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A consistent picture of the evolution of the defect structure is presented for a solid undergoing
plastic deformation, when defects are multiplied and arbitrary hierarchical structures are formed.
The complete problem is reduced to a description of the kinetics of the formation of a new
structural level of plastic deformation, a field-theoretic description of a single defect, and a
statistical description of ensembles of defects. For the first time a theoretical scheme is
constructed for the processes of developed plastic deformation in which a hierarchically
connected multilevel structure of defects is formed. A solid with defects is treated as a highly
nonequilibrium state of a crystal subjected to an intense external action.

INTRODUCTION

Plastic deformation for a long time was associated with
the evolution of a variety of crystal structure defects, which,
mutually interacting, and being subject to the action of ex-
ternal fields, take on the aspect of independent structural
entities with their own individual properties (their geomet-
ric configurations, distribution of elastic fields, etc.).1"3

Within this conceptual framework the plastic deformation
of a sample was treated as the result of the ergodic behavior
of a system of defects whose trajectories evolve in time over
the entire phase space. On the other hand it has been pro-
posed that there is no hierarchical chain in the behavior of
the defects—the behavior is determined only by the strong
fields and the action of the constant-temperature reservoir.
In this formulation the dependence of the thermodynamic
potential of the system on the configuration coordinates
would have a regular distribution of minima, the lowest of
which would correspond to the stable state and the others to
metastable states. As a result, the evolution of a system of
defects during plastic deformation was represented as a
chain of Debye processes in which the system via thermal
fluctuations overcomes the barrier between minima of the
thermodynamic potential, with relaxation times given by the
Arrhenius relation.

Such a picture is realized for small degrees of plastic
deformation. For the opposite case, which is the one ordinar-
ily obtained in practice, the defect density becomes so high
that the defects begin to exhibit collective effects.4'7 This
means that in the ensembe of defects coherent connections
are established of the type that produces phase transitions8

and kinetic transitions.9 While this latter case is character-
ized by a homogeneous distribution, the establishment of a
coherent connection in an ensemble of defects belonging to a
single structural level results in a self-localized formation,
which assumes the role of the starting structural unit at a
higher level.10 For example, the clustering of vacancies can
produce dislocation loops,2'3 and dislocation pileups can
produce misorientation boundaries and disclinations.6'7

This difference between the collective behavior of defects
and the ordinary picture of phase transformations is due to
the high degree of nonequilibrium of the ensemble of defects
which arises in the development of plastic deformation, so
that the transformation is not thermostatic, but kinetic.'' In
particular, the self-localized nature of the products of this

transformation (superdefects) is a consequence of the loss of
ergodicity in the transformation,12 and this loss in turn is
related to the hierarchical chain. The manifestation of this
chain is that the superdefect is formed as a result of the asso-
ciation of defects from the lower level. Since the minima on
the graph of the thermodynamic potential as a function of
the configuration coordinates are narrower than the minima
corresponding to the superdefects, the establishment of the
hierarchical chain necessarily implies a fractal structure in
the distribution of the thermodynamic potential in configu-
ration space.13

Examples of spin glasses,14 martensitic transforma-
tion,15 polytype structures,'6 and creep of crystals,17 show
that the fractal nature of a system radically alters its thermo-
dynamic and kinetic properties. This is because configura-
tion space is partitioned into a multitude of regions (val-
leys18 or components12), each of which has its own
statistical ensemble. As a result, averaging is done in two
stages: first as an average over the pure ensemble of a given
valley and then over the ensemble of valleys. The kinetic
aspect of the behavior of such a system, which is due to the
weak restoration of ergodicity, is determined by the slow
joining of valleys into clusters of larger-scale components.
This process can conveniently be represented as the motion
over the nodes to the trunk of a hierarchic Cay ley tree, where
the nodes correspond to the valleys, and the magnitude of
the plastic deformation e corresponds to the time (Fig. Ib).

While the above representation of the configuration
space of defects by an ultrametric topology is novel,15'17 in
its outward aspects the picture of hierarchical behavior of
defects during plastic deformation has had widespread ac-
ceptance in recent times.4"7'10'19 Considering the importance
of this topic, let us set forth the main ideas. The overall pic-
ture of plastic deformation stems from the evolution of de-
fects that belong to different structural levels. Unlike amor-
phous systems, the number of such levels is rather small: in
terms of the characteristic length scale /, one generally dis-
tinguishes the microscopic level (a<^/ , <rf, where a is the
interatomic spacing and d is the size of a uniformly oriented
system such as a cell or fragment), the mesoscopic level
(c?</2 <^A where D is the size of a weakly oriented region,
such as a grain), and the macroscopic level (Z)^/3<L,
where L is the characteristic size of the sample).'' In each of
these levels the plastic deformation takes place by the uni-
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FIG. 1. a) Shape of the potential relief of structural units at various struc-
tural levels, b) Corresponding hierarchical tree.

form flow of defects, point defects, dislocations, disclina-
tions, planar defects, and so forth. The microscopic level
corresponds to a uniform distribution of point defects, dislo-
cations, disclinations; the mesoscopic level to cells and frag-
ments, and, finally, the macroscopic level corresponds to
nonuniformly oriented grains, textured components, etc.7'19

As the degree of plastic deformation increases each subse-
quent structural level is "engendered in the womb of the
preceding,"7 when, because of the increase in the uniform
density of defects the resources for its evolutionary develop-
ment are exhausted. Thus, according to Refs. 7 and 19, the
first cell boundaries are nucleated when the dislocation den-
sity reaches a critical value, partial disclinations (boundar-
ies of fragments) are formed by a decrease in the dimensions
of the weakly disordered cells to the limiting dimension
~0.2 /лп; knife-edge boundaries terminating in disclina-
tions appear only with the formation of a well-developed
fragmented structure with large misorientations.

This is because the increase induced by plastic deforma-
tion in the characteristic size scale above the critical dimen-
sion /, results in an instability in the uniform distribution of
defects at distances x > /, and self-localized formation of car-
riers of the plastic deformation at the (i + l)th structural
level. For example, for l(e) > /, the plastic instability results
in the formation of dislocations, disclinations, and their
complexes; for /(£•)> /2 bands of strong shear-rotations are
formed, and for / (£)>/ 3 , macroscopic rotational shear
fields are formed.7 A very important circumstance is that
the switching-on of each successive structural level during
plastic deformation does not have an evolutionary charac-
ter, since it is caused by the spontaneous appearance of new
hydrodynamic (translational and rotational) modes at the
instant that l(e) = I,. Of course, after the structure corre-
sponding to the (/ + 1 )th level is nucleated, the volume that
it occupies will smoothly increase at the expense of the vol-
umes of the structures corresponding to the levels 1,2,..., i
(here the situation is analogous to phase equilibrium in ther-
modynamics8). Moreover, the function w, of the distribu-
tion over the levels can change with increasing e in such a
way that a narrow or a wide group of levels are important

(for example, in brittle fracture only the levels / = 1 and 2
are important7).

Despite the progress in understanding the experimental
situation,4"7-10'19 there still is no complete picture of plastic
deformation that takes into account all the structural levels.
In our view, the construction of such a view has been imped-
ed mainly by the insufficient perception of the hierarchical
nature of the defect structure. If it is assumed that to each
structure level there corresponds a horizontal level of the
Cayley tree or a level of resolution of the minima of the ther-
modynamic potential in the distribution in configuration
space (Fig. 1), then the microscopic description of plastic
deformation processes on all axes of the values of £ is given
by the usual version of fractal kinetics of hierarchical struc-
tures.14"17 There is, however, an important difference be-
tween them. The approach of Refs. 14—17, based on the use
of a continuum ultrametric space, assumes that the number
of levels (horizontal lines) on the Cayley tree is infinite and
the nature of the connection between them does not play any
specific role (only the structure of the tree is important). In
the present case the number of structural levels, correspond-
ing to dislocations, disclinations, grains, their conglomer-
ates, ..., the sample, is clearly small, and the connection be-
tween them is of fundamental importance.

As is shown by an analysis of the experimental data of
Refs. 6, 7, 15 and 19, a complete description of developed
plastic deformation of a crystal on the basis of the concept of
a hierarchically linked ensemble of defects requires the solu-
tion of the following problems: 1) the development of a ki-
netic picture of the nucleation of a new structure level; 2) the
description of the mechanism that unites defects at the lower
levels into a single superdefect at the upper level; 3) a self-
consistent description of elastic fields and crystal geometry
that has a well-developed ensemble of defects belonging to a
given structural level; 4) a description of a developed struc-
tural level that has a large density of defects that belong to it
(the measure of non-ergodicity, stability of superdefects
against decay into the initial defects, memory effects, etc.).
In keeping with the discussion of this section we have pre-
pared an outline of the investigation we are presenting. In
each of the cases considered we shall present a brief descrip-
tion of the theoretical framework in which a more complete
description is obtained. Then we shall make a comparison
between the model and the experimental results, including
an analysis of particular cases. We have tried to be complete
in presenting the theoretical ideas; this, however, entails ine-
vitable cursoriness in the presentation (especially in the in-
troductory sections of this review).

1. KINETICS OF THE FORMATION OF A STRUCTURAL LEVEL

An adequate mathematical description of a deformed
crystal having a defect structure is given by a basis manifold
Mcharacterized by internal coordinates x, 0; г = 1,2,3 (Ref.
20). Putting off until Section 3 the geometrical aspects asso-
ciated with M, we here consider a discrete manifold M, each
point of which, XQ\ a = 1, 2, ...,./Vis a structural unit at the
initial level (atom, dislocation, disclination, etc). A qualita-
tive change in the behavior of an ensemble that leads to the
nucleation of a new structural level is reflected in the sim-
plest way by a two-level model.9'10 In this model M is divided
into a direct sum M0 ®Af, of submanifolds corresponding to
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unexcited and excited structural units. The difference be-
tween them (see Section 2) is that in the submanifold M0 the
coordinate dependence U(x0) of the energy of the elemen-
tary excitations of the structural type is unique, whereas in
M, there is an entire ensemble {U(\Q)}. To study the kinet-
ics of the excitation of a homogeneous system it is sufficient
to specify the fraction n = lim^^ (Nt/N) of structural
units that have gone over from M0 to M\. Since under condi-
tions of plastic deformation the degree of excitation и of a
system is determined by the hydrostatic component p of the
stress tensor a, the excitation parameter that specifies the
degree of qualitative rearrangement of the system can conve-
niently be taken as the pressure p, which, when it increases to
~(10~3-10~' )fj,0, where /a.0 is the shear modulus, gives an
excitation n ~ 1.

Before setting up the theoretical framework, we should
mention that plastic deformation can occur both under con-
ditions of active loading, where a constant rate of deforma-
tion £ext is maintained, and under conditions of creep, where
the external load ffext is constant.1 In the former case the
order parameter, which gives the response of the system to
the external action, is the amount of plastic deformation E,
and the susceptibility to this action is determined by the ef-
fective time гщ = ЭЕ/ЗЁ. During creep the order parameter is
the rate of plastic deformation e, and the susceptibility re-
duces to the inverse of the viscosity. In the phenomenologi-
cal approach presented below, we shall at first consider the
regime of active loading. The transition to the conjugate re-
gime of creep will be made with the standard Legendre trans-
formation.8

While the closed description of thermostatic phase
transformations is achieved by the separation of the collec-
tive mode, whose amplitude is the order parameter,8 in the
present case of a kinetic transformation the introduction of
the single quantity n (p) is clearly insufficient.9 The physical
formulation of the problem of plastic deformation itself tells
us that the magnitude of the plastic deformation E is to be
taken as the order parameter, while for the conjugate field
we should take the corresponding shear component т of the
stress tensor a. In the simplest case (see below) the rates of
change of these quantities, p, ё, т are given by the Lorentz
system11

/ > = [ ( P o - p ' p l -

e = -(e/g + (т/г/0), (1.1)

where the first terms on the right hand side of each equation
represent the autonomous relaxation of these quantities to
the steady-state values e = r = 0 and/? = p0 (T,ant ), where
Т is the temperature, crext is the external stress tensor, and
tpiC_T are the characteristic relaxation times of the corre-
sponding quantities. The last terms in Eqs. (1.1) describe,
respectively, the decrease in the fraction of excited structural
units during plastic deformation in the field of the shear
stresses, the flow of the medium under the action of the
stresses, and the increase of these stresses as a result of the
excitation of the structural units during plastic deformation
(gpr and rj0 are positive constants).

The linear equation in (1.1) is the well-known equation
for the flow of a viscous-elastic medium, where tF = rjQ//^0,

the quantity r/0 is the shear viscosity, and /j,0 is the shear
modulus.21 The minus in front of the energy of plastic defor-
mation in the first equation of (1.1) reflects Le Chatelier's
principle and the plus in the last equation means that there is
a positive feedback leading to a qualitative reorganization of
the system as a result of self-organization in the ensemble of
structural units. The nonlinear terms ET and Ep were chosen
because they represent the shear and hydrostatic contribu-
tions to the energy of the plastic deformation.

If the conditions tc > tp and tc > tT are satisfied, we can
in the adiabatic approximation set p = т = 0 in Eqs. (1.1).
As a result, the kinetic description is a single regression
equation in the order parameter Ct£e = — dV/de, where
the synergetic potential V(E) is

— 2

' — г 4 1 — — in= С-̂ -1 1 — — In

рс = ̂ 4~. E

g

2 = ̂ /iT; (1-2)

and С is a constant whose meaning will become clear at the
end of this section and in Section 4.4. In addition, Aa = taga

and a = p, т. The components of the stress tensor are given
by the equalities

p = p0[l + (е2/ф Г1, т = Arp0e[l + (eVeJ)]-1.

(1.3)

It can be seen from this description that an increase in the
spontaneous plastic deformation E results in the relaxation
of the hydrostatic component of the stress to below the effec-
tive valuepa (T,ani), and an increase in the shear compo-
nent T(E) according to expression (1.3), which has the form
of Hook's law when £<^£g and results in saturation of the
limiting value of the plastic deformation £g ~ 1. In this con-
nection it might be said that the transition of the system to an
excited state, determined by spontaneous plastic deforma-
tion £^0 leads transformation of the high pressure
p ~ (10"~3-10 ~ ' )fj,0 into the shear component т of the inter-
nal stress field. It is easy to see that typical times involved are
Ar ~A - l ~ 10 - 10;t and tp ~tT ~ 10 - 12 s.

For small loads <7ext, where the effective pressure
p0 (T,aca ) is less than the critical pressurepc, the fraction of
excited structural units, и0 (р0), is so small that no coherent
connection is established between them. Then expression
(1.2) increases monotonically, and the system relaxes to the
steady-state values £ = О, т = 0, p = p0, и = n0. As the load
бе,, increases the condition pQ >pc (and consequently
«0 > nc) is satisfied at the initial level. Expression (1.2) then

has a minimum at the point ee = £g ̂  (p0/pc) — 1, corre-
sponding to the steady-state value of the deformation at the
new level. According to expression (1.2) the effective time
t^ to form this level and the partial viscosity rj = ц0 ?ч of this
level, determined by this time; are

tq = te[(p0/pc) — 1 ]""', i] = »;O[(PO/PC) ~~ 1]~'> (1-4)

where ?70 =--fj,0t£, Since the viscosity is given by the relation
r/ ~ ~ 1 = dE/dr, and the appearance of a new level contributes
an amount £e = £c/te to the rate of plastic deformation, the
effective viscosity becomes 77^' = r;0~ ' + 77" '. Taking into
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account (1.4), when p0 >pc we obtain rjeS — (p^/po^o
< fjo—the appearance of a new level of plastic deformation
reduces the effective viscosity of the medium.

