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Theresults of the study on phase conjugation of weak optical signals with an energy of several
photons are considered. Basic concepts of a semi-classical theoretical approach to describe
amplification and phase conjugation (PC) of such signals are presented. A review is given of the
experimental investigations that allowed reaching a limiting (about 1 photon per mode)
sensitivity of optical systems with PC-mirrors for a large ( ~ 10°) number of resolution elements.
High-sensitivity PC-mirror optical systems are demonstrated for a variety of applications.

1.INTRODUCTION

The problem of phase conjugation (PC) of extremely
weak signals with an energy of several photons arises in the
study of diverse optical systems, primarily those involving
optical or brightness amplifiers. These systems are used in
physical and other experiments, generally when it is neces-
sary to record radiation by its coherent properties. Among
such applications, in particular, is recording of holograms
and interferograms of light reflected from the ground, a wa-
ter surface, etc., and diffusely scattered over large areas. Op-
tical amplifiers commonly induce aberrations in the light
waves passing through them, which can be corrected by PC-
mirrors.

Let us consider a simplified optical scheme (Fig. 1) that
consists of a light source 7 illuminating a scattering object 2,
an input lens 3 followed by a brightness amplifier 4, and a
matrix photodetector 5. For the illumination source we use a
laser that sends to the object a light pulse with a time-con-
stant transverse structure; it is a pulse of coherent UV, visi-
bleor IR radiation. We now assume that the pulsed radiation
with the energy density w is scattered diffusely and uniform-
ly within an angle of 24r.

For simplicity the object plane is assumed to be perpen-
dicular to the optical system axis. Let us choose some spot
with an area AS on the object surface. The scattered light
field in this area can be expanded in different sets of orthogo-
nal functions; each of them is recalculated using the wave
equation for the plane of the lens placed at a distance L from
the object. Let us consider such a set in which the functions
after recalculation remain orthogonal also on the lens sur-
face ofan area S,. (It wasshown in Ref. 1 that this is the only
set of modes, which is found by solution of the correspond-
ing integral equation which depends on the apertures of
emitter and receiver, i.e., on the chosen area on the object
and the lens surface.) The corresponding field components
are attenuated after recalculation for the lens surface area of
alimited aperture. One can distinguish a characteristic num-
ber of components AQ whose power is reduced to no more
than half the power of the most intensive mode. They are the
components that form, in the main, the field of the input
signal on the optical system lens surface. The characteristic
energy per component in an optical losses-free medium is
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equal to the value”
AW/AQ = (wAS/AQ)Q/ 2, (1)

where Q) = §,/27r is the solid angle in which the pulsed radi-
ation scattered by the object can be recorded. To estimate
AQ we assume the area AS and the lens aperture to be circu-
lar, with diameters D and D,, respectively (AS = 7D ?/4;
So=mwD?%/4).

In the considered case of circular apertures and uniform
medium between the object and the lens the number

AQ = (kDDy/4L)? (2)

is equal to the square of the so-called Fresnel number that
characterizes the transmission capacity of two diaphragms
with diameters D and D,, spaced at a distance L (k = 27/A4,
A is the wavelength). By substitution of (2) into (1) we have

AW/AQ = wA?/8x. (3)

It is quite obvious that the number of resolution ele-
ments on the object surface area AS coincides with the num-
ber of orthogonal components forming the input field on the
lens surface area with diameter D,,. Therefore, formula (3)
can also be obtained in a different way. To this end it is
enough to find the energy of the input signal arriving at the
lens from one resolution element in the object plane. The lens
angular resolution limited by diffraction is of the order of
(4/kD,), which corresponds to a resolution element of size
d = (4/kD,) L on the object surface. The energy emitted by
the object surface area of diameter 4 is equal to (7d */4) - .
Since only a part of this energy (~$2/27) reaches the lens,
we can find that the energy of radiation entering the optical
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FIG. 1. I—an illuminating laser beam; 2—scattering object; 3—lens; 4—
brightness amplifier; S—matrix photodetector.
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system from one resolution elementis (7d 2/4) 0 (Q/27). By
substituting the values of d and ) we find formula (3).

From general considerations it is clear that the energy
per one resolution element must be higher than 1 photon.
Therefore, the minimal energy density on the illuminated
object surface must satisfy the relation

w>w .
min

= 8w /A2, (4)

The value of w,y,;,, ~ 1/4 *, which accounts, in particular, for
a higher (than in the optical region) sensitivity of radio
methods of spatial characteristics measurements for distant
radiation sources such as, for example, stars, using super-
long baseline interferometers.

2. SEMI-CLASSICAL APPROACH

In ordinary systems the information signal with the en-
ergy from a resolution element determined by formula (3) is
recorded directly by a matrix photodetector placed either in
the image or some other plane. However, there are other
detection techniques that use coherent properties of a signal.

Here we mean recording of an interference pattern
formed by the incoming signal and an auxiliary reference
wave (heterodyning methods), as well as recording of the
information signal pre-amplified in a quantum or any other
optical amplifier (methods involving brightness amplifiers).

Let us consider methods of information signal record-
ing from the point of view of reaching limiting sensitivity
restricted by quantum noise. First of all, one needs to formu-
late an approach to describe the interaction of low-energy
pulsed light fields with matter and with other fields of higher
power.

We believe the so-called semi-classical approximation
to be the most convenient one for this purpose. A light field
within this approach is regarded as an ordinary classical
wave & to which on entering a nonlinear medium a noise
field &\ of vacuum zero-point fluctuations is added, whose
correlation function for a given ambient temperature 7 is
described by an ordinary (classical) Kéllen—-Welton rela-
tion. However, to determine the correlation function of a
light field of any order of magnitude at the optical system
output so that the result would be in agreement with experi-
ment, one needs to subtract from the calculated value for the
correlation function of the total field the corresponding cor-
relation function of zero-point fluctuations. For example,
for intensity and its variance we have:

TABLE 1.

(D) =) = 1),
(5)
((AD%) = (Ary?) - (A1

Here I' = (¢/2m) - ll,'(\'( & + & »)|" is the ordinary classical
intensity of a light wave with a complex amplitude defined as
a sum of the input field & and the noise field & , of vacuum
zero-point fluctuations, I N= (¢/2m)| & y|* is the zero-
point fluctuations intensity, K is the operator that describes
the brightness amplifier properties and its internal noise. For
K = 1 formulae (5) describe the process of radiation record-
ing with an ordinary matrix photodetector.

It is impossible to substantiate consistently formulae
(5) within the framework of classical electrodynamics. We
can, though, make use of the values calculated earlier for
some physical processes listed in Table I for the quantities
measured in the experiment (mean photon number (1), and
in some instances also the variance {(An)?)). The results
obtained by traditional methods coincide with those yielded
by the semiclassical approach considered here.

In all the experiments discussed below we report re-
cording of the energy density distribution rather than the
intensity distribution in a pulsed light beam that had passed
through a brightness amplifier, and provide only a qualita-
tive analysis of the time oscillations of radiation, while the
oscillations themselves are measured only at certain points
of a cross-section. Therefore, to compare theory and experi-
ment it is convenient to integrate I ' over time and by analogy
with (5) to determine the values of the experimentally re-
corded energy density (w) and variance {(Aw)?):

(W) = (') = ()
(6)

((Aw)D) = {(AW)D) = ((Aw)D,

where w’ = == I’dt is the classical energy density of a
light wave with the complex amplitude & + &,
wi = § = = I dt is the energy density of zero-point fluctu-
ations. One should bear in mind, that the variance of the
above time-averaged values provides information only on
radiation oscillations over a cross-section.

