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The present state of the gauge theory of high-temperature superconductivity in strongly-
correlated two-dimensional spin systems is reviewed. Basic ideas on the statistics of elementary
excitations in spatially two-dimensional systems are presented and are used in an analysis of the
structure of the energy spectrum and the form of the wave function of a set of anyon quasiparticles
in both the long-wave continuous and lattice limits. The continuous and lattice theories are used
to classify the phase states, and the hierarchy of phase transitions is described in terms of the
topological quantum field theory. Thermodynamic and electrodynamic properties of anyon
systems are described, and the experimental consequences of the Chern-Simons theory of high-
Tc superconductivity are discussed.

1. INTRODUCTION

Considerable advances have been achieved in our un-
derstanding of the properties of planar systems in the rela-
tively short time since the discovery of high-Jc supercon-
ductivity. l > 2 Extensive experimental and theoretical studies
have lent support to the conviction that the superconducting
state and many of the unusual phenomena discovered in the
so-called normal state are spatially two-dimensional phe-
nomena that occur in the basal CuO2 layers. The three-di-
mensional architecture of the new compounds contains, in
addition to the basal planes, some additional elements that
serve as a reservoir of dopants.

The other essential feature is that all the "parent" com-
pounds, i.e., compounds free of dopants (La2CuO4, YBa2,
Cu3, O6, and so on) are good dielectrics insofar as their
transport properties are concerned. This means that there
are two very different energy scales that refer, respectively,
to the band gap and the very much greater separation be-
tween bands. When the energy scales in doped compounds
are very different, we have the conditions for adiabatically
slow motion of carriers against the background of fast spin
fluctuations. We shall be interested, above all, in the struc-
ture of the ground state, and in the quantum numbers of low-
lying excitations. The existence of two very different energy
scales ensures, as we shall see later, the basic possibility of a
redistribution of spin and charge degrees of freedom of low-
energy excitations among different types of quasiparticle. In
the standard Fermi liquid of a metal, the spin and charge are
carried together by electron-hole excitations of the Fermi
ground state.

The third feature is that the original compounds exhibit
antiferromagnetic ordering of the 1/2 spins. The removal of
the charge and the small spin of 1/2 from a site in the basal
plane (in YBa,Cu,O6 + x, the plane containing the chains)
into the dopant reservoir leads to strong quantum spin fluc-
tuations. The removal of charge and spin from one of the
sites in the unit cell of the basic lattice leads to a charged spin
defect and strong correlations between the orientations of
the remaining spins on neighboring sites. Moreover, a depar-
ture from antiferromagnetic order inside the unit cell pro-
duces correlations between neighbors located along a diag-

onal, i.e., correlations between next-nearest neighbors.
Quantum frustrations of spin orientation on neighboring
sites lead, on the one hand, to the destruction of antiferro-
magnetic ordering of spins lying in planes0 and, on the other
hand, to the establishment of order that results in an average
magnetic moment in the direction perpendicular to the
plane, which is due to the resulting noncollinearity of parti-
cle spins on three neighboring cell sites.

The remarkable properties of the new compounds,
namely, the two-dimensional character of the phenomena,
the existence of a large energy scale in the initial dielectrics,
and the limiting small spin, are jointly reflected in the ener-
gy-level systematics and in the structure of low-lying excita-
tions. The recognition of the importance of strong quantum
fluctuations underlies the tendency of recent publications to
exploit the experience accumulated in quantum field theory
in discussions of strong-coupling problems and, in con-
densed-matter physics, the fractional quantum Hall effect.3

These theoretical developments tend to emphasize the break
between the new approaches and the traditional methods of
studying superconductivity in condensed-matter physics.
One of our aims in this review of recent publications on the
theory of strongly-correlated two-dimensional systems is to
bring closer together the attitudes and terminologies of the
numerous people working in different areas of the subject.

Since a small parameter is not available in the problem
of strong quantum fluctuations, all treatments are necessar-
ily qualitative and the only way of escaping from this di-
lemma is to use either a numerical experiment or a rigorous
solution. This is why we shall throughout confine our atten-
tion to qualitative aspects of the topic, always hoping to find
some means of formulating the problem in a way capable of
rigorous solution. The problem involves additional difficul-
ties associated with the high concentration of different ap-
proaches, and also different techniques and samples em-
ployed. We shall therefore start with simple methods and
very approximate models, and then turn to more sophisticat-
ed and less well known techniques.

A state with developed spin fluctuations is called a
quantum spin liquid, if we bear in mind one further point in
addition to the absence of a small parameter. The character-
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istic size of a region in which the antiferromagnetic disposi-
tion of spins has been disturbed is of the order of the separa-
tion between such regions. It is determined by the
concentration n of spin-texture defects due to doping, and
amounts to something of the order of n~ r / 3~ 10~7 cm. This
is greater than the lattice constant in the basal plane by a
factor of less than an order of magnitude. It follows that an
acceptable theory must necessarily be a theory on a lattice.
When a transition is made to the long-wave description with
the help of fields that are smoothed on the scale of the lattice,
it is essential to retain the basic information obtained at short
distances. This legacy of short distances in the presence of
strong interactions is also found to contain topological infor-
mation,21 as we shall see elsewhere in this review. The prop-
erties of two-dimensional systems will be discussed below in
terms of fields defined on a lattice, and also from the stand-
point of long distances.

2. STRONG SPIN CORRELATIONS

The transition from the dielectric to the metallic state is
described by the Hubbard model4 with the Hamiltonian

H = -tVfctc* + ctcj + иУ. nnnn, (2.1)
i

a

„+ (2.2)

The operator cio annihilates an electron with spin a on site /,
nia is the particle-number operator, t is the tunneling ampli-
tude between neighboring sites / and j on a two-dimensional
square lattice (this is indicated in the sums by the angle
brackets {/,./}), and U is the energy of repulsion between
spin-1/2 fermions on a given site.3' In theabsence of doping,
the mean number of electrons per site is

and corresponds to a half-filled band.
In a dielectric, the states |0), | T), | i} in the lower band,

whose width is of the order of t, are separated from the states
cii~cit |0) = | T l ) in the upper band, which correspond to
two-fold filling, by a large energy interval U^ T, while the
chemical potential lies at the center of the forbidden band
and is equal to U/2. Existing estimates suggest that t~Q.l
eV and U~ 1 eV. If we confine our attention to the space of
low-lying singly-occupied states |0), | f ) , and | i), and use
the Gutzwiller projection operator6

i

we find in second-order perturbation theory7'8 that the t — J
Hamiltonian is

(2.5)st=

where J—4t2/U, a are the Pauli matrices, and a and
a = ( t , i) are the spin indices.

For t/U^l and near half-filling, for which
t(\ — «)<^1, we can have /(1 — n)<^t2/U, so that the first

term in (2.4) is negligible in comparison with the second.
This limit means that a small number of almost immobile
holes41 has been placed in the state produced by the second
term in (2.4). When we compare this with the canonical
physics of metals, in which kinetic and potential energies are
of the same order, we see that this is an exceptional situation
because the kinetic energy of holes is now small and the Hei-
senberg Hamiltonian

tf-/2(c,+ oe,)(c,+ <«,), (2.6)
<U>

is the dominant one and is equivalent to the four-fermion
Hamiltonian

(2.7)

Strong spin correlations occur because terms that are
quadratic in the operators cia are small, so that we cannot
classify states by starting with the states of noninteracting
particles.

The Hamiltonians (2.6) and (2.7) are very different in
form, so that if we are to use the usual mean-field theory, we
have to employ a different order parameter. For example, in
the case of the Hamiltonian given by (2.6), we could consid-
er different distributions of the mean spin (s,)
= (c£<sapCiB) over the lattice. In particular,
(s, ) = ( — l ) 'm for the antiferromagnetic state, (j.)

= ( — 1 ) '*m for the alternate ordering of moments along the
x axis, and so on.

To describe the new possible classifications of states9"12

when the Hamiltonian is given by (2.7), we introduce the
hopping operator12

£/ = f 2 <£<>.• (2-8)
a

Its expectation value can be interpreted as the probability
amplitude8'13 of a hop j to a site i with the parametrization

r
Ц - 2 adl), ( 2.9 )

which can be used to discuss the properties of phases with
different geometrically irregular or chaotic distributions of
the complex variables%1} over the lattice. Some examples are
given in Refs. 10, 12, and 15, and are illustrated in Fig. 1.

States with different configurations of the quantities^
or (Sj} are distributed in some way along the energy scale. It
is therefore unclear a priori which particular choice of the
mean-field theory variables is to be preferred. In general, the
mean-field theory may not even have a range of validity.
This is a question of the local stability of states with different
configurations of Xij or (st), and of the structure of states
with an absolute energy minimum. The following consider-
ations may provide some justification for preferring the de-
scription defined by (2.9) at this stage of our discussion.

We draw attention to the fact that the hopping ampli-
tudes are not invariant under local phase rotations c}

->C; exp(itpj). In other words, the quantities %у are not in-
variant under the gauge transformations

a -» a' = a + Vy> (2.10)
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FIG. 1. Distribution of lattice hopping probability amplitudes: a—
uniform random distribution, b—dimer phase, с—distribution in the
form of cells, d—phase with flux, the link numbers indicate the distri-
bution of indices of the variables x, > e—zigzag distribution of ampli-
tudes.

of the gauge field a, which is defined on the link ij and pa-
rametrizes the phase in (2.9):

dl. (2.11)

is gauge invariant. It depends on the flux

Only gauge-invariant quantities can be "observables." For
example, for a cell with corners at the points i, j, k, I, the
quantity

(2.12)

(2.13)

of the statistical magnetic field through the unit cell. Here
and henceforth we assume that, unless stated to the con-
trary, the flux quantum is ф0 = cfi/e = 1 and the system of
units is such that Я, с, and e are all equal to unity.

If the values of the flux ф = p/q through the unit cell are
labelled by mutually primitive numbers p and q, we obtain a
series of states usually called16 the generalized phase with
flux. We shall confine our attention to the properties of this
wide class of states.5'

We start by introducing certain simplifying transfor-
mations. First, we integrate over the Hubbard-Stratonovich
variables %ц of the Hamiltonian

(2.15)

of a spin network of random bonds with frustrations. This
originally arose17'18 in the phenomenological description of
high-T^ superconductors. A rigorous derivation of the
Hamiltonian given by (2.14) and (2.15) is reported in Refs.
1 2, 1 9, and 20. The Hamiltonians given by ( 2. 1 4 ) and ( 2. 1 5 )
complement one another and, as we shall see later, provide
us with a complete picture of the distribution of quantum
numbers.

To conclude this Section, we consider a way of includ-
ing the external electromagnetic field with vector potential a
in the Hamiltonian (2.14). The electron hopping operator
that is gauge-invariant under transformations of the poten-
tial A assumes the following form instead of (2.8):

tJ Adi). < 2 - 1 6 >

Averaging as in (2.9), we obtain

jr
J adl).

(2.17)

In other words, when the external field is present,21

(2.18)

which describes the motion of charged particles in a magnet-
ic field with vector potential a. This takes us to (2.7) once
again. This type of mean-field theory works well for the
group SU(AO with large N.

The dynamic phases exp( — id у ) are the variables of
the effective lattice gauge theory. It will be useful to have
basic information about the above problem in the ensuing
discussion. In Sec. 6, we shall therefore consider recent pub-
lications devoted to the problem defined by (2.14).

For heuristic reasons, we will proceed in the following
even more approximate way. We replace the product c£cja

in (2.7) with the modulus \%у \ = \X\uy of the hopping prob-
ability amplitude and, instead of the second pair of opera-
tors, we introduce (2.9) with the vector potential given by
(2. 10), so that (2.7) is replaced with the Hamiltonian

Consequently, the gauge potential a that is dynamically gen-
erated by this hopping process appears on equal terms with
the external-field potential in the sum

'= a + A, (2.19)

and this determines the specific properties of the electromag-
netic response of the system.

3. STATISTICS OF EXCITATIONS IN TWO-DIMENSIONAL
SYSTEMS

The proximity of the dielectric state means, as we saw in
the last Section, that there are strong spin correlations. The
question now is: what new quantum possibilities can be asso-
ciated with the spatial dimensions of the system? The answer
to this has long been known.22~26 It is well known that in
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/7-i п FIG. 2. Quantum braids: a—trivial braids, b—the result g , ! of the
application of the operators g, from the braid group, с—graphical
representation of the longer word gtg^g, consisting of the operators
gi, d—general form of braiding.Я-.1 /7

systems with a space-time dimensionality 2+1, the excita-
tions have fractional or intermediate statistics.22"26 The con-
cept of fractional statistics arises naturally in the (2 + 1) -
dimensional case when we consider a system of particles
with the Lagrangian26

dr JV

'•*/•
(3.1)

The position of each particle is defined by the two-di-
mensional position vector r,, and the angular separation be-
tween particles / and j is defined by the azimuthal angle tp^.

The last term in (3.1) is the total derivative with respect
to time, so that it does not contribute to the classical equa-
tion of motion. In quantum mechanics, the presence of the
second term in (3.1) ensures that a phase is induced in the
wave function under particle interchange. Actually, when
particle i covers half the path around particle y'(f// = я"),
which corresponds, after translation, to the interchange of
the particles, the wave function acquires the factor exp(/t?).
When $ = 0 mod 2ir, the particle is a boson, and when
i? = IT mod 2ir it is a fermion; when t? is arbitrary, we have25

an anyon.6) For t? = ir/2 this corresponds to the half-way
house between a fermion and a boson, and the particle is
called a semion (semifermion) ,27 The semion is of particular
interest in high-rc superconductivity. In the case of the Kos-
terlitz-Thouless pairing of excitations in a two-dimensional
system (see Sec. I I ) , a semion pair behaves as a boson under
an interchange: [ехр(/тт/2)]4 = I (Ref. 28).

The existence of intermediate statistics in spatially two-
dimensional systems is wholly due to the multiply-connect-
ed character of the configuration space of the system of iden-
tical particles, i.e., the space in which the state vector is
defined. The configuration space of N identical particles is
obtained from the coordinate space by identifying the points
obtained for any interchange of particle coordinates after the
exclusion of singular points at which two or more coordi-
nates coincide. In the three-dimensional case, the configura-
tion space M is doubly connected and the fundamental ho-
motopy group TT, (Л/) is identical with the permutation
group SN with its even (for bosons) and odd (forfermions)
representations. In two-dimensional systems, the anyon ex-
citations realize the representations of the braid group (Fig.
2; Ref. 29).7)

The simplest way of verifying the multiply-connected
character of the two-dimensional configuration space is to

consider the canonical momentum which has the following
form for (3.1):

dr,

*< = *,

(3.2)

(3.3)

The vector potential given by (3.3) is the sum of the
Bohm-Aharanov potentials with flux ф = i? /w in units of
the flux £>0.

The two-dimensional configuration space is thus seen
to contain a set of singularities and is therefore multiply con-
nected, and the long-range Dirac-Bohm-Aharanov interac-
tion acts between the particles that convey the unit statistical
charge and the flux ф — t? /тт. The Hamiltonian for the sys-
tem of such particles is

We now know31"33 that there are three possible equiva-
lent formulations. In the first case, the N-particle wave func-
tion of particles in a field with vector potential a(i?) can be
symmetric:

V( ..... г., (3-5)

It is clear that the replacement d-^ir — •& produces particles
in a field with potential a(ir — d) and with a many-particle
wave function satisfying the following fermion condition un-
der particle interchanges:

V(..., r.,..., r,,...) = -V(-, •> •», г„ ...)• (3.6)

For the Bohm-Aharanov potential (3.3), the field
strength outside sources is fap = daa/j — d0aa = 0, i.e., the
potential is a pure gauge field and can be removed with the
help of a singular81 gauge transformation:

aV= a. + V/(. = 0,

-Im

**£

(3.7)

(3.8)

The wave function in this third case is multivalued because
the substitution (zk — zj)^e'1'(zk — Zj) induces the gauge
phase:
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and the Hamiltonian

N „2

(3.9)

(3.10)

describes free any-particles, so that the wave function of the
system of N particles in this gauge acquires the factor
expO'i?) under the interchange of two particles." Fractional
statistics is treated in this representation as providing the
boundary conditions for the wave function. We shall eluci-
date this by the following example. The exclusion of regions
from the configuration space of identical particles23 is equiv-
alent to the boundary condition jn(Q)~i/>di/>*/
dx — c.c. = 0 on the identity boundary x = xt — x2 = 0.
The general solution of the equation jn = 0 is

dy»/djc = j (3.11)

The case 77 = 0(d^/dx = 0, i/> symmetric) corresponds to
bosons and rj = oo (^ = О, ф antisymmetric) corresponds to
fermions. Intermediate values of 77 correspond to intermedi-
ate statistics and, for r/ < 0 and x -> + 0, to edge states
ф = ехр(т?л:).

The difficulty of the problem becomes particularly clear
in the singular gauge (3.7), and is due to the multivalued-
ness33 of the wave function (3.9). Actually, if r10 and r20 are
vectors representing initial positions in the system of two
particles, and r, and r2 are the final positions, .the wave func-
tion i/r(rvr2) will differ from ^(r,0,r2o) by the phase factor
exp[*(i?/7r)£>], where cp is the angle representing the num-
ber of revolutions of one particle around the other until the
indicated coordinates coincide. In the W-particle system, the
phase cp depends on the positions of all the other particles.
The Hamiltonian (3.4) which, on the face of it, seems quite
simple, is essentially nonlocal because the vector potential a
of one of the particles depends on the position of all the other
particles in the system. In another language, we can speak of
the formation of knots and links of the world lines that trans-
port the Bohm-Aharanov flux (Fig. 3). The concept of links
is well defined since the configuration space of identical par-

FIG. 3. Knots (a, c, d) and links (b, d). The identification of opposite
points with the same indices in Fig. 2b, с gives closed braids, i.e., the knot
and link of Fig. За, b, respectively.

tides does not contain points at which the coordinates of two
or more particles are the same (this is the so-called hard-
core condition).'0' In the absence of this condition, the con-
figuration space of any dimensionality would be singly-con-
nected, the braids would be untangled, and only bosons
would be possible (Ref. 35).M)

To elucidate the effects associated with the transmuta-
tion of boson statistics in the field of a Bohm-Aharanov vor-
tex, let us consider a system of two charged particles35'36

with moment of inertia /. The Hamiltonian, the eigenfunc-
tions, and the eigenvalues are given by

_# L-a V (3.12)

(3.13)

Since ф(<р) = ф(<р +2ir) under boson interchange, the val-
ues of т are even and the ground-state energy is zero.

In the presence of the vortex (3.3), the boson Hamilto-

21 •

nian

has the eigenvalues

(3.14)

(3.15)

When i? = тт. the numbers m + 1 are odd. The eigenvalues
(3.15) are then identical with the free-fermion spectrum.
The fact that bosons in an external pure gauge field are iden-
tical to free fermions for д = тг has frequently been discussed
in the literature.37"39 We now draw attention to the existence
of angular momentum in the ground state.

