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Results are presented of an investigation of low-frequency relaxation processes in concentrated
solutions and melts of polymers—systems of weakly coupled linear macromolecules. The
effectiveness of a single-molecule approximation is demonstrated in which it is assumed that each
macromolecule moves among its neighbors as if in an after-acting medium. An approach is
examined which is confirmed by studying phenomena of optical anisotropy, diffusion, and
neutron scattering, and which leads to a theory of viscoelasticity of polymer systems that turns
out to be self-consistent.

INTRODUCTION

Polymers diifer from other materials by the size of their
molecules which, appropriately enough, are referred to as
macromolecules, since they consist of thousands or tens of
thousands of atoms (molecular weight up to 106 or more)
and have a macroscopic rectified length (up to 10~4 cm).
The atoms of a macromolecule are firmly held together by
valence bonds, forming a single entity. In polymeric materi-
als, atoms in different macromolecules experience the
weaker van der Waals forces, and at temperatures above the
characteristic glass transition and crystallization points, the
polymeric system can be looked upon as a weakly-coupled
system of macromolecules (the system is then a concentrat-
ed solution or melt, i.e., a polymeric liquid). When the sys-
tem is excited (mechanically or thermally), the macromole-
cules can readily change their neighbors, but the integrity of
each individual macromolecule remains unaffected.

The structure of polymeric liquids is more complicated
than that of polymeric solids or low-molecular liquids, but
there are some common properties: the atoms within a given
macromolecule are ordered, but the centers of mass of the
individual macromolecules and parts of them are distributed
randomly. Remarkably, the mechanical response of poly-
meric systems combines the elasticity of a solid with the flu-
idity of a liquid. Indeed, their behavior is described as visco-
elastic.' This property is typical of slow (relaxation time up
to 1 sec or more) relaxation processes that are commonly
associated with the relaxation of an individual macromole-
cule in a system.2'3 Different research groups have made
valiant attempts during the last 20-30 years to find a unified
approach to polymeric systems that would provide an expla-
nation and description of nonequilibrium phenomena in
polymers from a unified point of view. The history of these
searches is instructive and has its share of moments of dra-
ma. Indeed, there have been quite a few unsuccessful hy-
potheses (which nevertheless helped to advance our under-
standing of the behavior of polymers), but we shall not
concentrate our attention on history. Instead, we present a
review and an analysis of the present state of the subject.

Our understanding of the situation as of the end of 1986
is summarized in the monograph by Doi and Edwards,3 but
intensive studies of the dynamic properties of polymers have
continued, and we now have a much better picture of the
behavior of entangled linear polymers. The theory of non-
equilibrium phenomena in polymers cannot, however, be re-

garded as complete. Nevertheless, researchers appear to be
on course toward a clear understanding of the thermal mo-
tion of macromolecules in concentrated polymeric systems,
which provides a unified basis for the formulation of a theory
of nonequilibrium phenomena in these systems.

1. LOW-FREQUENCY MOOES OF THE THERMAL MOTION OF
MACROMOLECULES

The structure of a polymeric system is such that the
thermal motion of its component macromolecules is differ-
ent from the thermal motion of atoms and molecules in li-
quids or solids. This is particularly clearly shown by the lo-
calization effect whereby the mean displacement is a
monotonic but nonlinear function (cf. Section 1.5) and the
macromolecule remains near its initial position.

We begin our discussion of macromolecular dynamics
with a schematic picture of an individual macromolecule.

1.1. Gaussian subchains

The statistical theory of long chains developed in con-
siderable detail in Refs. 4-6 defines the equilibrium variables
that characterize a macromolecular coil as a whole, includ-
ing the mean square end-to-end distance (R 2)0 and the
mean square radius of inertia (52)0 as functions of the mi-
cromolecular parameters. Whatever its chemical composi-
tion, a long enough macromolecule will roll up into a coil as a
result of thermal motion, so that its mean square radius of
inertia becomes proportional to its molecular length M:

(R\ ~ M.