We define the photon numbers related to theintensity I’

as
+ o
f f]’dtdS
, te Ay 1AW
n= FoAQ hw AQ 7

Amplification (attenuation)

Type of physical process coefficients range

1. Amplification in a
quantum amplifier K»1

2. Amplification by stimulated

scattering and four-wave mixing
. Spontaneous radiation
. Spontaneous scattering
. Direct registration of signals

by a photodetector K=
6. Thermodynamic equilibrium
7. Black body radiation K<l

K—1<«1

[ I ]
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where fiw is the quantum energy,

+ o
AW'=f f I'dtdsS
— o JAS'

is the classical value of the energy of radiation passing
through an optical system in the cross-section area AS ' with
AQ 'resolution elements, AW '/AS ' istheenergy of radiation
per resolution element in the optical cross-section (the num-
ber of resolution elements here is chosen irrespectively of the
energy AW').

By analogy with (5) and (6) we find the mean photon
number {#) and the variance ( (An)?) recorded in the exper-
iment, using the formulae

(ny = (n') = (n),
‘ (8)
(An?) = ((An'y?) - ((Ang)?).

The value (n) may be equal to (1/%iw) - (A{W')/AQ")
calculated by formula (3), yet in a general case {n) depends
on AQ’, but is absolutely independent of the number of reso-
lution elements AQ of the entire optical system. Further,
assuming the mean photon number {n) recorded at the opti-
cal system input and the variance {(An)?) to be prescribed,
we seek their values at the output of the optical system. The
variety of physical processes under consideration in this pa-
per can be classified according to the value of the amplifica-
tion coefficient K (see Table I).

3.CALCULATIONS OF (n) and ((An)2)

To obtain analytical expression for the experimentally
recorded quantities at X # 1 one needs to specify the type of
brightness amplifier. However, in the limiting case of ideal-
ized amplifiers it is possible to obtain a fairly general expres-
sion for these quantities without specifying, for example,
whether an amplifier active element has a one- or a two-
quantum transition. The noise in such idealized amplifiers is
produced only by zero-point and thermal fluctuations in-
cluding both the vacuum electromagnetic field fluctuations
and those of the dipole moment (for a laser amplifier), po-
larizability (for a Raman amplifier) or medium density (for
a Brillouin amplifier). In the idealized amplifier case each
transverse mode is started by zero-point fluctuations. The
number of these modes having nearly equal gains in the am-
plifier cross-section area AS ' will be characterized by

__AS'
AZ/AQ°

AQ' (9

where AQ) is the solid angle within which the angular spec-
trum of radiation passing through the amplifier is concen-
trated; A 2/A is the transverse inhomogeneity scale of the
field. In this case the photon number both at the amplifier
input and output is expressed, according to (7), by the rela-
tion

+oo
’ }'2 !
-t j!dr, (10)
or
n' = Am’'/AQ", (109
where
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+ o
Am’ = (AS'/ﬁw)'f I'dt

is the photon number on the area AS' = AQ (A /AQ).

The value of #’ determined by formula (10a) describes
the full photon number in the radiation passing through the
amplifier cross-section, normalized to the full number AQ'
of resolution elements in the cross-section, characterizing
the transmission capacity of the optical system.

Thus introduced #’ can be regarded also in a broader
sense. Let us, for example, consider an optical system pro-
ducing images of illuminated objects. In this case we can
introduce a set of modes where each mode forms one resolu-
tion element in the image plane. When the amplifier is locat-
ed near the diffraction-quality lens, and the object is rather
far from the amplifier, these modes are, essentially, aperture-
limited plane waves passing through the amplifier at differ-
ent angles. The situation is different when the amplifier is
placed near the image plane that coincides with the amplifier
output end. Then, for a rather large aperture of the lens the
corresponding modes are ray tubes diminishing along the
amplifier length from the size of its diameter to the minimal
size (1 2/AQ)"? that characterizes a resolution element in
the image plane. In both cases the maximum mode number is
AQ! .. = (AS,/A?)AQ, where AS , is the amplifier cross-
section. Both sets of modes introduced in this case form an
image of the object, and each mode changes its spatial struc-
ture by the diffraction laws. In the image plane these modes
are focussed at the corresponding resolution elements, while
in other planes they may overlap. Therefore, in the general
case it is more precise to speak about modes with a transverse
structure changing along the optical system axis, that form
resolution elements in the image plane, rather than the reso-
lution elements themselves. The notion of modes can be
adopted not only for optical imaging systems, but others,
too, such as holography, interferometry systems, etc.

Thus, the value of #" in formula (10a) can be regarded
as the number of photons per mode. In this case formulae
(5), (6) and (8B) that relate the recorded values of the first
and the second moments with the fields at the amplifier out-
put can have a broader sense, that of relations between the
photon numbers per mode at the optical system output (for
example, in the image plane) and input (in the lens plane). It
is clear that given this interpretation, the photon numbers at
the projection optical system input coincide with the photon
numbers (#iw) ~'-AW /AQ arriving from one resolution
element (see (3)).

Direct calculations by formula (8) show that for an
optical system involving an amplifier with the amplification
coefficient K the mean photon numbers (#(0) ) and (») and
their variance {(An)?) at the amplifier input and output are
related for every mode by (the mode index is omitted for
simplicity):

(n) = Kn{n(0)) + (K — 1)(N + Ny + DAf T, (11)
(An?) = 277(n(0))K[K (1\7 + %) +K=1) (A?M + %)]

+ (K~ DN+Ny+1)

x[(K+ 1)(ﬁ+%) + (K- 1)(NM+%)]M, (12)

where Af +r is the normalized line width of the amplifier;
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— Fw
N(T) = - 13
(T) (exr—knr ) (13)

is the mean number of thermal photons in the ambient medi-
um at temperature 7;

rQ

- D! 14)
kBTM ) (

Ny(Ty) = (exp

is the mean number of thermal optical or acoustic phonons
with the frequency £} in the medium of a Raman or Brillouin
amplifier with a temperature Ty, .

For a two-level (population inversion) laser amplifier
Ty= —Ty in formula (14), where T\ = — fiw/
ks TIn(N,/N,) is the negative temperature (for N,> N,),
N, and N, are the population concentrations of the lower
and upper level, respectively.

The parameter 7 is the amplifier quantum efficiency
characterizing the amplifier compatibility with the input sig-
nal. Its value is found by the formula

_ e 08 0ar?
NPT,

(15)

where &, is the optimal structure of the input pulse field,
providing maximum amplification of the pulse. The differ-
ence of the parameter 7 from one depends directly on the
degree of mismatch between the input pulse frequency and
length, and the amplifier line width Af and switch-on time 7.
This mismatch accounts for the fact that only a part of the
input pulse energy excites the amplifier longitudinal modes
corresponding to the fields with maximum amplification co-
efficients (their number is Af* 7), while the rest of the energy
goes to the modes that characterize the fields with low am-
plification coefficients. This degrades the quantum effi-
ciency of the amplifier that is, essentially, a pulsed light
beam receiver. The quantum efficiency can be expressed as
7 = fiw/W,;,, where W, = W,_..[%(0)] is the input
pulse energy per one transverse and one longitudinal mode
of the amplifier; for this energy these modes are excited on
the average by one photon of the input radiation. In other
words, the parameter 7 describes the minimal photon num-
ber in the input pulse, required ““‘to excite” a mode. For a

1

complete match W, = fiw and 7 = 1. Without an amplifi-
er (K=1) nisalsoequal to 1.

In (12) the terms (|&*|) — (|&?{)? characterizing
classical fluctuations of field & are omitted.

It follows from (11) and (12) that the mean photon
numbers {n) and quantum variance {(An)?) at the optical
system output are sums of two components: one of them is
connected with amplification of a coherent signal incident
on the amplifier input, the other with the noise of spontane-
ous radiation or scattering.

4.EXAMPLES

Let us consider some specific cases.