The alternative situation is that of three anyons with
multivalued wave function or interacting Bose or Fermi par-
ticles, which gives rise to the interaction energy40

^ *o(fl> (3.16)

l<] \.*i ~ *j)

The motivation for the x~2 potential would also apply in
one-dimensional spin systems with the Hamiltonian

Я = 4
(•*/ — xj )

(3.17)

and the exact solution given in Refs. 41 and 42. It finds sup-
port in the two-dimensional case as well. The wave func-
tion43"45 that might have been thought to be the ground state
is actually found46 to be the exact eigenfunction of the Ham-
iltonian

h-c • (ze - (3.18)

where z = x + iy is the complex coordinate of the particle in
the x,y plane. The potential |z, — z,- ~2 excludes tunneling
and ensures that the hard-core condition is satisfied under
the braiding operation.35 In other words, the wave function
does not "leak out"40 (there is no interference) between dif-
ferent sectors of the configuration space of the set of parti-
cles.
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4. LONG-WAVE DESCRIPTION

It is now convenient to return to the spin Hamiltonian
(2.6) in order to explain the mechanism47 responsible for
excitations with intermediate statistics in two-dimensional
spin systems. With this in view, we allow the lattice constant
to tend to zero and consider the long-wave limit47^19 of the
two-sublattice antiferromagnet (2.6) described by the effec-
tive Lagrangian

of the O(3)-symmetric nonlinear cr-model. The unit vector
can be interpreted as the antiferromagnetic order parameter.
The system of units is chosen so that the spin-wave velocity is
equal to unity, fj. = 0, 1, 2, andg2 ~/ ~' is the coupling con-
stant. Until we reach (4.17), we shall confine our attention
to the dynamics of spin degrees of freedom.

Let us write the vector

in terms of the complex doublet

(4.2)

(4.3)

with the constraint

1,z+z (4.4)

since n2 = 1. The Lagrangian (4.1) now takes the form

(4.5)

The dynamics of a quantum-mechanical system is de-
scribed by the Feynman integral of exp(iS) over all paths,
where S = Jd3xZL. The exponential expO'S) does not define
the action completely. In particular, the action does not
change when the Hopf term

3¥°= (1/4я2)£/"'А(г+Э z)(avz
4"eiz), (4.6)

Written in the local form50"53 is added to the Lagrangian.12)

This term characterizes the degree of mapping of the com-
pactified space-time'3) S3 into the space Sг of the field z. The
Hopf invariant /d3* is an integer (homotopy class), so that
the addition of the Hopf term with angular factor •& that is a
multiple of 2-trk to the Lagrangian does not alter the transi-
tion amplitude.

We draw attention to the fact that the Lagrangian (4.5)
is invariant under local U( 1) gauge transformations of the
formz(x) ->e\p(ia(x) ) z ( x ) . Hence, in the continuous lim-
it, just as on the lattice, there is a U(l)-symmetric gauge
potential a^ that enables us to write 47>48 the Lagrangian
(4.5) in the following form when (4.6) is taken into account:

It was originally introduced in Refs. 54-65 to provide a topo-
logical mass-generation mechanism for gauge fields. It was
first used in connection with high-T^ superconductivity the-
ory in Refs. 47 and 48. There is a large number of recent
publications devoted to the description of superconducting
and normal states in strongly-correlated spin systems and to
the fractional quantum Hall effect, which involve the
Chern-Simons term. There are several somewhat different
ways (which become identical in the long-wave limit) of
taking into account the topological terms in the action.53 For
example,

where k is an integer and the conserved topological current

VV' (4.9)

acts as a source of the auxiliary variable, namely, the vector
potential a^ that does not possess an independent dynamics.
The zero-order component of the current density, which is
identical to the topological charge density of skyrmions,65

defines, by virtue of the equation of motion

(*/4лУ"'А/„д=/'', (4.10)

the flux /d2x/i2 of the gauge field /v/l = д„ая - <3Аа„ (Ref.
37). The gauge potential a^ plays the role of a Lagrange
multiplier in this approach, and (4.10) is the constraint
equation. Different ways of taking topological terms into
account are reviewed in Ref. 53. Here, we note only the con-
nection between the relation k = 1/8тг/? in (4.7) and the
duality of the statistical phases: dp/ir = — ir/da, 9p =
— 1/8/?, ffa = ir/k (Ref. 53).

There is considerable interest in the fact that k ^0 is
possible in the ground state. The solutions of the classical
equations of motion56 are then the Bohm-Aharanov poten-
tials (3.3) with •& = ir/k (Refs. 66-69). This means that the
Chern-Simons term induces fractional statistics with phase
exp(/V/&). When k = 2, the resulting semifermions carry
the Laughlin-Kalmeyer spin quantum numbers.43'70"72 The
quasiclassical configurations of the field z (Refs. 72-74)
then suggest that there are regions of breakdown in antifer-
romagnetic order with characteristic dimensions я~ 1 / 2

where n is the two-dimensional dopant concentration. Their
existence and stability are determined by the zero-order
component of the topological current density (4.9). Actual-
ly, as we pass to the lattice, the mean degree of noncollinear-
ity45,76,77

of three neighboring spins in the unit cell becomes equal to74

the topological charge density (4.9) and gives the flux den-
sity of the gauge field £'"Xs[<9vs<9/us]) (Fig. 4).Thepseudo-

We can verify that (4.7) and the sum of (4.5) and (4.6) are
equivalent, but only in the long-wave limit, by using the
equation of motion a^ = iz+d^z after substituting it in
(4.7). [Note that (4.7) retains only the lowest-order deriva-
tives,53 which are the leading terms in the long-wave limit. ]

The last term in (4.7) is called the Chern-Simons term.
FIG. 4. Appearance of a spin vacancy and noncollinearity of neighboring
spins during the destruction of antiferromagnetic order.
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scalar order parameter (4.11) was first introduced in Refs.
45,76, and 77 as a characteristic of the resulting chiral state.

The average (4.11) in the lattice description and the
Lagrangians (4.7) and (4.8) in the continuous description
are noninvariant under the two-dimensional parity oper-
ation P(x,y^> — x,y) and under time reversal T. Spontane-
ous T- and P- symmetry breaking is possible over distances
of the order of the correlation length m~l/2, but does not
occur in the basal planes or at right angles to them at large
distances because of "screening effects." These phenomena
will be examined later. Here we merely note that symmetry
breaking under T- and P- inversions is an important, but not
the only, characteristic of the chiral ground state of the mod-
el (4.7).

Another fundamental characteristic of a state is the in-
teger k in the Lagrangian (4.8). This is important, and we
must explain it in some detail. We know11'77'78 that the sys-
tem given by (2.6) exhibits not only local U( 1) symmetry,
but is also symmetric79"8' for n = 1 under local SU (2) trans-
formations. The Chern-Simons terms

(4.12)

is then found to contain the gauge potential a^ raised to the
power 3; in general, this term is noninvariant under global
gauge transformations. Their invariance under these trans-
formations occurs only59 for •d = 2-jrk.

Terms that are of the third degree in a^ do not appear in
the case of the U( 1)—symmetric14' Chern-Simons term. It
would therefore appear that the factor in front of the Chern-
Simons term can be arbitrary. However, this is not so. The
true answer depends on the compactification of space-time,
i.e., on the boundary conditions imposed on the fields n or z.
For compactification on a sphere S3, this factor is rigorously
equal to zero.82 And it is only for compactification on the
torus S 2 XS,orS |XS|XS 1 that it is nonzero and equal to an
even integer1,69.83

£=1 ,2 ,3 (4.13)

This problem is closely related to that of fermion dou-
bling84 on a lattice. The point is that the Chern-Simons term
is the (2 + 1) -dimensional quantum parity anomaly in a sys-
tem of noninteracting massive fermions placed in the gauge
field. Integration over the fermion fields in the Feynman
integral gives the imaginary part of the logarithm of the fer-
mion determinant whose evaluation gives the Chern-Si-
mons term.60 The result of this calculation85 is in agreement
with the fermion doubling effect on a lattice, but only for
even values of A: (see Refs. 83, 86, and 87).

We shall neglect the contribution of (4.1) to the total
Lagrangian for large coupling constants g2. It will then con-
tain only the Chern-Simons term and will yield the action15'

a, (4.14)
м

of the topological theory88 that describes low-energy global
excitations. Witten has recently shown89 that the dimension-
ality of Hilbert space for (4.14) is finite in toroidal compac-
tification M, and is equal to k. Since (4.14) contains only the
first derivative with respect to time, the Hamiltonian must
vanish and its states have zero energy. This means that the

constant k is related to the dimensionality90 92 of the
ground-state degeneracy space of the dynamic system (4.1)
that includes the Chern-Simons term. In 1975, Berezin dis-
cussed the general rules for the quantization of systems
whose phase space is the complex Kahler manifold.16) In the
special case of a torus, Berezin showed94 that Planck's con-
stant could assume only the discrete set of values

л = 4*/* (4.15)

with dimensionality of Hilbert space equal to k, and the ad-
missible phase-space manifold being a grid on a torus:
(p,q) = (m,n,/z/2). In this context, the quantum numbers
т and n label the magnetic charge (interpreted as the source
of vortices) and the electric charge (interpreted as the
source of spin-wave excitations), respectively.

The resulting noncollinearity of the remaining spins in
the presence of dopants signifies, as already noted, the onset
of correlations between next-nearest neighbors on the grid,
i.e., diagonal correlations in the unit cell. The magnitude of
the correlations is determined by the topological charge den-
sity (4.9), (4.11) that produces, in its turn, the flux of the
fictitious magnetic field as a consequence of (4.10). The par-
ticle-number deficit is rigidly related by this equation to the
number of topological spin-texture defects. After the inte-
gration of the zero-order component, it follows from (4.10)
that the ratio of the topological charge Q to the flux Ф of the
statistical magnetic field is

Q = (*/2л)Ф. (4.16)

The question is: what is the dynamics of the positively-
charged vacancies?

The site-filling condition

with

(4.17)

(4.18)

where N is the total number of sites, will be admissible if we
write the Fermi variable

cfa=*/4» (4.19)

as a product of the neutral spinor z (4.3) and a charged
(complex) spinless field
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of "holes" with л, = 1 —Xi*~Xi- The two components of the
field x correspond to different chiralities.

The statistics is determined by the phases acquired as a
result of the particle interchange, i.e.,

cfa-«-facfa) (4.20)

z

fa-«~to/*V (4.21)

Consequently,

v, •* ê C ~* V fd.T)*tA/ c Af* ^.ZZJ

If we use the terminology of the RVB theory, the spin and
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charge of the electron or hole in strongly correlated systems
are distributed between the spinon (field z) and the holon
(field д') while the electron and hole can be looked upon as
bound states of these elementary excitations. In the case of
strong correlations with k = 2, the holon and the spinon are
both semifermions. For large k, the statistics of the z-quanta
of spin degrees of freedom is close to boson statistics, where-
as the statistics of charged ^-particles in this limit is close to
the statistics of fermions.

Substituting (4.19) in (2.14), we find in the long-wave
limit that the Lagrangian describing the dynamics of
charged excitations is

(4.23)

where D^ = d^ — ie(a^ +A^) is the covariant derivative
and Ap is the potential of the external electromagnetic field.
The statistical potential is renormalized so that the charge e
appears as a common factor in the covariant derivative Z>M;
the covariant derivative <9Д + iea^ contains only the statisti-
cal potential a^ because the field z is electrically neutral
(m,m* are the effective masses). We note once again that the
gauge potential <ZM in (4.23) plays the part of the Lagrange
multiplier72 that represents local restrictions on the distribu-
tions of charge and spin degrees of freedom.

We thus have two approaches, namely, (3.5), (4.21)
and (3.6), (4.22). In the first, i.e., the bosonic, method33

(t? = ir/k), the excitations take the form of anyone that in-
clude the Bohm-Aharanov vortex, and the TV-particle wave
function (3.5) is symmetric.

In the second case31 (•& = ir( 1 — k~1)), the TV-particle
wave function (3.6) is antisymmetric, and the component
quasiparticles also contain the Bohm-Aharanov vortex.96

The parameter \/k in the phase i? = v( I — k ~~') enables us
in this approach to perform controlled calculations97 for
k%>\, beginning with the fermions. Some of the details of
operations that begin with the fermion approach will be dis-
cussed in Sec. 9. In the next section, we examine common
features of the two approaches, and also the particular fea-
tures of the bosonic picture.

5. QUALITATIVE DESCRIPTION

We shall consider that the number of defects in spin
order is so large that the flux of the statistical magnetic field
is distributed uniformly over the entire plane. This means
that, by virtue of (4.16), the particles find themselves in the
average fictitious magnetic field of strength

b = (2nlk)n, (5.1)

which depends on the concentration и of the dopants.17'
Each of the Bohm-Aharanov potentials is a pure gauge po-
tential and therefore yields zero magnetic field. However, P-
parity breaking affects the scattering amplitude98 in such a
way that the scattering of one particle by another selects one
of the two sides as special. This can be imagined as rotation
of the particles in the magnetic field b given by (5.1). The
final answer (5.1) is, of course, wholly determined by the
topological nontriviality of the Bohm-Aharanov vortices.
Actually, as a particle travels on a closed contour С around

nS particles, its wave function acquires the phase
Jadl = (2irn/k)S which is equal to the flux of the magnetic
field (5.1) through the area 5 inside the contour C.

A typical trajectory of a particle rotating in the magnet-
ic field b = (2w/k)n with velocity v = (4irn)l/2/m and cy-
clotron radius R — mv/B contains, on average, k2 particles:

«гЛ2 = *2. (5.2)

When k = 2, all the particles in the unit cell participate in
this motion. The particle energy spectrum then takes the
form of Landau levels

(5.3)

with cyclotron frequency a>c — b /m, 1 — 0,1,2,... and the fol-
lowing degree of degeneracy per unit area:

J__ * _ «
2*- kN- (5.4)

where lb — b 1/2 is the magnetic length. The filling factor

v = n/AT=* (5.5)

shows that k of the Landau levels are completely filled.
The cyclotron radius R, the magnetic length /,,, and the

mean separation between the particles n~1/2 are related by

(5.6)

Hence it is clear that the mean-field approximation is valid
for /6 >n~1/2, but only for large k. When k = 2, we have
R~lb~n~112, and the particle orbits intersect. We there-
fore have, in accordance with the above assumption, a uni-
form field distribution and a uniform anyon density. The
uniform state is stable because the transfer of particles from
one orbit to another is accompanied by an increase in the
magnetic field and, correspondingly, an increase in <oc.

We now ask: is this distribution, the distribution of
pairs or of single excitations? Qualitative analysis33 argues in
favor of the former. Actually, the motion of two semifer-
mions in a general set of N quasiparticles is a ( T V — 2 ) +2
problem of the motion of two excitations in the field Ь = тгп
of the remaining TV — 2 quasiparticles. For single excita-
tions, this is a (TV— 1) + 1 problem.

The two-particle problem divides into the problem of
relative motion plus the motion of the center of mass of the
particles. The energy of relative motion cac/2 = b /2m of two
identical particles is, of course, equal to the lowest energy
ac /2 in the single-particle problem (5.3). However, the cen-
ter of mass in the two problems does not 'feel' the magnetic
field b because the phase ехр[2/(ТУ,2тг)//с:] acquired when
the TV] particles complete a closed path around the center of
mass is equal to unity for k = 2. Hence, the energy of a pair,
which consists of the energy of relative motion plus the ener-
gy of the center of mass, remains equal to o)c /2 which is less
than the energy a>c /2 + a>c /2 of the two single excitations in
the (TV — 1) + 1 problem. We thus see that it is more ener-
getically favorable for the semifermions to combine into
pairs and form a boson. The pairing mechanism will be dis-
cussed in Sec. 9 from the fermion point of view. It throws
additional light on the small-scale spatial structure of the
pairs.

We saw in Sec. 3, and will now verify, that intermediate
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statistics gives nonzero angular velocity and kinetic energy,
even in the ground state. For k — 2, the kinetic energy of the
charged particles is equal to the energy cac /2 == 2irn/k 2m of
the first Landau level, and is determined by the density и of
the topological defects.

The semifermion character of strongly correlated exci-
tations at k — 2 has two manifestations. First, this is in part a
Bose ensemble in the sense that, since there is no Fermi ener-
gy, there are no excitations such as electron-hole pairs that
appear as a result of the crossing of the Fermi surface. Sec-
ond, when the density is increased at any particular point,
particles will transfer from the region of higher density to the
region of lower density, and will tend to produce a uniform
distribution. This flow arises in part from the fermion ex-
change pressure and signifies the existence of collective exci-
tations with a linear dispersion law. We shall show this by
the method of Ref. 33.

The energy of a system of TV particles

(5.7)

together with the kinetic energy and the condition for con-
stant total number of particles is33

(5.8)

V(n) (5.9)

where 7 = тт/Ът and ц is the chemical potential. Next, the
hydrodynamic equation of motion

mn т

and the continuity equation

dnldt + div(nv) = 0

(5.10)

(5.11)

yield the following acoustic spectrum (after linearization
around the mean density n0 = \ц\/2у) for the long-wave
collective motions with density n and statistical magnetic
field b:

'Л710//Я2 . (5.12)

The reason for the transition from the dispersion rela-
tion (o~q2 tO(o~q is, of course, the solid-core condition for
bosons or, in fermion language, the finite exchange pressure.
The condition u>~q is not sufficient for superfluidity.
We know" that the necessary condition is a finite limit
min lim(u>(<?)/<?), i.e., the spectrum co(q) must contain a
roton portion for finite q. In other words, the quantum liquid
that is compressed in the long-wave limit must have small-
scale structure that ensures the presence of a gap at short
wavelengths. This is provided by the vortex distributions
associated with the degrees of freedom under consideration.
In Sec. 8, we shall examine factors responsible for the ap-
pearance of the gap <u(0) in the collective-excitation spec-
trum in the nonsuperfluid state even for q->0, which signi-
fies a transition to a perfectly incompressible quantum
liquid. If we start with this state, the phenomenon of com-
pressibility, which is seen as the disappearance of the gap
(<y (0) -»0) and the onset of collective excitations, i.e., Gold-
stones with a linear dispersion law (5.12), can be regarded as

evidence for the transition of correlated pairs consisting of
semifermions to the superfluid state.