As a result, the synergetic picture of the nucleation of a
structural level is as follows. In the absence of a coherent
connection of the structural units, which can be character-
ized by the value of the order parameter E, we have the initial
values of the plastic deformation, e0, and of the components
of the elastic stresses, p0 and TO . If, when the external condi-
tions <rcxt and Гаге varied, the effective pressurep0 exceeds
the critical value/?c ~(10~3 — 10~')/z0, then, asaresultof
the coherent connection of the structural units, a collective
mode appears which supplies an additional amount

i - П1/2 (1.5)

to the initial value £0 of the plastic deformation. In addition,
a collective component те = ATp0ee [ 1 + (^l/^l) ] '
= ATpcee is added to the initial stress r0, while the pressure

as well as the fraction of excited structural units, which is
determined by the pressure, fall off to the critical values pc

and nc. As the difference p0 —pc>0 increases the values of
ec, re, the plastic deformation, and the applied stresses in-
crease, while the pressure />e, the time of formation of the
level, гп, and the effective viscosity ?7eff decrease. The kinetic
transition to the steady state (1.5) results in the production
of entropy, the maximum value of which is С ~ ' | V( ee) \.

The chosen system of kinetic equations (1.1) is prefera-
ble in the sense that the form of its nonrelaxation terms fol-
lows from a simple Hamiltonian of the Dicke type. The
square of the order parameter is proportional to the number
of coherently connected structural units, the pressure is pro-
portional to the number of excited structural units, and the
shear stress т is determined by the excitation-induced polar-
ization of the system of structural units as a result of the
subdivision of the manifold M into the submanifolds
А/о еЛ/, (Ref. 11). The fact that the coupling constant is
imaginary reflects the dissipative nature of the hydrodynam-
ic model of plastic deformation (see Section 2).

Although the function we have obtained, Eq. (1.2),
corresponds to second-order phase transitions, this scheme
is readily generalized to first-order phase transitions. For
this purpose it is sufficient to go over to a nonlinear viscous-
elastic medium already in the initial state, and assume that
the relaxation time te depends on e (Ref. 11). The synergetic
potential V(e) as a function of the order parameter sur-
mounts the barrier that separates the initial and the steady
state; this is a characteristic of a first-order transition.8 This
situation is in accord with the experiment7'19 described in
the introduction: the formation of a new level on the back-
ground of the old level proceeds in a manner like the decom-
position of a solid solution,22 where the role of the average
concentration is assumed by the average pressure/> over the
sample. In accordance with Refs. 7 and 19, the increase in
the external load (or the multiple plastic deformation in the
case of rolling) results in an increase in the average "concen-
tration" Я ос/5 of excited structural units, which in accor-
dance with the "lever" rule y=(p — p^)/(p0 — />e)
= (p—pc)/(po — />c)> causes an increase in the volume

fraction у of the "phase" that corresponds to the new level.
Under conditions of creep aext = const it is necessary to

go over to the conjugate synergetic potential V=V+ Cteee,
which is a function of the rate of plastic deformation e. Here
the deformation itself £= (Ct c ) ~ ldV/de acts as a general-
ized force, which gives the nonequilibrium analog of the
thermodynamic potential Ф according to the equation
— t ~ 'дФ/де — Се. Since the left-hand side of this expres-

sion represents the shearing stress r caused by the plastic
deformation, we have, using Eqs. (1.3) and (1.5),
C= т/£ — ATp^fj.. Thus, the energy density С determines
the degree of excitation of the system above the modulus ц.
The quantity С does not reduce to an effective pressure
Po =Po( T,ff<.*t) • Its physical meaning is established in Sec-
tion 4.4.

To conclude this section, we present an example of an
experimental situation which demonstrates explicitly the
formation of a new structural level of deformation. Of
course, the nucleation of any type of defect is an example of
localization of such a level; however, its properties are most
clearly perceived when this happens in a region of macro-
scopic dimensions. The clearest example of such a situation
is the superplastic state, in which the sample under the ac-
tion of a constant load is able to increase its length many
times.23 It is well known that this state cannot be established
instantaneously over the entire volume of the sample, but
occurs via the motion of the boundary between the elastic
and plastic regions, which is known as the Chernov-Luders
band.24

The mechanism for the formation of the superplastic
zone through the multiplication of defects has been studied
in Refs. 25 and 26, which dealt with the behavior of high-
strength alloys containing finely divided precipitates of a
nonmetallic phase under the action of intense loads
~ (10 ~ 2-10 ~' )ц0. It was found that the stopping of gliding
dislocations near the precipitates results in an influx of va-
cancies towards these regions, and these vacancies allow the
dislocations to climb by overcoming the potential barrier
and by virtue of an increase in the dislocation density. The
higher the vacancy concentration the greater is the increase
in the dislocation density. In turn, the motion of the jogs in
the dislocations results in an increase in the vacancy concen-
tration, so that the evolution of the system assumes an auto-
catalytic type of multiplication. Experiments have shown25

that this leads to extremely high concentrations of vacancies
~10^4 and dislocation densities, ~1012 to 1013 cm"2. A
coherent connection is thus set up between the defects, and
one should speak not of the autonomous behavior of a defect
in the field of its neighbors, but of the self-consistent behav-
ior of the entire ensemble. The behavior is described by the
system of equations (1.1), where the hydrostatic component
p of the stress field determines the defect density, while the
critical value of that component, pc, corresponds to the es-
tablishment of a coherent connection between them. As a
result, a new structural level of plastic deformation is
formed, and is manifested in the experiment as a band of
plastic flow localized in a ~ 1-yum region (not to be confused
with kink bands, which have a thickness >10 A). An S-
shaped (sigmoidal) section is thus obtained on the plot of
e(<7ext), the rate of plastic deformation as a function of the
external load. It is easy to see that this situation is reminis-
cent of the formation of electric domains in semiconduc-
tors.27
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2. SPATIAL STRUCTURE OF A NUCLEATING LEVEL

Let us now consider the spatial distribution of the fields
that characterize the new level in the steady state. For this
purpose it is not sufficient to use the integral characteris-
tics — the fraction of excited structural units. It is necessary
to introduce the force fields t/(x0 ), U(x0 ), U(x0 ) , etc. con-
jugate to the material fields p ( x0 ) , p ( x0 ) , p ( x0 ) , that char-
acterize the distribution of the structural units in the initial
level. These fields realize the bases of the irreducible repre-
sentations of the initial group GQ of the symmetry of the
system. The distribution of the material fields specify the
thermodynamic potential Ф{/?(х0),р(х0),уо(х0 ),...},
whose variation gives us the force fields1 '

5Ф <5Ф л

(2.1)

The first of these is determined analogously to the energy of
the elementary excitations of a many-particle system28 and
represents the potential relief of the structural units in the
initial level [for example, for dislocations the distribution of
U(x0 ) is the Peierls relief3].

A deviation of the system from equilibrium results in
the excitation of the ensemble of structural units, which
shows up in a "smearing" of the force fields. The probability
of realizing specific distributions C/(x0), U(x0),
.̂
l/(x0 ),... is determined by the distribution

U(x0),

U(x0), £/(x0),

which is given by the corresponding functional of the syner-
getic potential and the white-noise correlator С of the tem-
perature type.9 The set of order parameters that character-
ize the new level are determined, as usual, by the long-range
correlations of the deviations S U(\0) = U(x0) — (C/(x0)>,
S ил(х0) =U (x0) - (U (x0)>, S U (x0) = U (x0)
— (I/(x0 )),... about the corresponding average values

= | Е ( Х о ) 1 * - '2<Xo>' •-

where the average is taken over the distribution
P{U(x0 ),...}. Here the change in the characteristic length
scale at the new level is displayed explicitly: if the value of
U( x0 ) changes over distances x0 > /0 , then s ( X0 ) = \ E ( x0 ) |
at distances x0 >/, where the scales /0 -^/ correspond to the
initial and the new levels ( see the Introduction ) . However, if
it is kept in mind that there is a change not only in the modu-
lus e of the complex order parameter E = £e"f>, but also in its
phase (p, whose oscillations <p ( x ) are observed at small dis-
tances Jt0>/0. then one must use the more exact function
E(x0) = £(X0)exp[/£>(x0)]. The transition from the ini-
tial scale /0 to the new scale / implies spontaneous breaking
of the conformal in variance and will be realized below with-
in the framework of a gauge-field scheme. Here it should be
noted that the definition (2.2) gives the simplest possible
order parameters. The entire set of them Е<л>, Е<и>, £<£>, ...,
where a, b, ..., are the "internal" polarization indices, corre-

sponds to an expansion in terms of nonequivalent irreducible
representations n = 1,2,... of the direct product G0 ® G0 of
the initial group.29

Let us consider first the very simple case of a scalar
parameter E = ее"10, which is characterized by the group
U( I ) . The standard analysis shows" that U( 1) in variance
makes nonunique (for the new level!) the external coordi-
nate x0. This nonuniqueness, which reflects the appearance
of defects at the new structural level, is compensated by the
extension of the derivative d0 =d /dx0 -> V0 =d /d X0 — d0

+ Г0, where Г0 is the potential of the corresponding gauge
field;30 from the geometrical point of view Г0 is the connec-
tivity in the stratification, which is a nontrivial generaliza-
tion of the direct product of the manifold (base) M of initial
structural units to the gauge group U( 1) ,20'31 In the nuclea-
tion of the structural units of a new level it is convenient to
use associative stratification, considering at each point x0

not the transformations of the gauge group, but the corre-
sponding potential Г0, whose value is associated with the
displacement u0 = X0 — x0 by the equation Г0 = — /ge u0,
where ge is the elastic charge.11

Going over to four-dimensional coordinates x%, X%,
where/z = 0,1, 2, 3;х„ = c0t,X% = C0t (herec0 and C0 are
the velocities of transverse sound in the initial and the new
levels), we shall describe the structural unit of the new level
by the distribution of the material field Е(ЛГ£). Let us con-
sider first the simplest Ginzburg-Landau scheme, which is
defined by the Lagrangian11'32

L".= 2 (2.3)

where F(E) is the synergetic potential defined by a function
of the type (1.2), where the role of the order parameter e is
taken over by the complex field E(JTg), and P and w are
positive constants. The spontaneous breaking of the confor-
mal invariance of the action, corresponding to Eq. (2.3), is
obtained by a variation with the Lagrange multiplier v^ and
leads to the appearance of the scale /. Actually, since the
external coordinate x% corresponds to a change in the phase
<p(x%) at distances *£>/„ while the internal coordinate X%
describes the function Е(Х%) at distances Xg>/, we quickly
obtain from the equation VQ In e = wd %<p the condition
/= I0/w, which fixes the scale / by the assignment of the
parameter w<^ 1 (/0 is given a priori). Correspondingly the
gauge is specified: Eg = d^( — In E + wcp). Corresponding
to this choice of strength of the gauge field there are nonzero
values if the phase <p(x%) is a many-valued function. Then
<j>T0^dx% = w<j>dq> = 2-trwn, n = 0, +1, ... . This means
that the structural units play the role of the elementary carri-
ers of the gauge fields. Accordingly, the manifold M be-
comes multiply connected.

The equation for the material field, which follows from
Eq. (2.3) has the form

^oV5 = ̂ V ~ Г2ЭУ/дЪ*, (2.4)

where the gauge condition <?'оГ„м = О has been taken into
account. The nature of the solution of this equation is deter-
mined by the value of the parameter1 [

x = • • = 4л dV , (2.5)
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where gc = с0р0/4ттт)013ес is the charge of the elastic field,
p0 and 770 are, respectively, the density of the medium and its
shear viscosity in the initial level, and ES is the maximum
steady-state value of the order parameter, expression (1.5).
When the conditions are unfavorable for plastic deformation
in the initial level, when the shear viscosity т/0 ее g~ ' is so
large that x > 2 ~~ 1/2, then the steady-state dependence has a
soliton-like solution that is characterized by a minimum
scale lm = /? /йее . From this we obtain the maximum value
wm — l0eeb//3 < 1 for the gauge parameter w = I0/l.

An analysis' ' shows that if a soliton corresponds to the
localization of the shear component of the displacement field
u0 (x0 ) ос Г0 (x0 ), then its strength falls off as XQ '. It is
obvious that this solution may be related to a dislocation. In
the localization of the rotational component of the displace-
ment, the skew-symmetric component of its gradient varies
as In X0 , corresponding to a disclination. To avoid misun-
derstanding, we note that although we are considering the
simplest group U ( 1 ) , it is a gauge group and not the space-
time affine group A(3,R), which is studied in Section 3 [its
subgroup of translations T(3) corresponds to the ensemble
of shear dislocations, the group SL(3,R) corresponds to ro-
tational disclinations and dislocations, and the group of dila-
tations Д(3) corresponds to point defects].32'33 The gauge
group U ( 1 ) of phase transitions with the order parameter
E(JC£ ) = e(X^ )exp [/<p(xg ) ] used here is related to a vari-
ation in the external coordinate x% in the new level. Since the
corresponding distances x0 ~ 10 are much smaller than the
scales / of the variation of the internal coordinate X%, the
system is gauge invariant to an accuracy ~(/0//)d<^l
(where d is the dimension of the space of M ) . The introduc-
tion of the gauge field compensates for this inaccuracy.

The Ginzburg-Landau scheme does not take explicit
account of the behavior of the ensemble of structural units
(in Section 1 it was represented by the fraction n (p) of excit-
ed structural units). We now lift this restriction, using a
field-theoretic approach. Moreover, we keep in mind the
more complicated case of the non-Abelian gauge group
SU(2), which corresponds to a three-component order pa-
rameter Ea (X'Q ) , where the index a = 1, 2, 3, enumerates the
polarization branches of the displacement waves.34 Here the
material fields Ч>0 (я£ ) of the distribution of the structural
units that realize the bases of the gauge group will be two-
component (the components corresponds to the excited and
unexcited states) — in keeping with the dimension of the gen-
erators f* of the group SU(2), which are the Pauli matri-
ces.20 In this case the material component of the initial La-
grangian has the form35

2 4

(2.6)

where 0, со, and b are constant parameters, V{£ = d0fl 8ab

+ £abc^j'" = iCa
bc4>b4>cis the current of structural units,

C"bc = eabc are structural constants, which in the case of
SU(2) reduce to the antisymmetric tensor eabc. As with all
non-Abelian models, the Lagrangian (2.6) leads to asymp-
totic freedom on the one hand and to confinement on the
other.36 In this case this means that as the structural units
approach each other the coherence in the distribution over
the excited and unexcited states through the exchange of
quanta of the gauge field is weakened and as the structural

units separate the coherence increases without bound. This
fact reflects the long-range order in the distribution of the
structural units.

