetic
field in the coil containing the specimen.

The dynamics of the nuclear magnetization is described
by the Bloch equations, which have the following form in a
system of coordinates rotating at the frequency o = w,:

py=-Typ, +iyH pu,
(4.1)

. i
'uz = —l‘l(pz —"J + ‘2‘)’(ll+H_ —c.c.).

Here . is the nuclear magnetization arising from the dy-
namic polarization of the nuclear spins, H ., = H, +iH,,y
is the gyromagnetic ratio for the nuclei, and we have
Iy, =T (T, are the times of longitudinal and trans-
verse nuclear relaxation). To find the alternating magnetic
field in the coil, one can use the ordinary equations of an LC
circuit. If we assume that the transient processes in the cir-
cuit decay in a time small in comparison with the character-
istic times in the nuclear system (the approximation of a
low-Q-factor circuit), we obtain: H, = — 47£Qu,, £ is the
duty factor of the coil, and Q is the Q-factor. Upon substitut-
ing this expression into (4.1) and neglecting the nonreson-
ance terms, we obtain equations that describe the spin dy-
namics with allowance for the resonator:

By==Tpp, —Gu,p,,

foy= —Typ, = Gty i,y (4.2)

i‘z = _,rl(uz _'ue) + G(“i*'”i)'

Here we have G = 27y£Q. This system has the following
stationary points (it was assumed that u, =0and . <0):

Du, =0, 4, =,

(4.3)
2)!‘,} = [‘rl(rz + Gl‘,) ]”2/6, H,=- 2/6‘

The former solution corresponds to the absence of emission,
while the latter describes a steady-state generation regime,
which is realized when G |u,. | > T,.

To excite chaos in the raser, a weak inhomogeneous
magnetic field was applied to the specimen, which increases
the width of the NMR line. This field varied in time accord-
ing to a sinusoidal law with a frequency f close to the fre-
quency of the linear oscillations near the stationary point of
(4.3) (f~50 — ~100 Hz). One can take account of the in-
fluence of this field in the equations of motion (4.2) by mak-
ing the substitution T', »T, (1 + Asin27f#). The thermal
noise in the raser was modeled by an extra field that was
introduced into Egs. (4.2) as an adjustment parameter
(~10"°%Oe). Here qualitative agreement was observed be-
tween the results of numerical calculation with the described
model and the actual experiment. It turned out that chaos
arises already at a very small amplitude of modulation
A ~10"> Here transition to chaos was observed via dou-
bling bifurcations of the period T=# ~'. Upon varying the
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FIG. 14. Observed response of an NMR maser in the case of parametric
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frequency fand the amplitude A, a transition to chaos was
also observed via alternation, the coexistence of different at-
tractors, and hysteresis.

Asis known, near a doubling bifurcation point a nonlin-
ear system is very sensitive to external agents. In principle
this enables one to use it as a detector or amplifier.** In Ref.
46 a raser existing near a doubling bifurcation point was used
as a detector of weak signals. The situation was studied in
detail in which the period-doubling bifurcations arise from
Q-switching of the raser. Moreover, a weak inhomogeneous
magnetic field was applied to the specimen with the frequen-
¢y (f/2) + 8, which altered the width of the NMR line. This
modulation played the role of the weak signal. As §—0, the
amplitude of the beats at the output of the raser increased
(Fig. 14). As we see from this diagram, the dependence of
the response on & has a sharply marked resonance character.
Analogous results were observed near the bifurcation point
2T-4T. By using a raser model of the type of (4.2), it was
shown numerically in Ref. 46 that the sensitivity of such a
detector increases as the value of the control parameter r
approaches the doubling bifurcation point r_ as |r — r.| = '°.
The authors of Ref. 46 consider that such detectors of weak
signals based on unstable maser systems can operate in the
range 1 — 10° Hz.

5. HAMILTONIAN CHAOS IN SPIN SYSTEMS

The study of Hamiltonian chaos in spin systems began
in the mid-eighties, and by now results have been obtained
on the dynamics of classical conservative*’* and nonauton-
omous®*> systems.” We must note immediately that all
these studies are theoretical, and at present we know of no
experiments to observe Hamiltonian chaos in spin (magnet-
ic) systems.