A. Amplifiers

For K> 1and N, N,, €1 (thelast condition is generally
realized in a laser amplifier)

(n) = K(n(n(0)) + Af-7), (16)

((an)?) = 2K (n(n(0)> + ATﬁ) : (17

A relative variance is

{(Bn)?) _ 20n(n(@) + (Aft/2)] (18)
(@) + A7)

For n (n(0))<€Af-7 ¥ tends to the classical limit
y=1/Af7. In the opposite limiting case the value
y=2/n(n(0)) for =1 is twice as much as the va-
luey = (1 + 2N)/(n(0)) =~1/{n(0)) describing the vari-
ance in the absence of amplification (K = 1).

The amplifier sensitivity (for K> 1) is determined by
the relation

Af-t
_
This formula does not depend on the type of amplifier
and is valid both for one and for a succession of amplifiers, as
well as amplifiers based on four-wave-mixing including
those that provide phase conjugation of the amplified signal.
B. Spontaneous radiation and scattering
For K — 1«1, (n(0)) = 0 the mean photon numbers
are:

() >n. =1+ N+ )VM) (19)

—spontaneous scattering ( Raman amplifier kg T, /A0 < 1), (20)

oN,LAf 1 —spontaneous radiation (laser amplifier)
(n) = gl LAf T
gIL(ky T\ /AQ)Af-+ —spontaneous scattering (Brillouin amplifier kg Ty /802> 1).

Here o is the amplifier cross-section, L the amplifier length, K = exp[o (N, — N,) L], gis the local gain of stimulated Raman
or Brillouin scattering, 7 is the intensity of a pump wave in the amplifiers based on the stimulated scattering effects.
Consequently, the variance ((An)?) is determined by the formula:

((an)*)
oNLLAf 7 = (n)
glILAf 1= (n)

kg T, kg T,
= ILLM_(1 7L -2 M)A~
g 7 +8 Fr -1

Afr
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—spontaneous radiation (laser amplifier)
——spontaneous scattering (Raman amplifier)

(21)

—spontaneous scattering ( Brillouin amplifie.>
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While for spontaneous radiation and spontaneous Ra-
man scattering the statistics is purely quantum, it is classical
for the Brillouin scattering at gIL k 5 T, /i) > 1, because if
the latter condition is fulfilled, the number of scattered pho-
tons per one transverse and one longitudinal mode signifi-
cantly exceeds unity.

C. Absorbing media

In this case K<1. For thermodynamic equilibrium
(T= TM )

Ny .
TV—l = exp(—fiw/kBT),

(n) = ((An)®) = 0.

If this condition is absent, for example, the ambient
temperature 7 = 0 and the absorbing medium temperature
T\ is different from zero, formulae (11) and (12) yield the
expressions for radiation of a black body:

- Aft
(ny = exp(hw/kgTy) ~ 17 (22)

o exp(hw/kyT\)AS T _ (n? ’

It is seen from (22) and (23) that for k53 T > fiw the
variance ((An)?) =~ {n)2/Af r becomes classical, since the
number of thermal photons per one transverse and one lon-
gitudinal mode is much larger than 1.

5.CONDITIONS FOR ACHIEVING THE QUANTUM
SENSITIVITY LIMIT

Let us now consider the possibilities for reaching the
quantum sensitivity limit n_;, (see (19)) in a specific opti-
cal system that consists of laser amplifiers and a PC-mirror
involving four-wave interaction of light with supersound.*
A PC-mirror is a helpful tool when it is necessary not only to
amplify radiation, but also to correct the aberrations in-
duced by active elements. Besides, threshold-free four-wave
PC mirrors generally have rather narrow spectral lines. In
particular, a four-wave hypersonic phase conjugation mir-
ror (FWHM) line is, as a rule, no more than 0.01 cm ! for
the switch-on time of 1078-10~7 5. The frequency band
Af-7 of a FWHM is relatively narrow. Therefore, applica-
tion of these PC mirrors significantly upgrades the sensitiv-
ity of optical systems. Thus, a signal wave energy in one
spatial (transverse) mode for a FWHM must be larger than
the value W, =#w Ny Af-7 determined by the mean
number of thermal phonons at a hypersonic frequency Q2 and
a dimensionless frequency band Af 7 of a PC-mirror (for
n=1). This formula follows from (19) for
Ny =kgTy/hQ> 1.

The limit set by the thermal noises can be overcome if a
low-energy signal wave is pre-amplified so that the photon
number in this wave at a PC-mirror input exceeds the total
number of thermal phonons in the corresponding transverse
mode. However, a quantum amplifier superluminescence
noise is mixed in the signal during amplification; normalized
to the input, its value is approximately equal to one photon
per mode (see (19)) for N, Ny <€1). If K> Ny, it is the
superluminescence noise reflected by the PC mirror in the
frequency band Af that restricts the signal minimal energy at
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the amplifier input to the values W, =#iw Af-r (for
n=1).

To reach the quantum limit for the minimum energy of
a signal subjected to PC let us consider whether it is possible
to combine a four-wave hypersonic PC mirror and a double-
pass quantum amplifier in one optical system.

For the arrangement when a quantum amplifier is
placed before a PC-mirror we need to distinguish three addi-
tive components of noise radiation:

1. The PC-mirror intrinsic noise amplified in one pass of
the radiation through the quantum amplifier. Its value de-
pends on the type of the PC-mirror. Thus, for a FWHM
under the optimal experimental conditions the source of
noise is the backward scattering of a high-power pump pulse
by thermal phonons near the exit end of the cell containing a
nonlinear medium.

High values of the reflectivity R for this mirror are ob-
tained for operation in the regime of absolute instability.
Under these conditions conjugated wave power typically
grows exponentially in time, and the number of longitudinal
modes Af:7 in the noise radiation is consequently close to
one. The PC-mirror noise energy per one transverse mode
after the radiation passes through the quantum amplifier can
be estimated in this regime from the formula

W, = hw- Ny KRAf <. (24)

Under absolute instability the dimensionless band Afr
is close to one, and the PC-mirror noise radiation, unlike the
quantum amplifier superluminescence noise, is space-coher-
ent, i.e., has a distinct speckle-inhomogeneous transverse
field structure.

2. The quantum amplifier superluminescence noise initi-
ated at the amplifier input, amplified in the frequency band
Af 4, reflected by the PC-mirror and then amplified again on
its way back through the amplifier. This noise can be called a
“double-pass’ noise. Usually the amplifier frequency band
Af, significantly exceeds the PC-mirror band Af, and each
component of the superluminescence noise, propagating
within the PC-mirror angle of view, is reflected by this mir-
ror with a narrower spectrum. If phase conjugation proceeds
under absolute instability, the reflected superluminescence
noise statistics changes due to the frequency band narrowing
and shorter pulse length yielding a space-coherent noise ra-
diation, and the dimensionless band Afr is close to 1. During
the reverse pass through the amplifier this radiation has a
speckle-inhomogeneous transverse field structure. The dou-
ble-pass noise energy per one transverse mode (or resolution
element) is roughly estimated in this case by the formula

W, = fiw- K?2RAf-t. (25)

3. A broad-band “single-pass’ noise of the amplifier su-
perluminescence, initiated at the amplifier side facing the PC-
mirror and increasing the direction of the conjugated wave
propagation. The energy of this noise, calculated for one
transverse mode, is

W, = how- KAfy Ty, (26)

where Af , "7, is the number of longitudinal modes in the
noise, 7, the duration of a “single-pass” pulse of superlu-
minescence.

Since noise is amplified in an ordinary and not a super-
regenerative quantum amplifier, a single-pass noise is non-

Kulagin et al. 510



coherent by its statistics. A speckle-inhomogeneous trans-
verse structure of such radiation changes over the
characteristic time 1/Af, . Therefore, the transverse distri-
bution of the single-pass noise energy density becomes ho-
mogeneous over the recording time that largely exceeds
1/Af ., without bright spots.