If we look upon the energy (5.8) as a Ginzburg-Landau
functional, we can use the classical formulas to obtain the
expression for the square of the correlation radius

о ' 1 *
т\ц\ 2тгп0

(5.13)

which is the same as the square of the magnetic length / b.
The charge density n = (k /4ir)e fik and the current

density j, = riVj = (k/2rr)eikfok of the anyons determine
the gauge field/v/! by means of (4.10).l l f ) Hence the expres-
sion for the energy given by (5.8) can be rewritten in the
long-wave limit by exploiting this local relation in the form
of the Maxwell-type Lagrangian for the field fvA. Actually,
since the potential and kinetic energies are equal,

(5.14)

(5.15)

The density of the Lagrangian in the system of units in which
the velocity of sound (5.12) is equal to unity is given by33' I0°

L-Qlltofy*, (5.16)

with the coupling constant given by g2 = m/2k2.
The first observation that can be made in connection

with this experiment is that (5.16) does not have the Chern-
Simons term. This means that the breaking of P- and T-in-
version invariance, which is valid for short distances and
high frequencies, does not occur for large distances.101'102

This is an approximate result that will be improved later.
Second, semifermions are electrically charged, so that (e/
d)j^ is the three-dimensional electric current density,
where d is the separation between the planes. By calculating
the current correlation function we can show for (5.16) that
the London relation is valid for current and potential,33 and
the square of the penetration depth is given by

Л2 = (5.17)

We note that this expression is a consequence of the Galilean
invariance103 that is valid for different forms104 of the rela-
tion between the current and the potential or field that pro-
duces the Meissner effect. The formulas for the correlation
and the London lengths [given (5.13) and (5.17)] readily
show71 why the Ginzburg-Landau parameter

c2d (5.18)

is so large. When k = 2 and d /4-~fi2/me2, the Ginzburg-
Landau parameter is x~a~l~ 102 where a = e2/fic is the
fine-structure constant.

Since we have only the single parameter ыс with the
dimensions of energy at our disposal, it follows that both the
gap in the spectrum of single-particle excitations and the
superconducting transition temperature

Гс!«л//п*2 (5.19)

will be determined by the topological defect density.7''105
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6. THE STRUCTURE OF THE ENERGY SPECTRUM

The main property of the chiral state is the appearance
of the dynamically generated statistical magnetic field,
which in turn affects the dynamics of the particles them-
selves by modifying the particle spectrum and wave func-
tions. Renewed interest106 in this problem107"110 is due to the
fact that the energy of the completely filled ground state in a
magnetic field and in the periodic potential, obtained in the
strong-coupling approximation, is found to be lower than in
zero magnetic field.106-111

We now return to the Hamiltonian (2.14):

Я= -i (6.1)

which describes a set of spinless charged particles in a uni-
form magnetic field with flux ф =p/q (2.13) through the
unit cell.

The Hamiltonian (6.1) can be generalized by including
in the summation112'113 the next-nearest neighbors in the
cell, by taking into account the different hopping amplitudes
along the x and у axes ((~ta ) and (~tb); Refs. 114 and 115),
and by extending the discussion to the spatially three-dimen-
sional case.116'117

In the simplest version of (6.1) (with different ampli-
tudes ta<b =tuib, the Schrodinger equation H \ip) = E \i/>) in
the ^-representation takes the form of the Harper equa-
tion118

(6.2)

(6.3)

-2taCOS(kx

and the wave function assumes the form

|V> = JLV
/-i'

where the lattice constant is equal to unity and |0) is the
vacuum state. In (6.2) we use the condition if>J + q = fy and
choose the following gauge: along the lattice link in the di-
rection of the x axis, t?,y = 0, and on the link between lattice
sites / = (n,m) and_/ = (m,n + 1) in the direction of the у
axis, Qtj = 2ттфп. The lattice position index / has the Carte-
sian coordinates (n,m) where n and т are integers.19' Equa-
tion (6.2) is a model of strongly-coupled particles with diag-
onal modulation due to the first term.

When ф =p/q, equation (6.2) has q eigenvalues for
each pair kx,ky. In other words, the energy spectrum in the
absence of the field

= -2/acos kx - 2tbcos ky (6.4)

splits in a magnetic field into q energy bands with wave vec-
tors corresponding to q magnetic Brillouin zones

-n/q < k < nlq, -л < A £ n, (6.5)rv_ -_ ••>* if) iv —- •».. .

and has an exceedingly rich structure.107'108 The magnetic
Bloch function if/j satisfies the following conditions83 on the
boundary (6.5):

(6.6)

Before we turn to a description of the spectrum, we
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draw attention to our choice of the gauge. The expression
given by (6.2) can be interpreted as describing the dynamics
of a particle that hops between q points distributed on a cir-
cle. The clockwise hop amplitude is exp( — iky) and the
anticlockwise amplitude is e\p(iky), where the energy at
each pointy is 2ta cos(kx + 2тгф] ). The dual transforma-
tion119

(6.7)

can be treated as the gauge transformation
a= ( — iy,0,0)-»a = (0,bx,0), and imposes the replace-
ments ta -+tb and kx^>ky, whereas the energy at each point
on the circle transforms into the hop matrix

(6.8)

in which dy = 0 along the link parallel to the у axis and
в^ = 2-1гфт along the link between sites (n,m) and (n + 1 )
in the direction of the x axis, where

—я kx < я, -я/q : k < njq. (6.9)

This transformation restores the equal importance of the
momentum components kx and ky, and confines us to the
square region —ir/q^kx^TT/q, — w/q<ky^iT/q.

In the very curious gauge employed in Ref. 120, the
eigenvalue equation has a near-diagonal modulation. If we
take djj = — тгф(п-\-m) for the link between the sites
/ = (n,m) and j = (n + \,m) in the direction of the x axis,
and в у = 1гф(п + т) for the link between / = (n,m) and
j = (n,m + I) along the у axis, we obtain the one-dimen-
sional discrete system with the following equation:

-«/-i*,-!. - <#i+i " «*r (6-l o>

(6.11)

(6.12)

States with wave vectors К and К + тгф are then found to be
coupled, but there is no coupling between different k.

The energy spectrum of the problem defined by (6.1)
can be obtained by solving the secular equation which, after
substituting ф}: = if>j e\p(ikyj ) in (6.2), takes the form

= 0, (6.13)

Л/ 2 -е О

-tk

where Af,- = — 2?a cos (A:,, 4- 2тг$/ ). We then readily see
from this equation and from the duality relation (6.7) that
the secular equation can be written114

P /g(f) = 2t ^cos(qkx) + 2t fces(qk), (6.14)

where Pp/4(e) is a polynomial of degree q that has q real
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roots because the Hamiltonian is Hermitian. We noted in
Sec. 4 that even values of q were important for our purposes.
We will therefore confine our attention to such values. In the
case of even q, the polynomial Pp/4(e) is a symmetric func-
tion relative to the band center e = 0. At this point, it is equal
to It q

a + 2tq
b. This is readily verified by using the property of

duality and the special case ta = 0 in (6.13). The fact that
the spectrum is symmetric is a consequence of the hidden
supersymmetry of the problem defined12' by (6.1) .The spec-
trum thus splits into q/2 subbands with positive energy and
q/2 subbands with negative energy. Each subband is then
characterized114 by an integral value of Hall conductivity,
for which there is a topological reason since axy is the first
Chern class of the vector stratification with base in the Bril-
louin zone.

At £ = 0 and for

4°) = m/g. (6.15)

where n and т are integers, the two central subbands are
found to touch, and the spectrum exhibits linear dispersion
near the points given by (6.15). Each point /= (n, m) in
momentum space is characterized by a topological invar-
iant, i.e., the so-called chirality y/ = ±1 (Ref. 121). The
linear dispersion c(k) = + const|k — k(0) near the degen-
eracy points (6.15) means that we are dealing with a set с/
low-energy excitations that are g-color massless Dirac parti-
cles with the Lagrangian87

L^y.VJtiS'+itWf. (6-16)

The generalization of ( 6. 16) to the massive case is given
in Ref. 85 which also reproduces a more complete analysis of
the problem, based on the utilization of the magnetic transla-
tion group (see below). The model used in Ref. 85 is

Я = - (a + A)dl ]Cj (6. 17)

and includes the chemical potential /j, in order to take into
account fluctuations in the particle number in the two sub-
lattices of this square lattice (Fig. 5), and also the total po-
tential a + A (see the end of Sec. 2) . For the model defined
by ( 6. 1 7 ) and near the degeneracy points at which subbands
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FIG. 5. Distribution of d-states (p-states) over the sites of the dual (ba-
sic) lattice in basal planes.

with positive and negative energies are found to cross, we
obtain the following expression85 for the Lagrangian of the
(2 + 1) -dimensional theory that describes massive excita-
tions in the external field au — a + Sa :

+ «C + (6.18)

We now digress slightly from our main theme, in con-
nection with (6.17). In a constant uniform magnetic field
with flux (f> =p/q and potential A, the current of charged
particles is the Hall current

A = <V,/V (6Л9>
where the potential a appears on equal terms with A in the
sum a+A in (6.17). Since/ = — (SS/Sa,), this means
that, in the long-wave limit, the action S contains the Chern-
Simons term (4.12) with & = 2тгаху. Since i? = wk = 2vk,
the Hall conductivity crxy = k = q/2 is an integer. The total
contribution to •& /2ir = = ax — (Refs. 75 and
85), where the signs ( + ) denote two adjacent central bands
and the topological invariant, i.e., the first Chern class cr~y,
can be written112 in terms of the following integral over the
momentum space of the Brillouin zone:

2я/д

Wi J d

0 0
= -<*•

(6.20)

If parity P(kx ->kx,ky ->ky) is conserved in the lattice theo-
ry, then the chiralities yfof the points kf and kf are opposite,
i.e., Yf — — Yf and «? = 0. When the "external" flux ф is
present, all the lattice fermions have the same chirality
Yf = sign ф, and the same sign of the mass in (6.1) (Refs. 61,
62, 85, and 123).

We now turn to a discussion of the spectrum. It is clear
from (6.14) that the spectrum is invariant under the shifts
kx^kx + 2tr/q, ky^ky + 2-rr/q. This property is, of course,
clear from the explicit expressions for the energy when q = 2

= 4(ta =tb = 1):

cos2 *

e(kx< ky) = ± {4 ± 2[3 +
(6.21)

cos 4k) ]1

The signs of the branches of this spectrum are not interrelat-
ed. Degeneracy due to the symmetry of the spectrum under
the shifts kx xw + 2ir/q is equivalent to the existence
of operators that commute with the Hamiltonian, but not
with one another. Actually, if we define matrices A and В
by1 2 1

(4fy = <

we have

AH(kx, ky)A~l

BH(kx, ky)B~l

where

H(kx

ff(kx, ky

ky),

(6.22)

(6.23)

(6.24)
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АВ = BAe***'*.

The Hamiltonian for (6.7) (ta =tb = 1) is

(6.25)

<5(f) j Л

and will be written in the form121

'Я + h.c.

(6.26)

(6.27)

Since/) and q are not commensurate, there must be a number
n that is not commensurate with p and is such that

integer (6.28)

We shall use it in the new operators Л = A" and В = В" that
ensure the necessary symmetry

ky), (6.29)

(6.30)

(6.31)

The algebra of the operators (6.31) corresponds to the
magnetic translation group124 whose representations20* are
the eigenstates of the Hamiltonian (6.1). The magnetic
translation operators Tty) that produce shifts equal to the
basis vectors a,- of a square lattice must satisfy the relations

BH(kx, y x, y

and the commutation relations

AB =

Г"(а1)Г
я(а2) = (- maj), (6.32)

(6.33)

(6.34)

For example, for the flux ф= 1/2(^ = 2), the operator
Г(а, ) will commute with 71(2a2), and so on. Thus, in order
to number the energy subbands, we have to use the set of
orthogonal states ,̂ Г(а2)^, Г2(аг)^,..., 74»-1' (a2)^gen-
erated by magnetic translations from the subgroup T4 .

If we know dispersion relations ep/4 ( kx ,ky ) and the
position of the chemical potential /u, which is determined by
the number of particles per site,

tf(e)de, (6.35)

we can write the total energy in the form:211

V
£ = «JV(e)de. (6.36)

The density of states is given by the analytic expression110

1
N(e)=-

de
if1 — IA \ A ' (6.37)

where F(e) is the determinant (6.13), the upper and lower
angles of which contain + 1, evaluated for /„ = tb = 1 and
kx =ky =OwhereA"(/t) = K((l - £2)1/2)isthecomplete
elliptic integral of the first kind. For energies corresponding
to the half-filling of each subband, the density of states N(e)

1,0 -

-1,0

FIG. 6. Density of states as a function of energy for fluxes ф = 1/8,1/4,3/
8, 1/2, 0 (Ref. 106). The number and position of subbands are rapidly
varying functions of site filling for v = ф.

has logarithmic van Hove singularities, with pagoda-like be-
havior in their vicinity.

Figure 6 shows the density of states as a function of
energy for - 4<f <0 and fluxes ф = 0,1/2, 3/8,1/4,1/8. It
is clear that a variation in the flux ф = p/q is accompanied by
sharp changes in the position, width, and total number of
magnetic subbands. Numerical calculations of the total en-
ergy for fixed filling factors v and different fluxes were re-
ported in Refs. I l l , 115, and 117 (Fig. 7). They confirmed
the conclusion drawn in Ref. 109 that there is a set of local
energy minima when the filling factory is related to the flux
ф as follows:

v = M + N<f> (6.38)

where M and N are integers. The smallest gap in the energy
structure or, in other words, the largest numerical jump in
the spectrum (as compared with the case of zero magnetic
field) occurs for M = 0, N = 1, i.e., for

••Ф, (6.39)

and corresponds to the integral Hall effect with
&= l(q = 2).22) Figure 8 shows the position of the absolute
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FIG. 7. Total energy as a function of flux for v = 1 /3 (Ref. 111).
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-1,0

FIG. 8. Absolute total-energy minimum (for ф = v) as a function of the
band filling factor v (Ref. 111). The upper (thin) curve shows the total
energy as a function of v for ф = 0.

minimum ofE^) as a function of the filling factor v, subject
to the restriction defined by (6.39).J! u 17

It follows from these results that the state of spinless
fermions on a lattice in a magnetic field is energetically fa-
vorable. The total energy is reduced by opening the gaps and,
generally, because of the development of the Peierls-type in-
stability that accompanies the distribution of the magnetic
flux over the lattice and the commensurability effect. Calcu-
lations show120 that the result is a modulation of the hopping
amplitudes T [ see (6.11)] and a distortion of the lattice. In
other words, "insertion" into the statistical magnetic field is
equivalent to the introduction of lattice dimerization. 12°

We have already noted that each subband carries an
integer-valued Hall conductivity (in units of e2/h). Let us
therefore compare (6.38) with the whole-number quantiza-
tion of axy (6.19) (Ref. 114). Suppose that the chemical
potential lies int he rth gap, counting from the bottom. The
Hall conductivity is then the sum of contributions due to
subbands belowц and is equal to tr (Refs. 125-127), where
tr is the solution of the Diophantine equation

r=qsr + ptr, (6.40)

in which 5r, tr are integers and t, \ <,q/2, 1 <,r<,q. The distri-
bution of the numbers tr is shown in Fig. 9 (Ref. 112). When
the chemical potential lies within any of the gaps, and ф
varies slowly, the numbers r, q, p vary very rapidly, but tr, sr

remain the same. This means that the global variation of
Е(ф) determines the numbers tr and sr, i.e., the Hall con-
ductivity is determined by the topological structure of the
function Е(ф). At the degeneracy points (6.15), i.e., for
E = 0, r = q/2, the Diophantine equation (6.40) has the two
solutions tr, sr = ( ± q/2,(l +p)/2). The Hall conductiv-
ity cannot then be uniquely determined from the Diophan-
tine equation, and requires physical regularization (see be-
low).

Dividing (6.40) by q and setting sr = M and tr = N, we
obtain (6.38)

+ (6.41)

We therefore draw attention to the fact that there are
two possibilities: the Hall conductivity may be of the "hole"
type (tr > 0), or of the "electron type" (tr <0), and depends
on the position of the chemical potential in the hierarchical
structure of subbands in the lower band. This depends on

FIG. 9. Energy spectrum in the Hofstadter problem. The values of the
integers tr are shown in the energy gaps.

concentration and temperature. Figure 10 shows the de-
pendence of ц on the filling factor *{отф= 1/4. When the
temperature is reduced, we have the possibility of transition
to one set of the numbers (r,q,p,sr) with rr > 0 to another
with tr < 0, which signifies a change in the sign of Hall con-
ductivity.128 The sign of the carriers is of course determined
by the wave nature of the particles [as shown by (6.41) ],125

i.e., by the diffraction of the particles by the lattice.
Doping produces diagonal correlations in the unit cell.

The question is: what happens when the next-nearest neigh-
bors are taken into account in (6.1)? The ambiguity in the
half-filling then disappears112'"3 and the Hall conductivity
is + q/2 with r = q/2, ф = 1/2 for a positive diagonal-hop-
ping amplitude tc. The overall picture involves a narrowing

-3

-4

0,25/0,50 0,75 1,00 V
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FIG. 10. Chemical potential as a function of /* for ф = 1/4.
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FIG. 11. Band structure as a function of diagonal hopping amplitude in
the unit cell for ф = 1/4 (Ref. 112).

of some subbands and the expansion of others, and the open-
ing of new and the closure of old gaps. Figure 11 shows the
subband structure as a function of tc in the special case112

ф = 1/4.
When the gaps collapse, the global structure of Е(ф)

undergoes a radical change near the degeneracy points, and
this is accompanied by the appearance of jumps Asr = s'r
— sr, Дгг = t ' r — tr in (sr,tr) with the conservation of r

sr + ptr = gs'f + pt'r, (6.42)

which gives rise to jumps in Hall conductivity axy = tr = k
and a change in anyon statistics. The mechanism responsible
for this phenomenon can be identified"3-129 as a 'collision'
between the spectrum branches with the parameter tc

changes23' and, as the subbands touch, q is transferred from
the lower to the upper colliding subbands, i.e., we have the
transfer of the basis class from the cohomology of the two-
dimensional torus of the reciprocal lattice130 H2(T^.,Z).
The quantum numbers t ' r are therefore no longer con-
strained, as they were earlier, by the condition \rr\<q/2,
and the quantity crxy —t't is in general completely ran-
dom.126'129 This 'collision' between the subbands is accom-
panied by a change in the parameter k = 2\crxy \ in the statis-
tics of anyon excitations.

7. THE WAVE FUNCTION

The complete set of states {if>t} of particles in the strong
magnetic field due to the spin deficit and maintained by the
coherent motion of the particles themselves can be taken as
the basis for the construction of the many-particle wave
function. The unitary transformation

t
introduced in Refs. 131 and 132 for the original operators cia

of the Hubbard model, and weighted by the eigenstates ф, of
the Hamiltonian (6.1), enables us to write the wave function
of a set of 2M particles on a lattice of N sites in the following
form:

IGF
(7.2)

where P is the Gutzwiller projector (2.3), the notation /eF
signifies that the index / lies in the interval 1 < / < M, and |0)
is the vacuum state. The important point is that the transfor-

mation defined by (7.1) is diagonal in the spin and the flux,
and the gauge potential is the same for spin-up and spin-
down particles. Hence, the raising operator S + = 2,c,+ ca

is 2/c,+ c/i anc* s,\if>) = S +1^) =0, i.e., the state defined by
(7.2) is a spin singlet.133 The wave function (7.2) is hard
because of the Hofstadter gaps. The paramagnetic part of the
current is therefore small, and the response in the state (7.2)
is diamagnetic.131

A wave function of different form, but equivalent to
(7.2), was proposed in Ref. 134:

(7.3)

where S, = c^ cr,. This is the wave function of a set of M
spin-down_particles and M spin-up particles and ./V — 2M
holes; /eF,7e — F , \ F ) is the ferromagnetic state, {7J} are the
positions of spin-up particles, and-Ц } = {?'} — {rj} the po-
sitions of the holes.