5.1.Conservative systems

One of the simplest physical models that allows Hamil-
tonian chaos is a system of two classical spins having the
Hamiltonian*®

H= 3 (15155 + JAMSH? + (571,

amx,y,z

(5.1)

which takes account of the exchange interaction and single-
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ion anisotropy. It was shown analytically*® that this system
has a second (independent of H) integral of motion that is
quadratic in the spin variables only if the condition is satis-
fied that

A —A)A, —A)A, ~A)+ Jo4g — 4) =0.
( x )')( y vhe x aﬁy=cy2c}(xv)'-‘) ’ ’

(5.2)

It was shown numerically*®** that breakdown of the condi-
tion (5.2) leads to the absence, not only of quadratic, but
also of any other integral independent of H. Here the motion
of the spins is chaotic under most initial conditions (global
chaos). An example of a system of (5.1) with breakdown of
the condition (5.2) is the Hamiltonian of an X Y-model with
single-node anisotropy:

Ho = =(S]S5 + SSY - (S + (5P* - (5D* - (w2
(5.3)

This model is fully integrable only when @ =0, + 1. The
dynamical properties of the models of (5.1) and (5.3) (be-
havior of the autocorrelation functions and the analytic
properties of the time averages) were studied in Ref. 49.
Chaos in three-spin chains was studied in Refs. 51 and 52,
while certain generalizations to a larger number of spins are
contained in Ref. 50.

It was shown in Ref. 53 that a transition to chaos can
occur even in the very simple case of free, homogeneous os-
cillations of the magnetization in an antiferromagnet. An
easy-axis, two-sublattice antiferromagnet was studied that
was situated in a constant magnetic field inclined with re-
spect to the axis of anisotropy. To describe the dynamics of
the magnetization of each sublattice, the dissipation-free
Landau-Lifshits equations were used. Here the system is
reduced to a Hamiltonian system with two degrees of free-
dom, which is nonintegrable and allows a chaotic dynamics.
It is interesting to note that the analogous homogeneous os-
cillations of the magnetization in a ferromagnet are regular,
since this system has only one degree of freedom and is fully
integrable.

5.2. Nonautonomous systems. Chaos in nonlinear NMR

This section is devoted to studying the chaotic dynam-
ics of a spin on which an alternating magnetic field is act-
ing.>** Here we shall discuss in greater detail the problem
of the transition to chaos in nonlinear NMR with a dynamic
frequency shift (DFS) of precession.’® At present NMR
with a DFS is apparently the most probable system in which
one can experimentally observe magnetic Hamiltonian cha-
0s.10

A DFS proportional to the longitudinal component of
the nuclear magnetization is one of the simplest and compar-
atively well studied types of nonlinear NMR.%-%? The ap-
pearance of a DFS of NMR involves the electronic-nuclear
hyperfine interaction and is observed in magnetically or-
dered materials (ferromagnets and antiferromagnets) at lig-
uid-helium or lower temperatures.

The possibility of onset of chaos in NMR with a DFS
was first demonstrated in Refs. 56 and 57. Here we shall
present this problem, following Ref. 58.

Let us choose the coordinate system as follows: we shall
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direct the z axis along the magnetic field H that acts on the
nuclear spins (the field H amounts to the sum of the external
constant field and the internal hyperfine H, created by the
magnetic moments of the electrons on the nuclei), while the
x axis of the rotating system of coordinates is directed anti-
parallel to  the  external  alternating  field
H_, = H (t)exp( — iwt). Then the equations of motion in
the rotating system of coordinates have the form®>-52

i=wA - @,m),

v=—u(A - wgm) + @ (Hm, (5.4)