Let us estimate the minimal photon number ~,, in a
signal wave whose phase conjugation can be recorded in the
scheme under consideration. Assuming the ratio of the out-
put signal energy W = K *RW(0) to the total energy of all
noise components to be equal to 1, we find the minimal num-
ber of all photons per one transverse mode:

_ Wyt Wyt Wy RNyAfT+ RKAFT+ AT,

"min R - K2Ry RK7

(27)

For K> Ny and KR>Af .7, the theoretical limit of
the value n,,,, = Afr/7, i.e., for a sufficiently large amplifi-
cation coefficient one can reach the quantum sensitivity lim-
it of an optical system, determined by formula (19). It is in
this case that the formulae for an “idealized”” amplifier con-
sidered above hold true.

6.FOUR-WAVE MIRRORS BASED ON HYPERSOUND TO
PERFORM PHASE CONJUGATION OF LOW-ENERGY
RADIATION

PC-mirrors used in projection optical systems for imag-
ing of diffusely-scattering objects must meet the following
requirements:

1. have a rather large number of resolution elements
that coincides with the ratio of the PC-mirror angle of view 8
to its angular resolution 6, :

2. perform phase conjugation of low-energy radiation;

3. have a high reflectivity into a phase-conjugated wave.
These requirements are best met by PC-mirrors involving
four-wave interaction of light and a hypersonic wave.>* In
this process two counterpropagating pump waves & ;" and
&, (Fig. 2) with different intensities (for example,
€4 > &5 |*) and frequencies ;™ and wg are transmit-
ted through a stimulated-Brillouin-scattering-active medi-
um. The frequency w;* = wg — Q of the signal wave &
undergoing PC is shifted relative to the frequency of the

B e D e aad
L i A |
w; wj o wi w

&k

FIG. 2. Diagram of frequencies and wave vectors for four-wave mixing of
light waves with a hypersonic wave: k{*—are the wave vectors of the
signal and the conjugate waves; k;- —are the wave vectors of pump waves;
q—is the wave vector of the hypersonic wave; 8k—is the wave mismatch;
wgh —are the frequencies of the interacting light waves; 0—is the hyper-
sonic wave frequency.
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pump wave interfering with &; by the value 2 which is
equal to a Brillouin shift in the medium. Interference of
waves &, and & | leads to a resonance excitation in the
medium of a running hypersonic wave @~ & & . The
scattering of the second pump wave by this hypersonic wave
produces a conjugate wave &, ~&; O~ &5 &5 & at
the anti-Stokes (relative to wave &g ) frequency
o = + Q.

The opposite situation is also possible, when the anti-
Stokes wave is actually the signal, and the Stokes wave is a
conjugate wave. It is easily shown that in the absence of satu-
ration effects the reflectivities into the PC-wave are equal in
these situations

187 (0)1%/1870)1% = |7 ()1 187 (1)) % (28)

There are several reasons why it is possible to meet the
above requirements using this interaction.

First, an important peculiarity of this process is that the
waves interact effectively only when the signal wave fre-
quency is shifted relative to the pump wave frequencies. This
factor ensures high sensitivity of FWHM, since the spurious
components of pump waves in this case (for example, related
to their imperfect PC) do not form a background whose
amplification could affect the signal and conjugated waves.
Hence, the FWHM sensitivity is limited only by the level of
spontaneous Brillouin scattering of pump waves in the medi-
um.

Besides, if this interaction occurs under the conditions
of absolute instability,>®’ phase conjugation may proceed
with a high (R ~ 10°%) reflectivity limited only by the pump
waves saturation effects. In this case a PC-mirror is essen-
tially a high-reflectivity nonlinear-optical amplifier.

Let us briefly discuss the conditions for reaching a
FWHM limiting sensitivity.

It can be easily shown that for a FWHM this is possible
only in a scheme with a Stokes signal wave & ,". Indeed,
stimulated scattering in the field of two counterpropagating
light waves &; and &, with unequal intensities
(|€5 |>>|&4 |*) gives rise to the Stokes— (propagating
towards wave &; ) and anti-Stokes (towards wave &)
components. This simulated scattering is induced by sponta-
neous scattering of wave &, near the nonlinear medium
boundary z = O into the Stokes component ¢, (0) of frequen-
cyw; — {1, and by the scattering of wave & ;" at the bound-
ary z = L into the anti-Stokes component e, (L) of frequen-
cy gt + Q. The scattered waves amplitudes at the output
boundaries of the medium e, (L) and e, (0) are related in the
absence of saturation effects to their amplitudes at the input
boundaries as

e(L) = K2e (0) + RAe (L), (29)
e,(0) = K2e,(L) + Rle (0),

where the coefficients K # and K 2 can be treated as amplifi-
cation coeflicients of the corresponding waves (with regard
to the amplitude), and R2 = R * = R * as the coefficient of
mutual rescattering of the Stokes wave into the anti-Stokes
wave and back (amplitude reflectivities into the conjugated
wave). In our situation [K 2|?> [R *|*> | K 2|2

We now assume that besides a seed wave at the bound-
ary z = O there is also a Stokes signal wave & [ (0). Then,

Kulagin et al. 511



the PC-mirror-reflected wave amplitude is

Kie, (L) + RMey(0) + &7 (0)). (30)

Since [R*|*>|K2|? the minimal intensity of the signal
wave is limited by the value ¢, (0) | i.e., it is determined by
the level of spontaneous scattering of the pump wave & .

For the anti-Stokes signal wave & [~ (L) the phase-con-
jugated wave amplitude is

Khe (0) + RA(e,(L) + &7 (L)). (31)

Since |K2|*> |R *|% the signal wave intensity is found
from the condition

(&7 (L)1 > (|KA12/ [ RAD) (e (0) 2 > [e0)]% (32)

Thus, in a scheme with a Stokes signal wave the PC-
mirror sensitivity is determined by the energy of the Stokes-
frequency noise due to spontaneous scattering of a pump
wave. Normalized to one transverse mode (which for a pro-
jection optical system corresponds to one resolution ele-
ment) and calculated for the medium input (see (11) for
(n(0)) =0, Ny > 1), this energy is equal to

Wy = fiw - NyAf-T. (33)

Hence, the minimal energy of the signal wave per one
transverse mode (resolution element) is

Wi = Wy/n = bw- NyAf-t(1/7), (34)

where the parameter 7 is similar to quantum efficiency and is
determined by formula (16). The dimensionless frequency
band Af*7 of FWHM amplification can be close to one. In
this case a four-wave mirror is, actually, a narrow-band
pulsed amplifier, and the parameter 7 depends on how well
the signal pulse arrival time and the pulse frequency spec-
trum correspond to the frequency band Af and the PC-mir-
ror amplification time 7.

- Now we shall briefly discuss the problem of the param-
eter Af*7/7n minimization, because only in this case it is pos-
sible to achieve limiting sensitivity of FWHM and, conse-
quently, the limiting sensitivity of the FWHM-—quantum
optical amplifier scheme considered in Section 5.

The value of Afr depends on the character of the inter-
action of the waves in a FWHM. In the convective instability
region (below the absolute instability threshold) 7 may be
close to 1, and the dimensionless band Af* 7 is determined by
the length of the pump wave pulses and the stimulated scat-
tering frequency band. In the absolute instability region due
to the time-exponential growth of both the amplified signal
and the conjugated wave amplitudes, only a part of the initial
radiation noise is amplified, the one with the length 7, of the
order of the characteristic time of the scattered waves
growth. The PC-mirror frequency band is determined by the
same parameter Af~ 1/7,. Hence, the dimensionless band
Af: 7 in the absolute instability region can be close to 1 (at
least, for a slight excess of the pump wave power over the
threshold).