Variation of the action corresponding to Eq. (2.6) over
the field 44;rg ) results in an equation of the Weyl type30

= 0, (2.7)

where / is the 2 X 2 unit matrix. It is characteristic that the
term that contains the order parameter — the plastic defor-
mation field Ес(л£) — plays the role of the mass of the bare
"fermion," the structural unit, which is distributed over the
excited and unexcited states.2* Using Eq. (2.7) to eliminate
the field Ф0 (x(J) from the Lagrangian (2.6) we bring it in the
standard way30 to the form (2.3), where the function F(E")
is given by a Landau-type expansion with a minimum at the
point |E" | =£"„ = ш \ 4>"\. This means that the dispersion law
(the mass) ы of the bare "fermion" must be of an imaginary
nature. ' ' As a result of the exchange of Higgs bosons corre-
sponding to the field of the plastic deformation between the
fermions, which are the structural units, the gauge symme-
try is spontaneously broken. The longitudinal component E1

of the plastic deformation takes on a fixed value E' , and the
two transverse components transform into Goldstone bo-
sons of restoration of SU(2) symmetry, that is they become
the elastic components e1 and e3 of the strain field. Converse-
ly, for the corresponding components Г2,^ , and Г^ of the
potential of the stress fr, the dispersion law takes on a plastic
character, while for the longitudinal component Г^ it re-
mains elastic.

Besides the solutions that belong to the Abelian gauge
groups, the SU(2) symmetry leads to a new solution related
not with the gauge field, but with the topology of the distri-
bution of the plastic deformation field. It is a three-dimen-
sional soliton like a magnetic monopole, where the plastic
deformation is localized as a result of the interaction of the
various polarizations of the elastic stress field. Since this
field falls off as X^ 3 far from the soliton, we can conclude
that this solution represents a point defect.35

Let us consider now the field aspect of the nucleating
structural level, described by the Lagrangian

'Oo' (2.8)

where ge is the elastic coupling constant and the three iso-
normal components 2^v, (a — 1,2,3) of the elastic stress
tensor, which correspond to the different polarizations of
the elastic waves, are given by the nonlinear relation30

л p
~ " 1 (2.9)'fl|« ^ftc'O/i'Oi-'

The corresponding equation for the elastic field of a single
structural unit has the form

(2.10)

where the second expression determines the current of ele-
mentary excitations (the phonons), that create the elastic
field. If only a single polarization is considered, then Eq.
(2.10) is linear; in the general case a nonlinearity reflects an
interaction among the different polarizations. The strength
of the elastic field is given by the following quantity averaged
over the polarizations36
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where Г0 / х=иаГ^ and n. = E0(E*EJ -1/2. It is the
quantities (2.11) and not (2.9) that characterize the real
elastic field: thus, for a point defect each polarization gives a
contribution ^oij ~EijkXo-Xo/Xa' whereas in fact, the field
20y s; — EijkX%/Xl is what is measured.35

The scheme described here gives a complete description
of an arbitrary defect at the new structural level. The materi-
al field E, being the solution of Eq. (2.4), describes the reor-
ganization of the collective behavior of the structural units
in the nucleus of the defect. Its characteristic coordinate de-
pendence and the corresponding behavior of the potential
relief are shown in Fig. 2. It can be seen that in a region
bounded by the correlation length J" = /3C ~ 1/2, the poten-
tial relief becomes smeared out, resulting in a decrease in the
shear viscosity ??eff . If the Einstein-Smoluchowski relation
D <* ^eff ' ^ taken into account, it is possible to understand
the increase by several orders of magnitude in the diffusion
coefficient of atoms along dislocation tubes.23 Actually, it
can be seen from Fig. 2b that the smearing of the relief that
occurs at the nucleus of a dislocation reduces the effective
height Q of the relief, and, consequently, increases the diffu-
sion coefficient, Dec exp( — Q/T).

In contrast to the distribution of the field of the plastic
deformation, the elastic field 20 / / V(X0) disappears as a re-
sult of viscous flow at distances that are much greater than
the correlation length |", and are characterized by the length
scale Л = g~ l£~ ' <x 77OJu0~

 1/2. The use of the field theoretic
method allows us to reproduce the nature of the variation of
the stress field in the elastic region X0 -^Л for the principal
types of defects. Outside of this region the plastic deforma-
tion results in complete smoothing out of the elastic stresses.
Because of this circumstance it is possible to avoid the well-
known difficulty in the theory of defects,2'3 which show up,
for example, in the calculation of the energy of a dislocation.
The localization of the elastic field of a defect in a region of
dimensions Л means that the cutoff parameter is to be taken
as the dimension of this region. As a result, the standard
calculations lead to the following values for the energy of the
principal types of defects (in units of /UQ/^, where
/m =0/b£e): &Ф~х ' In к (Ref. 36) for a point defect;

ДФ ~ к 2 In к for a dislocation;и ДФ ~ In к for a disclina-
tion of unit length. Here the Ginzburg-Landau parameter
(2.5) is related to the characteristic length scales £ and Я of
the variations of the material and elastic fields by the relation
x=A/g.

A characteristic feature of the field theoretic descrip-
tion of defects is that they are represented as self-localized
entities belonging to the nucleating structural level. From
the formal point of view the localization of a level is due to
the large values of the parameter x~ri0/j.Q 1/2 in an elastic
medium with a small degree of plasticity. It is noteworthy
that the formation of linear defects (dislocations and disclin-
ations) is due to the independent self-localization of each of
the polarization branches a = 1, 2, 3. In contrast to this pic-
ture, the self-localization of the fields that correspond to
point defects is due to the linking of the different polariza-
tion branches. In this sense Kroner's concept37 of a point
defect as three mutually perpendicular dislocation loops of
infinitely small size is justified. In the framework of our ap-
proach a point defect is the model of a "Polyakov hedge-
hog." Here the self-localization is due not to the interaction
of the various degrees of freedom, but to the self-action of the
gauge field of the elastic stress, brought about by the non-
Abelian nature of the SU(2) group. Thus, a point defect is a
topological feature of the field Ea (X a ) (and not a dynamic
one as in the case of a dislocation or a disclination) in which
the field changes its sign, while the gauge field Гцд (Х0) is
absent.

3. SPACE-TIME BEHAVIOR OF A STEADY-STATE ENSEMBLE
OF STRUCTURAL UNITS

The use of gauge symmetry in Section 2 allowed us to
describe single structural units of a nucleating level. Let us
now consider the situation of a well-developed level, where
the density of structural units is high (in Section 2 we had
/ //m > 1; here / /lm ~ 1). In this case we have a change in the
geometrical structure of the manifold M of the ensemble of
structural units. In particular, it proves to be impossible to
separate uniquely the internal coordinate x into elastic x(e)

and plastic x(£) components. Correspondingly, the separa-
tion of the field (elastic) component u(e) from the total dis-
placement u = x — X0 of the points X0 of the manifold M in
the transition from individual structural units of this level to

FIG. 2. a) Coordinate dependence of the material deformation field E
and the elastic stress field yc near a defect, b) Corresponding form of
the potential relief.
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the ensemble of units is also no longer unique. This is due to
the nonintegrability of the l-formse^ = е?АХ'0 generalizing
the concept of the differential D 0 u f f } = V0,M?e) dX'0, where
V0; = <?o, + Г0,, introduced in Section 2 (Ref. 30).

The study of an ensemble of structural units requires an
analysis of the physical fields in the principle stratification of
the basis M due to the action of the space group G (Ref. 32).
The geometry of stratified space is given by the structure
equations of Cartan38

T = de = £>0e + f л e, Q = df= />0?+ Г л f, (3.1)
S*.

which define the 2-forms Т and ft of the torsion and the
curvature as the inner differentials of the initial 1-form e(x)

./ч

and the connectivity Г(х) (by definition we have Z)2, = 0,
but d2^0jk The^form of the curvature obeys the Bianchi
identity dft = d2r = 0 (Ref. 30). In an expansion over the
basis (1/2)емЛег the 2-form Z>0e has as components the
structural coefficients CVM, while the forms of the torsion
and the curvature have the components T/JV = Гм„ — Tv^
and^v= [dv,d>t] (Ref. 20).

In a circuit around the closed contour in the space of M
the tangent vector A(x) turns by an amount 81= /fty-S"',
and the contour lacks closure by the vector | = — T^S ij,
where 5му is the area of the contour, / is its length,
fty. = d0jT

b

bi — doiT
b

bJ is the segmentary curvature tensor,
and Г* are the Christoffel symbols, which are the compo-
nents of the connectivity form Г". Among the three enumer-
ated geometrical objects the following is a natural classifica-
tion of the structural units at the new level (Fig. 3): A space
of absolute parallelism with dislocations corresponds to
nonzero Т,.,; in Riemann space with disclinations Rtj /0; for
Л,у^0 and T,jj^0 we have a Riemann-Cartan space with
dislocations and disclinations; the general case Ry^O,
T,j- 7^0 and ft у 7^0 corresponds to an affine metric space with
disclinations, dislocations and point defects.32 Thus, the
tensor T,y characterizes the density and flux of the shear
component of dislocations, and Rtj corresponds to the space-
time distribution of rotational dislocations and disclina-
tions, and finally, ft v corresponds to the distribution of point
defects.32'39 The Cartan structure equation (3.1) describes
the mutually connected kinematics of ensembles of defects,
which comprise the structural units at the given level.2'33

The symmetry of the system is described in the general
case by the affine group A(3,R), which is isomorphic to the
semidirect product GL(3,R)>T(3). In turn, GL(3,R) is

decomposed into the group of dilatations Д(3) and the
group SL(3,R) of transformations that conserve volume.
Since the matrices of the bases of the Abelian groups T(3)
and Д (3) commute with the rest of the basis matrices of the
original group A(3,R), its representations coincide with the
representations of the group SL( 3,R), in which the group of
rotations SO( 3) appears as a subgroup. As a result, the irre-
ducible decomposition of the A(3,R) connectivity has the
form32

Г,у = Цу + K(y + ^Hd.j = H.j + 'jHeJy, (3.2)

where the antisymmetric component Lv corresponds to the
group of rotations and Ky- = Г(1>) — (l/3)H<5y is the sym-
metric traceless component. In the decomposition over the
corresponding basis matrices of the groups they have the
form

(3.3)
=1,2,3.

Substituting (3.2) and (3.3) into (3.1) we obtain the
strengths of the basis fields33

(3.4)

where the index after the comma indicates the derivative
dM = ( VQM + hp )I + Yabh £* with respect to the internal co-
ordinate Jf; antisymmetrization and symmetrization are
performed over the indices in the square brackets and paren-
theses, respectively.

The field component of the Lagrangian is the sum of
terms32'33

where Я0 and/z0 are the Lame parameters at a given level, gc ,

51 5A

61= IQS,

S-TS,
6A--^«AS

FIG. 3. Variation of the tangent vector Л and of the contour (of length /
and area 5) for a circuit around a defect. (/ and/are the initial and final
points of the circuit; Ы and £, are the elongation and the deviation of the
contour from closure.

gh , g-h are the charges of the fields , h Jf ; vf is the La-
grange multiplier that takes into account the coupling be-
tween these fields, expressed by the last equality in Eqs.
(3.4). The covariant notation of Eqs. (3.5) contains implic-
itly three metric tensors, corresponding to each of these
fields. Consequently, the field Lagrangians Lc,Lh, L-h of the
defects contain an additional three velocities, which charac-
terize the ensembles of these defects. As the density of the
structural units decreases the elastic component Le in Eqs.
(3.5) reduces to the corresponding contribution L0e [see
Eq. (2.8)]. They differ in being expressed in terms of the
conjugate quantities e'^ and 2^, respectively.

The field equations corresponding to Eqs. (3.5) are
written in the form3' (Refs. 32 and 33)
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d1.= -F AR- F Л Q;
(3.6)

Here d is the differential with respect to the internal coordU
nate x, and the components of^the strengths of H, F, and G
and of the currents /, 2, and /, corresponding to point de-
fects, dislocations, and disclinations, respectively, have the
form33

dLh
BL,

a

Ib.
дТ.

(3.7)
f4V

jHV ft

where Cc

a

d

b are the components of the metric of the Cartan-
Killing group SL( 3,R). The condition of integrability of sys-
tem (3.6),

d/ = 0, d/ = 0 (3.8)

guarantees the equilibrium of the couple stresses for the
point defects and disclinations (see Ref. 33). Since the cur-
rent 2 of the field e is an elastic stress, the condition of equi-
librium for it is given by the first of Eqs. (3.6).

The system of equations (3.6) augmented by conditions
(3.8) provide a complete self-consistent description of the
distribution of the fields of defects and elastic stresses. It can
be seen from Eqs. (3.7) that the strength of H corresponds to
the distribution of point defects due to the current/. Corre-
spondingly the fidd F jind the current 2 are related to the
dislocations and G and / to the disclinations. These relations
refer not only to the static case, but also to the self-consistent
time evolution of the fields. For an explicit expression of this
evolution one must take into account the form of the time
component of the basis e° = ct, where с is the velocity of
sound, de° = 0, and the corresponding component dt/\d /dt
of the operator din Eqs. ̂ 3.1), (3.6) and (3.8).Then each of
the 2-forms П, T, and R are given in the form *p +jf\dt,
where p and j are the density and current of defects of the
corresponding type, the asterisk * means the dual conjuga-
tion with the use of the unit antisymmetric tensor.20 The
structure equation (3.1) of Cartan establishes the relation
between the densities and the currents of the various types of
defects of the specified stress fields; i.e., they describe the
kinematics of the defect fields. By contrast, system (3.6)
also takes into account the self-consistent variation of the
force fields, thereby representing the dynamic regime of the
evolution of the system of defects.

Because of the complex structure of the components of
the Lagrangian (3.5), the analysis of the general case pre-
sents considerable difficulties. The various special cases can
be studied by analogy with the work of Ref. 33. Here we
present examples for only the simplest kinematical situation,
which arises in the description of only a single type of defect.
If this defect is a dislocation (of the translational type), then
in Eq. (3.1) the connectivity is Г = 0 and dT = 0. From this
and the first equality of (3.1) we obtain the well-known
equations of dislocation kinematics (see Section 29 in Ref.
21)

(3.9)

(3.10)

where we have gone over to the standard notation. If the only
nonzero component in H in the connectivity (3.2) is that
corresponding to point defects, then from (3.1) we obtain
the equations

Л e, Q = dH, (3.11)dT = *J,, *J, =

that relate the behavior of the dislocations to the field of the
point defects, characterized by the current J(. If the sources
of dislocations are also sources of disclinations, then the to-
tal current J, = Jp + Jd on the right-hand side of (3.11) is
made up of the components

*Jp = |(fi л е - Я л Т),

*Jd = 6 л e - Я л Т,
(3.12)

which correspond to contributions from each type of defect
source. Allowance for self-consistency in the behavior of the
dislocations themselves is taken care of by the equation32

d*T=*J, (3.13)

in which the current J is a direct source of dislocations.
In going to a three-dimensional description Eq. (3.11)

reduces to a relation of type (3.9), where, however, the
right-hand sides are the nonzero terms /,, and a, of the 3-
tensors of the current and the density of defect sources. Ac-
cordingly, the equation (3.13) of self-consistent behavior of
the dislocations is rewritten in the form

.„u •"• X\

Vx;=-a, (3.14)

where the tensors / and a are the components of the 4-cur-
rent * J sources of dislocations.