m= -, (Hv,
B+ P +mi=1,

Here we have A = 0w, — 0, w, = y(H, — H,) is the NMR
frequency without taking account of the DFS (¥ is the gyro-
magnetic ratio for the nucleus), w, is the nonlinearity pa-
rameter (w, €®), which amounts to the maximum DFS at
the equilibrium value of the magnetization,
o, (t) = yAyH, (1), A is the dimensionless hyperfine-inter-
action constant, and y is the transverse static susceptibility
of the electronic magnetic subsystem. The variables u, v, and
m are the components of the nuclear-magnetization vector
(normalized to the equilibrium value of the magnetization)
in the rotating system of coordinates. The equations (5.4)
are valid if one neglects the effects of irreversible relaxation
and inhomogeneous broadening of the NMR line. Let the
envelope of the alternating magnetic field acting on the nu-
clear spins be fixed in the form of a periodic sequence of short
pulses of area a and period of repetition T. Such a formula-
tion of the problem arises in studying various transition phe-
nomena in NMR: decay of the free induction, spin echo,
etc.’®2 Moreover, this enables one to reduce the system of
equations (5.4) to a mapping that associates the values of
the components of the nuclear magnetization before the nth
and (n + 1)th pulses. This area-conserving mapping
amounts to a combination of two rotations: in the v — m
plane by the angle & (equal to the area of the pulse), and in
the u — v plane by the angle ¢, , which depends on the values
of m, and v,:¢, = AT —w,T(m,cosa —v,sina). We
note that, when @ €1 and under the initial condition m, =0,
this mapping is reduced to the standard mapping (see Sec.
2). Using the criterion of overlap of nonlinear resonances or
the criterion of phase extension, we can derive the following
condition for strong chaos:

K=prsin2a > 1. (5.5)

It is important to note that (5.5) can be satisfied under the
natural initial conditions m, = 1, 4, = v, = 0 (the ground
state ). An interesting feature of the given system is the exis-
tence of windows of regularity. For example, when a = 7/2,
the centers of the windows are determined by the equations
o, T = Ir (I = integer, m, = 1), while their width is ~ 1/K.
The windows of regularity are highly typical of dissipative
systems, whereas only a few examples are known for Hamil-
tonian systems.®® Thus, in NMR with a DFS several transi-
tions of the type order-chaos-order can occur as one varies
the area of the exciting pulses « or the dimensionless nonlin-
earity w, T.
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FIG. 15. Stochastic excitation of nuclear magnetization. m(0) = ;
a=01;w,T=628 (1), 314 (2), and 90 (3). (Ref. 58).

In most experimental situations inhomogeneous broad-
ening exerts a substantial influence on NMR with DFS. >
As is known, the main physical cause of inhomogeneous
broadening is inhomogeneity of the susceptibility y, which
leads to a scatter of values of the DFS parameter ,.** The
manifestations of chaotic motion of the magnetization upon
taking account of the influence of inhomogeneous broaden-
ing differ for @ €1 and for a ~7/2.

1) Small pulse area a<1. In chaos the mean value of the
longitudinal component of the magnetization (m) deviates
from the equilibrium value m, = 1-stochastic excitation
(Fig. 15).°*°® The symbol (...) here denotes averaging that
takes account of the inhomogeneous broadening, which in
this case plays the role of averaging over the ensemble (see
Sec. 2). Such a strong deviation of the transverse component
of the magnetization is impossible in nonlinear regular mo-
tion.

2) Leta~m/2and T/T*<l (T* is the characteristic
time of inhomogeneous relaxation ). In this case the decay of
the mean values of the transverse {m,) and longitudinal
(m) components of the magnetization occurs considerably

M0 <m)
Y 1,0
[
|
0,5 05
.

faster in chaotic dynamics than in regular dynamics. This
effect is shown in Fig. 16, where close-lying values of the
nonlinearity w, T correspond to a window of regularity
(dashed curve) and chaos (solid curve). The reason for such
behavior is the rapid (see (2.10)) splitting of the correla-
tions of the motion of individual isochromats in chaos,
which leads to self-averaging of the quantities (m,) and
{(m).

A suitable object for observing chaos in NMR is appar-
ently an antiferromagnet at liquid-helium temperatures with
relaxation times 7,~10"*—10"° s and 7,~10""

— 10~ ' s and with a sufficiently strong DFS w, ~10° — 10’
Hz. To observe stochastic excitation one can propose the
following experimental scheme: after V short pulses (N~ 5-
10), one applies another pulse after a time 7 (T, <7< 7))
and observes the free-induction signal. The amplitude of this
signal depends on the magnitude of the longitudinal compo-
nent of the magnetization, while in turn it differs for regular
and chaotic dynamics under the action of the ¥ pulses.