The value of Af* 7 typical for a FWHM can be estimated
from measurements of the relative variance
y = (Aw?)/{w)? of the energy density fluctuations in the
noise radiation excited by stimulated scattering of the coun-
terpropagating light waves by the hypersonic wave (angular
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brackets here mean averaging over a beam cross-section).
To this end it is necessary to express  in terms of the dimen-
sionless band Af* 7, i.e., in terms of the characteristic number
of the orthogonal-in-time coherent modes forming the
FWHM noise.

For this we expand the complex amplitude of noise ra-
diation at the FWHM output in the Karunen-Loev series
(with the minimal remainder term in the case of a finite
number of the expansion terms):?

E= ) e (r)pa0. (35)
n=}

Each term in this series is orthogonal not only in time
S, (e *(t)dt=45,,), but also with respect to the
transverse coordinates (UrZe,(r))Xe*(r))d?r,

= A,,6m, )- The number of the expansion terms that are ma-
jor energy contributors is bounded from above by the mini-
mum of the characteristic number of longitudinal Af*7 and
transverse (62/62) modes.

Under the experimental conditions Af‘r<6?%/0%,
therefore, the characteristic number of terms in expansion
(35) is determined by the value of Af* 7. Taking into account
the energy density

+
w = Const. f |&|%de

— o

we find:?
Y= I/Neff’ (36)

where

vam () (£4)

is the effective number of terms in the expansion (35), nearly
equal to Afr. (We here skip more detailed calculations that
directly relate the minimal signal energy W, in (19) to
Nz Inits turn N_; depends on the FWHM operation and is
roughly determined by the product of the FWHM frequency
band Af by the characteristic length of the reflected pulse
7). In this way measurements of y allow one to estimate Af* 7
by the formula Af*r = 1/y.

The experimental value of Af‘r was obtained for
FWHM under absolute instability for a relatively large num-
ber of the transverse modes (6 /6, =~600), using measure-
ments of relative fluctuations of the energy density in the
speckle-inhomogeneous noise radiation of a PC-mirror in
the absence of a signal wave.? We measured the ratio of the
energy density in an arbitrary area of a much smaller size
than the characteristic size of speckle-inhomogeneity of the
noise radiation transverse structure, to the cross-section-
averaged energy density. The measured ratio was averaged
over the results of several experiments for the same energy of
the pump waves. It turned out (see Ref. 8) that ¥=0.5, and
0 N g = Af-r=2.

However, reaching the quantum efficiency =1 in the
absolute instability conditions is a rather complicated prob-
lem. This regime sets in due to a 7-shift of the reflected (anti-
Stokes) wave phase with respect to the hypersonic wave
phase over the length of the nonlinear medium, and this re-
sults in positive feedback. This phase shift occurs due to a
wave mismatch k- L or detuning of the signal wave frequen-
cy ot from perfect resonance by some value
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AQ =Q — (w5 — @;"). In this case each value of the wave
mismatch over the nonlinear medium length 8k L hasa cor-
responding value of the signal wave detuning A{); the abso-
lute instability threshold is minimal and, hence, the scat-
tered waves increment is maximal for this detuning.® Since
the noise radiation associated with spontaneous scattering
that is mixed with the signal wave has quite a broad frequen-
cy band, the sensitivity limit and the value %1 can be ob-
tained only on condition of a complete match between the
light wave frequency w," and the parameter §k- L. In partic-
ular, if the conditions of a perfect Brillouin resonance are
realized in an experiment (in this case the frequency of the
signal wave produced, for example, by scattering in the same
medium that is used for a FWHM, is Brillouin-shifted by
Q), the value AQ = O will correspond to 5k L =5 — 6 (Ref.
9).

Another important condition for achieving high quan-
tum efficiency values (17~ 1) is the necessity for agreement
between the time of the signal wave arrival in FWHM with
the FWHM switch-on time, i.e., when the pump waves enter
the nonlinear medium. For operation under absolute insta-
bility, due to growth of the scattered waves amplitudes in
time, the highest amplification is achieved only by that part
of the input pulse that enters the nonlinear medium right
after the pump waves pass over the instability threshold. The
amplification time for the following part of the signal pulse is
shorter and so is the degree of amplification here, hence the
energy of this part has a weak influence on the energy of the
FWHM-reflected radiation.

The numerical calculations performed for the Gaussian
(in time) pulses of a signal wave and pump waves show that
the quantum efficiency value will reach its peak when the
signal wave pulse maximum coincides with the moment the
pump waves reach the absolute instability threshold, and the
signal pulse duration is 2—4 times longer than the attenu-
ation time of a hypersonic wave.

The above requirements having been met, we managed
toobtain in Ref. 10 the sensitivity of a FWHM-based projec-
tion optical scheme close to the theoretical limit (33) for the
brightness amplification coefficient R ~10° and the linear
number of resolution elements in the field of view
0 /6, =600.

7.PROJECTION OPTICAL SYSTEM FOR AMPLIFICATION
AND RECORDING OF WEAK OPTICAL RADIATION

The possibility of reaching the quantum sensitivity lim-
it in amplification of optical radiation that transfers object

2 J 4 2

-

images with a large number of resolution elements was stud-
ied experimentally for a projection optical system involving
Nd-glass laser amplifiers in combination with FWHM. Ap-
plication of quantum amplifiers in such systems sets certain
requirements on the amplifiers themselves and on the entire
system. Along with a high amplification coefficient, these
quantum amplifiers must be capable of transmitting a large
number of transverse modes and providing a uniform gain
within the field of view. These requirements are contradic-
tory, since a wide angle of view for a laser amplifier degrades
the latter’s efficiency due to amplification of spontaneous
radiation, spurious generation induced by the reflection of
radiation at different optical elements that form images, and
some other factors.'®'”

As shown in Section 5, the amplification coefficient val-
ue K in the considered optical scheme must significantly ex-
ceed the mean number of thermal phonons N, in a phase-
conjugation mirror medium. For the experimental
conditions of Refs. 10-12 and the ambient temperature we
have N,, = 2.5-10* (a TiCl, PC-mirror, = 2-10' rad/s).

Besides, the Fresnel number of a laser amplifier & °n/AL
(here d is the amplification medium transverse size, L is its
length, n the refractive index) that defines the number of
transverse modes transmitted through the amplifier and co-
incides with the ratio of the amplifier angle of view 8 to the
diffraction resolution &,, must be large enough—generally,
d’n/AL=6/6,>10%

The required conditions are most easily realized in
multi-cascade amplifiers providing successive transfer of
image from one active element to another.'®'” An example of
such a scheme used in Refs. 11, 12 is given in Fig. 3. The
object plane 4 illuminated by a laser pulse (4 = 1.054 mcm,
pulse length 5-10~ % 5) is projected by lens I onto the output
boundary of a two-cascade laser amplifier consisting of two
identical active elements (d = 10 mm, L = 300 mm) witha
retransmitter (lenses 3,4) between them. It follows from
Ref. 1 that such an optical scheme (lens positioned at the
input end of the active element and projecting the object
plane onto the image plane at the end of the output active
element) optimizes the energy coefficient of field transfer
from one limited aperture to another.

The value of the unsaturated amplification coefficient
K, = (1.8-2)-10% was uniform over the cross-section in
each cascade. This provided the required value of K = K}
for the same number of resolution elements (8 /6,) =350
determined by the geometrical dimensions of one amplifier.

After the quantum amplifiers the radiation was incident
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FIG. 3. Experimental setup: /—lens; 2—Nd-glass quantum amplifier;
3,4—optical transducer lenses; 5—Faraday isolator; 7-—PC-mirror;
8—semi-transparent mirror; 4—object plane illuminated by laser
beam; B—image plane.
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on the PC-mirror 7. An optimal combination of amplifiers
and a phase-conjugation mirror can be achieved by placing
one more optical retransmitter between them to transfer a
suitably scaled image of the amplifier to the FWHM. But,
since the number of resolution elements of PC-mirror
(6/8,) = 600 exceeded the corresponding amplifier pa-
rameter (6/6,),, only one lens 6 was used in the experi-
ment, which projected the laser amplifier boundary image
on the PC-mirror boundary.