Substituting (7.1) in (7.2), we obtain

|a) = 7>Пс"|т.с i , |0). (7.6)
I Г| ' Г|

The equivalence of (7.2) and (7.3) (Ref. 133) is a conse-
quence of the identity of the states П/ьГс^ |0) and
Н-1*-рСц\Р} where \F) = П,с,+ |0), so that det^,(rj)
~det i/>f (7J). The wave function \ф) can be written in the
explicit singlet form

(7.7)

(7.8)

with the symmetric function

IGF

and is used in numerical calculations.135 137

This picture is clear, but it does not completely satisfy
us. There are doubts about the use of the composite opera-
tors (4.19) for electrons and holes that are not the elemen-
tary excitations of a system with developed quantum fluctu-
ations (see Sec. 4). At the heuristic level, the replacement of
the function (7.2) is well-known.138 The polynomial (3.9)
induced by the gauge transformation and multiplied by the
product of the wave functions of the ground-state particles
in the magnetic field gives the wave function24' (Refs. 44 and
139)

(7.9)

where the magnetic length is equal to unity, / = (I,m) is the
site index, zk =xk + iyk =1 + im is the complex spin-down
coordinate and the factor G(z,) = +1
= ( — i) ' + "• + '"•+1 describes the distribution of the gauge

potential a (Refs. 139 and 140).
The essential difference between (7.9) and (7.2) is con-

tained in the function

№,-,."".
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which represents the hard-core condition for anyon excita-
tions. A function of the form given by (7.9) was used in Ref.
140 to determine a variety of physical variables. For i?/
ir= tfa /-IT = k = 2, it was found to be very close to the chiral
spin state.45 A very useful result is reported in Ref. 46 in
which it is shown that (7.9) is the ground state of the Hamil-
tonian (3.18). In the dual conjugate case •&/-tr =-&e/ir = I/
k, the function (7.9) for k = 2 describes the state of a set of
semifermions.3' We recall that the statistical phases are re-
lated by •да/тг= — тг/др (Ref. 53) and that, in terms of the
fermion picture (3.4), (3.6) in which each Bohm-Aharanov
vortex carries the fraction I — k ~' of the flux quantum,
k = 2 corresponds to two completely occupied Landau lev-
els (filling factor equal to I/(I — k ~')). In the Hartree-
Fock approximation, the energy of the state (7.9) with 9 /
тг = I/2 is somewhat lower than the energy of the two-di-
mensional Fermi gas in an external magnetic field.31 For the
state defined by (7.9) with I?/TT= l/k, the characteristic
feature is the existence of charged vortex excitations with
circulation (1 — k ~') h /m (Ref. 31) and a collective Gold-
stone mode with an acoustic spectrum in the long-wave lim-
it, indicating that the medium is compressible. The small-
scale rigidity of the anyon liquid is indicated by the roton
portion of the spectrum of collective motions.141

When the requirements used to construct the functions
(7.5) and (7.9) are combined, the result leads to142

, a,

(7.11)

(7.12)

which is an exact singlet eigenstate (with zero energy) of the
Hamiltonian

Я = У ( П ? - Ь ) , (7-13)

(7.14)

with t? /-IT — 1/2 for a set of semifermions. The wave function
given by (7.10) was obtained with the help of the supersym-
metric representation142"144 of the Hamiltonian (7.13):

N

Qj = П* - mj, llj = -jV + a^ (7.15)

The following notation is used in (7.10)-(7.15): —anti-
symmetrizer, z, = xy + />,, z, = xt - iy} a and /3— spinors
with spin respectively up and down, and у = 1, 2,..., N, and
[j] =N+ 1, N+ 2, ..., 27V—spatial indices for these spin
projection values. The function (7.11) is a solution of the
equation A25" = — b} and is proportional to the Coulomb
energy of the associated classical plasma:

8. ANYONS ON A LATTICE

The concept of anyons as long-wave excitations was for-
mulated in Sec. 4. There are at present several approaches to
the theory of anyons on a lattice.145"149 We shall confine our
attention to certain aspects of this picture, following the re-
sults obtained in Ref. 149. The approach from the standpoint
of short distances is necessary because, as we have frequently
mentioned, the correlation length is only a few times greater
than the lattice constant. The details of the distribution of
quantum numbers at short distances are found to be essential
if we are to settle the question as to which state is realized in
macroscopically large volumes.

In the anyon approach (3.10), the Hamiltonian is

H = - c+(r)c(r + ey.) + h.c. (8.1)

It describes a gas of Na anyons for which the creation and
annihilation operators satisfy the commutation rela-
tions50'149

(8.2)

= 0,

{a, b} • ab + qba, q =

The set of quantum numbers {r,y} in (8.1) labels the
(7.10) links of the lattice and e,- is a unit vector with j = 1 or 2.

Instead of the site index, we introduce the position vector r of
the left side of the unit cell. The phase in (8.2) is zero for
fermions, S = IT for bosons, and 8 = -rr/m for anyons. The
integer m in these expressions and the parameter k previous-
ly, e.g., in (4.7), are identical.

In fermion language, the Hamiltonian

H = ~ ey) + h.c. (8.3)

is the same as (6.1), {c+(r),c(r ')} = <5(r — r '), and the
current density j0 = c+ (r)c(r) of the system of Nf fermions
satisfies the local relation (4.10)

/о(г) = 0Д(Х) = *е(Дв/г)- (8.4)

The coordinate x in the flux function B(\) defines a site in
the dual lattice (see Fig. 5) that lies to the right and above
the site with coordinate r. The statistical phase i? in (8.4) is
equal to m/2ir and the gradient on the lattice is given by

The commutation relations that are satisfied by a}, (r)
follow from the canonical quantization rules for our system
with the Lagrangian

- "f - f I, <

The momentum conjugate of a, (r,/) for (8.6) is

(8.6)
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that the single-time commutator has the form

-«")• (8.9)

In the time-like Weyl gauge a0 = 0, the classical equa-
tion of motion SL /Sa0 = 0 is the Coulomb constraint (8.4)
that defines the Hilbert space of physical states as follows.
The generator of time-independent gauge transformations

commutes with the Hamiltonian (8.3) and annihilates phys-
ical states.

It follows from (8.9) that the momentum conjugate of
a, is i?a2. Their commutator is analogous to the commuta-
tion relations between the x and у components of the velocity
of a two-dimensional charged particle placed in a perpendic-
ular magnetic field. A detailed account of Chern-Simons
topological quantum mechanics based on this comparison is
given in Ref. 150.

Let us now consider some of the details of the transition
from ( 8.3 ) to ( 8. 1 ) on a lattice. This will be useful not only
for methodological but for other purposes as well. We start
by finding the solutions of (8.4) by substituting the vector
potential ay (r) in the form

afr) = е/Аф(х>- (8 Л 1>

We then have

(8.12)

where Д2 is the Laplace operator on the lattice. The solution
of this equation

х ' г ' (8-13)

(8.14)

enables us to determine the vector potential

fly<r)
x'

where x', r' are dual pairs and G is the Green's function on
the lattice.

In terms of the multivalued dual Green's function
#(r,x') that satisfies the.Cauchy-Riemann equation

(8.15)Д.С(х, x') = e (̂r, x'),

the required potential

is equal to the gradient of the multivalued function

(8-16)

(8.17)

[a discussion of (8.17) and of related matters is given in
Refs. 151-153].

The function в satisfies the condition Д0 = + 1 for a
closed contour on the main lattice around the dual site x
which together with (8.17) defines it completely. The multi-
valuedness of the function 0(r,x') is a consequence of the
string-section running from the point x to infinity, and when
the function crosses it, it acquires a constant jump. The form
of the operator ф depends on the gauge154 and coincides with
the Dirac string in the gauge a, = 0. All these properties are
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not, of course, an artifact of the theory, but a reflection of the
fact that the two-dimensional system is multiply connected.

We shall now determine the operator exp(/0(r)) that
creates the coherent state of the gauge field with the 1/t? part
of the flux quantum attached to each fermion at the point r.
The transformation

c(r) - ?(r) =

c+(r) - c+(r)

(8.18)

(8.19)

which can be interpreted as the Jordan-Wigner transforma-
tion,155 then leads to operators that satisfy the anyon com-
mutation relations (8.2) with phase 8 given by147"149

x') - 0(r', x)) = ̂ . (8.20)

The Pauli principle for fermions (c+)2 = c2 = 0 then leads
to the hard-core condition c2(r) = (c+ (r) )2 = 0 for the an-
yon operators.

When the ratio Sir is an odd number, the anyons become
bosons with a hard core, and the standard Jordan-Wigner
transformation

where

Q, с+с,),

(8.21)

(8.22)

gives the Hamiltonian (8.1) that is identical with the Hamil-
tonian of the XY model of spin half. The relation given by
(8.4) then replaces the expression Sz(r) =y0(r) — 1/2.
Fermions with the Chern-Simons term for 8/ir equal to a
multiple of an odd number are equivalent to the XY model of
spin 1/2 or bosons with a hard core.

We now draw attention to the fact that the nonlocal
operator in (8.18) can also be written for arbitrary 8 in the
form32'156

Im (8.23)

= xk + iy^ is the complex coordinate of a site. This
generates a string-section extending behind each particle,
and has the significance of the disorder operator.157"159

In addition to the spatial distribution of the particle
number density and the gauge flux over cells containing the
sites of the main and dual lattices, there are also different
possible variants of the ratio of quantum numbers that deter-
mine the degree of filling of a site and the magnitude of the
flux. We shall now examine this in greater detail than was
done in Sees. 4 and 6.

The Feynman path integral is

; J a exp(ij L dt). (8.24)

We shall assume that this takes into account the chemical
potential and the external electromagnetic field potential

«o + «o - Do = 'ao (8.25)
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(8.26)

As usual, the chemical potential shifts the scalar potential
A0.

The Feynman integral (8.24) contains the squares of
the Fermi fields. Integration of (8.24) with respect to these
fields therefore yields

det(/>0 - H(a + A))
r,r'

where

я—*s
/=1.2

(8.27)

(8.28)

The result of this is that the effective action for gauge fields
takes the form

Seff = -/ tr ln(£>0 - H(a + A)) - i (8.29)

where S( a ) is the Chern-Simons contribution due to the last
term in (8.6). After the shift of the vector potential
a + A-+ a, under which the measure in (8.24) remains invar-
iant, and after the extraction of the chemical potential from
Z)0, we obtain

И<в ~ A)< ( 8'30)

+ Aa,). (8.31)

5eff = -' ir ln(-D0 + *

where

S(a - А) ж S(a) + S(A) -

Let us now pause to consider the form of this expres-
sion. Its structure is significant for a number of reasons, the
most important of which is that there are several published
ways'60""162 of including the external electromagnetic field in
the Chern-Simons term. In general, the external field Ati is
small in comparison with the static field ам, and may be
looked upon as a perturbation. A uniform external magnetic
field is an exception, so that the correct description'04 of the
Meissner effect requires that the two potentials in the sum
a + A are of equal importance. It is only then that the fluctu-
ation corrections may cancel the bare statistical Chern-Si-
mons term S(A ) .

We now postpone the case A ̂  ̂ 0 to Sec. 13 and consid-
er that, at the point of stationary phase <5Sefr/<5aM|a =ъ =0,

the static electric field e is zero and the static magnetic field b
is uniform. Arguments in favor of the latter were produced
in Sec. 5, and the case e^O is discussed in Refs. 163 and 164.
The equation 8SeS/8a = 0 signifies that the fermion current
is

I- (8.32)

and that the zero-order component gives the fermion density

/>=flf t . (8.33)

The number of anyons in the system is
i dZ

(8.34)

Since // is the shift of the scalar potential a0, we have

(8.35)

where Ф is the total current through an area with linear di-
mension L, measured in units of the lattice constant, i.e.,

Ф - M,2.

The anyon density is therefore

(8.36)

(8.37)

and is identical with the fermion density (8.33). It deter-
mines the mean statistical magnetic field.70'71

Let the density p be the ratio of two mutually primitive
numbers r and q:

P-rl9, (8.38)

and let the phase 8 and the statistical angle i? be given by

where и and т are mutual primitives.
The mean statistical field b in (8.36)

(8.40)

is the fractional part [ Ф/L2 ] of the flux quantum equal to 2ir
. ( й = 1 ) Equation (8.37) therefore relates the mutually
primitive numbers in the pairs P, Q, r, q, and m,m:

(8.41)
Q my

We recall that the spectrum of single-particle states (see
Sec. 6) for magnetic-field values given by (8.40) contains Q
subbands where the number of states in each subband is L2/
Q. If/is the fractional or integral part of the filled subbands,
we have f=Na/(L2/Q) the anyon density is
NJL2=f/Q. Taken together with (8.37), this signifies
that

f-(r/«)Q, (8.42)

i.e.,/is a whole number if q is a factor of Q.
Let (a,b) be the greatest common factor of the two inte-

gers a and b. Let also s and / be two integers satisfying the
condition

s = (и, g), I = (m, r).

There exist four numbers n,m,T,q such that

n = sn, g = sq.

(8.43)

(8.44)

(8.45)

(8.46)

m = Im, r = lr

where

(л, /n) = 1, (q, 7) = 1,

as a consequence of the mutually primitive numbers in the
fractions (8.38) and (8.39).

Equation (8.41) is therefore equivalent to

£ = 44 (8-47)

or

= nr, Q-mq,
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and the degree of filling of the subbands is
, r _ / rm

(8.49)' -q*~s ""-(«, e)(m, г)'

Since s = (и,#) does not have a common factor with /, 7,
and я, it follows that/is an irreducible fraction, except when
one of the following relations is valid:

(8.50)

(я, Я)
т

(m, r)

r
(m, r)

</='),

(f=m).

If we consider the stability of a state with respect to
fluctuations around the mean field, we find that the pre-
ferred situation is that with gaps in the excitation spectrum,
which corresponds to integral values of/ and, hence, to the
implementation of one of the relations in (8.50). The phys-
ical properties of the system, e.g., the excitation statistics,
will depend on which of the conditions in (8.50) is satisfied.
In other words, the properties of the system depend not only
on site filling, but also on the commensurability conditions.

The case examined in previous Sections corresponds to
n — I in which case •& = m/2ir. For this case, s = (n,q) = 1
and/= mr/(m,r) is the integral number of filled Landau
levels in a system with an arbitrary density p = r/q and sta-
tistical phase 8 = тг/т.

The half-filled site with p = 1/2 (r = 1,0 = 2) and
т? = m/(2wn) with odd и is an exception. It then follows
from (8.44)-(8.50) that/= m, P = m, and Q = 2m. This
means that the chemical potential at e = 0 and all states with
e > 0 are filled whereas, in the Brillouin zone, the branches of
the energy spectrum for E = 0 intersect at Q — 2m = 2k,
k = 1,2,... points. The standard phase with flux9'12 would
then correspond to m = 1 andp = 1/2, in which case b = w,
which corresponds to half a flux quantum per unit cell.

Quadratic fluctuations around the mean magnetic field
in (8.37) provide the following contribution to the action:

" ( 8-5 i )

where a^(x) is the deviation from the mean potential,
x = (r,f ), and 5 contains the sum of the contributions due to
the fermion part and to the Chern-Simons term. The first
term contains the polarization operator Пмг(х,л:') for fer-
mions on the lattice in the presence of the magnetic field b.
When the spectrum contains a gap and we perform the gradi-
ent expansion of Пд„ we can write (8.51) in the following
form in the low-energy long-wavelength limit:

+ ... (8.52)

If the chemical potential lies in the/th Hofstadter gap, the
Hall conductivity axy is equal to tf/2ir(fi = I) , as already
noted in Sec. 6, where tf is the solution of the Diophantine
equation/= Qsf + Ptf. If we now combine (8.37)-(8.42),
we obtain the Hall conductivity in the form

,-h (8.53)

It follows from (8.52) and (8.53) that the precise can-
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cellation of the Chern-Simons term in the Gaussian approxi-
mation is obtained for solutions of the Diophantine equation
with sf = 0. This solution plays an important part because it
constitutes a compressible state (see Sec. 5) for which there
is a Goldstone collective mode.

Let us first consider the case n = I, •& = m/2ir, and ar-
bitrary density p = r/q. We then have P = r/(m,r),
Q = mq/(m,r) and the number of filled subbands is/= mr/
(m,r). The Diophantine equation is then

(854)

The degenerate solution and the multivaluedness of tf

arise for |m = mq/2(m,r), i.e., for even values of
q = 2(m,r), which includes the case of half-filling p = 1/2.
The interaction with next-nearest neighbors lifts this degen-
eracy (see Sec. 6).

Thus, in the absence of degeneracy, and if q > 2(mr),
the solution of the Diophantine equation is single-valued
and we haves^ = 0, tf = m, axy = т/2тг, which is equal to i?!
In the opposite case, when q<2(m,r), the solution is sf

= r/(m,r) 7^0. For this degree of site filling, the Chern-Si-
mons term does not cancel out, there is no Goldstone mode,
and the superfluid state is impossible. For sf^0, gauge bo-
sons have a topological mass due to the Chern-Simons term,
and the spectrum of collective excitations in the anyon gas
has a finite gap in the long-wave limit. In brief, this perfectly
incompressible coherent state is analogous to the quantum
Hall eifect state. For a sequence with n ̂  1, it is also impossi-
ble to find a solution of the Diophantine equation with sf

= 0, and superfluidity is impossible in this series. Such co-
herent nonsuperfluid states cannot, of course, be found in
the continuous limit because they are the result of diffraction
by the lattice. There is an extensive current litera-
tureioo.io2,io4,i6s.i66 Qn fluctuational contributions to the pa-

rameter k = т of the statistical phase i? = k /2w for different
densities and temperatures, including the possibility that it
will be annulled and there will be a transition to the super-
fluid state.

We thus see that the superfiuid state of charged anyon
excitations is only one of the coherent states of two-dimen-
sional systems with P-parity violation and symmetry break-
ing under time reversal. The place of the superfluid phase
among the many other phases will be examined in Sec. 11.

The distribution of the mutually conjugate degrees of
freedom, i.e., the phase q> and the particle number, over the
sites of the main and dual lattices, occupies an important
place throughout the above discussion. It follows from the
commutation relations for the corresponding operators,
[<p,N] = /, that phase and particle-number fluctuations are
comparable. If we take the phase and the number of particles
as our variables, the "crude" approach (2.15) is formulated
in Ref. 167 in terms of the Hamiltonian H = Я;п + KJ,"

where

(8.55)

(8.56)
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(8.57)

where the phase factor exp(/Vas) is parametrized by the
angle as,p

w is the operator for the density of the compensat-
ing background per site, and C/'11 is the repulsive potential
between the bosons. The sum is evaluated over all the sites of
the square cell centered on the site of the dual lattice.