In Ref. 59 the possibility of chaotization of the motion
of the magnetization in NMR with a DFS was studied upon
applying two external alternating fields: a longitudinal reso-
nance field with constant amplitude (H, = const in (5.4))
and a weak transverse field with frequency v <w,. As had
been shown earlier,®” when o, = const in the system of
(5.4), an aperiodic trajectory exists with a period of motion
— w0, which corresponds to the separatrix in the phase por-
trait. On applying a weak longitudinal field in the neighbor-
hood of the separatrix, a stochastic layer arises, whose width
depends on the amplitude and frequency of this field. This
stochastic layer can include the ground state of the magneti-
zationif A = 0Oand w;, = w,. Here the motion of the magnet-
ization is random.

6. QUANTUM CHAOS INSPINSYSTEMS

In the previous sections of the review, we have used
everywhere the classical or semiclassical approach in de-
scribing chaotic dynamics in spin systems. As a rule, such an
approach is adequate, but nevertheless, the spin is a purely
quantum object, and therefore a consistent description of
nonlinear spin dynamics requires a completely quantum
treatment. Thus, we arrive at the formulation of the problem
of quantum chaos in spin systems: what are the features of

FIG. 16. Nonlinear dynamics of the averages of the longi-
tudinal (a) and transverse (b) components of nuclear
magnetization for values of the parameters corresponding
to chaos (solid curve) and a window of regularity
(dashed).”®
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the dynamics and the properties of stationary states of quan-
tum spin systems that possess a chaotic dynamics in the clas-
sical limit (S— o0 )7'"

We do not have here the possibility of describing in any
detail the results of the studies on quantum chaos in various
physical systems, but refer the reader to the reviews on this
problem (Refs. 5, 7, 8, 66-68).

Most of the studies on quantum chaos have been per-
formed using examples of several models, the most popular
of which are: a rotator excited with a periodic sequence of 6-
pulses (Refs. 5, 7, 8, 66—69) (the quantum analog of the
standard mapping of (2.3)), and nonlinear oscillators
(Refs. 5, 7, 8, 66—68, 70). We note also that almost all cur-
rent studies on quantum chaos deal with Hamiltonian sys-
tems; the study of dissipative quantum systems that possess a
chaotic dynamics in the classical limit is only beginning (see,
e.g., Ref. 71 and the references cited there).

The study of quantum chaos in spin systems began in
the eighties, and the currently existing studies are relatively
few (at least in comparison with the total number of studies
on quantum chaos) (Refs. 51, 52, 54, 72-79, 86). We should
note immediately that all these studies are theoretical, and
that most of them present the results of numerical experi-
ments. This situation results from the newness of this field,
together with the complications that arise here of theoretical
and experimental study.

In studying quantum chaos in spin systems only several
simple models of conservative and nonautonomous systems
have been treated:

1) The model of coupled rotators’™ (the classical dy-
namics was studied in Ref. 47):

H = A(L* + M?) + BL*M*, (6.1)

Here 4 and B are constants, while the variables L and M
have commutation relationships for the angular-momentum
operators. There are three integrals of the motion: H, L?, and
M2, Although the Hamiltonian in (6.1) apparently does not
describe any real physical system,'?’ it has a structure typi-
cal of spin Hamiltonians. A study of a classical system with
the Hamiltonian function of (6.1) showed*’ that it is nonin-
tegrable and admits global chaos at an energy greater than a
certain critical value, and with fixed L? and M2,

2) A chain of spins with periodic boundary conditions,
antiferromagnetic exchange interaction, and anisotro-

.51,52,73
py:

3
H=1Y (S8;,, +055%,,),8,=8,. (6.2)
i=1

Here we have />0, — 1<0<0. When o+#£0 there are two
integrals of motion: H and T* = =]_, S}, while when 0 = 0
the system of (6.1) is fully integrable (in this case, besides H
and T, there are three additional integrals of motion—the
components of 7= 3}_,5,.°%*"" The classical treatment
(S— oo) of the model of (6.2) shows*>®! that, when 7'?is
fixed (T*=0) and J =1, an increase in the parameter of
nonintegrability |o| leads to global chaos over a rather broad
interval of energies. The authors of Refs. 51 and 52 consider
that a Hamiltonian of the form of (6.2) can describe spin
clusters of Fe’* ions in an antiferromagnet having the tri-
gonal lattice of RbFeCl;.