Above we have presented a scheme for the description
of the fields of the density and current of the dislocations for
a given distribution of point defects and disclinations,
which, in addition to the direct sources J of the Frank-Read
type play the role of indirect sources. In a similar way, by
specifying the distribution of two of the three possible types
of defects, one can describe the behavior of point defects and
disclinations. A very interesting topic is the study of the mu-
tually consistent behavior of the two types of defects when
the distribution of only the third one is specified. Here it is
possible to describe from first principles these effects as the
autocatalytic multiplication of defects,26 the onset of self-
oscillatory behavior,40 and so forth. Unfortunately, this pro-
gram has not yet been realized.

4. DESCRIPTION OF THE HIERARCHICAL MULTILEVEL
DEFECTSTRUCTURE

4.1. Formation of a hierarchical structure of defects

As can be seen from the previous discussion, the total
Lagrangian that represents a given structural level has the
formL = Z,m(E,u,e,A,A) +Z,e(e) + Ls(ft,T.-K), where the
structural component is Ls = Lh + Lc + K-h. If the density
of structural units is low one can neglect the contribution Ls,
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assuming that the curvature-torsion of the space of Л/is zero
and the defects are single. A direct calculation then gives an
estimate of the minimum values of the intensity of formation
of defects (in units of be\): flcl ~x ~~' In x for point defects,
3™cl ~ln к for dislocations, and Rcl ~x In к for disclina-
tions. Since x^>\ we have the hierarchy Ocl <Гс] ^Rc};
point defects are the most easily formed, dislocations are
more difficult to form, and disclinations are the most diffi-
cult.

In the case of a well-developed structural level the den-
sity of structural units is so high that one can discard the
nonlinear terms in the deformation E. Then the linearized
equation (2.4), where Г0 is replaced by Г„ + Г allows us to
find the upper critical field for the formation of the next
level. Since for all defects this field is given by the same con-
dition for the formation of a localized level in the effective
potential of the linearized Schrodinger equation (2.4), the
upper critical field for Пс2, Tc2,Rc2 is ~x (in units of ЬЕ\)
regardless of the type of defect. For disclinations we have
/?с,/Лс2 ~ln x > 1, in connection with which they are ob-
served only in the form of disclination dipoles.4"7

To ensure a sufficiently wide region of existence of dis-
locations and point defects at a particular level requires large
values of the ratio к = Я /7m of the damping length of the
elastic field Акт) to the correlation length /m = I0/wm. A
direct check shows that this condition is satisfied best at the
atomic (microscopic) level. With the transition to the next
mesoscopic level, the formation of the structural units that
belong to that level, which act as carriers of the plastic defor-
mation, reduces the effective value of the shear viscosity to
т) = r j 0 ( l + x~) ~'<??o> and, consequently, decreases the
length Л = Я 0 ( 1 + д О ~ 1 < ^ Л 0 , where x is the susceptibility
to shearing stresses. On the other hand, by virtue of the spon-
taneous breaking of conformal invariance there is an in-
crease in the scale /m by a factor of ш,̂  ' > 1. Therefore, if we
have x0 > 1 at the initial level, then at the next level we obtain
a much smaller ratio x < wm x0 <д:0. As a result, as the struc-
tural units become larger the region of existence of equiaxial
formations, and, a fortiori, of dislocation formations grows
smaller (the condition for the formation of disclination com-
plexes, on the other hand, are more favorable). This conclu-
sion is in agreement with experimental data.4"7

Within the framework of the approach developed at the
beginning of Section 2, let us now explore the pattern of
evolution of the defect structure for the deformation of an
ideal crystal under conditions of creep (<7ext = const). Let
the external conditions Т and aext be such as to make the
configuration point of the system fall in the region of exis-
tence of the «th level (Fig. 4). In the absence of deformation,
a single atomic level is realized. It is represented by a poten-
tial energy U0 (x) for a probe atom that is periodic and char-
acterized by an interatomic spacing a = !0. Excitation of the
system, which induces the formation of the succeeding level,
changes the shape of the potential relief E/(x): thermal exci-
tation Г smears out the function E/(x) into an ensemble of
reliefs {{/(x)}, the pressure/? changes the height Q~/n0ll,
of the relief, and the shearing load r changes over the length /
the reference level of the potential function U0(x), which
oscillates with a period /0 (clearly, l~Q/rl^~ (/ZO/T)/O );
Ref. 11). The formation of a single structural unit at the new
level results in a change in the periodic initial relief U0 (x), of

FIG. 4. Schematic diagram of the existence of two structural levels. The
dotted line indicates the region of equiaxial formations (point defects);
the dashed line indicates the region of existence of linear defects. The
horizontal hatching indicates the lower level and the vertical hatching
indicates the upper level.

the type shown in Fig. 2b. To determine its coarse structure,
not taking into account the rapid oscillations, it is sufficient
to describe the change (at large distances /) in the reference
level of <t/(x)> (the dashed line in Fig. 2b), the height
Q(\), and the width of the spreading 0(x) as functions of
the coordinate x. The functions (E/(x)),6(x),0(x) deter-
mined in this way characterize the structure of the defect of
the new level.

As the degree of plastic deformation increases, the
number of structural units at a given level increases, and the
function (U(x)), averaged over the lengths /0 <x</, takes
on a quasiperiodic character such as is shown in Fig. 2a,
except that the period is /> /0. A further increase in the plas-
tic deformation can lead to a reorganization of the averaged
relief ( U ( x ) ) at lengths L>/ in a manner similar to that
which occurred in the initial potential function U0 (x). This
corresponds to the formation of superdefects at the next
structural level, and so forth. As a result, the potential ener-
gy of an и-level hierarchical system of structural units is
represented in the form of an и-stage functional dependence

(4.1)

where p,_ , (r,_ , ) is the density of structural units at the
(/— l)th structural level, whose hierarchical reorganiza-
tion is determined by the energy

= J tf/-l(r/-lV>/-l

(4.2)

of a physically small volume V, whose location is determined
by the hydrodynamically determined coordinate r, of the
next level /.

The multistage functional dependence (4.1) implies
that the potential relief U, (r ) has a fractal nature, as shown
in Fig. 1. The larger the degree of the external action, which
determines the total deformation, the greater is the number
of levels that are included in the process of plastic deforma-
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tion, and the more complex is the fractal structure of the
resulting distribution of the force fields (2.1). This structure
is a consequence of the hierarchical chain of the defects, to
reflect which it is best to use not the pure spatial dependence,
but a mixed dependence: the rapid oscillations at macro-
scopic distances r0</0, which characterize the lower level,
given as before by the spatial dependence in ordinary geo-
metrical space, and the long-range correlations at lengths /,,
/ = 1,2,..., n which reflect the hierarchical relation between
the defects, which are described in an ultrametric state
space. Its metric is constructed so that if two correlated re-
gions of states have even one common point, one of these
regions is contained in the other.41 This means that the
points of ultrametric space that correspond to the state of the
structural unit of the given level form a cluster of coherently
connected states corresponding to a superdefect at the next
higher level. To avoid misunderstanding, let us note that the
points of the ultrametric space correspond to a cluster of
pure states (ensembles) of the defect structure, and not a cell
of defects forming a superdefect; the former are distin-
guished by their level of overlap between the pure ensembles,
while the latter are distinguished by the closeness of the val-
ues of the fields acting on the defect.42

The concept of a hierarchical system of defects of a mul-
tilevel sequence of potential reliefs (4.1) is incomplete, since
it does not contain an inverse relation between the density
p, ( r , ) of the defect distribution at the given level / = 0,1,...,
n — 1 and its energy (4.2).Toestablish this relation wemust
use the quasi-Gibbs distribution"

(4.3)

of the nonequilibrium potential reliefs U, _r (r/_ l) for the
preceding level, which is characterized by a "temperature"
в, _ [. The value of this temperature is determined by the
degree of stochasticity of the excitation of the ( / — l)th
structural level, which results in a smoothing out of the
uniquely defined function £ / ( _ 1 ( г , _ 1 ) in the ensemble
{£//_ j (r,_ !)}. As a result the macroscopic properties of
this level are not given by the energy (4.2), but by the ther-
modynamic potential

(4.4)

where the subscript / — 1 after the angle brackets means that
the average is taken over the distribution (4.3 ) in the ensem-
ble { U i _ , ( r, _ , ) }. Taking into account the quasi-Gibbs na-
ture of the distribution, it is easy to show in the usual way8

that the value of the thermodynamic potential (4.4) deter-
mines the density of structural units at the given level ac-
cording to the expression

tural units of the next level. It should be noted that the syner-
getic potential V,{U,_ , (r ,_ , )} of the /th level, used for the
phenomenological description in Section 1 for the case / = 1,
plays the role of an effective Hamiltonian.8 It is obtained
from the specified energy E, just as is the thermodynamic
potential Eq. (4.4), with the difference that in the averaging
over the field C//_ , ( r ,_ , ) the order parameter (2.2) is con-
sidered to be fixed.

In this way, the hierarchical defect structure forms a
system of n > 1 levels /, each of which is characterized by a
potential relief U, (r; ) and a defect distribution p, (r, ) . Ac-
cording to Eqs. (4.1) the relief of a particular level / is
formed by the distribution of structural units in the previous
level / — 1. In turn, the density of structural units is specified
by the statistical distribution (4.5), in which the thermody-
namic potential is determined by an average over the sto-
chastic distribution of defects at the lower level. As a result,
relations (4. l)-(4.5) give in closed form the relation be-
tween the hierarchical distribution of structural units at ad-
jacent levels. The corresponding relation between the poten-
tial reliefs is expressed by

In the formation of a hierarchical structure of the level / the
quantitiesp,, and Ф, in Eq. (4.5) become dependent on the
hydrodynamic coordinate r, . The thermodynamic potential
Ф/ (r; ) determined in this way will play the role of the poten-
tial relief U, (r, ), specified by the energy (4.2) of the struc-

(4.6)

which follows from the identity U, (r, ) = Ф/.
Let us point out a characteristic property of hierarchi-

cal defect structures, which distinguishes their behavior
from the structural relaxation of glass as described in Refs.
43 and 44 (see also below in Section 4.3). This property is
due to the difference in the action of the excitation of the
system at the different structural levels. In a metallic glass
system the degree of excitation, which is fixed by the frozen-
in disorder, is so high that during the relaxation considerable
stochastic behavior appears at all the structural levels. This
behavior stems from the fact that the structure temperature
T*, being a measure of the degree of nonequilibrium of the
glass, has a value Г*>£,, relative to the energies E, of the
levels.44 In the present case of defect structures the degree of
excitation Т * may be so low that the stochastic spread occurs
only at the т < n lower structural levels. This means that
between the effective temperature T* at which this structure
can be realized as an equilibrium structure, and the "tem-
peratures" в,, which characterize the degree of excitation of
each level /, the following relation holds: в, < T*, I = 0, 1, ...,
m, m<«. As a result, the structural temperatures turn out to
be the same, в, — T*, for the lower т levels, while for the
upper n — т levels в, = 0. Consequently, for a given degree
of excitation of the defect structure T* the lower т levels
behave as hierarchical intersubordinate nonequilibrium sta-
tistical ensembles, whose stationary regime is determined by
the temperature T*, while the behavior of the upper n — т
levels is purely deterministic. This implies that the evolution
of these levels has a mechanical nature, which is expressed in
the fact that their thermodynamic potentials reduce to the
energies E, . This circumstance is tacitly assumed in the stan-
dard theory of defects.1"7 Thus, for example, in the theory of
dislocations3 it is assumed that the behavior of the disloca-
tions is determined uniquely by the given Peierls relief,
whereas the behavior of point defects is treated statistically.
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Let us consider in conclusion an example of the forma-
tion of a hierarchical defect structure during creep of a solid
under a load.17 For this purpose we first present the general
picture of creep.45 If the stress a applied to the solid exceeds
a critical value ak > 10 ~ 5yU, determined by the shear modu-
lus^, then we observe irreversible creep, which is manifested
in the smooth increase in the plastic deformation i? over a
time t for a constant stress a>ak and incomplete relaxation
of % (t) to the initial value & (0) = 0 when the load is re-
moved. Depending on the temperature, one can distinguish
non-steady-state and steady-state creep, which can be char-
acterized, respectively, by an extremely slow (approximate-
ly logarithmic), and a linear increase in the deformation
with time. The former type of creep appears at temperatures
T less than half the melting temperature Tm and is charac-
terized by a deformation rate fe =d^/dt that goes to zero
during the time of the constant load. The latter condition is
observed at temperatures T> Tc, where Гс>0.5Гт, and is
characterized by a rate %>(t) that tends to a finite value
K(<j) =£0 as t-* oo. Far from the melting point the variation
of К with the applied stress a is a power-law dependence,
Кксг", with 3 < и < 5 for values of a much less than the theo-
retical strength <7max ~ 10 ~ lfi, while it varies exponentially,
К cc exp (ca/ T), with с a constant for cr< umax. In the region
Г< Tm we observe diffusion creep, which is characterized by
a linear variation of К (a) (this happens at small loads,
(7<СГС).