We shall now use the results of Ref. 1 67 to show how
(8.55)-(8.57) lead to a hierarchical sequences of states. The
boson Hamiltonian (8.55), (8.56) is isornorphous168 with
the dual ( 2 + 1 ) -dimensional scalar quantum electrody-
namics in which the vector potential A(1) is the variable.
After the dual transformation, the boson number operator
Nil} becomes V X A(1) with AU) lying on the link of the dual
lattice, and the Hamiltonian (8.55), (8.56) becomes

where

H?> = -
X.J

x,x'

(8.58)

(8.59)

( 8-60)

the momentum тг£п is the canonical conjugate of Au),
V-A(1) = 0, and the Green's function (8.13) is G(x) ~ln|x
for large x|. The reduced compensating density is

The operator TV< 2 ) in (8.60) now represents the vortex of the
initial boson field q> in (8.55).

In the second iteration of the model (8.55)-(8.57),the
effective Hamiltonian Я(3) = Я< 2 ) + Я]3) + Я,<3) + FJ,3)

is modified as compared to(8.58)-(8.61).The vortex num-
ber operator is replaced in accordance with Ar(2)-»curl A(2),
the sites are interchanged so that г^-x, and the statistical
angle changes so that a~ '->a~ ' + p\. The even numberpl

of flux quanta is attached to the vortices Nm in (8.58)-
(8.61) in order to retain the bosonic character ofN(2}.

The nth step Hamiltonian Я ( "> =Я,<2) + ... +Я<"'
+ Я,'"' + V^\ depends on the operators N(n\<p(") and
fields A(/),...A("- ". The disorder operators ехр(ф "") are
localized on the sites of the main or dual lattices, and the
gauge field A("' lies on the links of the dual or main lattices
for odd and even n, respectively.

The mean-background neutralization condition for the
particles ./V'31 leads to the second iteration to (p3)
= < V X A ( " > -P,<VXA ( 2 ) > =0. Since the term Я< 3 ) de-

mands that (VXA ( 2 ) ) =a s (VxA ( 1 ) ) , it follows that as

= l/pt. When this condition is not satisfied, the representa-
tion procedure must be continued until the nth iteration pro-
duces a background-neutralizing density for particles
7 V ( " + " such that <//"+ "> = 0. We then have

1
1

(8.62)

where/>,=0, +2, +4 i—l,...,n.
For example, in a state in which {./VJ.3)} = 0 and

t<3) = 0, the spectrum of the effective Hamiltonian
Я({ЛГ<3)> = О) that is quadratic in A(1),A(2) contains the gap-
less mode (5.12), i.e., an indicator of the phenomenon of
superfluidity. The pole of the conductivity

(8.63)

that appears for <a-»0 shows that the superfluid liquid has
nonzero density, and the finite Hall conductivity
0-^(0 = 0) =а](ит^/(а]ит + t/CT)2 taken together
with (8.63) gives zero Hall resistance for со -»О.

9. THE FERMION APPROACH

The fermion representation is very convenient for an-
yons because, as k-> oo, we have the small parameter k ~'
that can be monitored during the calculations, and the statis-
tical phase •& = ir(\ — A: ~~ ' ) is close to the usual fermion val-
ue тт. When &> 1, we are, of course, far from the ground state
k = 2 with its strong correlations. States with high k are
more akin to metastable states, usually nonequilibrium
states, characterized by long-term relaxation because of the
fractal anyon energy, cut by valleys, and the fact that excited
anyons must cross states separated by energy barriers (see
Fig. 7). Nevertheless, even for large values of k, the anyons
retain their main property, i.e., their number-theoretical ul-
trametricity. We shall now follow the results of Refs. 97 and
169 to consider some of the properties of the fermion ap-
proach.

In the second-quantization representation, the Hamil-
tonian corresponding to the fermion picture (3.4), (3.6)
takes the form

Я (9.1)

where i[> is the field of spinless fermions. We now replace the
exact expression for the vector potential

if dv [*;(17|'
by introducing the mean density p and magnetic field b, and
obtain the approximate expression

a(r) = a + If dV M-IIJV, -P), (9.3)

where

(9.4)

t>3

After substitution in (9.1). we expand the Hamiltonian into
a series in powers of I/A::

Я-ед + 1я,<1>Ч---^Я2®+... - (9.5)

The perturbation theory represented by (9.5) enables
us to calculate the reaction to the external electromagnetic
field A^:

УЧ. «О = - (̂Ч. *>)ЛХЧ. ">>• (9-6)

It has been shown33'97'101-169 that, in the long-wave limit, the
function K^v (q,a>) has a pole at
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<9-7>

The existence of the Goldstone mode (9.7) signifies that the
system is translationally invariant.

Let us examine this in greater detail. The Goldstone
mode usually appears after a phase transition and is due to
continuous-symmetry breaking. However, in the two-di-
mensional case, the Elitzur theorem170 states that the usual
local order parameter does not exist in lattice systems with
continuous symmetry. The assumption made in Ref. 169 is
therefore that (9.7) must be looked upon as the result of the
restoration of translational in variance that was lost for com-
muting Hamiltonian and translational generators, i.e., the
restoration of the commutator [РХ,Р^] subject to
[Р,,Я ] = 0. The translation generators do not commute in
a uniform magnetic field with the Hamiltonian, and the
magnetic translation generators (6.34) commute with the
Hamiltonian, but not with one another. This is why, at the
"macroscopic" quasiparticle level, it may be considered that
in the initial state for the phenomenon (9.7), the commuta-
tor of the translation operators P, is not zero, i.e.,

and is determined by the number Q of particles and the sta-
tistical magnetic field b = е(]д,ц. The latter plays the part of
the order parameter. In effect, this is the same order param-
eter as (4.11). The tensor^ and /in (9.8) represent, respec-
tively, the breaking of the two-dimensional parity P and time
reversal T, and their product conserves the PT-mvariance of
the anyon system. We must now consider the cancellation of
Q in(9.8) in the superfluid state.25'

First, for the sake of simplicity, consider a single parti-
cle in a given constant magnetic field, so that the Hamilto-
nian is

Я=(-1/2ш)1)2, (9.9)

and the covariant derivatives satisfy the commutation rela-
tion

[D., D.] (9.10)

Since [Д.,Я]^0, the translation operators are different
from D/, and are given by

(9.11)

We then have

[7>.,Я] = 0, [Pk, PJ-tiXu. (9.12)

In terms of the second-quantized quasiparticle field %,
the Hamiltonian

and the corresponding translation operator

commute with one another, but

(9.14)

(9.15)

(9.16)

is the charge operator.
We now introduce the massless boson in addition to the

set of quasiparticles^ which, for high values ofk, are close to
fermions and occupy k Landau levels. This ensures that the
'macroscopic' equation [P,,P7] =0 is satisfied. We shall
represent the boson by the scalar field ф with the Lagrangian

L = ± (9.17)

Next, by analogy with (5.16), we rewrite the Lagrangian for
the field ф in terms of the gauge field a, of strength ht} = д,а}

— djui. If we then change the variables so that д0ф = h]2,
\)гд,ф = £jjh0j, we obtain

L-^

The translation operator for (9.18) has the form

(9.8) where the momentum density is

(9.18)

(9.19)

(9.20)

and, of course, [P,,P/] =0. However, after the operation
defined by (9.11),

(9.21)

1*0°ЬАО*- (9.22)

The integral in (9.22) is evaluated over a contour at infinity
and n* is the unit normal to the contour.

Combining the two systems, we obtain the total mo-
mentum operator P, = P\X} + Р\а} and the commutator

(9.23)

Thus, if we limit the space of states by the condition

k, (9.24)

we obtain [Pi,Pj ] = 0. In other words, the translation oper-
ators will commute only when the surface terms are taken
into account.

We would not have obtained (9.23) without introduc-
ing the additions in (9.14) and (9.21). This means that, to
obtain (9.23), we must modify the original Lagrangians so
as to produce a dynamic gauge field a^ . The required La-
grangian is

where Z>M = dfi + WM. The role of the field ам (or ф) is to
restore the commutation of the translation operators. The
fact that the right-hand side of the commutator (9.23) is
zero, ensures that the Cherns-Simons term is absent from
(9.25). In terms of the field ф, the expression given by (9.21)
is equivalent to

(9.26)

where and the surface term
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(9.27)

is equal to the number of vortices Ф. Hence, the cancellation
condition

С = Ф (9.28)

signifies that the vortical excitations are charged. In other
words, vorticity and charge cannot be separated and must be
assigned to the same particles.

The following observations will conclude this Section.
It follows from (9.27) that, in any state with Ф^О, the sca-
lar field must be singular at large distances. This can occur
when ф is the argument of a complex scalar field with zeros,
for example, on the boundary of an inhomogeneity in the
distribution of quantum numbers. To put it simply, edge
states and nontrivial boundary conditions are important for
our purposes.

Since the number of vortices is conserved in two-dimen-
sional space, the electric charge is also conserved in the su-
perfluid state as a consequence of (9.28). We therefore con-
clude that the usual order parameter (such as is
encountered, for example, in three-dimensional BCS super-
conductors, in which the charge conservation is spontan-
eously broken) does not exist in our case.

10. CLASSIFICATION OF PHASE STATES

The order parameter can be used to classify the possible
phase states of a system with developed quantum fluctu-
ations. A broader and more substantive choice of this pa-
rameter as compared with (9.8), which would reflect the
changes occuring in the system, is therefore exceedingly im-
portant. We are aided in the solution of this problem by re-
calling a similar situation in the case of the fractional quan-
tum Hall effect.171-172 For the state described by the wave
function (7.9) with •& = тг/k, this analogy has been
used137'173'174 to show that the A>particle density matrix de-
creases with the distance g — i]\ as follows:

Similar suggestions about the nonlocal order parameter in
anyon systems and a reduction concerning the power-law
falling off of the correlation functions are reported also in
Ref. 32.

The quasi-long-range order (10.1) is typical of confor-
mal (1 + 1) D theories and we shall later discuss the possi-
bility of a theory with topological (2 + 1) D action of the
Chern-Simons type a s a ( l + l)D conformal theory. For
the moment, we note that our problems are actually identical
with the strong-coupling problems in quantum chromody-
namics (possibly, with the exception of dimensionality).
Actually, in the presence of doping we are dealing with
SU (2) -symmetric gauge theory on a lattice. Doping reduces
the local symmetry to U( 1), and the physical observables of
the gauge theory are gauge-invariant quantities. They in-
clude the Wilson loop operator and the t'Hooft disorder op-
erator175 whose expectation values can be used to character-
ize different phase states. Of course, the theory always
contains the gauge-invariant fermion propagator

Л

<c+(x')exp(,-Ja

Let us now consider the expectation value of the Wilson
loop operator for the statistical vector potential, ordered
along a closed contour C:

WC^trPexpOtfadl». (Ю.З)
с

The expectation value in this expression must be interpreted
in the sense of Feynman integration and the trace tr takes
into account the case of the SU(2) group. The other signifi-
cant feature is the P-ordering along the contour C, since the
component a2 is canonically conjugate to a, [See ( 8.9) ] .

If the contour in (10.3) is space-like, the Wilson aver-
age for an arbitrarily closed loop on a quadratic lattice de-
scribes, by virtue of (8.4), the fluctuations in the number of
anyons inside the contour C:

= <exp fe = <exp ( 10.4)

We note that (10.4) is a measure of the number of links
(windings)77-176 of the vortex around the contour C. When
the loop С is time-like, as it is in QCD, the expectation value
(10.3) determines the energy necessary to add a particle at
one point and to remove a particle from another.

The disorder operator V(C) (Refs. 76 and 75) can be
defined by its action on the state vector |OM }, as follows:

The disorder operator takes a^) to a state determined rela-
tive to the gauge-transformed field

with a singular element on the curve C, which is such that
another loop С' winds itself n times around C. If С' is para-
metrized by the variable ^е[0,2тг], we have gM(q> = 2тг)

> = 0)ехр(2тг/и/ЛО where N is the rank of the
group. 175,176 The disorder operator can be determined with
the help of the commutation relations

W(C)V(C) = V(C')W(C)exp(2jtin/N), (10.7)

where С ' winds itself n times around С

IW(C), W(C')] = 0, \V(C), K(C')I = 0. ( 10.8)

The expression given by ( 10.7) was used in Refs. 175-177 to
show that a system with strong gauge fluctuations can be
found only in one of the following states:

1. Higgs phase, characterized by the following behavior
of expectation values:

~ ехр(-аДС)), ( 1 Q g )

(C)> ~ exp(-yS(C)),

where L(C) andS(C) are, respectively, the perimeter of and
the area bounded by C.

2. Confinement phase, characterized by the expectation
values

(W(Q) ~ exP(-aS(G)),

(10.2)

(10.10)

3. Partial Higgs phase, together with confinement, sig-
nifying that
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~ exp(-aS(C)),

- exp(-yS(C)).

4. The state of massless particles

<K(C)> ~ ехр(-уДС))

(10.11)

(10.12)

that is in conflict with (10.7) and can be looked upon as
intermediate between (10.9) and (10.10).

The confinement phase occurs, for example, in a system
with a random Gaussian distribution of the gauge field
flux178

Р(ф) = (лс5)-'/2 ехр( - <f>2/cS)

with mean (ф) = О and variance

(10.13)

S, (10.14)

that is proportional to the total area 5. We then have

- e-aS, . (10.15)

i.e., the system is in the confinement phase (10.10). We must
now consider what happens in the distribution of dual de-
grees of freedom under a change in the coupling constant
and a transition from confinement (10.10) to the Higgs
phase (10.9).

11. HIERARCHY OF PHASE TRANSITIONS

The composition of anyon quantum numbers and the
special features of their distribution on the respective planes
impose a considerable limitation on the choice of the lattice
model for the description of the phase properties of systems
with developed quantum fluctuations. In particular, the re-
quirement of gauge invariance forces us to consider the
gauge invariant Wilson loop variables (2.12) and (10.3) and
the correlation functions of these fields. The model defined
by (8.5 5) - (8.5 7), even if we ignore the absence of sources of
spin-wave excitations and the incomplete allowance for sym-
metry, is not entirely satisfactory for the further reason that
it is dominated by the nonlinear function cos( Д,^г,, — arj)
that is unimportant at low energies. The property of com-
pactness, which is important for charge quantization,261 can
be expressed in the simpler form of a periodically continued
quadratic function of the same variables. When we pass to
the periodically continued Gaussian model, we shall consid-
er a more extended symmetry as compared with (8.55)-
(8.57), and will fully take into account the topological limi-
tations. Apart from convenience, the Gaussian model arises
from the common desire to formulate a theory of strongly-
coupled particles in terms of noninteracting elementary ex-
citations, having taken on board the information about the
maximum possible number of channels for the variation of
quantum numbers.

Before we turn to the description of the model, we make
one further observation with regard to dimensional reduc-
tion. In real (3 + 1)D space-time, the leading low-energy
term in gauge-theory action is the topological charge density
y^v/"v = £'"v/l'T/ftv/lCT, whose ( 2 + l ) D boundary value
gives the Chern-Simons action and whose projection onto

the 2D space of a plane perpendicular to the z and t axes
forms the corresponding 2D topological charge density. (A
more detailed discussion will be given in the next Section) .

We shall take the topology of the four-manifold as
T2xS1xS2, where Т 2 is a 2D plane compactified into a torus
or, in the presence of defects, into a Riemann space of genus
g, and a large number of handles;27' S ' and Si are, respective-
ly, z- and /-cyclic directions, of which we shall need small
uniform pieces R12 lying near perpendicular sections. The
analytic projection onto 2D space can be performed for the
kinetic term in the action (similarly to the mapping of a
topological charge ) . After projection, and as a natural result
of it, the model will describe the dynamics of traces on a 2D
lattice on which "helical" quasiparticle world-line linkages
appear in the form of frustrated units. Since periodicity
along the z axis is analogous to the Matsubara cycle, the
quasiparticle world-line linkage can be looked upon as the
spatial linking of vortices along the z direction as we pass
from one plane to another28* ( see, for example, Refs. 1 79 and
180).

We now turn to the discussion of the model. Consider a
set of quasiparticles covering the main lattice, and suppose
that the system is in the liquid phase. This means that, simi-
larly to the fractional quantum Hall effect, the contribution
of a contour with N i particles to the vacuum transition am-
plitude has the form exp(iN{S) with Im S of the order of
unity.181 Here we also take into account the contribution of
intersecting contours that renormalize the imaginary part of
the action. The contiguity of contours along links traversed
in opposite directions gives rise to frustrations in the space of
the contours. In order to take into account the contribution
to the real part of the action due to coherent circular ex-
change,181 we must consider the symmetry of the phase vari-
ables in (2.15) or (8.55). Until now, these were the param-
eters of the group U( 1 ) of local transformations. However,
the greatest interest attaches to the global symmetry of the
variables, which reflects the topology of nontrivial boundary
conditions. The conclusion that there is a hidden topological
symmetry29' ZN emerges from a variety of considerations,
including constructions involving the insertion of contours
into one another,182 gauge invariance on a torus and repre-
sentations of the braid group,183 and the condition that the
theory is defined on a lattice169 or associations connected
with the commutation relations (6.31). The phases
{ехр(2тп£> /N)} in this group are distributed discretely on
the unit circle: <p — 0,\,...,N — 1. For the moment, we shall
allow the parameter ./V to be free.

The reader should now be ready to accept each term in
the partition function

Z = Tr exp
ft,a

of the ZN -model with the # term that was investigated in
Refs. 185 and 186. We shall, nevertheless explain the struc-
ture of ( 1 1 . 1 ) once again. The first term is the periodically
continued kinetic term, the second contains the source na of
the fields <pa , and the third is the lattice approximation to the
topological charge density. The discrete fields фа(х„х2)
= 0,l,...,N— 1 that parametrize the phase of the Wilson
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variables can be interpreted as the fluxes of the statistical
magnetic field, measured in units of the flux quantum. The
variables na (xl,x2) and s^a that "reside" on the sites and on
the links of the lattice, respectively, are integers, and the
lattice indices are f i , v = 1,2. The indices a,b = 3,4 are the
byproducts of the section z = const, t = const in the
(3 + 1)D theory, i.e., they are the internal indices of the
(2 + 0)D model. The coupling constant is g~2 = J/T in
(11.1) and the vacuum angle & in the continuous limit as a
factor of the topological term

(1L2)

in the action of (3 + 1) D theory prior to the projection oper-
ation.

The variables na in (11.1) are the electric charges that
now appear as sources of spin-wave motion of the field (p. A
detailed discussion of the correct definition of the electric
charge in strongly-correlated systems is given in Ref. 187.
the monopole charges m^ = (l/2)£-jUV/lCTAv^(T that repre-
sent the Berezinskii effect have the nonzero components

- A2s,4,

A2s,3
(П.З)

and represent, respectively, the field vortices q>4 and ip3. The
variables qp4 and m4 are defined on the sites of the dual lat-
tice. The last term in (11.1) therefore describes the local
interaction

Tm^) (11.4)

between the field vortex <ръ and the field <p4, and vice versa.
This interaction is completely analogous to the coupling be-
tween the electric charges na and the fields <pa in (11.1).