3) Nonautonomous models describing a spin on which
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an external periodic field B(t) is acting, with account taken
of anisotropy:
H = pH(S) + eF(S)B(f). (6.3)

Here £ and ¢ are parameters, while the functions H, (S),

" F(S), and B(¢) have the form

Hy(S) = (592, F(S) =S, B(f) = B, = cos wt (see Ref. 54),

(6.4)
Hy(S) = (592, F(S) = §%, B() = 8,(t) (sce Refs. 74-76),

(6.5)
Hy(S) = 8%, F(S) = (59)%, B(f) = 8{1) (see Refs. 54, 77).

(6.6)

Hamiltonians are also studied in which H,, and F are more
complex polynomials of the components of the spin 8.77-7°

Now let us examine the fundamental features of quan-
tum chaos in the spin systems of (6.1)-(6.3).

6.1. Dynamics of the observables

Since the energy spectrum of the systems being dis-
cussed is discrete, and moreover, finite, the dynamics of the
observable quantities is always regular and quasiperiodic.
However, according to the correspondence principle, in the
quasiclassical region (S> 1), features of classical chaos must
be manifested. Therefore the first question of interest is the
following: In the course of what time will a quantum spin
system with §> 1 manifest the properties of a classical chao-
tic system? The answer to this question, with the example of
the models of (6.3), (6.4), and (6.6), is found in Refs. 54
and 55-the time of applicability of the classical description
for a quantum chaotic system is

74 ~ (/) s, (6.7)

Here A is the value of the Lyapunov exponent of the classical
system, while the time 7 is measured in units of the charac-
teristic frequency w in the system: 7 = wt. When 7> 7, the
dynamics of the observables differs strongly from the dy-
namics of the corresponding classical quantities. To under-
stand this result, we shall present, following Ref. 55, somne
simple qualitative arguments. The minimal phase uncertain-
ty for the spin S is Ap~S ~ /2. In the course of time this
uncertainty will increase according to the Ilaw
Agp(7) ~A@(0)exp(A7), while the characteristic time 7 at
which the phase uncertainty reaches Ap~1is 74, ~4 ~'In S.

One can show™** that for spin systems with a regular
dynamics the corresponding time of applicability of the clas-
sical description is

7, ~ S% a=const ~ 1. (6.8)

cl

If we take account of the fact that S« # — !, then the estimate
(6.7) agrees well with the analogous estimate obtained ear-
lier for a nonlinear oscillator:"® 7 <In#~!. The time in
(6.7) is rather short. For example, in the numerical experi-
ment of Ref. 55, 7, amounts to only =8 iterations for
S = 100.

Now let us discuss how the dynamics of the observables
at times 7> 7, differs in cases when the spin dynamics is
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FIG. 17. Dynamics of the quantum averages (S = 100) for regular (a)
motion in the classical limit (b) and chaotic.**

regular or chaotic in the classical limit. In both cases the
dynamics of the averages is quasiperiodic. However, whilein
the regular regime (Fig. 17a) this is a periodic sequence of
collapses and regeneration of oscillations with the character-
istic quasiperiod S, in the chaotic regime (Fig. 17b) it
amounts to complex oscillations in which it is hard to distin-
guish the characteristic period. Correspondingly also the
number of functions N_, of the evolution operator
U(t) = exp(i/#iH) that effectively contribute to the dynam-
ics of the averages (the observables) differs substantially. In
the regular regime we find N_;, 510, while in the chaotic
regime N, ~ 10> when S =100 (Ref. 55). Thus, besides
the quasiclassicity S> 1, another condition for observing
quantum chaos is the involvement in the dynamics of a large
number of levels.

One of the interesting manifestations of quantum ef-
fects in chaos, which has been best studied for the model of a
quantum rotator, is the effect of quantum restriction of dif-
fusion (QRD).®° In a rotator the effect of QRD consists in
the saturation at characteristic times #, of the diffusional
increase in the quantity (p*) (p is the momentum) or the
energy of the system.** QRD has deep analogies in the ef-
fect known in the physics of disordered states of Anderson
localization in a random potential.®® At present QRD is the
main one of the effects predicted by the theory of quantum
chaos that is verified in experiments with hydrogen atoms.®'
An interesting feature of spin systems with quantum chaos is
the absence in the general case of localization in terms of the
angular momentum.”® This involves the differing topology
of the phase space: for a rotator it is a cylinder not bounded
in momentum, while for a spin system it is a sphere. How-
ever, in certain special cases QRD (localization) is possible
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also for spin systems. Thus, for example, for the models of
(6.3) and (6.5) in the case in which the initial conditions
have been chosen near the equator S*«<S and g — «, £-0,
the top of (6.3) goes over into a rotator and localization in
the variable S % can occur.”