To the present time a satisfactory description has been
obtained only for those aspects of the picture that are de-
scribed by simple models.45 This situation is most clear near
the melting temperature, where diffusion creep is limited by
the motion of the simplest type of defect, vacancies, for
which the dependence &(t) = Kt, K(cr) <xcr has the sim-
plest form. As the temperature is lowered the dislocation
mechanism comes into play and the picture becomes more
complicated: for example, if an ensemble of dislocations
evolves independently from the vacancies, as occurs in al-
loys, then we have &(t)~Kt, K(a) oca", n~3. When the
behavior of dislocations and of vacancies are interdependent
(in pure metals) the exponent n increases to ~5 (Ref. 45).
When more carriers of plastic deformation are brought in
(disclinations, grain boundaries, etc.) as the temperature is
lowered and the stress is increased, there is an increase in the
contribution $ (t) =Ata,a<l of non-steady state creep. In
a certain range of temperature and stress this power-law
creep coexists with the logarithmic behavior & (t)
= В ln( 1 + vt). As the temperature is lowered still further

and the stress is increased the steady-state and non-steady-
state power-law types of creep disappear and only the loga-

rithmic behavior remains. Thus, as additional mechanisms
that provide a variety of carriers of plastic deformation are
turned on, they slow down the plastic deformation. If only
two types of carrier (vacancies and dislocations) are in-
volved in steady-state creep, then the non-steady-state stage
is formed by the contribution of a very large number of
mechanisms. For this reason a consistent theory of non-
steady-state creep has heretofore been lacking.45

An analysis of experimental data23'45 leads to the fol-
lowing picture of creep. At zero temperature and stress, the
thermodynamic potential of a solid in configuration state
space increases monotonically with a minimum that corre-
sponds to an ideal crystal structure. Application of a load
(Fig; 5) produces minima that correspond to defects in the
crystal structure: the first of these appears at a minimum
value of the stress a(

c

l\ the next at a(^ > cr(

c

l\ and so forth.
An increase of the temperature results on the one hand in a
decrease in the critical values cr(

c"\n =1,2,... (Ref. 11) and
on the other in a fluctuational concentration of stress up to
values cr> a(

c"\ and, consequently, the formation of metasta-
ble defects. Therefore, if a stress a < ak (T) is applied, where
crk=a<

c^, and then the load is relieved, the system will not be
stable in any of the defect states and the relaxation of the
internal stress will occur according to the usual Debye law
a(t) ос ехр( — t/t0), where t0 is the microscopic relaxation
time. This situation is characteristic of reversible creep.45

As the stress is increased to er>ak, isolated defects—
vacancies and interstitials—form first, and then for cr^>crk

they unite in clusters and form more complicated entities.
Here the hierarchical behavior of the various kinds of defects
is characteristic. For example, the point defects are distrib-
uted in accordance with the behavior of the linear and sur-
face defects; the linear defects can form grain boundaries,
and so forth. This behavior is reflected in the form of the
thermodynamic potential in configuration state space in the
existence of minima (and, correspondingly, barriers) of var-
ious order (Fig. 6). For example, dislocation formations
correspond to the potential minimum d, which is separated
from the initial (/) minimum by a barrier of height Qd. How-
ever, on its coarse structure there is superposed a finer sys-
tem of minima, each of which is related, for example, to the
nature of the impurity distribution in the Cottrell clouds. In
turn, each of these minima can have still finer structure (Fig.
1), associated with the electronic structure of the point de-
fects.

In this sequence we have traced a hierarchical connec-
tion going downward from dislocations to point defects and
their electronic states. Of course, one can trace out a hierar-
chy going from the dislocations upward; dislocations unite

FIG. 5. Change in the thermodynamic potential in configura-
tion space of states as the load is increased (T = 0).

466 Sov. Phys. Usp. 35(6), June 1992 A. I. OlemskoTand I. A. Sklyar 466



FIG. 6. Shape of the thermodynamic potential in configuration space of
states of a solid with defects for a load a>aL.

into small-angle grain boundaries; these in turn form the
block structure of grains, and the grains govern the behavior
of the entire sample. At the present time it is customary to
speak of each step of the hierarchical stairway as being struc-
tural levels of the deformation and failure of a solid.10 Each
specific phenomenon is due to processes that take place at a
specific structural level:46 diffusion creep—vacancies; low-
temperature steady-state creep—dislocations, and so forth.
This approach, however, does not explain phenomena such
as non-steady-state creep, with the participation of several
structural levels subordinate one to the other. Therefore, in
the development of the concept of structural levels of defor-
mation we propose to treat these levels not separately, but in
a mutual relationship—as the steps on a hierarchical stair-
case. The principal argument in favor of this connection be-
tween the levels is that at each of them the behavior of the
system is determined by the defects, which unite into the
clusters that form the behavior of the next level.

4.2. Stochastic theory of hierarchical defect structure

As was mentioned in the introduction, to represent the
hierarchical chain in an ensemble of defects we use the geo-
metric image of a discrete ultrametric space—a Cayley tree
(see Fig. 1 b). Its nodes at each structural level correspond to
pure ensembles (states,42 valleys,18 or components12) of
states of defects of the lower levels. We shall label these val-
leys with Greek letters а, Д... . Then, in the context of the
lattice representation, a structural unit located at node / is
characterized by a flux у " in the valley a. The total current
gives the rate of plastic deformation

N

(4.7)

where wa is the probability of realization of the ensemble a,
and JVis the number of nodes. According to Rammal et a/.,41

hierarchical systems do not pertain to self-averaging sys-
tems—for a macroscopically large system the distribution of
wa changes randomly from one sample to another. This cir-
cumstance leads to an important conclusion: even under
identical macroscopic conditions the total amount of plastic
deformation is not reproducible. Physically, this is a result of
the random nature of the distribution of the ratio / £//" ~ wa

of the characteristic scales /£, la at the initial level and the
given level. In turn, this nonregularity is related to the fact
that in nonergodic systems a fluctuation in the initial condi-
tions and the boundary conditions of the evolution of an
ensemble of defects can cause macroscopic changes even

though the fluctuation is of a microscopic nature. The reason
for this sensitivity of the system to the initial and boundary
conditions is the partitioning of configuration space into iso-
lated regions, caused by the loss of ergodicity.12

If the contribution of each pure ensemble a to the rate of
plastic deformation is characterized by the quantity e", then
the connection between the ensembles is determined by the
Parisi parameter46

(4.8)

(4.9)

(4.10)

and its distribution function

which gives the probability

1

П<?) =

for a system of pure ensembles to have an overlap that ex-
ceeds a specified value q. By virtue of the stochasticity noted
above for a distribution of clusters of ensembles with an
overlap qae > q, which is given by the sum

W=2W« (4.11)
a

over these clusters, the functions P(q) and Y(q) and the
probability fFwill also be random. The method of Parisi47

has made it possible to find the corresponding distribution
functions llg (У) and/j ( W ) for a given value of <?.41 Their
form is determined by the average value

X<?) = Щ) = {Y(g)nq(Y)dY, (4.12)

of the probability of having an overlap of ensembles
qal3=q(y) not less than q. The distribution П? ( Y ) is bimo-
dal with maxima at У г 0.5 and Y= 1. The existence of a
singularity of !!„ (У) <x (1 — У) ~y near the second of these
maxima causes a difference between the most probable value
Y= 1 and the average probability y< 1. The distribution
/, ( W ) averaged over the clusters of ensembles with a bound-
ed level of overlap also has a bimodal form

Г(У)Г(1 -у) (4.13)

According to Eq. (4.13) most of the clusters are concentrat-
ed near the values W = 0 and W = 1, especially the former.
As the degree of overlap q increases the probability y(q) falls
off monotonically, resulting in a concentration of clusters
with zero probability W of realization.

The physical meaning of this stochastic scheme is that
the hierarchical system of defects should be considered not
as a single statistical ensemble, as is usually done,1'3 but a
collection of such ensembles. A feature of this collection is
that the ensembles are not independent, but overlap with one
another to an extent q"e, which can be characterized by the
Parisi parameter (4.8). In a hierarchical system the stochas-
ticity is not only in the behavior of the defects that belong to
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one ensemble, but also in the behavior of the ensembles
themselves whose probability of realization is given by the
distribution wa. However, if the distribution of defects in an
ensemble is the usual canonical one,8 then the distribution of
ensembles is determined by the random nature of their union
into hierarchical clusters; the highest probability is for the
union of ensembles with the maximum overlap q, and as q
decreases the probability falls off. The nature of the hierar-
chical stochastization is reflected in the distribution /*(<?),
given by Eq. (4.9). Since this relation itself contains the ran-
dom quantities wa and wp, the distribution function P(q)
6ver the clusters of ensembles is also random. Therefore, the
hierarchical nature of the behavior of the defects results in
hierarchical stochasticities. The ultimate cause of this situa-
tion is the loss of ergodicity in the behavior of the ensemble
of defects.12

The method developed by Parisi,47 which is based on
the aforementioned fact that the ensembles correspond to
points in ultrametric space,41 has made it possible to hypoth-
esize a hierarchical stochasticity. Its characteristic is that
the lowest-order moments Y(q) and W of the distributions
P(q) and wa, respectively, have cutoffs with respect to the
overlap parameter q [see Eqs. (4.10) and (4.11) ]. The first
of these moments gives the probability that the overlap of the
ensembles of the level is not lower than a given q, and the
second gives the total probability of realization of these en-
sembles. Clusters with a large overlap q are singled out be-
cause ordinary ergodic systems correspond to the limiting
case of single ensembles with the maximum overlap q = 1. A
feature of the hierarchical stochasticity is that in a nonergo-
dic system of defects the most probable value is not only the
maximum value Y(q) = 1 of the probability of overlap of
ensembles, but also the intermediate value, Y(q)~0.5. In
other words, the distribution П9 ( Y ) is bimodal, given by the
average probability Eq. (4.12). Physically, this means that
there is a high probability of realization of ensembles of de-
fects that are only weakly interdependent even in a statistical
sense (for example, dislocations that belong to different
small-angle walls, belong to almost different, nonintersect-
ing statistical ensembles). On the other hand, if the issue is
the number of different clusters of ensembles characterized
by the distribution (4.13), then the divergence of the inte-
gral of (4.13) over all values of W means that the total num-
ber of possible ways in which the ensembles can unite into
hierarchical clusters is infinite. However, they are formed
mainly of ensembles with a small probability W of realiza-
tion. This means that infrequently realized structures, be-
longing to large-scale levels (misorientation boundaries,
blocks, grains, etc.), are the most likely to enter the hierar-
chical chain. On the other hand, the main contribution to the
average value of W with the weight fq (W) comes from the
region of large W. Therefore, although most of the defects
enter into statistical ensembles that are characterized by
large probabilities W, only those that are realized most infre-
quently form hierarchical structures.

Regarding the distribution of the energies E of the clus-
ters of the states of the defect structure, we note that it has a
quasi-Gibbs form, which reflects the independence in the
spread in the values of E. However, if for a minimum cluster
that corresponds to the maximum overlap q = I we have a
pure Gibbs distribution и, (E) = exp[ — (E — Ф)/Г],
where the energy E is reckoned from the thermodynamic

potential Ф, then as the cluster increases in size with a de-
crease in the overlap q < 1 we have a nonequilibrium distri-
bution

= exp[-(l - y(q))(E - Eq)/T}; (4.14)

where the minimum energy of a cluster Eq exceeds its ther-
modynamic value El = Ф (Ref. 41).

Having characterized the distribution of clusters of sta-
tistical ensembles of defects, let us now turn to a description
of the structural units themselves, which form these ensem-
bles during plastic deformation. This means that it will be
necessary on the one hand to find the distribution F(s) of the
rate of deformation £ and on the other hand, find the distri-
bution Nq (т) of the stress field т acting on the defect in a
cluster with an overlap that exceeds the value q (Ref. 42).
The nodes / at which the field rt takes on values in the range
from т to т + AT form a cell CT, with a volume, for a given
overlap q of the ensembles of the structural units, that is
equal to \CT = NNg (т)Дт. In this cell the ensembles with
an overlap exceeding a given value q behave independently
and are characterized by identical distributions

*•„(*•*) = TFT 5!<5(*-tf)- (4-15)
г' /ее

The required distribution of the magnitude of plastic defor-
mation is expressed in terms of those distributions

(e, r)dt. (4.16)

The total value of the rate of plastic deformation & and the
overlap parameter q are expressed in terms of the value
eq (т) of the plastic deformation in a cluster with overlap q
and field т:

(4.17)

(4.18)

(4.19)

As mentioned before, the conditional distribution (4.15)
represents the contribution to the plastic deformation from
defects in the field r in clusters of states with overlap not
lower than q. These clusters are singled out because with
them one can use the usual concepts of Refs. 1-3 regarding
the process of plastic deformation (for example, the relation
Ea = bpava is valid for the specific rate of plastic deformation
in Eq. (4.7) for dislocations with a density pa, a Burgers
vector b and a velocity v"). With equality (4.16) it is possi-
ble, knowing the distribution Nq (т) of clusters over the val-
ues of the field r, to go from the conditional distribution of
the plastic deformation Fq (E,T) to the total distribution
F(e). They are different in that the latter, being the first
moment of (4.17), gives the total plastic deformation &,
whereas the former gives the contribution eq ( r ) due to clus-
ters in a field r with overlap q [see Eq. (4.19) ]. With the
known distribution N4 (т) of the field and the specific rate of
plastic deformation eq (т) it is possible to find the values of
^ and q by means of Eqs. (4.17) and (4.18).
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As for the function Nq (т) itself, for a given spread in
the interaction of the structural units can be determined by
the method of Ref. 48, developed for amorphous solid solu-
tions. The essence of the method, which is a natural general-
ization of standard mean field theory, is that the connection
is established not between the field т itself and the interac-
tion parameter of the structural units, but between the distri-
bution functions.44

Let us now consider the evolution of a hierarchical en-
semble of defects. For this purpose we assume that in the
transition to a higher level of overlap q' > q the cell CT is split
up into parts CTT, . The probability of a node / being in a

subcellC ,

\c

Fq(k, т) = GW,(T, r')Fq,(t, r')dr',

whose volume is

(4.20)

gives the relation between the distributions of plastic defor-
mation in a cell and in a subcell:

(4.21)

(4.22)

Knowledge of the evolution operator G , (т,т') of the hier-

archical defect structure gives complete information on the
distribution of the clusters of the states

"„(*) = GnJO, т), (4.23)

(i, т) = J G?,(T, т')<5[ё - emaxtanh(T'/T)]dt', (4.24)

1'T')tanh(r7:r)dT'- (4.25)

According to Eq. (4.23) assigning the distribution function
Nq (т) of the field in the clusters is equivalent to determining
the evolution from a set of isolated ensembles into a cluster
that is characterized by overlap q and a field r. The presence
inEqs. (4.24) and (4.25) of the factor tanh(r/!T), which is a
feature of usual field theory, means that in a cluster with the
maximum overlap q = 1 a pure statistical ensemble is real-
ized, in which the rate of plastic deformation is determined
by the standard conditions of self-consistency49

(4.26)

where r) is the shear viscosity, emax is the limiting value of the
rate of plastic deformation that can be attained in a given
structural level. Relation (4.24) states that the specific dis-
tribution function Fg (е,т) is obtained by the spreading of a
^-distribution corresponding to condition (4.26) in the tran-
sition from a pure statistical ensemble to a set of clusters,
characterized by an overlap level no lower than q. According
to Eq. (4.25) the rate of plastic deformation is transformed
from the value (4.26) to the specific value eq (т) given by the
contribution of this set of clusters.

Thus, knowledge of the operator G , (т,т'), which rep-

resents the evolution of a hierarchical defect structure, per-

mits a complete description of the process of plastic defor-
mation generated by this evolution. The rearrangement of
the structure itself is viewed as a Markovian diffusion pro-
cess on the Cayley tree.42 This means, in particular, that the
binary evolution operator gives the distribution over an arbi-
trary number n>2 of clusters containing m>« ensembles:

(4.27)

where q0 = 0, Gqq (т,т') =S(r — т'), and the parameter qa

specifies the overlap of the states a and a + 1 (since some
pairs of states can have the same overlap qa, their number и
may be less than the number m of ensembles).