The action in (11.1) is a quadratic function of <p. It
follows that, after integration with respect to it, we can re-
write (11.1) in the representation of a Coulomb gas of inter-
acting electric and magnetic charges:185'186

Z = Tr exp

иэд-ЛI ' * •" )

(я3(г)«4(х) - т4(х)л3(г))0(г - x)
r,x

(11.5)

where G= — (1/2) In r is the Coulomb Green function,
0(r — x ) = -arctg[(^-jc2)/U-^,) ] is its dual
partner, and

И* "™ И -̂  fft/lir^m ^ 1 1 Л ^

represents the fact that the electric charge contains a mono-
pole contribution that is proportional to the vacuum an-
gle.188

The advantage of the representation of the model
(11.1) by (11.5) is that it expresses the dynamics directly in
terms of the quantum numbers of its elementary topological
excitations. The first two terms describe the Coulomb inter-
action in a gas of magnetic and electric charges, and the third
represents the Bohm-Aharanov effect, i.e., the linking of the
electric current Ngna to a Dirac string transporting a cur-
rent 2irna/g of the magnetic charge. We emphasize once
again that the magnetic charge has to be introduced because
the field <pa is regarded in (11.1) as an angular variable. The
result of this is that, in order to take into account the multi-
valuedness of the gauge configurations, we must sum over all
the numbers s^a, i.e., over all the topologically nontrivial
configurations with magnetic monopoles (cf. Ref. 189 where
it is shown how the Chern-Simons term "releases" electric
charges by acting against the monopoles and confinement).

We shall now describe the phase diagram of the model
defined by (11.1), following the argument190 of Kosterlitz
and Thoules.30' In a system of the form of (11.5) with char-
acteristic dimension L, i.e., and entropy In L 2, the energy of
excitations with quantum numbers31' «4 = m4 — 0, n3 = n
and m3 = m takes the form

InL. (11.7)

Comparison of this with entropy shows that, in the ground
state, there are quasiparticles whose quantum numbers satis-
fy the condition

(H.8)

The ratio of the axes of the ellipse in (11.8) is
TN — NT /2irJ, its slope and therefore the slope of the lattice
of charges in Fig. 12 is tan a = •& /2-rr, and the area is 4ir/N.
This means that different phases are possible for different
temperatures T and different vacuum angles i?, and also dif-
ferent values of N.

For a given i? ^0 and small coupling constants g2 = T/
J, there is always a low-temperature phase iwth charges
(n,m) = (1,0) that satisfies (11.8), i.e., the usual Higgs
phase. It is followed by the Coulomb phase whose particular
feature is that the ellipse (11.8) does not contain any of the
sites on the charge lattice. As jVincreases, i.e., as we pass to a

FIG. 12. The charge lattice with tilt « = arctan (t?/2л-) (Ref. 185). The
figure shows ellipses for different coupling constants and the charges in-
side these ellipses that become part of the condensate.
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Higgs phase Confinement Oblique confinement

/ т \
FIG. 13. Typical phase diagram. Coulomb phases with massless
gauge bosons are represented by 7.

state of greater isotropization, e.g., because of the applied
external field,193 the region in which the Coulomb boundary
phase with long-range correlations is present is found to ex-
pand. For large values of g2, we have the usual confinement
phase with monopole condensation, separated by the Cou-
lomb phase from the state of oblique confinement in which
the ground state contains condensed current loops carrying
the electric and magnetic charges. The phase sequence is
illustrated in Fig. 13. Figure 14 shows the phase dia-
gram185'186 for N<4 and N = 4.

The number of oblique-confinement phases is very criti-
cal in relation to the vacuum angle •&. When # /2w = \/q and
q is an integer, there is only one such phase. When •& /
2,тг = p/q and q is odd, the number of oblique-confinement
phases is equal to p. For an irrational •& /2ir, the number of
phase states is infinite.

In any phase, excitations with electric and magnetic
charges that are multiples of particle charges in the conden-
sate behave as physical particles. All other particles are held
by the confinement potential. For example, in the state of
oblique confinement, the electric charge and the magnetic
monopole are trapped by the linear potential, but the bound
states of these charges can be the states of free quasiparticles.
Calculations'85 of the Wilson order parameter (10.3) show
that, in the phase with condensed charges (n,m), the Wilson
correlator for particles with quantum numbers (n',m') satis-
fies the law of areas with string tension proportional to
(mri — m'n)2. This is the "distance" on the charge lattice
from the quantum numbers of particles in the condensate.
Particles in the condensate are characterized by the perim-
eter law for loop correlation functions and, since they are not
held by the trapping potential, they have a short-range inter-
action with scale inversely proportional to the gap in the
spectrum: M~ [(2w2/g2)cos2a + (ЛГ2g 2/2)sin2 a]1'2

where tg a = h/m for the charges (n + (&/2ir)m,m) from
the condensate.

It follows from this and from the previous Section that
the theory contains a rich and very beautiful picture of dual
replacement of the phenomena of confinement and Higgs
phase in two orthogonal channels of variation of the quan-
tum numbers of "electrically" and "magnetically" charged
particles. Self-duality is discussed in Ref. 191 from the

(2+ 1)D point of view.
The duality relations192 are the equivalence relation for

statistical models at high and low temperatures. In our case,
for т? = 0 (Ref. 193), the model defined by (11.5) is self-
dual194'196 if

(11.9)

This replacement interchanges the electric and magnetic
charges. When д/2-rr = l/q, the phase diagram of Fig. 14 is
inversion-symmetric with respect to the self-dual value185

g2 = 2-irq/N.
These symmetries of the parametric space of coupling

constants can be generalized as follows.185 We first intro-
duce the complex parameter

.7я (11.10)

The dual symmetry which is hidden in the theory that leaves
the Hamiltonian H{m},{n},g,d) = H({n}, - {m},g',d')
(Z = Tr exp( — H)) unaltered then corresponds to the in-
version

C-C'-r?-i ( i i . l l )

The noncommuting operations of duality S (11.11) and
translation Т in the vacuum angle
#(£-»£ + 1,»1-»т,л-»и — /и) generate an infinite discrete
symmetry group with group element

(11.12)

e
2n

0,0)

(0,1)

11,2))

It 2s,
V

(1,0)

-ZJt

(0,1)

(1,0)

"Г

0,0)

FIG. 14. Phase diagram for 7V<4 (a) and N= 4 (A) (Refs. 185 and
186). The parentheses (n,m) show the electric and magnetic charge of
particles in the condensate.
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The integers о,- in (11.12) define the "word"
{а„,а„ , ,.-.,#,} that determines the transformation off in
the form of the continued fraction

«-Ч-
1

1
(11.13)

"n-1 1
- «i-c

It is clear from this expression that the group of all such
transformations is isomorphous to the group SL(2,Z) of
2x2 matrices with unit determinant and integer elements

?~*$+i' a*-bc=l> {a, t>, c, d} e Z. (11.14)

The existence of this large symmetry group links the
nonhierarchical sequences (8.62) of ground states to the
phase diagram of the model. In the limit as g -» oo, the phase
diagram becomes infinitely complicated, since there is al-
ways a phase of condensed electric и and magnetic m charges
with the following ratio:

1 (11.15)
n
m 1

"n-l ...-I/a,

which corresponds to186 •& /2ir = n/m. On the other hand, if
we fix •& and change g, then Fig. 14 shows that we obtian a
finite number of phase transitions. The critical temperature
and the critical indices of the correlation functions191 of the
Coulomb gas will depend on the vacuum angle i? and the
parameter TV of the group center, i.e., they will be determined
by the excitation statistics.

The source of this hierarchy of states in strongly corre-
lated systems is universal. It resides in the operations of adia-
batic localization of a given cover (distribution of the flux of
the statistical magnetic field over the lattice) and also the
particle-hole conjugation which can be written184'197 in the
form of the elements of congruence subgroups of the group
ofSL(2,Z):

"1 +2), (11.16)

a -» I/a (v-l-v),

where a — v ' — 1 = (•&/2ir) l and v is the filling factor.
In the fractional quantum Hall effect the SL(2,Z) opera-
tions (11.16) on the toruses89'198 produce hierarchic se-
quences of states with filling factor198 v = r/(2r + 1).

12. ANYONS FROM THE (3+1)D and (1 +1 )D POINTS OF VIEW

The question now is: does the spatially three-dimen-
sional point of view introduce anything new into the anyon
picture? Comparison of fields at neighboring points in the
kinetic part of the action shows that they have the same form
in all dimensionalities and produce no difficulties. However,
when g2 > 1, the main contribution to the action is provided
not by the kinetic but by the topological Chern-Simons term.
The Chern-Simons term was originally introduced56"59 as a
correction to the standard expression, but becomes the
dominant term for large coupling constants. In this limit,
excitations with energy of the order of the mass m = g 2k 2/
4ir 2 detach themselves from the vacuum sector of the theo-
ry, where g is the coupling constant in the usual term
(l/4g 2).F2

V in the Lagrangian and m is the coefficient in the

equation of motion ( + т) *Fa =0 in which62 *Fa

— (\/2)eal3rF
 Pr. The Chern-Simons term is also related to

changes in the structure of phase space89'94 and, as we al-
ready know, to the multiple-connectedness of (2 + 1 )D sys-
tems.

The Chern-Simons term on its own can be looked upon
as a contribution due to the boundary M3 of the enclosing
(3 + 1 )D space M4. Actually, for the contribution

(4) fd V J" (12.1)

to the action in four-dimensional, theory where

A<V (12-2)

integration over the hypersurface perpendicular to the z axis
yields

S — 5 I — S i f 19 ^ "l

The topological charge S(4) in the case of U( 1) symmetry
can be reduced to zero32) by a continuous gauge transforma-
tion. Hence it follows that violation of two-dimensional par-
ity and symmetry under time reversal may be masked by
"antiferromagnetic" ordering of the signs of the factor k in
the Chern-Simons term 5(3) from layer to layer along the z
axis. (We draw attention to footnote 28 and the assumption
of the "ferromagnetic" ordering of the signs of A: in Ref. 32.)
The alternation of oriented vortex filaments with charges at
the ends. The braiding of the vortex lines along the z axis
then provides us with a clear spatial picture. The distribution
of magnetic charges among the lattice sites between the basal
planes is discussed in Refs. 140 and 200.

It is clear from (12.1) that, in addition to the usual
Chern-Simons term Sxv+ T , there are also the contributions
Sxy + z ,SXZ + T due to other sections of the four-dimensional
manifold. The choice is between Sxy + 2 and Sxy + -, where r is
the Matsubara variable, since their simultaneous utilization
depends on the architecture of the lattice33' and the tempera-
ture. The relative importance of topological terms is reduced
as we pass to the isotropic case (for example, the cubic lat-
tice) because of mutual cancellations on different sections of
the space M4.

Let us now consider the representation of the (2 + 1 )D
Chern-Simons theory in a model defined in a space of lower
dimensionality. In contrast to Sec. 11, we shall be interested
in the vacuum sector of the theory. It is shown in Ref. 89 that
the Chern-Simons gauge theory in three-dimensional space
is directly related to a rationally conformal theory in two
dimensions.203 We shall consider a three-dimensional mani-
fold with 2 X R topology, where R is a small homogeneous
part of the z axis or the т axis near a section 2 perpendicular
to them. If the manifold 2 is compact, the dimensionality of
the Hilbert space of states in the Chern-Simons theory is the
same as that of the vector space of conformal field theory on
2., If, on the other hand, 2 has a boundary, then the Hilbert
space appears as an infinite-dimensional space of representa-
tions of the chiral algebra of conformal field theory.

Witten's paper89 has stimulated the publication of a
large number of papers that establish new relationships be-
tween different and apparently unconnected regions. In par-
ticular, order was introduced into the conformal zoo,2"4 a
relation was found with the theory of knots and links,205 and
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new relationships were established between quantum
groups, the braid group, and the exact solutions of confor-
mal theory.206-208 All this led to the discovery of some deep
properties of the topological Chern-Simons theo-
ry 83,105.209-215 Unfortunately, we are unable within the con-
fines of this review to give a sensible presentation of the re-
sults published in these and similar papers216"218 that could
be relevant to the problem considered here. In order to draw
the attention of the reader to new possibilities, we therefore
turn to the analysis reported in some of these pa-
pers. 105,213-215 This will provide some useful information
about the structure of the vacuum sector of the theory.

Consider the limit g2 -> oo which leaves the Chern-Si-
mons term in the total Lagrangian. The Lagrangian for the
group U( 1) in the gauge A0 = 0 has the following form in
this limit:

(12.4)

(12.5)

and the equation of motion is

and constitutes a constraint on the state vector | ) of quan-
tum theory (Gauss' law): F12| ) =0. We recall that the can-
onically conjugate variables /4, and A2 in the phase space of
the system satisfy the commutation relation

), Л2(у)] - у). (12.6)

Since, as is readily seen from (12.4), the Hamiltonian is
equal to zero, we shall be interested in the properties of the
vacuum sector of the theory and, in particular, its dimen-
sionality.34' Suppose that the space with suitably chosen
boundary conditions has been compactified to an arbitrary
manifold 2. In topological theory, the physical variables are
the Wilson gauge variables that are denned on 2 and are
characterized by the contour C, charge n, and representation
Rk:

WR (C, n) = exp(m $ A dl).
С

(12.7)

In the Abelian case U ( 1 ) one can work directly with the
argument in ф(С), of the Wilson loop exponential if we put
л = 1. At each instant of time (or on each section
z = const), the set of all the loops {ф(С)} on 2 forms a
complete set of variables. The meaning of this is as follows.

The constraint ( 12.5 ) shows that the potential is a pure
gauge potential on a section t = const. For such potentials,
the Wilson variables can be transformed one into another by
continuous deformation. Hence, only homotopic classes of
mutually undeformable loops will be meaningful, and the
number of independent nontrival loops on 2 will be the only
important quantity. For a Riemann surface of genus g (with
g handles) there are 2g such loops. They constitute a com-
plete set of variables in the phase space of the Chern-Simons
theory.

The commutation relations given by (12.6) can be re-
written in terms of ф ( С ) as follows:140

c. - *,.) = « - - ( - i
ci C j

(12.8)

where Ptj are the points of intersection of the curves C, and

FIG. 15. Nontrivial cycles on Riemann surface with two handles.

С}, and Py is the parity of these intersections. In some suit-
able basis of the loops ф(С1), ф(С2) on the surface of genus
g, where they correspond to two nontrivial cycles а, Д for
each handle with / = 1 g and winding numbers m'a<ь ,п'а>ь

around cycles a,b of the rth handle, the commutator (12.8) is

,*(c2)]=«--f: (12.9)

Since the loops from each pair (a, ,b,) intersect an odd num-
ber of times (Fig. 15), we have

f*4«,-)> #(*;) 1 = i(*x/k)dr (12.10)

and all the other operators commute.
In the case of a torus, for which g = 1, and if we choose

the polarization214 in the form фа = Q, (k/2тт)фь = P, we
obtain the standard relation (Q,p) = i and we can use the
representation P= —idQ. For the compact group U(l),
the variables ф are pure phases. Consequently, the phase
space is compact and the states are invariant under the shifts
Q-^Q +2тг and P-*P + k. The wave function must there-
fore satisfy the quasiperiodic condition

7л) = (12.11)

This is also valid for the Fourier transform -ф of the wave
function il>(Q):

К) = (12.12)

where a and /? are arbitrary constant phases that can be
interpreted as the vacuum angles i?, and i?2-

It follows from (12.11) and (12.12) that, when k is an
integer, there are k linearly independent states in the Hilbert
space of the <5-vector of state, so that the expansion over the
eigenstates is

f

or

with the periodic condition for the coefficients

Ai.n+k = Ai,n> \n+k ~ Ai.n'

that are related by the Fourier transformation

< 12ЛЗ)

(12.14)

(12.15)

(12.16)
m=0

The complex numbers {At} exhaust the A>dimensional Hil-
bert space. This conclusion is, of course, unaffected if we use
the Wilson variables Wab = ехр(/^ай ), since the commuta-
tion relations
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(12.17)
it U V U

have representations with k independent states. Comparison
with (10.7) suggests that N = 2k. Hence, the Z2-theory cor-
responds to a set of three bosons, whereas the Z4-gauge theo-
ry describes semifermions.218 We also note that the number
N that determines the center U (1)N ~ ' of the groups SU (ЛО
can be interpreted as the number of sites in the unit cell of a
square lattice with independently transforming phase pa-
rameters of the group U ( l ) ®U(1) ®U(1) ® U ( 1 ) or

In the general case of a surface 2 with g handles, the
Hilbert space can be parametrized with the help of 2g vacu-
um angles, and has kg linearly independent states. This re-
sult is valid for integral k for which the wave function is
invariant, to within the phase, under global gauge transfor-
mations.

When k — 2 ( k ^ / k 2 ) , where k{ and k2 are mutually
primitive numbers, invariance under SL(2,Z) transforma-
tions in the space of the variables фа and фь enables us to
establish214 that the dimensionality of the Hilbert space is
(2klk2)

g. In these expressions, &, and k2 replace the
numbers q and p of the previous Sections. The requirement
of modular invariance, which can be interpreted as general
covariance during the parametrization of the handles, is an
additional condition imposed on /c and on the values of the
vacuum angles.

We now return to the Lagrangian (12.4) and the rela-
tion between the Hilbert space of the Chern-Simons theory
and the space of the moduli of two-dimensional conformal
field theory. Let M3 = D2 X R, where D2 is a disk and
Af =<9,Ф. Substituting into the Lagrangian, and putting
Ф = k ~ ' 12ф, we obtain the action

5 = (l/2ji)Jdsdtds<f>d/f> (12.18)

for the free boson field (p in flat two-dimensional Minkowski
space. The argument s in (12.18) parametrizes the boundary
of the disk D2. Since the field Ф is periodic, the field <p is
compactified on a circle whose radius r is given by
г — k = 2 ( k ] / k 2 ) . For all these values, the Hilbert space of
the original theory corresponds to the space of conformal
blocks of the conformal field theory (12.18) with central
charge с = 1.

When M3 = S2 X S1, the orthogonal basis of the Hilbert
space consists of the functions210

exp(-2Ay(f/))exp[jt*a(Im т)"

P e (12.19)

that are identical to the characters of the rational conformal
theory.83'209'219 If we use the properties of the Jacobi theta-
function and the Dedekind function IJ(T), we can
show83'209'210 that the generators of the modular group S:
a-Ki/т, r-> — l/randT:a^a, т^т + 1 transform (12.19)
as follows:

0=0

(12-20)

(12.21)

Comparison of (12.21) with the standard transformation
$p\T = exp 2rri[hp — (c/24)]rfp yields the conformal di-
mensionality hp - p2/4k and the central charge с = 1. We
know203 that the conformal dimensionality determines the
exponent in the power-type reduction in correlation func-
tions of primary fields and the value of conformal spin,
whereas the central charge gives the number of degrees of
freedom per unit cell of momentum space220'221 and deter-
mines their contribution to the thermal capacity.