6.2. Energy spectrum and wave functions

Substantial differences in the behavior of regular and
chaotic spin systems are manifested in their energy spectrum
and in the structure of the eigenfunctions. In the case of
nonautonomous systems with a periodic perturbation, one
studies the spectrum of quasienergies and quasienergy eigen-
functions.®?

In chaos the spectrum is unstable with respect to small
changes of the parameters of the system.*> Thus, for the
model of (6.2) the quantities

2 —F -
1= {05 = (B2 ff‘(:)?”(" A9))),  (6.9)

oo (82 (E2)]).

({{...)) denotes averaging over a certain interval of ener-
gies) increase with increasing .S in chaos and actually do not
depend on S in regular motion.’'">> When o = 0 (integrable
limit), the absolute magnitude of (6.9) and (6.10) was ap-
proximately of the same order as when o0 throughout the
energy ranges. Therefore the authors of Refs. 51 and 52 as-
sume that the characteristics of the instability of the spec-
trum in chaos must be not the absolute values of the “suscep-
tibilities” y of (6.9) and their variance of (6.10), but their
dependence on the quasiclassicity parameter .S. To charac-
terize this dependence quantitatively, the following quantity
was introduced in Refs. 51 and 52:

24 11/2
«S) = MA%IZL

and the existence of a scaling g(.S) was shown numerically:

(6.10)

(6.11)

gAS)/g(S) =A@, § > 1. (6.12)

We find that the exponent (o) >0 for the regions in the
parameter o and in the energy that correspond to classical
chaos; 8(0) <0 for regular motion.

The transition to quantum chaos is characterized not
only by the appearance of a fractal structure of the energy
spectrum in (6.12), but also by the appearance of a fractal
structure of the eigenfunctions for conservative and nonau-
tonomous systems.”>"*

In Ref. 73, using the example of the model of (6.2), the
fine structure and scaling properties of the eigenfunctions
were studied in the Fock representation and in the classical
limit (S = 16 — 32). The following procedure of scale coar-
sening of the eigenfunctions ¥/(m,,m, ) was defined:'® for a
given linear dimension ¢, a cell was studied 4(¢) = X £ in
the neighborhood of the given m, ,, and then the measure
p(e) of the regions satisfying the following condition was
calculated:

2

€

[?o] 2 ¥(my,my = C,
m, EA(e)

(6.13)

Alekseev et al. 587



Here Cis a constant, while g, ~S ~ ' is the smallest possible
scale of resolution of the structure of the eigenfunctions. In
studying the dependence of the measure ¢ () on ¢, as € de-
creases down to € = &,, the following scaling relationship
was obtained:

u(e) = u(0) + k&, k = const >0, (6.14)

Here we have 8>1 for regular motion and 8 < 1 for chaos.
Such a scaling (u(0) #£0) is characteristic of the so-called
fat fractals.®® The relationship (6.14) shows the difference
of the eigenfunctions in the regular and chaotic regimes of
motion: a regular structure of the eigenfunctions leads to a
rather smooth dependence of 4 on € for small £ (8>1), while
irregularity of the eigenfunctions leads to the situation in
which its fine structure can be distinguished only on small
scales e~¢£,.7"

In Ref. 74 the fractal structure of the eigenfunctions
was studied for the nonautonomous model of (6.3) and
(6.5). It was shown that the perimeter of the contour L of a
coarsened quasienergy eigenfunction admits the following
scaling:

Le?,

(6.15)

Here £>¢, is the scale of the coarsening; £, ~S ~', S = 128;
the coarsening procedure is essentially analogous to (6.13).
We find that the exponent D =1 in the integrable limit,
whereas in chaos D > 1, and increases with increasing degree
of chaoticity, reflecting the structure of the eigenfunction,
which becomes more complicated.