If the defect structure is multilevel, then the discrete
ultrametric space corresponding to it (the Cayley tree) can
be considered a continuum and the transitions between the
levels continuous. Then the evolution operator is given by
the Fokker-Planck equation42

,_2 aG _ I э2с a i n z dG_
dq ~ 2 fr2 дт дт'

(4.28)

where С is the effective modulus of the medium with defects,
and the roles of the time and the coordinates are taken by the
overlap parameter q and the field r, while the auxiliary func-
tion Z = Zq (т) satisfies the equation

idZ 1 д Z "aC1)
~r = "^ ^~ + , , 4Z In Z
dq 2 ^2 1 - y(g)

(4.29)

with the initial condition Z, (r) = tanh(r/C). However, if
the number of structural levels is small, then the transitions
between them become discrete, and instead of the differen-
tial equation (4.28) we must use the more complicated ki-
netic equation50

, i')w(i', r) - G0

(4.30)

where ш (т, т') is the probability that the field changes from т
to r' for a unit change in the overlap q. Thus, to describe the
process of plastic deformation for a small number of levels it
is necessary to know the probability W(T,T'} of their hierar-
chical union. To determine W(T,T') it is necessary to consid-
er specific models (such as the alignment of dislocations into
walls, formation of disclinations, etc.).3"6

The solution of Eqs. (4.28) to (4.30) gives in principle
a complete description of the hierarchical chain of a defect
structure. However, questions that are still open are those of
the defect of the modulus1"3 and the dependence of the rate
of macrodeformation W on the external conditions. In addi-
tion, the phenomenon of structural memory due to effects of
nonergodicity require study. It is possible to carry out such a
program within the framework of a single approach only on
the basis of the microscopic theory presented in Section 4.4,
which embraces both the thermodynamic and the kinetic
behavior of the defect structure. However, if only the pro-
cesses of structural relaxation are needed, then it is sufficient
to use the phenomenological version of fractal theory, given
in the next section.

469 Sov. Phys. Usp. 35 (6), June 1992 A. I. OlemskoTandl. A. Sklyar 469



4.3. Phenomenological theory of relaxation of a defect
structure

The analysis of Section 4.2 shows that the space- time
behavior of the defect structure under conditions of creep is
given by the correlator

r- о = V1

(4.31)

whose form follows from Eqs. (4.7). The correlator Sap (r,/)
of pure states is made up of a dynamic component S^e (r,t),
which correspond to processes that occur over a microscopic
time t0~tpT, and a relaxation contribution Sa0 (r,t), which
has a Debye character

(4.32)

5°(r) = *(r, f0)E(0, 0), Sa(r) =

where it is taken into account that statistical effects do not
appear over microscopic times /</0 , while at time t = t0 the
only correlation is between the quantities ea that belong to
the same pure state. The time ta/3 required for the union of
ensembles a and fi is determined by the distance d = dal3

between the states a and /? in ultrametric space. Assuming
that this space is homogeneous4' and going to a Fourier
transformation with respect to the coordinate r, we obtain
from Eqs. (4.31) and (4.32)

Sk(t) = Skfw(cf)exp(-t/t(d))dd, (4.33)

(4.34)

It follows from definition (4.9) that the correlator (4.31)
that is used is the first moment of the distribution function
P(q) of the ensemble overlap. The stochastic character of
the latter means that the correlator Sk (t) also has a random
character. As in spin glasses,43 this character is due to the
nonregularity of the spatial distribution of defects, which
leads to a spread in their energies of interaction (frustration
of bonds due to the loss of ergodicity).

To find the explicit form of Sk (t) in Eq. (4.33) it is
necessary to find the distributions w(d) and t(d) over the
distances d in ultrametric space (the value of d is given by
the number of steps to the common ancestor over the levels
of the Cayley tree in Fig. Ib, and gives the degree of the
hierarchical connection). A determination of w(d) andt(d)
leads to a self-consistent problem, and hereafter we shall
restrict ourselves to an investigation of the possible forms of
the time dependence Sk (t) for various attainable majorants
of the distributions w(d) and t ( d ) .

The relaxation time is given for a particular tempera-
ture T by the height of the potential relief U(d) according
to the Arrhenius relation

t(J) = tQexp(U(d)/T), (4.35)

where t0 is the macroscopic (Debye) time. Since an increase
in the degree of the hierarchical connection corresponds to a
decrease in the distance d on the one hand, and in the field U
on the other, one can conclude that the function U(d) must

increase monotonically. Its form is easy to determine in the
thermodynamic limit /, + ,//,-> oo, when the number of
structural units that form the defect is large enough. Here,
one step over the levels of the Cayley tree, corresponding to a
single union of т clusters, increases U by a factor of m. The
distance d corresponds to и steps to which are related the
change in the potential relief Д{/~£>т"<хехр(и In m)
= exp( const -d). Thus, in the thermodynamic limit we find

a very strong exponential behavior of the potential relief
U(d) in ultrametric space. For small clusters and a large
contribution from elastic stress the value of U increases
much more slowly as the volume of the cluster increases, and
correspondingly the function U(d) will have a weaker expo-
nential behavior. We shall hereafter approximate it by the
functions

£//</) = Q ln(«//£/0), Up(d) = Qfl°, Ue(d) = Q cxp(<//</0),

(4.36)

where the constants Q, d0, and a are determined by the state
parameters Г and aext.

The distribution function w(d) = wa over the states a
that correspond to different points in ultrametric space
specifies the depth of the hierarchical connection of the de-
fect structure. Thus, in the case w(d) = 8(d) the expansion
(4.7) contains only a single state, which corresponds to a
single ensemble—there is no hierarchical connection. For a
function w(d) that falls off rapidly the degree of this connec-
tion is small, but if the function falls off slowly, its role is
enhanced. Majorizing the weak hierarchical behavior of the
exponential function and the strong power-law function, we
have

ехр(-£//Д), ws(d) « d -D (4.37)

where Д and D are parameters, the first of which represents
the depth of the hierarchical connection, and the second the
fractal dimension, between 0 and 1.

Substituting expressions (4.36) and (4.37) into (4.33)
and (4.35) we find by the method of steepest descents the
form of asymptotic behavior as f-> oo, as shown in Table I.
For a smooth power-law distribution ws (d) in ultrametric
space the logarithmic increase of U, (d) of the height of the
fractal relief gives a power-law decay for the correlator
(4.33), and a power-law increase in the relief Up (d) leads to
a slower logarithmic variation in Sk (t), and, finally, an ex-
ponential distribution of t/. (d) gives a double logarithmic
dependence for Sk ( t ) . Accordingly, for a rapidly falling ex-
ponential distribution ww (d) we have sequentially the law of
Kohlrausch,51 a quasi-power-law, and a logarithmic falloff.
According to Ref. 52, this situation does not depend on the
degree of branching of the Cayley tree and persists for ran-
dom branching. It is a characteristic fact that for power-law
and exponential increases in the height of the fractal relief
the maximum value of the correlator Sk ( t ) ~ 1 is maintained
at temperatures below

Tf(f) < Q/ln(t/t0). (4.38)

It must be kept in mind that the integration over d in Eq.
(4.33) is bounded from below by the value dm given by the
condition U(d) = Um for surmounting the minimum poten-
tial barrier Um (in spin glasses Um = T). In finding the
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TABLE I. Possible asymptotic forms of the correlator Sk (t) as t^ oo.
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asymptotic behavior of the correlator Sk(t), indicated in Ta-
ble I, it is understood that the position d °of the maximum of
the argument of the exponential function in the integral of
(4.33) satisfies the condition d°$>dm. Since the value of
d°(t) increases monotonically with time, according to ex-
pressions (4.35)-(4.37), this condition leads to the mini-
mum time tm at which relaxation effects appear: for t < tm we
have steady-state plastic deformation of magnitude
E = fS °( t) dt = S°, and for t> tm the rate of plastic defor-
mation relaxes according to the asymptotic behavior shown
in Table I. An analytic expression for the lower threshold for
relaxation is possible only for the logarithmic fractal relief

'or
А = —— Вw Д П' w

(4.39)

where the subscripts w and s denote a weakly and strongly
hierarchical system. In the transition to a more rapidly in-
creasing distribution of U(d) the dependence of the time tm

on the threshold Um becomes even stronger. This means that
if in a microscopic time macroscopic complexes of defects
are formed corresponding to a rapid increase in the fractal
relief U(d), then even for relatively small values of the mini-
mum height Um of the relief the time tm to establish a hierar-
chical connection of the defect structure will be very long.
This situation is found in the evolution of the martensite
macrostructure.'5

It should also be remembered that the critical slowing
of the relaxation of the defect structure appears only up to
some maximum time ?M, while for t^-tM a Debye depend-
ence Sk (t) ~ exp ( — t /tM) is obtained. The physical reason
for this slowing is that after the time tM the hierarchical
connection is broken at a distance dM, given by the condition
w(dM) = t0/tM. As a result, the fractal relief limited by the
value UM = U(dM) is surmounted. If we take into account

the specific forms of U(d) and w(d) (4.36) and (4.37), we
find the expression given in Table II for the maximum relax-
ation time fM for the structure. It is of interest that, other
conditions being equal, the value of ?M increases in going to
functions U(d) of lower amplitude. Since an exponential
increase in Ue (d) corresponds to an increase in U propor-
tional to the volume, and the transition to Up (d) and U, (d)
is related to taking into account the inhomogeneity and long-
range action, this means there is an increase caused by these
factors in the time required for stabilization of the defect
structure. On the other hand, as is shown by a comparison of
the different columns of Table II, a weakening of the hierar-
chical chain results in a stronger dependence of the time tM

on the external conditions that determine the parameters Q,
d0, and a of the fractal relief. Assuming that their tempera-
ture dependence is of the simplest form, Q^T— T0, with
T0, d0, and a constant, it is easy to see that the function
?M (T) takes the form of the Vogel-Fulcher approxima-
tion44 for a logarithmic distribution of the relief U, (d) in
strongly hierarchical systems, while for a power-law distri-
bution it takes that form for weakly hierarchical systems. In
the general case the function /M ( T ) can also have a power-
law or a logarithmic form.

Proceeding now to an interpretation of these data, we
note first of all that in the case considered here the fractal
nature of the potential relief in state space is due to the pres-
ence of volume and thermal effects of the transformation of
the structure as well as to the smallness of the energy of
inhomogeneity. In fact, under these conditions the realiza-
tion of a structural transformation in the minimum supercri-
tical volume leads to a local increase in the energy density,
which also indicates the presence of a minimum barrier in
the potential relief. The smallness of the inhomogeneity en-
ergy promotes a step-by-step growth of the clusters of the
defect structure: it is more favorable for them to grow not by
a displacement of the boundary, as occurs in ordinary first
order phase transformations, but by the establishment of a
correlation of the individual clusters. Of course, this process
is accompanied by large volume and thermal effects, and,

TABLE II. Stabilization time tM of a defect structure.

•"„CO
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consequently, corresponds to the filling of the deeper mini-
ma of the fractal potential relief.

Regarding the effects of the hierarchical chain, it can be
seen from a comparison of the different columns of Tables I
and II that, other conditions being equal, the strongly hier-
archical systems exhibit slower kinetics than do the more
weakly hierarchical systems. For example, practically com-
plete stabilization of the defect structure is observed in
strongly hierarchical systems with an exponential increase
in the height of the relief U(d). If the latter is achieved by
virtue of the macroscopic size of the defect cluster, then the
strongly hierarchical dependence is realized in the presence
of long-range forces. From this discussion it can be seen that
the switching on of structural levels that correspond to an
increase in the characteristic scale /, promotes the enhance-
ment of the hierarchical chain in the behavior of the defect
structure, and, consequently promotes its stabilization.

If these conditions are not satisfied, then in time the
structure will become reorganized. To find these character-
istic times we consider the distribution of the heights of the
fractal relief, corresponding to the set of elements that are
resolvable in a given experiment. Let this set be given by the
sequence U} <U2 <...<Un. Then in a microscopic time
~/0 a structural element characterized by the largest value
U/ that satisfies the condition U, < Т is athermally formed. It
will exist until the time tl+, = t0exp( U/+1/T) when ther-
mal fluctuations form the next element of the defect struc-
ture in the hierarchical series. As a result, the time of exis-
tence Ar; = t, +, — t, of this structural element is given by

= exp[(£/m - (4.40)

For a ratio U,+, /U, —50 and U,/T~ 1 we find that in the
first macroscopic level (t, ~ f0 ~ 10 ~1 3 s) the characteristic
time of stabilization of the macroscopic structure, Af/, is of
the order of several tens of years.

Let us now consider the features of this scheme as ap-
plied to the description of creep of solids.17 Here, under cer-
tain conditions (see below) some types of defects (disloca-
tions, vacancies, and others) can contribute to creep
independently of one another. In the dependence of the ther-
modynamic potential on the configuration coordinate (Fig.
6) this is expressed by the presence of minima separated
from the initial state / by a high barrier Q,, I = 1, 2
Correspondingly, the ultrametric space is formed by a highly
nonuniform Cayley tree, whose branching vanishes at dis-
tances d, given by the condition Ф(й?) = Q/. This implies
that the probability density w(d) of the distribution of dis-
tances in ultrametric space becomes a <5-function singularity

~ (4.41)

where ш0 (d) is a smooth function corresponding to a uni-
form distribution of type (4.37). At a given temperature T
the only singularities that appear athermally are those that
satisfy the condition Q, < T. As a result, the athermal com-
ponent of the correlator of the defect flux becomes

rf(D
s = so + o = J » S, = w,S(d),

(4.34) and the prime on the summation sign means that the
summation is carried out for Q, < T [or, equivalently,
d, < d ( T ) ]. The monotonically varying component can be
rewritten in the following way

so = (4.43)

The zero-order term S0

0), which corresponds to the initial
minimum / in the thermodynamic potential, vanishes by de-
finition for the fluxes, and the rest of them renormalize the
quantities S/. Assuming that this renormalization has been
done, we can discard the term S0 in (4.42). As a result, the
correlator of the defect fluxes takes the final form

S(t) = (4.44)

(4.42)
where the function S(d) corresponds to Sa (k) in Eqs.

where the constant athermal terms S, are defined by the pre-
vious formula (4.42), and the variable component S(t) is
defined by expression (4.33).

A characteristic feature of the athermal terms S, is that
they are switched in sequentially as the temperature in-
creases. For example, for T< Qt all the terms S, are zero; in
the range Q, < T< Q2 we have only a single nonzero term S,,
and in the range Q, < T< Q, + , the nonzero terms are those
from Sl to S,. The renormalization of the terms S, by the
addition of S£° causes them to depend on the quantities T
and aext. Since the thermodynamic potential as a function of
the configuration coordinate is smoothed out as the tem-
perature is raised and the stress is reduced (see Figs, la and
5), the distribution w0 (d) becomes narrower and the terms
S0" increase. It can thus be concluded that the athermal
terms S, increase as the temperature is raised and the stress is
reduced.

In the interpretation of the time dependenceS(r) of the
correlator of the defect fluxes (4.31) one must start from the
fact that the corresponding rate of macrodeformation & (t)
is determined by the conditional probability that the defect
flux willbey'U) = &(t) attime?ifat? = 0itisequaltoy'(0).
In other words, we assume that the correlator S(t) and the
rate of creep %>(t) are identical up to some unimportant
multiplicative factor. According to Ref. 45, the latter is giv-
en by the sum

g(t) = К + 6 <?(?), (4.45)

where the constant term К characterizes steady-state creep
and the decaying part 8W(t) characterizes the non-steady-
state creep. Comparing the definition (4.45) with our main
result (4.44) for the rate of steady-state creep, we find

(4.46)

where the quantity S, = S, (T,&ea ) increases monotonically
with the temperature and the stress (see chapter IV in Ref.
45), Q, = Q,(crmt) is the decaying dependence (see Section
4.1), в(х) = 0for;c<0and<9(;c) = 1 for ;c>0. The non-
steady-state creep 5%> (t) is represented asymptotically by
the functions listed in Table I.