We now draw attention to the result of applying209'210

the Wilson operator to the state (12.19):

W(C, n)v = V + . (12.22)

from which we have the Verlinde222 Zn-rule
W(n) X W(q) = W(n + q) for these operators and the pos-
sibility of identification with primary rules of conformal the-
ory. The physical states (correlation functions) satisfy223

the Knizhnik-Zamolodchikov equation105'210'212'214'215'222

that describes transport in the space of the moduli of the
(1 + 1)D Wess-Zumino-Witten-Novikov SU(2) model
with the solution210

П

П
iV=l

The relation between the states (7.9) and (7.11) of the
chiral liquid and the correlation functions of the Wess-Zu-
mino-Witten-Novikov chiral SU(2) model is discussed in
Refs. 225 for k = 1 and P, = I.

The inclusion of the topological term226 (а^ф in the
Lagrangian of the (1 + 1)D theory (12.18) for an arbitrary
metric,351 where R is the two-dimensional curvature of the
surface spanning the contour C, i.e., the addition of two-
dimensional gravity to the theory (12.18), is equivalent to
introducing a charge at infinity,227 which shifts the value of
conformal dimensionality.

The inclusion in the Lagrangian

•f (12.23)

of the conserved external current7' ^ = (p,}) with charge

Q = fpfr Od2* (12.24)

modifies the above results in the following ways.213 The
Hamiltonian is no longer zero and takes the form

(12.25)

and (12.5) is replaced with the familiar expression
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We now divide the vector potential

A, = df(> + еЧдгЧ, ЗГ1 = <y V2 (12.27)

into longitudinal and transverse components, and rewrite
the commutation relation (12.6) for the canonical pair
(ф,Ь) in the form

«(2тг/*>5(х - у). ( ! 2.28 )
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If we choose a rotationally-invariant polarization,361 the
magnetic field d is realized as the derivative with respect to
the coordinate ф, i.e., b = i{1ir/k)d^. The Gaussian con-
straint on the state vectors, given by (12.26), therefore takes
the form of the equation

) = 0 (12.29)

with the solution

N(t) = exp (12.30)

The statistical state ^(0) is an eigenstate of the Hamiltonian
(12.25) withy, = ~д Г1р + £tk dj an£* energy

E = =r- (12.31)

The Wilson operator W(C) in (10.3), when it acts on the
state (12.30), produces the eigenvalue213

W(C) = exp[i(y(C) (12.32)

that depends on the total charge Q(C) within the contour С
and the phase v(C).

If the loop С cuts itself v times, the contributions to
Q( C) appear with the corresponding signs, and the vacuum
holonomy exp[/y(C) ] is determined208'213 by the phase

у = 2xm/k, т = -v/2, -(v/2) +1,..., (v/2) - 1, v/2.

(12.33)

In other words, for the class of self-crossing loops, vacuum
holonomy corresponds to representations of the group
SU(2) with spin v/2, dimensionality v -f-1, and minimal set
of SU(2) representations with v/2 = 0, 1, ..., k. For these
values of v and Q(C) = 0, the eigenvalues of the Wilson
operator ехр(2тшп/&) are identical with the value of the
parameter q in minimal models of conformal field theory.
This parameter appears in the quadratic constraint g2

= (q — \)gt + q and, together with the standard conditions
gigi+igi = gi+igigi +1. К/<и - 1, gigj =gjgi for
\i — j\ >2 on the elements g, of the braid group, determines
the relations of the Hecke algebra Hn (q) (Ref. 217) and
also the argument of the Jones polynomials V L ( t ) (Ref.
205), where t= — q~*. The representations Hn(q) are
identical228 with the monodromies of JV-particle correlation
functions satisfying the Knizhnik-Zamolodchikov equa-
tion. The nonzero charge Q(c) in (12.32) deforms the val-
ues of m.

We draw attention to the fact that the statistics of
charges, proportional to l/k, is a dual conjugate of the statis-
tics of fluxes for which it is of the order of k. In the theory
(12.33) of a charged current interacting with a U( 1) statis-
tical gauge field, the charge Q, the magnetic flux 2ягФ (in
units of fi = 1), and the spin 5 of an elementary flux tube are
related by214-229-230 Q = £Ф, s = *Ф2/2 = Q2/2k. All that
remains is to identify the elementary excitations of the theo-
ry and their quantum numbers. We saw in Sec. 11 that this
depends on the coupling constant. If these are flux quanta,

then by substituting Ф = 1, we obtain s = k /2, i.e., spin pro-
portional to k. If, on the other hand, these are charge quanta,
then by putting Q = lweobtains= I/2k. The latter point of
view was adopted throughout this Section, since the Wilson
operator in (12.22) generated units of charge.

13. THERMODYNAMICS AND ELECTRODYNAMICS OF
ANYON SYSTEMS

The changes in the thermodynamic parameters of sets
of particles with intermediate statistics, as compared with
standard cases, are most simply seen by considering the ex-
ample of (3.14). The partition function

+«>
Z = ̂  exp[-(m + a)2T~l ] = (яГ)1/203(а, mT) (13.1)

«»-ee

is expressed231 in terms of the theta-function в3, Т is the
temperature normalized to h 2/2/, a = •& /2-rr, a = 0 and
a = 1/2 correspond to Bose and Fermi statistics, and a = 1/
4 corresponds to semifermions.

The temperature dependence of thermal capacity is
shown231 in Fig. 16 for (13.1). At high temperatures and for
0 < a < 1/4, с у tends from above to the classical value of 1/2.
If 1/4 < a < 1/2, we have cv -»1/2 — 0. We note that the
thermal capacity is a maximum when аф 1/2.

Another significant thermodynamic quantity is the sec-
ond virial coefficient B(T). The striking result reported in
Refs. 232 and 143, namely,

B(T, a) = (A2/4)X[1 - 2(1 - 2a)2]( (13.2)

may have been for many people the starting point of their
exploration of anyon theory. The quantity Л 2 = h 2/m Т in
(13.2) is the square of the thermal de Broglie wavelength.
The deep valleys at а = 0 mod 2ir with В < 0 and the maxi-
mum at а = 1/2 with B>0 in (1 3.2) represent attraction
and repulsion for Bose and Fermi systems, respectively. Sim-
ilar valleys appear on the vacuum energy density

of a complex field with phase defined to within the replace-
ment ехр(2ота) = exp(/t?) on the manifold TxS1 in the
presence of an elementary solenoid with flux.233 We also
note that the result given by ( 1 3.2 ) is also valid93 for a gas of
two-skyrmion configurations of thez-field of the CP ^repre-
sentation (4.5), (4.6) of our problem.

The evaluation of the distribution function is more diffi-
cult. The extension of the standard method of evaluating the
distribution function to the case of finite degeneracy of order

fl/Z-n -C

FIG. 16. Specific heat as a function of temperature for three values of
the static parameter t? /2тг (Ref. 231) for the ideal gas of rotators.
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k (k = 1 and k = oo for Fermi and Bose particles, respec-
tively) is incorrect because the determination of the distri-
bution function is part of the rigorous solution of the prob-
lem. To illustrate the possibilities that arise in this type of
problem, we reproduce the result for the distribution func-
tion

«(£) =
1

+а~'ехр(е/Г)'

sh(NH/2T) sin [xff/(ff + M) 1
sh(H/2T)

(13.4)

(13.5)

in the sector of massive excitations with spectrum
е} = (c+2p2 + Д2)ш, Д, = A0sin(7T/7/V),y= 1, .... N- 1
in the exact solution234 for the SU(AO <g> SU(Af ) symmetric
(1 + 1 )D fermion model. We note that (13.4) differs from
the Fermi distribution function. There are reasons to suspect
that a similar structure occurs in our case as well. The point
is that the thermodynamic potential

Q = -т in 2 2 i*/8""^ - -r in So + 1 , A---S.
I N=0 i

(13.6)

that gives the mean filling n, = — dfl/
dp. = [ 1 + g f 1/<£' ' ~ ̂  ] ~ ' of the i'-th fermion state contains
in the general case the statistical weights gN . For standard
fermions, gt = 1. In the case of a degenerate ground state, g,
depends on the ^-dimensionality217 [2/ + 1 ], of the degen-
eracy space, as shown in (13.4). We note that, for the
SU, (M) group we have, q = ехр[2тпУ(А: + M)] and

j=(k- l)/2(Ref. 208).
In the absence of a rigorous solution, we turn to a quali-

tative analysis. For example, the important point for any
estimate of the superconducting transition temperature
Tc ~f2n/mk2 in (5.19) is that its form is typical of a Bose
condensate: it is inversely proportional to the square of the
statistical parameter k. If we suppose that the condensation
energy is the £ th part of the energy of the first Landau level,
i.e., girft2n/k 2n with 0 <£< I, then estimates of the ratio Д/
Tc, which is actively discussed33 by experimentalists, sug-
gest that it depends on k and, hence, on the experimental
method used to prepare the state. We recall that, in equilibri-
um, k = 2.

Let us now examine some of the electrodynamic proper-
ties of anyon systems. Suppose that the temperature is zero
and that an external electromagnetic field is present. If
axy = •& = k /2ir and if we use ( 8.3 1 ), we find that the action
(8.52) takes the form

5 = ( 13Л)

where a^, e and b are the statistical fields that fluctuate
around the mean field Ъ and A^ is the potential of the exter-
nal field of intensity ̂ v = dtlAv —dvA^. The dual formula-
tion equivalent to (13.7) is achieved149 with the help of the
antisymmetric field Л,,„ with components Л0, =ё,, Л^
= £цЬ and action

(13.8)

Integration over a^ gives the constraint

for the field Л^ with the solution (•& = k /2тг)

(13.9)

(13.10)

Substitution in (13.8) and the addition of the Lagrangian for
the electromagnetic field ( — \/4e2')F/lvf

v, gives the La-
grangian

(13.11)

which is written in terms of the fields a(x,/) and A^ (x,/).
The first two terms constitute the Ginzburg-Landau

functional for the order parameter exp[ia(x,t) ] in the Lon-
don limit. The third term describes fluctuation-induced ef-
fects due to P- and Г-parity breaking that occur at large
distances in the superconducting state, but only in the pres-
ence of an external electromagnetic field.100

The classical equations of motion that follow from
(13.11) enable us149 to find the screening length for the stat-
ic charge £ = M I l and also the dispersion relations for the
transverse and longitudinal plasma oscillations. In the long-
wave limit the frequency of the transverse (M+) and longi-
tudinal (M_) waves is finite:

(13.12)
This difference between the plasma frequencies derives from
the electromagnetic Chern-Simons term and has long been
known in the literature.235'236 It is readily seen that, in the
long-wavelength limit, the finite frequency in the dispersion
relation for the transverse oscillations arises from the cou-
pling between the gapless transverse Goldstone mode (9.7)
and the oscillations in the transverse components of the elec-
tromagnetic field. The Goldstone oscillations of the phase
variable a (x,t) are "consumed" by the electromagnetic field
and become massive. The difference between the squares of
the frequencies 8M2 = (k2e2/4ir2)[\ + (4e/e2)]112 is inde-
pendent of the sign of the integer k = 2,4,..., and is probably
the best expression for the experimental verification of P-
and T^-parity violation within the body of the sample.

In the superconducting state, the London superfluid
current and the Hall current of the condensate form the sum

•6Л.
(13.13)

whose terms depend on the sign of k. Because of the change
in the sign of this coefficient between planes, it is exceedingly
difficult to observe the Hall contribution to the total current
(13.13). It is interesting that, because of its vacuum origin,
the Hall effect occurs under the conditions prevailing in the
Meissner effect. We draw attention to the fact that the latter
is proportional to k 2.
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If we use the charge density

J0 = 5ZT = 7лу(д<Р + ̂ V ~ ЙВ> (13.14)

in the static case with A0 = 0 to calculate the total charge

(13.15)

and the field ф satisfies the equation

we again see149-236 that the vortices in (13.11) are charged.
Actually, the vortex configurations with winding number s
of the "order parameter" phase (Да = 2-irs) in the absence
of both external field E, and current (d,a + kAt = 0) have
the integral total charge equal to s units of vorticity:

Q = Ma/A = 5. (13.16)

Naturally, effects associated with the rotation of the
plane of polarization of light121-162-169 on reflection by the
superconductor occur in the system in which a state with P-
and Г-parity violation has developed. This effect does not
vanish even in the nonsuperconducting state because the La-
grangian describing the properties of the system for both
T< Tc and T> Tc contains the Chern-Simons terms that
depend only on the external electromagnetic potentials for
T<TC. The dependence of the angle of rotation q> on the
frequency w is21

т \ ) рш I ^ P V* ) 9 ( . 1 3 . 1 / )

where ajp is the plasma frequency. As temperature increases,
the thermally excited states with high k are found to reduce
the angle of rotation to zero.

To examine the electrodynamic properties of the anyon
system at finite temperatures,237 we turn to the Lagrangian
(4.23), retaining only the variables that describe the dynam-
ics of the charge, and including in our discussion the external
electromagnetic field. The magnetic properties of the system
were investigated in Refs. 104 and 237 by including the fol-
lowing terms in the Lagrangian:

where D0 = 90 + ie(A0 + a0), Dk = dk + ie(Ak + ak),
В = dtA2 — d2Ai,b = d\a2 — d2al andne is the neutralizing
background density. In these expressions, ф is the fermion
field (vacuum angle # = тг[1 — (2fc)~ 1 ]) and the statistical
potential a^ is normalized so that it has the same coupling
constant, i.e., the charge e, as the potential A^. When the
factor in front of the Chern-Simons term is normalized to 1/
2, the coupling constant between the field a^ and the fer-
mions is (ir/]k |)1/2, and the limit k-> oo corresponds to the
absence of the Chern-Simons interaction.

The equations of motion for the gauge fields take the
form

з Е-кЯ _ /nlv _ ,,_ лЛО
v -V ; en

e° > (13.19)

where

y*=-£o * -
(13.20)

(13.21)

The mean current {f ) in ( 13. 19) is understood to be evalu-
ated over the ground state and the ensemble.237 For example,

</°(x)) = Tr(/0(x)exp{0FeH, а] - He[A, «]}) = -

&НЛА, a]ы*г—k—.

a

(13.22)
(13.23)

where Fe is the free energy in exp( — 0Fe)
= Tr exp( — Phs ) and the electron part of the Hamiltonian

is given by

ffe[A, a] dk - ie(Ak

( 1 3.24 )

The main results of this approach237 may be summar-
ized as follows. When Г=0, there is a critical field H'c
= ene/2m of the order of 10 G above which there is partial

external-field penetration and the field is uniformly distrib-
uted in space. As the temperature increases, H'C(T) de-
creases and becomes infinitesimal at a temperature T'c . This
temperature is of the order 100 К according to the esti-
mate237

(13.25)

which follows from the temperature dependence of the Lon-
don penetration depth237

(13.26)

When T<T'C, the magnetic field near the boundary
falls from BM to Б1П = BM -H'cfoi BM >H'cin accor-
dance with the exponential expression exp( — х/Л ( Т ) ) . For
Г<70 К, the length Л (Т) is almost temperature-indepen-
dent and rapidly tends to zero for Т ~ 100 К without exhi-
biting the BCS singularity (Tc — T)~l /2.

In practice, the measured effective depth is determined
by the magnetic field gradient

x d"B(d)
и

and indicates the rate at which the magnetic field changes
within a distance d inside the superconductor. The effective
length /leff is identical in the Ginzburg-Landau theory with
Я(Г), but the two are now different and are given by the
following formulas237 for T~ T'c and Т = 0:

- ехр(-<Ш(0))], (13.

rf-'ln-:

D
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We also draw attention to the fact that the free energy
and the magnetization are functions of the magnetic induc-
tion for different temperatures, and that magnetization is a
function of temperature for different values of the external
field.237 These results were obtained in the self-consistent
field approximation without taking vortex excitations into
account. Some suggestions relating to vortices and their con-
tribution to the observed characteristics are presented in
Ref. 33.

The question now is: how does the any on system react
to the application of variable electromagnetic fields? The
total Hamiltonian of the system101

ЯНЫоп
ЯЧ>1поп (13.30)

+(iV-a-A)Va

H.spinon '

Fa

<r,a=l,2

A) -
(13.31)

(13.32)

contains both the holon and spinon parts. When the wave
vector k and the frequency со are small, the fluctuations of
the gauge field a^ around its mean value a, which is a solu-
tion of (5.1), are small and may be discussed in terms of the
Gaussian approximation.

After integration with respect to <p and j, the effective
action

is expressed in terms of polarization operators that are
equivalent to the current correlation functions for_two-di-
mensional particles in the strong magnetic field b in the
ground state of the system. Integrating over the fluctuations
inaM asinRef. 20, weobtain101 the electromagnetic response

where ir~b' are operators that are the reciprocals of the trans-
verse operators irs>h. The latter can be written in the form

( 13.35)

where E = a>\ — kA0, E\\ and EL are the longitudinal and
transverse components of the electric field and В = [kA] is
the magnetic field. The permittivity £(k,co), the magnetic
susceptibility x(k,co), and the Hall conductivity axy (k,&>)
of the spinons and holons are analytic functions of k since the
single-particle excitations have a gap coc and display the fol-
lowing properties.101 In the special case where <u = 0, we
have crh (k,0) = <7S (k,0). When k = 0, we have й)*е\\Е±
= 4<72

0,(0,<a). The components of the electromagnetic re-
sponse Kflv for k ̂  0 and со ̂  0 are

!3.36)

( 13.37)*,_ = -<j(k, «ОД-k, -co)) = d~\\ds +

ik2 va

where

d = -(

(13.38)

(13.39)

(13.40)

(13.41)

When со = k = 0, we have crh = — crs = axy (0) =
Itr = 2k. It follows from these expressions that

which we already know,

i.e., the Meissner effect, and

'«о- ./2*L>

(13.42)

(13.43)

(13.44)

AXk,0) = K(0,co) =0, i.e., we have the restoration of
broken parity in the long-wavelength and static limits. This
is a general feature of the anyon system, i.e., the breaking of
discrete symmetries occurs only for the shorter time scales
for which K^&(Ref. 101).

14. EXPERIMENTAL CONSEQUENCES OF THE CHIRAL
STATE

One of the characteristic properties of two-dimensional
systems with developed quantum mechanical fluctuations is
the rigidity of the coherent states of these systems. The long-
wavelength softening of the collective mode during a transi-
tion to the superconducting state has little effect in this re-
spect. As before, the main events develop over a scale of the
order of a few lattice constants. Whereas at low tempera-
tures, and in the absence of the external electromagnetic
field, symmetry breaking under P- and Г-inversions is com-
pensated for these scales by hopping, no such compensation
occurs for T> Tc for which the static gauge field has a finite
correlation scale. Moreover, the weakening of symmetry
breaking under P and /"-inversions occurs because of the
antiferromagnetic distribution of the sign of the factor k of
the Chern-Simons term over the basal planes.