The PC-refiected radiation once again passed through
the quantum amplifiers, split into two branches by the semi-
transparent mirror 8 and then recorded in the image plane B
that is optically conjugate the plane 4.

In calculations of such schemes with a high amplifica-
tion coefficient for the input signal one should take into ac-
count the fact that the value of the amplified quantum noise
becomes quite large even in the absence of a signal wave and
can facilitate saturation of laser amplifiers and even their
optical breakdown. Indeed, the energy of the amplifier su-
perluminescence noise starting at the amplifier input, re-
flected by the PC-mirror and amplified again during a re-
verse pass through the amplifier, according to (25), is
#iwK *RAf-7. To achieve quantum sensitivity, the value of K
must satisfy the condition K > 10* (see above).

Another condition for achieving the limiting sensitivity
in this scheme (see Section 5) is KR > Af , 7, . For a neodi-
mium amplifier the value of the dimensionless band Af, 7,
determined by the line width of amplification and the life-
time of the upper operating level is Af, ‘7, ~10'°. For
K =~ 10" this sets the requirement R ~ 10°. Hence, the value of
the superluminescence amplified noise energy for A = 1 and
K~10*, R~10%is of the order of 2:10~° Af-7 [J] per each
transverse mode. The noise total energy proportional to the
number of transverse modes (6 /6,)* for 6 /6, ~10°~10°
proves to be equal to units or tens of joules even if each trans-
verse mode is excited by one photon (Af 7 = 1). To prevent
saturation of a quantum amplifier one has to reduce the am-
plification coefficient over a second pass through the ampli-
fier. To this end we used Faraday isolator 5 (see Fig. 3) that
attenuated the radiation by a factor of 2-10? in the second
pass through the quantum amplifiers. Under these condi-
tions the total gain for a double-pass projection system
reached 10! -10'2,

8. ANGULAR RESOLUTION, ANGLE OF VIEW AND
SENSITIVITY OF APROJECTION SYSTEM

An experimental study of the angular resolution and
reflectivity of a projection system, depending on the angular
position of the source in plane A relative to the optical axis
was carried out by photographing the source image in PC
rays through an autocalibration mirror wedge, which was
followed by photometering, and also by measuring the con-
jugated radiation energy. A “point” source of radiation was
initiated in plane 4 in this case by focusing the illumination
radiation into a spot of a much smaller size than a resolution
element.

Figure 4 gives the dependence of the angular resolution
6, normalized to the angular resolution 8, (0) in the center
of the field of view on the angle ¢ that coincides with the
angular shift of the “point” source and is normalized to the
value 1.22 A /d. The obtained value of 8, coincides within
experimental accuracy with the value determined by the dif-
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FIG. 4. Dependence of the angular resolution &, , normalized to 6, (0), on
the angular position of the source @ normalized to the value 1.22 A /d.
Dashed line indicates the calculated dependence for the experimental ge-
ometry being used.

fraction limit for a circular diaphragm of diameter d = 9.5
mm (the light diameter of the quantum amplifier active ele-
ment).

The full size of the field of view in plane 4 corresponds
naturally to the size of the image of the amplifier end formed
by lens 7 in plane 4. Here the total amplification of the pro-
jection system, measured by the relative energy density of
the amplified and PC-mirror-reflected noise radiation at dif-
ferent angles, turned out to be practically independent ofp
within the entire field of view.

The considered scheme of image amplification was
studied for limiting possibilities by measuring its sensitivity
at the lowest possible levels of the energy density of the illu-
mination radiation. The “object” to be recorded here was a
laser beam (6 mm diameter) with a uniformly distributed
intensity, aimed at a diffuse-scattering surface (milk glass)
located in plane 4.

The size of the recorded “spot” in the center of the field
of view was much smaller than the full size of the field of
view in plane 4 ( ~8.5 cm), but significantly exceeding the
size of the resolution element ( ~240 pm) related to the
limiting angular resolution of the optical scheme. The latter
circumstance allowed for averaging of the energy density of
both the noise radiation and the images recorded in plane B
over their transverse speckle-inhomogeneous structure typi-
cal for coherent-light imaging schemes.

Images were recorded in plane B for different levels of
the illumination radiation energy, maximum pumping of la-
ser amplifiers and the FWHM pump wave energies corre-
sponding to values nearly 1.5-2 times the absolute instability
threshold.

To get the quantum efficiency 7 to be close to one and,
hence, reach the limiting sensitivity of a projection system
the FWHM pump wave pulses (7, = 50 ns) and signal wave
pulses (7, = 12~15 ns) of different length were used in these
experiments along with optimization of the signal wave ar-
rival in FWHM.

Quantitatively the limiting sensitivity was estimated by
measuring the value of the signal-to-noise ratio
SNR = Aw; (w)/Awy, which in this case was equal to the
ratio of the energy density Aw; falling onto the image area to
the energy density of eigen noise wy (measured in the area
adjacent to the image) for various values of the illumination
energy density w.

Figure 5a gives the dependence of SNR on the signal
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wave time delay Af normalized to 7,. In Fig. 5a the SNR
value is normalized to the value (SNR), corresponding to
the case of a signal wave pulse with 7, = 7, = 50 ns and time
delay Ar =0.

In Fig. 5b there are oscillograms of the signal wave and
pump wave pulses corresponding to their optimal relative
position. Here we measured SNR for different densities of
the illumination energy w in plane 4. The corresponding
dependence is given in Fig. 6. For comparison there is a simi-
lar dependence in the same figure, obtained under the same
conditions except that the signal and the pump wave pulses
were equal in length and coincided in time.

It follows from Fig. 6 that the projection system natural
noises limit its sensitivity at w,,;,, = 1.4:10~° J/cm? (in the
case of illumination of a diffusely scattering object).

Using the obtained w,,,;, one can easily find the minimal
energy arriving in the projection system from one resolution
element. As shown above (see (3)), w and W, are related
(for scattering into the solid angle 27) by W,, = 4 %w/8m;
this relation does not depend on the experimental scheme.
Taking into account real characteristics of the scatterer be-
ing used (depolarization and a slightly nonuniform scatter-
ing diagram), we replace the coefficient 1/87 by 3-10~*

(more details in Refs. 10, 11). Hence, we have
Womin = 4.8:1071% 7 = 2,450 . (37)

Thus a near-theoretical limiting value of the sensitivity
W, was obtained in the experiment, since the value of the
dimensionless band of amplification for FWHM (see above)
is Afr=2.

IR

20

1 i 1 L
7 2 J 4 J &
w, 1078 J/omz2

FIG. 6. Dependence of SNR on the illumination energy density w for
different lengths of the signal- and pump waves pulses and their optimal
mutual position (), and for the case when these pulses coincide in time
(1, =7,, Ar=0) (2).
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FIG. 5. a—dependence of the signal-to-noise ratio SNR on the signal
wave time delay At; b—oscillograms of the signal wave (/) and pump
waves (2) pulses for their optimal mutual position.

9. THE EFFECT OF QUANTUM FLUCTUATIONS ON IMAGING

To study the fluctuations in the number of photons over
the cross-section, a slot with a transverse size of 2-3 resolu-
tion elements was inserted in plane 4 of the projection opti-
cal system (see Fig. 3) and irradiated (in the direction of the
receiving system) by a laser beam.® The slot image formed
by the projection optical system was recorded by a calibrated
matrix photodetector and computer-processed. Measure-
ments of the relative variance of the energy density fluctu-
ations along the slot were found to coincide with the relation
y = ((An)?)/{n)? depending on the mean photon number
per one transverse mode at the amplifier input {(n(0)). For
{n(0)) - o (classical limit) the variance is related to
speckle-inhomogeneous noises arising due to imperfect PC
andisy, = 7-10°. This is a minimal value. When (n(0))
decreases, the value ¥ is supposed to be increasing and reach
¥ = 1/Af 7 in the absence of a signal (see (18)).