This picture allows us to compare the diagram of Fig. 7
to the various regimes of creep. Steady-state creep, which
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FIG. 7. Creep diagram. The notation R, I, D, and V indicate, respectively,
the regions of reversible, irreversible, dislocation, and vacancy creep. The
oblique and horizontal hatching denote the regions of non-steady-state
and steady-state creep, respectively.

corresponds to athermal surmounting of the barrier Q,, is
realized at high temperatures (T> Q\). Since experimental-
ly45 the first mechanism to appear is the dislocation mecha-
nism of steady-state creep, and then, near the melting point,
the vacancy mechanism comes in, we can conclude5' that
Qd <QV (see Fig- 5). Moreover, it should not be thought
that other mechanisms such as a grain boundary mecha-
nism, the motion of grains as a whole, etc are not involved in
steady-state creep. Actually, if the applied stresses are high
enough, the most effective creep mechanisms come into
play: first, the motion of macroscopic volumes, then conglo-
merates of grains and their boundaries, disclinations, dislo-
cations, and, finally, point defects.4"7 Within the framework
of our picture, this means that as the temperature is raised
the barriers Q, are surmounted in the indicated sequence;
i.e., the barrier is lowest for macrovolumes, the next highest
is for conglomerates of grains, then individual grains, and so
forth. Correspondingly, in going to the top of the Cayley
tree, the branch of the macrovolumes branches out first,
then come the branches of the conglomerates of grains, then
the individual grains, and so forth. The fact that only two of
these have been observed experimentally45 indicates the
large magnitude of their contributions S, to the steady-state
creep: obviously the contribution from macroscopic vol-
umes is less than for conglomerates of grains; correspond-
ingly, the contribution from the conglomerates is less than
from the individual grains, and so forth. In other words, in
the hierarchy of mechanisms of steady-state creep the fol-
lowing correspondence is observed: the greater the value of
Q, in a sequence of possible barriers the smaller is the corre-
sponding contribution S/ to the rate of creep (the more com-
plex carriers of plastic deformation have to overcome a low-
er barrier Q, to become involved in the plastic creep, but they
have a low mobility S:). This dependence has also been veri-
fied in a calculation of the value of 5, as applied to a specific
mechanism of plastic deformation. As an example, we found
the functional dependence Si <x a4 5 for the stress depend-
ence for vacancies in the field of "their own" point defects
(vacancies); in the case of impurity atoms instead of vacan-
cies we find S2 <x a3, and, finally, for a pure vacancy mecha-
nism, Sj <x cr (Ref. 45). Since these relations represent the
first terms in a series in the small parameter cr/fj,, we can
conclude that for these values of cr we have S\ <S2 <S3.

For non-steady-state creep, the functions S(t) in Table
I show that the asymptotic behavior <5i?(?) <^S(t) oc t ~ '
corresponding to logarithmic creep can be realized only for a
logarithmically slow increase in the height of the fractal re-
lief in strongly hierarchical systems, while for a power-law
increase in the relief height it can be realized only for weakly
hierarchical systems. Evidently a system of point defects is
weakly hierarchical: thus, the behavior of a grain as a whole
is caused by the behavior of its boundaries, but is almost
insensitive to a redistribution of dislocations and point de-
fects, whose action is indirect, through the boundaries.45

Moreover, it was shown above that an exponential increase
in the height of the relief Фе (d) in ultrametric space corre-
sponds to a linear increase in the thermodynamic potential
with the volume in real geometric space. Therefore, only
when the carrier of the plastic deformation behaves as a ther-
modynamic phase can one compare the function Фе (d) to it.
It is clear that this situation is realized beginning from the
grains, while the dislocation and vacancy creep observed in
the experiments reported in Ref. 45 are characterized by a
power-law function Фр ( d ) . As a result we obtain for the rate
of non-steady-state creep

= A exp

1/0-1

(4.47)

where A is a constant that characterizes the height of the
relief 6=61 > and decreases monotonically with an increase
in the stress, and the temperature dependence of the quantity
a in the exponent is approximated in the form
a — 1 ос Т — T0. For temperatures Т below T0, when a < 1,
the function (4.47) is exponential, and at the point Т = Т0 it
becomes hyperbolic:

AtQexp(-Q/T); (4.48)

For temperatures above T0 we have a quasi-power-law form,
8%? (t)~t " r where the exponent 7 falls off with the tem-
perature in the interval from 1 to 0.

Thus, the temperature T0 plays the role of the point at
which critical slowing of the creep begins. On the other
hand, it was found that above T0 this slowing is important
only up to the time tM given in Table II. As a result, we
obtain the following picture of non-steady-state creep. Up to
the temperature T0 the only mechanisms that are important
in creep are those that give an exponentially fast falloff in the
rate 8& (t) (we disregard the difference between the Debye
behavior and the Kohlrausch law). Therefore, the value of
T0 (a) is an upper limit to the region of reversible creep (Fig.
7). Above T0 deformation mechanisms become operative
that are characterized by an increasing rate of change <b'(d)
of the fractal relief. Physically, this means that such connect-
ed defect complexes that produce a faster increase in the
thermodynamic potential than do independent defects be-
come involved in the deformation process. This leads to
critical slowing of the rate of creep: exactly at the point
T = T0 a slower mechanism comes in prior to the logarith-
mic behavior of the deformation &(t) as Г— Т„ increases.
This slowing of the deformation is observable in an experi-
ment as the complete cessation of the deformation at tem-
peratures below the freezing point temperature 7} given by
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(4.38). However, the action of these mechanisms is appar-
ent only until the time limited by the time tM. For t %> tM the
hierarchical relation in the behavior of the various types of
defects is destroyed and the creep is again accelerated.

This picture corresponds to the realization of one of the
hierarchical branches, when only the states of the initial
minimum / of the thermodynamic potential are activated
(Fig. 6). At temperatures T> Q,, in addition to the ather-
mal processes of steady-state creep, thermal fluctuation pro-
cesses associated with the excitation of states of dislocation
complexes, vacancy complexes, and other complexes be-
come important. Since to each of them corresponds its own
hierarchical branch on the Cayley tree, and consequently
since each has its own law of falloif of the correlator S(t), we
obtain a superposition of terms corresponding to the various
parameters a, specifically such a situation corresponds to the
experimental situation.45

In conclusion we note the following important differ-
ence between this system of crystal structure defects and a
spin glass, by analogy with which we have carried out an
investigation of the time dependence of the response to an
external mechanical action. This difference lies in the fact
that in a spin glass the finest structural units of the hierarchi-
cal system are the spins, whose total number is N0 ~1023

cm~3, whereas the density of defects is N-^N0. Since the
creep is associated with the evolution of defects, and not of
the atoms of the crystal, its behavior is determined by that of
the ensemble of defects. However, their contribution to the
thermodynamic characteristics is by a factor N0/N$> I
smaller than that of the atoms and is essentially unobserva-
ble on the background of the atomic contribution. The rea-
son apparently is that the thermal excitation is felt by the
entire atomic system of a solid, while the mechanical excita-
tion (more precisely, its plastic component) is felt only by
the defects.

4.4. Microscopic theory of a hierarchical defect structure

Let us now introduce a consistent theoretical scheme
that presents in a unified way the evolution of the defect
structure during plastic deformation. According to the anal-
ysis in Section 4.2, the structural states are joined into a hier-
archical system of clusters, characterized by the distribution
q(y) of overlaps (4.8) over the probabilities (4.12). The
function q (у), which is determined by the method of replicas
(see Ref. 43), has the form shown in Fig. 8. Its characteristic
feature is the presence of a descending part in the formation
of a hierarchical connection in the ensemble of defects [in
the absence of a hierarchy q(y) = const =9, (crext)]. The

minimum value q0 =q(y = 0), which corresponds to the Ed-
wards-Anderson parameter, determines the degree of stabil-
ity of the defect structure in the smallest cluster of states.
The minimum value of qt =q(y =1), which characterizes
the stability of the defects structure as a whole, is nonzero
only under conditions of external action.43 This theory on
the one hand describes the behavior of the limiting values of
q0 and <7j as functions of the external conditions and on the
other hand gives the time dependence of the parameter (4.8)
during structural relaxation.

However, as already mentioned, the description pre-
sented in Section 4.2 is incomplete, since it does not contain
the parameters that provide a quantitative description of the
nonergodicity of the system. In the regime of creep utilized
below, the role of the nonergodicity parameter is taken by
the irreversible response

Д s Iim6y(t),

(4.49)

which is defined by analogy with a spin glass18'43'53'54 as the
difference between the dc susceptibility 7,=7(u> = 0)
= dtf/drsij-', which reduces to the inverse viscosity, and

the dynamic susceptibility y(t), which reduces to the time
correlator of the rate of plastic deformation6' &(t). The
fractal structure of the potential relief, studied in Section 4.2,
and the partition that it induces in the configuration space of
the hierarchical system of clusters are the causes of the dif-
ference in these susceptibilities. As does the stability param-
eter q (y), the irreversible response Д (у) falls off slowly with
time from the maximum value A0 = A(j> = 0), which corre-
sponds to the partition of configuration space into minimal
clusters, to the minimum value A, =A(j = 1) =0, corre-
sponding to the union of all the clusters. The phenomenolog-
ical theory advanced in Section 4.3 describes the slow relaxa-
tion of the stability parameter q (t) of the structure, since the
correlator S(t) studied there is the first moment of the distri-
bution P(q), specified by Eq. (4.9). If the fluctuation-dissi-
pation theorem were valid for nonergodic systems,8 then the
function found for S(t) would make it possible to find also
the irreversible response (4.49). However, this situation is
extremely complicated, and requires a separate investiga-
tion. ".«.53,54

The effective Hamiltonian of the defect structure in an
external field has the form15'17

-1 У (4.50)

FIG. 8. Dependence of the overlap parameter on the probability of real-
ization of a cluster of states with a given overlap.

КО) = ̂ -2 + 5.Д (4.51)

The first term in (4.50) is the "intrinsic" contribution to the
energy of the plastic deformation of each defect character-
ized by a flux j,. It is clear that it reduces to the synergetic
potential conjugate to (1.2) and can be approximated by a
Landau expansion (4.51). The second term of (4.50) de-
scribes the inhomogeneity of the nodal distribution of the
defect flux, the third describes the action of the stress fields
т,, and// = n-j, is the component of the flux along the direc-
tion of flow n. An important feature of the defect structure is
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the nonregularity, which is reflected in the random nature of
the parameters H,m, and the field т,: their values are distrib-
uted randomly over the volume of the sample with the mo-
ments

which vary slowly with time (Table I). On the right hand
side of Eq. (4.54) an additional field appears

/n\2r
©(0 = ПО + f J C(t-mt')dt',

\ E / — oo

т = т,: T 2 s7 2 = 73
r2s(T,-r)2

(4.52)

(4.53)

where H and т are the average values of those quantities, H
and т are the variances, and the overbar signifies an average
over the volume of the sample. For this average to be correct
it is necessary that the number of defects N should tend to
infinity.

When there is an instantaneous change in the external
conditions the evolution of the defect structure proceeds in
two stages. At first, in a microscopic time t0 ~ tp , tT a specific
type of structure is formed, which corresponds to the parti-
tion of configuration space into minimal clusters, and then
comes a slow relaxation of the structure, associated with the
union of the clusters. Assuming the given initial values qQ

and АО and the final value <?, of the structure parameters, we
first describe the second stage.

As we have mentioned in Section 4. 1 , an analytic treat-
ment of the problem is possible only for the formation of an
infinite number of structural levels. Within the framework
of this assumption we begin from the Langenvin equation for
the fluxesj,. Then, following the method of Refs. 18 and 54,
we write down the stochastic functional and average it over
the spread of values of H,m . Within the framework of mean
field theory the standard decoupling is carried out in the
effective Hamiltonian and then we obtain the equation of the
unique value of g ( t ) = tj(t) in the field of the fluctuating
forces /(?) and the self-consistent field т:

- fr] J* G(t -
\ £ / -oo

' = - Ir + T(

r(<wo = (H/g2s(t - о, ЛОЛО =

(4.54)

' - О:

(4.55)

here С is the characteristic elastic energy (see Section 1) due
to the external action, (7(0 is the retarded Green's function,
which is determined in the usual way,55 and
S(t) = tlS, (k = 0,0 = §, (01"/ (0). The second term on the
left hand side of (4.54) is introduced to take into account the
memory effects, which lead to the synergetic potential

„ /H\ 2 ,
K,(£) = K(|) - f \Щ |2> xsG^ = 0)= ±S(t = 0),

2('е) С

(4.56)

where we have introduced the susceptibility x = d£ ̂ T>
which is related to the kinetic coefficients by the equalities
X = *е7 — t^/1?' and reduces to the elastic compliance.

In the nonergodic region the functions G(t), S ( t ) , and
r(t), acquire singular contributions (7(0, S ( t ) , and r(t),

(4.57)

In the adiabatic approximation, which corresponds to a field
0(0 that changes slowly in comparison to the fluctuations
of |40, the probability functional P{g(t)}
ccexp( — F, [g(t),t ]/C) is determined by the synergetic
potential V{ = F, — ®g for a model with a continuous sym-
metry and F, = — ®£ for a discrete model such as the Ising
model. Technically it is more convenient to work with the
latter model,18'53'54 so that is the one we shall use.

Later it will be necessary to average the functional
P{£(t)} over the spread of the stress field т,. Since it is a
fraction that is being averaged (the denominator is the nor-
malizing constant), we must have recourse to the replica
method: the field J40 is replaced by n replicas £M ( t ) , with
ц = 1, 2,..., n, and at the end of the calculations we let «->0
(Ref. 56). As a result the averaged probability functional
becomes54

IfJL1) Г Г
2 cd JJ

dtdt'

q(t - t')d

(4.58)

where we have introduced two types of overlap parameters
of the ensembles

P(t ~ t') = (4.59)

Ct, _
- t') + G(t' - 0) = O>Q(t-t')m

(4.60)

where the subscripts on the averaging signs indicate, over
which quantity the average is taken. According to the last
expressions in formulas (4.59) and (4.60) the parameter
p(t — t ') characterizes the time correlation of the quantities
J"(?) and g(t') taking into account only the spread in the
internal field т,, and the parameter q(t — t ' ) does so taking
into account the spread of the field r, and the fluxes J", them-
selves.