It is therefore exceedingly difficult to find experimental
support for the anyon picture. The /i+SR experiments238

suggest that local deviations from the mean magnetic field
are small. In this situation, the formulas containing the
square of the factor k in front of the Chern-Simons term
would appear to have a better chance of success from the
point of view of an experimental verification. An example is
provided by (5.19) which was confirmed experimentally in
Ref. 239. Another suggestion,149 which is also quadratic in k
and therefore refers to phenomena within the body of the
sample, relates to the difference between the plasma frequen-
cies of longitudinal and transverse oscillations [see
(13.12)]. However, this has not as yet attracted the atten-
tion of experimentalists.

The chiralilty of a superconducting state in an external
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electromagnetic field240 [see (13.11) ] is the reason for the
predicted rotation by an angle cp (13.17) of the plane of po-
larization of electromagnetic waves on reflection by the sur-
face of the sample.21 This effect does not accompany the
propagation of waves in thin films because of the alternation
of the sign of k (Ref. 162). These predictions were con-
firmed by early experiments,24 but a definitive experimental
answer has not been forthcoming (cf. Ref. 242).

There are several published programs of experimental
investigation of the consequences of any on quantum dynam-
ics.32'169 Here we merely wish to draw attention to some
points that are common to these proposals.

Consider the reaction of the system in the so-called
"normal" region to an external agency characterized by fre-
quency and wave vector k. At finite temperatures, transi-
tions within the magnetic sidebands under the influence of
the external field will be accompanied by transitions between
subbands in which the energy spectrum is distinguished by
the sign in the "relativistic" dispersion relation such as
(6.21). The conservation of energy in such processes takes
the form e{ + со = ef where £, = — e, ef = + e, i.e., e = a>/
2, and also я ( — e) = 1 — n (e) for the distribution function
n ( e ) . Absorption is proportional to the difference
between the distribution functions n ( s f ) — л(£,)
= 2n(s) - I = - tanh(e/2T) = - tanh(«/4D. In these

expressions, we have used the homogeneous limit k = 0 and
the law of conservation of energy. Moreover, because of the
inseparability of spin and charge degrees of freedom in
bound states in anyon multiplets [see (4.19) ] that exist for
t>Tc in a wide range of wave vectors, the contributions of
spin and charge excitations to the imaginary part of the
charge and spin susceptibility, which is proportional to the
difference / ? ( £ / ) — « ( £ , ) , must have the same form:
ImPCiS(k,co)~N(Q) tanh(ы/4Т), where и (0) is the density
of single-particle states. This elucidates the suggestion made
in Ref. 243 that Im Pc s tanh(co/4T), which is the basis
for the existence of the Fermi liquid with the spectral weight
of the single-particle Green's function that vanishes at £ = 0.
This type of medium has many unusual properties. They
manifest themselves, for example, in the linear dependence
of resistance on temperature, the voltage dependence of the
channel conductivity of the SIN contact, discovered experi-
mentally in Ref. 224, and in transport phenomena.245 We
note that the current-voltage characteristics of SIN contacts
are asymmetric under the replacement F-» — V, which may
be an indication of a departure from the symmetry of the
ground state under P- and Г-inversions. This may be regard-
ed as a partial realization of the general asymmetry of trans-
port coefficients32 due to P- and Г-parity violation effects in
the scattering amplitude.98 Detailed analysis of the current-
voltage characteristics, which have a number of features at
voltages corresponding to the 'normal' region, deserve spe-
cial attention. They are usually ascribed to phonons. How-
ever, because of the rich structure of the energy spectrum in
the Hofstadter problem, a detailed analysis would be par-
ticularly desirable. The point is that channeling, like photoe-
mission, is one of the few ways of investigating the detailed
structure of states because it relies on processes involving a
change in the total charge of the system. A symmetry analy-
sis of the states of different types of vortex and their contri-
bution to the Josephson current is reported in Ref. 246 and is
very significant from this point of view.

Real compounds contain a variety of structure imper-
fections that act as pinning centers and induce a variety of
hysteresis phenomena and effects associated with flux creep.
It should be clear from the last few Sections that the reason
for the quantum memory of the system resides in this intense
masking background. It is entirely due to the coherent mo-
tion of quasiparticles in the ground state, and is related to
commensurability-incommensurability phenomena when
the main lattice is covered with cells having nonzero flux of
the statistical magnetic field, which leads to hierarchical
structures and fractal dependence of total energy on magnet-
ic field (see Fig. 7). The energy scale of these phenomena is
of the order of КГМСГ3 eV.

Let us imagine that radiation or an external magnetic
field has disturbed the system out of its equilibrium state
with a certain filling factor v0 = ф and total energy £v (ф),
to some other state with energy Е„(ф). Each of the final
states is characterized by a radically altered function Ev^).
The nonequilibrium macroscopic state that arises after ther-
malization is one of the hierarchical system of states distrib-
uted along the energy scale with local total-energy minima
that are separated from the equilibrium ground state by a
sequence of energy barriers. Downward relaxation along the
energy scale by tunneling through these barriers can there-
fore appear as a long-term flux flow, and any new rise will
depend on past history and will be of the thermal activation
type. Long-term relaxation of the magnetic moment, and the
closely allied properties of photoinduced phenomena, are
effects that involve different sets of quantum numbers of
quasiparticle metastable states. This applies equally to
bound states of holons and spinons for T> Tc and to non-
equilibrium anyon-holon excitations for T<TC.

The existence of a set of relaxation times associated with
tunneling by nonequilibrium anyons through barriers and
the P- and Г-asymmetry of the scattering amplitude,98 i.e.,
the 'two-level' character of the system,247 may be the reason
for the 1//noise in the system of charged quantum vortices.
The fact that for 74 Tc the external magnetic field visualizes
the existing vortical elementary excitations suggests that the
external field strength for which the vortex lattice is formed
is exceedingly low.248 It would be exceedingly important to
verify the predicted electric charge of the vortices under the
conditions prevailing in such experiments. This would not
be difficult to do because the screening length is short, but is
still outside the range of current experiments. Studies of vor-
tex streets are also of interest in connection with the theoreti-
cally predicted'20 spatially one-dimensional clusterization.

The instrumental zero of resistance during the super-
conducting transition defines a temperature that is very
close to the Kosterlitz-Thouless phase transition discovered
in Refs. 249-252.37' The Kosterlitz-Nelson jump254 is ob-
served at the temperature of the Kosterlitz-Thouless transi-
tion.253 It is found255 that the theory256 has a very wide range
of applicability in layered superconducting compounds,
whereas it is usually valid only near the critical point. All
these results may be looked upon as experimental support
for the Kosterlitz-Thouless mechanism of semifermion pair-
ing with the formation of a molecular bosonic phase (cf. Sec.
11 and Ref. 218). From the standpoint of the lattice gauge
theory of Sec. 11, for large values of the parameter N of the
group ZN, the "atomic" phase of dissociated Kosterlitz-
Thouless semifermion pairs (Coulomb phase with long-
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range gauge interaction) approaches from above the critical
point Tc. The isotropization (ZN -»U( 1)) will therefore ex-
tend the range of existence of the Coulomb phase (see Fig.
14) due to the superconducting condensate, which has in-
deed been observed in a magnetic field.259

To conclude this Section, we note that the interpreta-
tion of experimental results in terms of the anyon mecha-
nism has the necessary degree of universality and complete-
ness that is essential for the understanding of a wide range of
phenomena in superconducting and "normal" phases from a
unified point of view.

The extensive range of current experimental problems
includes studies of the condensate of holon-spinon bound
states against the background of oblique confinement, adja-
cent phase transitions, and the effect of the magnetic field
upon them; a detailed analysis of the dependence of critical
indices on the magnetic field for the Coulomb gas of Koster-
litz-Thouless vortices;257 and also studies of the intriguing
details of the dependence of resistance on temperature in an
external magnetic field. It also includes the temperature de-
pendence of the Hall voltage which changes sign near the
temperature T'c (Refs. 128, 258, 259) after which, for
T>T'C, the external magnetic field has no effect on the resis-
tivity/)^ (Т, Н) as a function of temperature. We also draw
attention to the fact that, near the superconducting transi-
tion point T<T'C, the Hall voltage and resistivitypx x are
described by the same128 thermal activation law, i.e., the
Arrhenius law260 exp( — T0/T) with TH~(t>c.

15. CONCLUSION

The properties of the ground state and of low-lying exci-
tations were described in this review by terminologies and
technical devices that often were outwardly dissimilar. This
led to repetition, which is probably unavoidable from the
pedagogic as well as other points of view. In particular,
Gauss' law, i.e., the cancellation condition given by (4.10),
was frequently repeated [cf. (4.16), (5.1), (6.39), (6.41),
(7.14), (8.4), (8.37), (8.41), (8.53), (8.57), (9.28), and
(12.29) ]. An aspect of this relation was discussed each time.
On the whole, and apart from the multiple-connectedness of
the two-dimensional system, we tried to place the main em-
phasis on the strongest quantum fluctuations for which the
uncertainty in the phase is of the order of the uncertainty in
its canonical conjugate, i.e., the paticle number. We now
turn to some general aspects of the problem, which we shall
tackle from the standpoint of hidden internal symmetries.

One of the results of the mean-field theory261 was the
discovery of local spin SU(2) symmetry.79~8' Doping re-
duces the local gauge symmetry down to U( 1). It is interest-
ing that the continuing breaking of gauge invariance occurs
in almost the same form262 as in BCS theory.381 Although it
would appear that the main role of the U (1) group should be
to assist the fermion in turning itself into a boson and vice-
versa, the condition i? = rr does not produce this transforma-
tion.

Indeed, let us consider the dynamics of liberating the
square-lattice vacancies from spin. They are surrounded by
contours that are oriented because of the particular dimen-
sionality of the space, and the coherent transport of spin
degrees of freedom takes place over these contours. Splicing,
i.e., the identification of links and diagonals of these con-
tours, results in topological spaces of which the simplest is

the torus. Global gauge transformations of gauge fields that
parametrize the phases of the hopping amplitudes must un-
der these conditions be assigned to different topological
manifolds. The Chern-Simons theory on the torus263'264

gives a multicomponent wave function183 and is determined
by non-Abelian representations of the braid group.265 In the
general case, the topology of the lens space Lkp that deter-
mines the statistics is the fundamental group тг, (Lkif ) = Zk

(Ref. 266), which was used in Sec. 11. The existence of the
discrete group Zk [see (12.33)] and, in the more general
case, Zt X — XZk. for the symplectic modular group

Sp(2&,Z) (Ref. 184), is due to lenses that are stratification
spaces for the monopole with topological charge k (Refs.
267 and 268).

Studies of discrete hidden symmetries2 are impor-
tant for many reasons, above all, the natural appearance of
root lattices that lead to the generalization of hierarchical
sequences in anyon systems.273 Indeed, the extension of the
action (12.18) by the root lattice (k->k/j), the replacement
of the scalar field cp with the matrix variable, and the addi-
tion of the term iaR (Ref. 226), i.e., the Jacobian for the
transformation from the geometric quantization variables to
the conformal theory variables, which amounts to the most
complete implementation of gauge and diffeomorphic invar-
iance, leads to the action of the two-dimensional quantum
gravity. It may be considered that the fractal geometry274 of
this theory is at the basis of the stochastic behavior of obser-
vables in high-rc superconductivity. This proposition relies
on the fact that the two theories have the same action. In-
deed, the values of k are found to be important on the very
first step toward (12.18), namely, in the reparametrization
of the field 4>^<p/k l / 2 . The series k = 2kt, kt = 1, 2, 3, ...
and k = 2/c,/&2 with &,=£ 1 belong to different compactifica-
tion radii with different critical behavior,219 e.g., of the Kos-
terlitz-Thouless or Ising type. We recall that the supercon-
ducting state is absent in the sequence with k2=£ 1 (see Sec.
8).

The collective motion induced by the spin deficit of mu-
tually dual degrees of freedom over multiply-linked con-
tours that are the generators of topological manifolds signi-
fies using another language the covering of the main lattice
by triangular cells containing the flux of the statistical gauge
field. In contrast to classical and quantum mechanics, the
states of this system are determined by the elements of a non-
Abelian group and the observables, e.g., the values of the
Wilson loop, are functions of the elements of the groups.275

This situation is typical for quantum groups (Hopf alge-
bras).275'276 Its particular feature in our case is that the de-
formation parameter is a root of unity and a generator of the
cyclic group Z v that determines the statistics of 'flux' exci-
tations. The nonsingular representations277 of quantum
groups for such values of the deformation parameter are
identical with the representations of the Hecke algebra of the
braid group and are specified by monodromies217'228 of con-
formal blocks of the (1 + 1 )D space of WZWN theory. De-
tailed examination of quantum groups and advances in non-
commutative geometry278 enable us to assign internal
symmetries to their proper places and to identify those cases
in which the correlator behaves a la Wilson and those in
which the perimeter law applies and the Higgs condensate
appears. The preliminary answer reached in Sec. 11 suggests
that, for a given set of quantum numbers n, m, a change in
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the regime and a phase transition occur at the self-duality
point T(

c

k\ and as k^ oo we have Г<*>->().
The new situation that has arisen in condensed-state

physics in connection with strong-coupling has resulted in a

need not only for numerical experiments'54'279 with few-par-
ticle systems, but it has also stimulated the application of
analytic current-algebra techniques from quantum field the-
ory to the description280'2"1 of edge states.282'2" The point is
that particular boundary conditions are needed in the theory
of strong correlations during compactification into some
kind of a topological manifold. Hence experimental studies
of edge states in condensed-state physics at low Coulomb
energies enable us to approach new phenomena in topologi-
cal quantum field theory from a new point of view.

There are several published reviews that touch upon
these topics.284'285 They overlap to some extent some of the
material presented here and were published as our review
was completed. I hope that the greater thematic range of our
review will be useful to both theorists and experimenters
studying strongly correlated systems.

I am pleased to thank P. B. Wiegmann and G. E. Volo-
vik for useful advice, and all those with whom I have dis-
cussed strongly correlated systems. In particular, I am grate-
ful to D. V. Shevchenko for reviewing the first draft of this
paper, and to A. V. Gaponov-Grekhov and A. G. Litvak for
their support in this research.

"We are neglecting the small departure of the spins from the basal plane
with alternating direction of deflection as we pass from one plane to
another.

•'This conclusion is valid when the boundary conditions are taken into
account on the two-dimensional lattice.

-"The parameters t and f/ in (2.1) must be looked upon as the effective
parameters related to the hopping repulsion amplitudes of the d- and p-
states of copper and oxygen:5/ = t\v/Uv, t/= /d p for Ua > Uf.

4lTo avoid misunderstanding, we emphasize once again that the word
"hole" signifies in this case the formation of a spin texture defect and
does not have its more usual meaning associated with the excitation of
the ground state of electrons in metals.

5)The class that we are considering is a set of mutually primitive simple
numbers p and q, the ratio of which lies in the range 0 <p/q < 1.

'''The term "anyon" was coined by Wilczek25 as a derivative of the word
any.

7lln this review, we confine our attention to basic statements, and refer the
reader to the extensive literature now available (see, for example, Ref.
30).

"'The singularity of the gauge transformation is a consequence of the
aperiodicity of the function/under rotation by 2ir and signifies a transi-
tion on the next sheet of the Riemann surface to another component of
the wave function.

"The prefix "any" represents in this case the stage in our discussion when
the parameter i? has not as yet been determined.

""In terms of the boson creation operators, the hard-core condition14

(b * )2 = 0 excludes the occupation of the state by two bosons.
'"The existence of singular points is related in the case of doping to toroi-

dal compatification.
'2 )We are considering the possibility of adding further terms to the action.

The necessity for such terms arises because the states of excitation in
two-dimensional systems realize the representations of the braid group.

'31The method of compactification depends on the boundary conditions
imposed on the field n or z.

I4'ln the presence of doping, the symmetry group SU (2) reduces to U (1) .
'5)The expression given by (4.14) may be looked upon as representing a

fixed point (in the sense of the renormalization group) in the space of
the (2 -f 1) D Lagrangians.

T6)The Ka'hler manifold is defined as a complex differentiable manifold
with a Hermitian metric and a potential. The explicit expression for it is
given in Ref. 93 for the case of a system of CP' skyrmions.

17lFor the concentration л = 10' 4 cm~ 2 and ф„ = 10"7 Gem', the statisti-
cal magnetic field is b = 107 G.

""Strictly speaking, the fields a,, in (4.10) and (4.7) are mutually dual.
The property of duality is discussed in detail in Sees. 8 and 11.

19'The use of the same notation for different quantities should not, we
hope, lead to confusion, because the meaning of the quantities is differ-
ent in the different contexts and is individually defined.

2("The representations of the magnetic translation groups are the same as
the projective representations of the lattice translation group.

2"Anyons are regarded here as fermions in the 'external' statistical mag-
netic field.

22)The biggest gap occurs for ф/v = 1/2 on the triangular lattice and for
ф/v = 2 on the hexagonal lattice. (Ref. 106).

2-"We draw attention to the fact that the diagonal hopping amplitude on
the square lattice is replaced by the hopping amplitude in the direction
perpendicular to the layers."6

24)The ground-state function of a particle in a doubly-periodic lattice po-
tential and in an external magnetic field was investigated in Ref. 91.

25'The electric charge Q in the commutator (9.8) does not cancel in the
"state of fractional quantum Hall effect" for T> Tc.

26)In the case, we are dealing with the magnetic charge that arises as a
consequence of the compactification of the lattice theory. It can be used
to take into account the Berezinskii-Kosterlitz-Thouless effect.

"'Accordingly, there is also an increase in the number of nontrivial loop
cycles in the expression for the expectation value of the Wilson operator
(10.3).

28)One of the arguments that closure along the z axis occurs not on this
plane but on neighboring planes is as follows. We know that when the
anisotropy of thin films is small and the films are thin in comparison
with the thickness of the Bloch wall, domains do not form in the film.
Precisely the same relationship between spatial scales is encountered in
this situation (see, however, Ref. 32).

29'We are considering the simple case/= 1 of possible ZN X. . .XZ N sym-
metry on the lattice R \ (Ref. 184).

-""The picture under consideration can be improved by renormalization-
group analysis.l 9'

'"The quantum number sets (n4, m4) and (n,, m,) correspond to the
cycles 5, and S' and two uncoupled clock models.

-12'This is valid for the open manifold M4. For a closed manifold and in the
case of U ( I ) SO (3), the product Ли is an integer that is a multiple of 4,
where n = 1/4 is the topological charge.199

"'In particular, when the fractional quantum Hall effect is considered
from the spatial three-dimensional point of view, the statistical Hall
conductivity depends on the period of the reciprocal lattice along the z
axis.202

M'The Hamiltonian vanishes in all topological theories that are indepen-
dent of the metric. Hence the contribution to the partition function is
determined by the dimensionality of the space of states.

"'The depenence of the flat-space metric in (12.18) and the departure
from diffeomorphic invariance arose because of the imposition of the
gauge А„ — 0.

'"Polarization is meant to be a definite set of variables, one of which we
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