Processing of the energy density distributions in the slot
image plane allowed us to determine the parameter y as a
function of 7{n (0) ) for a wide range of the argument varia-
tions up to values corresponding to the classical limit. Aver-
aging was performed along the slot. The obtained results are
given in Fig. 7. Here experimental values are marked by
dots. They are compared with the solid curve theoretically
constructed using formula (18) generalized for the case that
takes into account also “‘classical” speckle-inhomogeneous
noises caused by imperfect PC:

2{m(n(0)) + (AfT/2)]
(Kn(0)) + Af-1)?

If we substitute the experimental values of the parameters

(38)

Y=Vt

. —_——
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2

FIG. 7. Dependence of the relative variance ¥'/? on the mean photon

number per resolution element 7(n(0)).
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¥ = 7-10~ % and Af*7 = 2 entering this formula (see above),
we will see that the tendency for  variation with increasing
(n(0)) is in qualitative agreement with the theoretical pre-
dictions (see the solid curve in Fig. 7).

10. APPLICATIONS

The above-described projection system can be used to
record the spatial structure of a weak coherent radiation
scattered in different media, including cases of coherent ra-
diation against a higher-power noncoherent background.
The experimental results obtained in the study of these possi-
bilities'* are given below.

We measured angular divergence of the Stokes radi-
ation for Brillouin scattering of a single-mode transverse
structure laser beam (pulse duration 7, = 50 ns, beam di-
ameter d = 10 mm) focused into a scattering medium
(TiCl,) (Fig. 8). A four-wave PC-mirror of a projection
laser system uses pump beam interaction with a signal wave
undergoing PC, whose frequency is Stokes-shifted with re-
spect to the frequency of the pump wave interfering with the
signal; this shift is equal to the Brillouin shift in a FWHM
medium. By using the same medium for both the four-wave
PC-mirror and cell 3 in this case (Fig. 8a) we ensured an
automatic “‘tuning” of the laser system frequency band to
the Brillouin scattering frequency in cell 3. '

The experimental scheme is given in Fig. 8a. The radi-
ation scattered in cell 3 was split by plate 4 and after amplifi-
cation and PC in the laser projection system its angular
structure was photographed in the lens focal plane. The Bril-
louin scattering increment in this case M = kgP (k = 27 /4;
g=2-10"2 cm/MW is the local increment; P is the initial
beam power incident on cell 3) varied from values corre-
sponding to an active stimulated scattering regime to the
values close to one, which is typical for a transition to spon-
taneous scattering operation. The dependence of the Stokes
wave divergence 0 normalized to the diffraction-limited di-
vergence of initial radiation 6, on the increment M is given
in Fig. 8b. Higher divergence of the scattered radiation with
a decreasing M is accounted for by less discrimination of the
Stokes waves with different transverse structure, which
leads to violation of the PC conditions in transition to spon-
taneous radiation.

We have also recorded the spatial structure of scattered
light in laboratory air. The frequency of the signal (probe)
wave in this case shifted so that the scattered radiation was
recorded at the nonshifted (relative to the probe radiation)
frequency. The experimental scheme is given in Fig. 9 and
Fig. 10 presents images of the transverse structure of the
scattered radiation for the probe beam energy of
W, ~2-102J, pulselength 7, = 5-10~*° s and for different
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FIG. 8. a) Experimental scheme: /—single-mode laser beam; 2—lens
F = 30 cm; 3—TiCl, cell; 4—beamsplitting plates; S—projection opti-
cal system; 6—lens; 7—photodetector. b) Dependence of the Stokes
wave divergence & normalized to the divergence of a single-mode laser
beam &, on the Brillouin scattering increment M.

angles between the probe beam direction and the optical axis
of the system.

The experiments showed that the scattered radiation
has the same polarization as the probe beam. This fact along
with the scattering intensity estimate (see below) lead us to
conclude that in this case we observe molecular scattering by
thermal fluctuations of the medium density at a nonshifted
frequency. It is known that according to the Landau~Plac-
zek formula' the molecular scattering intensity at the non-
shifted frequency is roughly equal to the intensity of the Bril-
louin component. Therefore, to estimate the intensity of this
scattering we have used the data for the Brillouin scattering
cross-section in nitrogen at p = 1 atm.

For molecular Brillouin scattering in this case the mean
photon number in the scattered radiation per one transverse
and one longitudinal mode is (see (20))

(n) = MN,,, (39)

where Ny = kg T /%82 is the number introduced above of
thermal phonons at the hypersonic wave frequency ) equal
to the Brillouin shift in air; T, is the temperature; M < 1 is
the Brillouin scattering increment. In this experimental ge-
ometry

M=g[lzr,)dL, (40)
where I(z,r, ) is the intensity distribution of the probe light
beam focused in air, the integral being taken along the direc-
tion of observation. It is easily shown that for ¢ larger than
the angle between the converging rays in the probe beam, for
the focal waist area

M = kgPp /o, 41)

with an accuracy up to a coeflicient of the order of unity,
where P and @, = d /F are the power and angle of conver-
gence of the probe beam; d the diameter of this beam on the

<1

FIG. 9. Experimental scheme: ]—projection optical system; 2—probe
laser beam; 3—beamsplitting plate; 4—object plane, B—image plane.
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focusing lens with the focal length F. Thus, for the near-focal
waist area we have

(n(O)) = kgP(kBTM/ﬁQ)‘Po/‘P (42)

By substitutionofk g Ty, /#Q = 10*,kgP = 25P /P,,,, where
P=W,/7, =04 MW; P, =130 MW [15] is the SBS
threshold power in nitrogen at p =1 atm, for ¢, =d /F
= 1/300 we find 1 = 2,6/¢. The scattering process could be
observed experimentally in the angle range from the mini-
mal values (¢ =7-10" ") up to ¢ =0.25. For larger ¢ the
scattering signal failed to stand out against the amplified
quantum noises. Since the signal wave and pump wave
pulses used in this experiment coincided in time, the mini-
mum input signal per resolution element in the reception
band n,,;, =5 (Refs. 11,12). For the angle ¢ = 0.25 corre-
sponding to a negligible excess of the scattered signal intensi-
ty over noise we have (n(0)) =10, which is close to 7,
Thus, the experimentally obtained energy is close to the the-
oretically predicted value.

Apart from a uniform (on the average) scattering some
photographs revealed bright points corresponding to scat-
tering by particles (dust, aerosol, etc). The total energy of
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FIG. 10. Image of the transverse structure of scattered radiation for
@ =5"(a) and ¢ = 30° (b).

this scattering can be comparable with or even higher than
the energy of scattering by density fluctuations. In this case a
projection optical system allows for separate observation
with spatial resolution of scattering by particles and by den-
sity fluctuations.

The possibility of amplification and recording of molec-
ular scattering an scattering by microparticles in air at such
low energies of the probe radiation can be used for develop-
ment of a coherent lidar to measure, for example, spatial
distribution of wind velocity.

However, we studied another, relatively simple way of
measuring the scattering medium velocity, which can be
used when the velocity is relatively high.'* This technique is
based on measurements of the dependence of the magnitude
of the scattered signal on the angle between the velocity vec-
tor of the scattering medium and the observation direction.
Here the Doppler shift of the scattered radiation frequency,
depending on the medium velocity and the indicated angle,
makes is possible to determine the velocity within the accu-
racy of the reception system line width. In our case this is
about 10* cm/s.

This technique was realized experimentally in measure-
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FIG. 11. Experimental scheme: /—semi-transparent mirror; 2, 3—mir-
rors; 4—projection optical system; 5—beamsplitting plate; 4—object
plane (diffuse-scattering surface) illuminated by laser radiation; B,, B,—
image planes optically conjugate to plane A.

ments of a plasma jet velocity.'? It is of essential importance
that the plasma natural noncoherent glow is not recorded in
this case due to the narrow band of the reception system.