The direct realization of a procedure for averaging with
the functional (4.58) is a complicated matter, and is
achieved with the use of the concept of the hierarchical
structure of defects, discussed in Section 4.2. In particular,
the ultrametric topology of the time space allows us to re-
duce expression (4.58) to the functional integral

e /t
, (4.61 )
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defined by the distribution (4.15), which in turn is given by
Eq. (4.24), which contains the evolution operator
G , (т,т') of the hierarchical system of defects in ultrame-
tric space. As for the case of the evolution operator, the pa-
rameter q plays the role of the time, and for the functional
F{r(t)} = Fq(£,T) it reduces to the singular time
z = z(q) = z ( y ) , whose metric makes the ordinary time
space t ultrametric.18'54 Therefore, the distribution F z ( t )
obeys the Fokker-Planck equation, which follows from Eq.
(4.28) with Z= Z0exp[ - (HA'(z)/Q'(z) )r<f ]

(4.62)

J(F) = -HA'(z)/f -

In turn, the average defect flux £ = |"(z,r) also obeys an
equation of continuity of the type (4.62) with the general-
ized flux

(4.63 )

and the initial condition £(z = 0,r) = tanh(r/C). The func-
tions A'(z) and q'(z) represent the density of the distribu-
tions

—

A(y) = -J A'(z)dz, <?(>•) = J g'(z)dz, (4.64)
1-у

where у is the probability (4.12). These functions are deter-
mined by the equations D(y)&'(y) — 0 and D(y)q'(y) = 0
with the kernel18'54

D(v) = l- \f
H

(4.65)

The condition D(y) =0 specifies the point of loss of ergodi-
city. The resulting equation determines only the relation be-
tween the quantities g(y) and A(j>), but does not specify
them if q'(y) ^=0 or A'0>) ̂ 0. The internal symmetry corre-
sponding to this arbitrariness is broken by specifying a par-
ticular relation between the densities q' (y) and A' (y). Thus,
the condition Ш ~ 'A'(^) = — q'(y) would correspond to
the fulfillment of the fluctuation-dissipation theorem, which
is violated by the loss of ergodicity. In the present case the
relation between the quantities A'00 and q'(y) is given by
the solution of Eq. (4.29). However, it is more convenient in
practice to specify this relation by assuming that the proba-
bility 0<y<, 1 and the singular time 0<z < oo are related by a
specified monotonically increasing function

У = (4.66)

taken, e.g., in the form^ = tanhz (Refs. 18, 54). This equa-
lity provides a connection between the fractal theory pre-
sented in Section 4.2 and the time approach in the present
section.

To complete the exposition of this time approach^ we
must find the time dependence of the singular functions S( t)
and G(t). In essence, the first of these is defined in Section
4.3 (see Table I), but the ultrametric space is assumed to be

homogeneous. In the presence of a field this is not the case,
since the function q(y) that characterizes this homogeneity
is not linear, but falls off monotonically and saturates near
the points у = 0 and 1 (Fig. 8) ,43 This means that the struc-
ture of ultrametric space is such that the smallest distances
~(/o;i. corresponding to the thermodynamic quantities #0;1

are realized with the highest probability. Therefore, we must
elucidate the results obtained in Section 4.3.

For this purpose we take the Fourier transforms S(co)
and G(a). Since the stabilization of each element of the de-
fect structure shows up as the appearance of a central peak
<x<5;(u>) = \imri_0ir~lr,(co2 + Г?) ~' in the structure fac-
tor, then following Ginzburg,18 we represent the singular
functions as series in the generalized functions

-if. (4-67)

where the summation is taken over the n levels of the hierar-
chy / for which the characteristic relaxation times are
Г,~1-кх>, with Г//Г,+ 1 -»0. To go over to a continuous
spectrum we let the total number of levels n go to infinity;
then//« = 1 — у, A,'-» A' 00 1 a.ndq',^>q'(y). Going over to
integrals in Eqs. (4.67) we use the method of steepest de-
scents to obtain18

'

5(0 = Ф), G(t) = уД'(

(4.68)

(4.69)

where x = — 8 In(|w|r0), andz = <51n(f/f 0 ) if we take the
distribution to be Г(у) = t^^expl — (1 — j)/<5],<5^1.For
other admissible approximations for the function Г(д>) we
again obtain the functions (4.68) and (4.69) with the differ-
ence that x = 8(\v\t0)~a, z = S(t/tor, a>0 or
x = S\ ln|ln( \co\t0 )||, z = <51n|ln(f /t0) |, as in the results ob-
tained in Section 4.3. The time dependences (4.69) tend to
the asymptotes listed in Table I if we identify the distribution
w(d) with A' (y) and majorize them as in Section 4.3. How-
ever, in the framework of the self-consistent approach the
slow evolution of the parameters q and A is given by the
equations54

z, r)dT,

, T)di,

(4.70)

(4.71)

where q0 = q(z = 0) = q(y = 0).
Expressions (4.61)-(4.63), (4.70), and (4.71) form a

self-consistent system of equations for finding the distribu-
tions ?{£,(/)}, F(Z,T), £(Z,T), q(z), and A(z). We shall
discover the nature of the solutions starting from the ultra-
metric topology of the time space: during the slow relaxation
of the defect structure the parameter q, which characterizes
its microscopic stability, falls off from its initial value
4o = l(y = 0) to the thermodynamic equilibrium value
q, =q(y= 1). Correspondingly, the irreversible response A,
which characterizes the nonergodicity, falls off in the inter-
val from АО = A(^ = 0) to Д,=Д(>>= 1) =0 (Fig. 9).

To determine these parameters q0,q{, and Д0, we must
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FIG. 9. Time dependence of the overlap parameter q and the nonergodi-
city Д on the scales of the singular time z and the ordinary time t.

find, in addition to the susceptibility у = y\ — Д, either the
thermodynamic potential, and minimize it with respect to q
and Д, or, using a diagrammatic technique, obtain the equa-
tions for the Green's functions S(ta)+S(ca) and
G(ca) + G(u})=x(a>) = tcy(a>) (in the former case we
must have recourse to the method of replicas,56 and in the
latter case we use the supersymmetry approach57). For arbi-
trary values of the probability j> (and consequently, for arbi-
trary values of the parameters у, Д, and q, which depend on
those probabilities), the equations derived have the follow-
ing form18'53

1 -
tB

(tey + Д)2

((CtfV

АГ

(4.72)

Ctey

~(Hy)2=l. (4.73)

The complete system of equations is closed by the condition
of loss of ergodicityZ>(j) = Oat.y = 0,y = 1, where D(y) is
defined by Eq. (4.65). This system of nonlinear equations
can be solved in analytic form only in the limit of small val-
ues of the parameter £= (2H/tcA)2 — 1. As in the usual
model of transitions of the displacement type,34 the condi-
tion 0<£Xl means that the long-range elastic forces be-
tween the elements of the structure exceed only slightly the
corresponding intrinsic contribution and almost cancel it.
Then in the first non vanishing order in f< 1,

= C/Ck - we obtain53

3/2
(4.74)

(4.75)

(4.77)

It can be seen from (4.77) that in the absence of a field
Д cc |©|2 and for r^Qwe have Д ос |®|. Thus, application of
the external load results in a more intense increase in the
nonergodicity below the critical degree of excitation, C, even
though an increase of the quantity r/0 itself decreases the
value of Д (Fig. 10). This behavior has no analog in ordinary
phase transformations. There is also a difference in the form
of the phase diagram (Fig. 10): while in our case the curve of
the critical field rc (C) as a function of the degree of excita-
tion is concave, for equilibrium transformations it is convex.
The functions (4.76) have the usual shape, if we take the
quantity q^n to be the parameter of the transformation. Nor-
malizing its maximum value according to the condition
q0(C = 0) = 1, we find the relation A£/6B = I . Here the
equations (4.74)-(4.77) take a simple form, which reflects
the unimodal nature of the system:

Л 2/3 „ r

(4.78)

(4.79)

2/3

1 -

3 Tk 1
(4.80)

where we have introduced the scales Ck, rk, yk, and Ak, of
measurement of the degree of excitation, the field, the sus-
ceptibility, and the irreversible response [as one might ex-
pect, under the conditions £< 1 of applicability of these ex-
pressions the two last scales are quite different:
&k/yk = (3Bi)/Hfj.)2^£2<l— the defect of the modulus is
much smaller than the modulus itself]. It is characteristic

2/3
FIG. 10. Irreversible response in the absence of a field (curve 1) and for
rj^O (curved) as functions of the degree of excitation of the system. The

(4.76) dashed line shows the curve of the critical field that separates the ergodic
region from the nonergodic region.
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that a field т^О leads to a nonzero finite value of g,, the
stability parameter of the macrostructure over the entire
range of excitation C. An increase in the stability q in turn
increases the viscosity h = у ~' and the degree of nonergodi-
city Д.

A characteristic feature of this system is that the critical
excitation Ck = (H/r))/fj, depends on the viscosity of the
medium, 77, which in turn is determined by the quantities С
and т. Thus, strictly speaking, the system of equations
(4.78)-(4.80) gives only an implicit expression for the func-
tions q(C,T), г](С,т), and Д (C,r) in terms of the phenome-
nological parameters H, B, and ц. However, since
(Ak/Yk)?2<Ak/rk~f 2<1 according to Eqs. (4.80) the ef-
fective viscosity 77 is essentially the same as the characteristic
value of H, while the critical excitation Ck reduces to the
shear modulus /л. The degree of excitation
0 = C/Ck — lzz(C/ц) — 1 gives the difference between
the stored energy С per unit volume and the elastic limit of f i .
An increase in this difference, according to (4.79) and
(4.80) results in a decrease in the effective viscosity 77,
whereas its field т increases. Finally, the structural relaxa-
tion, which leads to a slow falloff in the parameter q, in-
creases the value of 17, i.e., it promotes plastic flow.

These effects of nonergodicity should show up experi-
mentally as effects of structural memory. For example, if for
a fixed excitation the field т is turned on at time tr, then for
the rate of plastic deformation we obtain18

д& /dzr =

(4.81)

(4.82)

whereZT =z(t — tr) is the singular time defined after Eqs.
(4.69) and A'00 is the distribution density of the nonergo-
dicity parameter, given by (4.64) and reduces to the proba-
bility wa of realizing a statistical ensemble a [see Eqs. (4.7),
(4.9) and (4.11)]. Using relation (4.82) and data on the
structural relaxation, we can determine directly the distribu-
tion Д'(у) and thereby the probability wa. Formula (4.81)
is a direct reflection of the nonergodicity of the defect struc-
ture. Actually, if the field т is turned on with strong excita-
tion (C >CC), then the nonergodicity does not appear, and
Eq. (4.81) takes on the trivial form (%) = т/rj. If the field is
turned on when C< Cc, then in a time tc the dynamic value
% = T/rj is established, and then the slow structural relaxa-
tion brings about an increase in e(zr) = &(ZT)T (Fig. 11).

If a field, oscillating with a frequency ca^>(t — tr) ~' is
turned on, the viscosity acquires the anomalous additional
term

(4.83)

which shows a slow falloff during the structural relaxation.
It can also be shown that if a field т is turned on first at

time t, and then at t = t2, the dependence of the rate of plas-
tic deformation on the singular time z has a kink at the point
z = z2l —the defect structure "remembers" the length of the
interval z21 =z2 — Zj between the first and second times the
field was turned on. It is characteristic that this kink is ob-
served only on the scale of the singular (e.g., logarithmic)
time.

FIG. 11. The dependence of the rate of plastic deformation on the degree
of thermal excitation С (the different curves correspond to a total absence
of a field (т — 0) and to nonzero values of its average value rand variance
т).

CONCLUSIONS

The present investigation reflects the paradoxical situa-
tion that has arisen in the physics of plastic deformation. It
can be expressed by the widely-held opinion (especially
among theorists) that the physics of plastic deformation as
such does not exist at all; it is only the mechanics of deforma-
tion on the one hand, and the theory of various kinds of
defects, on the other that exist. We have tried to follow a
scheme that would unite these two poles. It has turned out
that to pay for this scheme we have had to use such entities as
soliton-like formation of a strongly nonequilibrium crystal-
line medium, stratified spaces with dilatation, curvature,
torsion, and shear, and hierarchical chain structures. The
theoretical apparatus that represents these entities requires
the introduction of the ideas of stochastic tunable potential
relief and gauge fields, which, depending on the situation,
can represent both a strong interaction and the defects them-
selves; the hierarchical structures are described by a set of
statistical ensembles, each of which is imaged by a point in
ultrametric space.

A characteristic feature of defect structures is that by
comparison with spin-glass type systems the number of
structural levels is limited and an analytic description, as a
rule, is not possible. Numerical schemes must be used in
which the values of the hydrodynamic quantities of the up-
per structural level (for example, the stress field) play the
role of boundary conditions for the ensemble of structural
units at the lower level. By solving their equations of motion
numerically (see Sections 2 and 3), one can find boundary
values that provide a specific behavior, and in this way con-
nect two nearest levels. Then the scheme is repeated at a
rougher scale level, where the previously found boundary
parameters now play the role of the field variables of the
structural units of the new level. By repeating this scheme
sequentially for each pair of adjacent levels,58 one can, from
the motion of the defects at the microscopic level, determine
the change in shape of the entire sample that is, we can com-
pletely realize our program.

Of course, all this discussion relates to the arena of the
theorist and the calculator, and the experimentalist might
well ask what is the use of all this activity. Before answering
this question, we should once again point out the extreme
complexity of the entire physical picture of the outwardly
apparently simple phenomenon of plastic deformation. Or-
dinarily in an experiment the goal is to abstract from the
other mechanisms a particular mechanism and study it by
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itself. We, however, have started from another premise—to
represent the entire variety of these mechanisms. In this way
we have been able, for example, to explain the mode of be-
havior of the creep of a solid,17 the fatigue strength of mate-
rials,59 and so forth. Recently it has been discovered that the
formation of hierarchical defect structures is observed not
only during developed plastic deformation, but also in phase
transformations. For example, it turns out that only by tak-
ing into account this circumstance can one understand the
regularities of the kinetics of the hydrogenation and degasifi-
cation of palladium,60 the structural and magnetic relaxa-
tion of high-temperature superconducting oxides,61 the be-
havior of the macrostructure of alloys, shape memory
effects,'5 etc. We suggest that in most experiments related to
structural investigations, the "dirt" that experimenters fight
against, so as to isolate in its pure form the object or mecha-
nism of interest, is related to the appearance of a more or less
developed hierarchical structure. If this is so, then the time
has come not to "wash out" this dirt, but to study it (which,
by the way, is already being done6'7'62 ).
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' Sometimes within the framework of the last structural level correlated
conglomerates of grains etc. are distinguished.5 6 I° It is also common to
distinguish structural levels connected with defect densities (for exam-
ple, in Ref. 7 the lower, atomic level is determined by the density of
dislocations. In Section 2 it will be shown that the latter is, apparently
unnecessary.

1 The "Fermi-like" properties of the structural units are that a structural
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An analogous situation occurs in all classical models of the Ising
type-2"4
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' It is clear that a homogeneous ultrametric space corresponds to a Cay-
ley tree with constant branching and nodal connection only between
adjacent levels.

' To avoid confusion, we note that the barriers Q, characterize the contri-
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deformation '/?, and the susceptibility reduces to the elastic compliance,
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