Thus the spectrum and the structure of the eigenfunc-
tions of spin systems in quantum chaos possess fractal prop-
erties. As is known, fractality is an intermediate quality be-
tween complete randomness and complete determinacy.
Therefore the appearance of fractal properties in quantum
chaos apparently involves the fact that quantum chaos
(S> 1) is an intermediate quality between the complete de-
terminacy (in the dynamical sense) of quantum dynamics
(S < 1) and chaos in the classical limit (S— ).

Theirregular structure of the eigenvalues and the eigen-
functions in spin systems in quantum chaos is also manifest-
ed in the behavior of the propagator (Green’s function) and
the structure of the matrix elements of the operators, which
do not commute with the Hamiltonian” (studies using the
example of the model of (6.1).

Since the spectrum and structure of the eigenfunctions
of quantum chaotic systems are highly complex, it is natural
to describe them statistically. As a result of many numerical
experiments devoted to studying the statistics of systems
with quantum chaos, a connection has been established with
the theory of random matrices, which studies the statistics of
eigenvalues and eigenfunctions of ensembles of matrices
with random elements.?® The statistical properties of these
ensembles are invariant with respect to transformation
groups that preserve the symmetry of the original Hamilto-
nian. In the theory of random matrices one distinguishes
three types of similar transformations: orthogonal, unitary,
and symplectic. Correspondingly the statistical properties of
the eigenvalues and the eigenvectors of the matrices are dis-
tinguished.

One of the most popular statistical characteristics of a
spectrum is the distribution function of distances between
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neighboring levels P(AE). Numerical experiments with spin
systems in the quasiclassical region > 1 showed®>”>77-"°
that in the case of global quasiperiodicity the P(AE) distri-
butions have a form close to a Poisson distribution
P(AE) xexp( — AE) (P(AE—-0)#0), while in the case of
global chaos P(AE) has a substantially different form, with
P(AE-0) « AE®, a = const. The latter property involves
the repulsion of levels in a regime of quantum chaos, while
the degree of repulsion a depends on the symmetry proper-
ties of the original Hamiltonian:

a) If the Hamiltonian is invariant with respect to time-
reversal operations, then a= 1. In the theory of random ma-
trices this corresponds to the so-called Gaussian ensemble of
real symmetric matrices, which is invariant with respect to
orthogonal transformations. Examples of such a system are
the models (6.3), (6.6)°*7" and (6.3), (6.5).7°

b) Breakdown of T-invariance leads to quadratic repul-
sion of levels: a=2. (Refs. 55, 77). An example is a system
defined by the evolution operator after one impulse:

U = exp(—ik'SDexp(ikS2)exp(~ipS,), p*7, k=K'

(6.16)

The contrast of (6.16) with the system of (6.3) and (6.6)
consists in the presence of an additional perturbation that
leads to rotation about the x axis. In the theory of random
matrices this case corresponds to the so-called Gaussian uni-
tary ensemble, whose statistical properties are invariant un-
der unitary transformations.

¢) There are also spin systems with quantum chaos that
correspond to symplectic ensembles of random matrices and
which allow repulsion with a =4. An example is a Hamilto-
nian of the form of (6.3), in which we have’”"®

—q2 p= o2
Hy=S%, F=S2+k(SS,+5,;5)

+ky(S.S,+ S,5,), B() =3,(0). (6.17)

The statistics of the eigenfunctions of chaotic spin systems
agrees well with the statistics of the eigenvalues, which cor-
responds to one of the types of ensembles of random matri-
ces.”’

We must note that the agreement between the statistics
of the spectrum of chaotic systems and the statistics of the
spectrum of random matrices operates only in the quasiclas-
sical limit S> 1. Here this agreement is not complete, even
when S ~ 10>—study of the subtler statistical characteristics
shows the presence of quantitative discrepancies between
the predictions of the theory of random matrices and the
results of numerical study of Hamiltonians with quantum
chaos.” Moreover, we must note that chaotic systems in
which the islands of stability in the classical limit occupy an
appreciable fraction of phase space demonstrate certain in-
termediate statistics, i.e., statistics that is neither Poisson
nor statistics corresponding to any type of ensembles of ran-
dom matrices.

A recent study®® investigated the statistics of the spec-
trum of spin systems of the type of (6.3) with account taken
of dissipation. It was shown numerically that, if the corre-
sponding classical system possesses a regular dynamics, the
repulsion of levels is linear, @ = 1, while if it is chaotic, then
the repulsion is cubic, @ = 3. In the case of chaos the degree
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of repulsion apparently does not depend on the symmetry of
the generating Hamiltonian.