This high-sensitivity projection system allowed us also
to observe interest of extremely weak waves with a compli-
cated spatial structure. The experimental scheme is given in
Fig. 11. A laser pulse with a uniform intensity distribution
was directed at a diffuse-scattering surface (milk glass)
placed in the object plane 4. Next, a signal wave (radiation
scattered by the diffuse surface) was split by a semi-trans-
parent mirror 1 into two beams which were then recombined
and reflected with a simultaneous PC from a projection opti-
cal system. After the reflected beams of fairly high energies
were combined at mirror 1 producing an image in planes B 1
and B 2 conjugate to the object plane 4. The signal-to-noise
ratio SNR = Aw; (w)/Aw, was measured in these planes as
afunction of the illumination energy density w in the scatter-
ing plane, using the technique described in Sect. 8. As stated
above, the value of w fully determines (for recorded images
with diffraction resolution) the mean energy (photon num-
ber) (n(0)) arriving in the recording system from one reso-
lution element.

Figure 12 gives the dependences of the SNR values in
plane B 1—(SNR), and B2—(SNR),.

In Fig. 12 line 1 is the behavior of (SNR), in channel 1

SNR

4 a7 k4 £Z4 5 v/
<n(g)>

FIG. 12. Dependence of the signal-to-noise ratio SNR in channels 1
(SNR), and 2 (SNR), on the mean photon number per one resolution
element (n(0)). The inset shows the enlarged area near the origin of
coordinates.
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(plane B 1) in the case when one of the interferometer arms is
closed. The interferometer-based projection system sensitiv-
ity in this case is, naturally, by a factor of two lower than that
of an ordinary scheme, since the initial signal wave is atten-
uated by the semi-transparent mirror 1. The signal wave and
the pump wave pulses in this experiment had the same
length, therefore the sensitivity of the receiving system was
~5 fiw per one resolution element (line 2 in Fig. 5).

If both the interferometer arms are open, the behavior
of (SNR), in channel 1is observed to be practically the same
as in the case without the interferometer, while in channel 2
(SNR), remains close to unity. It means that the coupling of
phase-conjugated beams here is coherent even when the
mean photon number per resolution element in the initial
signal wave approaches unity (see Fig. 12), but the total
photon number in the signal beam significantly exceeds uni-

ty.

11.CONCLUSION

This paper is in the main a review of theoretical and
experimental methods of research on the peculiarities of am-
plification and PC of weak (quantized) optical signals. The
proposed semi-classical approach to describing the interac-
tion of weak signals with matter can be applied to the analy-
sis of diverse specific problems including, in particular,
those arising in passing of beams and pulses through inho-
mogeneous media, beamsplitters, superregenerative ampli-
fiers, three- and four-wave interaction in condensed and
noncondensed media, etc. The above-described experimen-
tal techniques, in their turn, provide a tool not only for inves-
tigations in these problems of the special features of the spa-
tial distribution of photon numbers averaged over the
resolution elements, but also for determination of their vari-
ance and phase correlation. This holds promise for the above
results to be useful in the studies of various problems of light
scattering, diffraction and interference of weak signals, par-
ticularly for pulse-repetition radiation that allows for pro-
cessing of massive amounts of data on the spatial distribu-
tion of light by averaging over a large number of pulses.

Y To form an image, it is required that AQ> 1. Here and below this condi-
tion is assumed to be fulfilled.

'N. G. Bondarenko and V. L Talanov, Izv. Vyssh. Uchebn. Zaved. Ra-
diofiz. 7, 313 (1964).

2@G. A. Pasmanik and V. G. Sidorovich, Izv. Vyssh. Uchebn. Zaved. Ra-
diofiz. 23, 1217 (1980) [Radiophys. Quantum Electron. 23, 809
(1981)].

3V. 1. Bespalov, A. A. Betin, G. A. Pasmanik, and A. A. Shilov, Pis’ma
Zh. Tek. Fiz. §, 242 (1979) [Sov. Tech. Phys. Lett. 5,97 (1979)].

“V. 1. Bespalov, A. A. Betin, A. L. Dyatlov, S. N. Kulagina, V. G. Mani-
shin, G. A, Pasmanik, and A. A. Shilov, Zh. Eksp. Teor. Fiz. 79, 378
(1980) [Sov. Phys. JETP 52, 190 (1980)].

*N. F. Andreev, V. I. Bespalov, A. M. Kiselev, A. Z. Matveev, G. A.
Pasmanik, and A. A. Shilov, Pis’ma Zh. Eksp. Teor. Fiz. 32, 639 (1980)
[JETP Lett. 32, 635 (1980)].

$N. F. Andreev, V. L. Bespalov, A. M. Kiselev, G. A. Pasmanik, and A.
A. Shilov, Zh. Eksp. Teor. Fiz. 82, 1047 (1982) [Sov. Phys. JETP 55,
612 (1982)].

7B. Ya. Zel’dovich, and V. V. Shkunov, Kvantovaya Elektron. (Mos-
cow) 9, 393 (1982) [Sov. J. Quantum Electron. 12, 223 (1982)].

80. V. Kulagin, G. A. Pasmanik, and A. A. Shilov, Izv. Akad. Nauk
SSSR (Ser. Fiz.) §3, 1619 (1989) [Bull. Acad. Sci. USSR Phys. Ser.
53(8), 171 (1989)].

°V. 1. Bespaloy, E. L. Bubis, S. N. Kulagina, V. G. Manishin, A, Z.
Matveev, G. A. Pasmanik, P. S. Razenshtein, and A. A. Shilov, Kvanto-
vaya Elektron. (Moscow) 9, 2367 (1982) [Sov. J. Quantum Electron.
12, 1544 (1982) ).

Kulagin et af. 518



'°Q. V. Kulagin, G. A. Pasmanik, and A.A. Shilov, Kvantovaya Elek-
tron. (Moscow) 16, 1398 (1989) [Sov. J. Quantum Electron. 19, 902
(1989)].

'""0. V. Kulagin, G. A. Pasmanik, and A. A. Shilov, Kvantovaya Elek-
tron. (Moscow) 17, 355 (1990) [Sov. J. Quantum Electron. 20, 292
(1990)].

120, V. Kulagin, G. A. Pasmanik, P. B. Potlov, and A. A. Shilov, Kvanto-
vaya Elektron. (Moscow) 17, 1487 (1990) [Sov. J. Quantum Electron.
20, 1395 (1990)).

0. V. Kulagin, G. A. Pasmanik, P. B. Potlov, and A. A. Shilov, Kvanto-
vaya Elektron. (Moscow) 18, 1131 (1991) [Sov. J. Quantum Electron.
21, (1991)).

519 Sov. Phys. Usp. 35 (6), June 1992

'“1. L. Fabelinskii, Molecular Scattering of Light, Plenum Press, N.Y.,
1968 [Russ. original, Nauka, M., 1965].

*V.S. Averbakh, A. 1. Makarov, and A. K. Potemkin, Kvantovaya Elek-
tron. (Moscow) 6, 2650 (1979) [Sov. J. Quantum Electron. 9, 1574
(1979)).

'*V. 1. Bespalov, O. V. Kulagin, A. 1. Makarov, G. A. Pasmanik, A. K.
Potjomkin, P. B. Potlov, A. A. Shilov, Opt. Acoust. Rev. 1, 71 (1990).

\7 Optical Systems with Brightness Amplifiers, (Eds.) V. L. Bespalov and
G. A. Pasmanik, Appl. Phys. Inst. Acad. Sci. USSR, Gorkii, 1988 (in
Russian).

English text supplied by the authors.

Kulagin et al. 519