6.3. Discussion

Thus, in order to be able to observe the phenomenon of
quantum chaos in a spin system, the following fundamental
conditions must be satisfied: a) quasiclassicity (S>1), b)
many levels must participate in the dynamics of the system;
¢) a sufficiently developed chaos must exist in the corre-
sponding classical system (as S— ).

The fundamental manifestations of quantum chaos in-
clude: the appearance of a complex (fractal) structure of the
eigenfunctions and of the spectrum; and change of the statis-
tics of the spectrum on going from regular to chaotic behav-
ior. The energy spectrum of systems that possess developed
chaos in the classical limit is characterized by several univer-
sal statistics that depend on the symmetry properties of the
Hamiltonian.

We must note that, in comparison with other systems,
spin models possess an important advantage connected with
the finiteness of their spectrum. In the numerical study of
systems with an unbounded spectrum, one must always in-
troduce an artificial procedure of spectrum cutoff, which
can alter the latent symmetry of the system and thus lead to
false physical results. In this sense the models of spin systems
are an ideal object for studying problems of quantum chaos.

As we have already noted, at present experiments on
quantum chaos in spin systems are lacking. This apparently
involves in many ways the insufficient knowledge of the new
fundamental results obtained in the theoretical study of the
phenomenon of quantum chaos in recent years.'*’ As we see
it, such systems are a quite good object for studying quantum
chaos, since, first, in many typical experiments spin systems
are quasiclassical, and second, a sufficient experience has
already been accumulated in the chaotic dynamics in mag-
netic systems. Apparently, above all of greatest interest
would be the experimental discovery of a change in the sta-
tistics of the spectrum in an order-chaos transition and ob-
servation of the correspondence time 7, of (6.7).

The progress in the experimental study of quantum cha-
0s in spin systems is to some extent hindered also by the fact
that all the theoretical results were obtained for few-particle
systems, while almost all real spin (magnetic) systems are
multiparticle. However, at present the theory of quantum
chaos in multiparticle systems has not been developed.

Thus the study of quantum chaos in magnetic systems
seems quite promising, and in the next few years here we can
apparently expect new fundamental results.

We thank M. I. Rabinovich for valuable remarks.

"’ The connection between instability of motion and the appearance of
randomness had been pointed out already in the works of Poincaré.'°

? Local instability is taken to mean the exponentially rapid divergence in
phase space of two trajectories close-lying at the initial instant of time.
The exponent in this exponential averaged over the entire trajectory is
called the maximal Lyapunov exponent. In chaotic motion the maxi-
mal Lyapunov exponent is positive for a continuous system, or greater
than unity for a mapping.*’

¥ In certain cases the problem of motion of a classical spin in an alternat-
ing magnetic field is reduced to the standard mapping (see Ref. 74 and
Sec. 5.2).

) The condition of phase dilation |56, /86, . ,|> 1 is often applied® as a
semiqualitative criterion of strong chaos in Hamiltonian and dissipa-
tive (see (2.14)) systems.

¥ The point x* is called the stationary point of the mapping f(x) if
x* = f(x*).
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© Unfortunately, in most contemporary studies on chaos in the paramet-
ric excitation of spin waves, references are lacking to the pioneering
study, Ref. 22.

7 This problem is closely allied with the problem of studying chaos in
NMR-masers (see Sec. 4).

#)“Oblique pumping” denotes the intermediate case between transverse
and parallel pumping.

%) Part of these models, which are basic for studying quantum chaos, are
described also in Sec. 6 of this review.

19 Recently Refs. 87 have been published, in which a regime of the
strange-attractor type is studied in NMR with a DFS.

'Y We note that such a formulation of the problem of quantum chaos,
which is based on the correspondence principle, is the generally accept-
ed one at present, but is not the sole formulation.®®

'2) In the opinion of the authors of this model, (6.1) can describe pseudo-
spins in nuclear physics and the physics of the condensed state.

¥ The m, , are the eigenvalues of the operators S3, in (6.2). The values
of m, are determined from the conservation law 7% = 2}7 , S

'Y We would be glad if this review facilitates to any degree the arousal of
interest of experimentalists in the problem of quantum chaos in mag-
netic systems.
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