A macromolecule cannot always be described with the help
of (R 2}0 or (S 2)0 alone. Very long macromolecules require
the more detailed, more macroscopic, and more universal
method introduced by the pioneering work reported in Refs.
7 and 8 whereby the macromolecule is divided into N sub-
chains of length M /N each. The points at which the sub-
chains join to form the macromolecule will be labeled 0 to N,
respectively, and their positions will be represented by r°,
r'.-.r^ (Fig. 1). If we assume that each subchain is also suffi-
ciently long, and can be described in the same way as the
entire chain, the equilibrium probability distribution for the
positions of all the beads in the macromolecule is
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FIG. 1. Universal schematization: whatever the chemical structure, the
macromolecule is represented by a flexible filament (persistent length mod-
el) or chain of freely joined segments (Kuhns'model) orchainofBrownian
particles (subchain model; the figure shows only two particles).

W(r°, r1, .... т») = С exp(-/Me/V),

where

ц = 3/2А2 = 3N/2(R\,

and the matrix A takes the form

(1.1)

(1.2)

1 - 1 0 .
-1 2 -1 .

0 - 1 2 .

0 0 0 . . . 1

(1.3)

We note that the free energy of a macromolecule in this
approach is given by

and this determines the force per site in the first order in r

Щ = - dF/di? = -fyTA^rt (1.4)

where v is the site number.
The Gaussian subchain model can be generalized in a

number of ways. When additional flexibility has to be taken
into account, we have to add the interaction between differ-
ent sites, so that the matrix (1.3) is replaced, for example, by
a five-diagonal matrix; it is possible to take into account the
finite extension of subunits by including in (1.4) terms of
higher order in r, and so on.

When the equilibrium and nonequilibrium characteristics
of the macromolecular coil are calculated, this is conveniently
done in terms of new coordinates, defined by

and such that the quadratic form in (1.1) assumes a diagonal
form, so that

We shall follow tradition and refer to the new variables
as the normal coordinates.

It is readily seen that the determinant of the matrix given
by (1.3) is zero, so that one of the eigenvalues, say, A0 is
always zero. The normal coordinate corresponding to the ze-
roth eigenvalue

is proportional to the position vector of the center of mass of
the macromolecular coil

a=0

The behavior of a macromolecule is conveniently de-
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scribed in a coordinate frame with origin at the center of mass
of the system. There are then only N normal coordinates,
numbered from 1 to N.

The distribution function (1.1), normalized to unity,
then assumes the following form:

\ 3//2

ехрС-^/х^. (1.6)/ r

The transformation matrix Q can be chosen in a variety
of ways. In particular, it can be orthogonal and normalized.
For large N and small values of a, the eigenvalues are then
given by (cf., for example, Ref. 9)

= (ла/Лг)2, a = 0,l (1.7)

In the case of an orthogonal transformation, the relation-
ship between the normal coordinate corresponding to the ze-
roth eigenvalue and the position of the center of mass of the
chain is

У.г«. (1.8)
1

Because of its universal character, this model plays a fun-
damental part in the theory of equilibrium and nonequilibri-
um properties of polymers. When N= 1, the subchain model
transforms into the simple model of a flexible macromolecule,
i.e., a dumbbell with two beads connected by a spring. This
model was introduced by the Kuhns10 as a first step toward
the dynamics of a macromolecule in a flow.

We note that the above results are valid for a free nonin-
teracting massless chain that constitutes a very useful ideal-
ization. However, the monomers in a macromolecule interact
with one another, and this ensures, above all, that parts of the
molecule cannot occupy the volume already occupied by oth-
er parts; i.e., the probabilities of successive steps are no longer
statistically independent, as was assumed in the derivation of
the above probability distribution functions and mean end-to-
end distance. For this subchain model, the equilibrium distri-
bution function that includes the particle interaction poten-
tial can be taken in the form

С ехр(-/М
<*r (1.9)

where С is the normalization constant and U is the lateral
interaction energy, measured by the second virial coeffi-
cient11 B. The inclusion of interaction leads to a change in the
root mean square distance (R 2) as compared with the unper-
turbed dimensions characterizing the massless macromole-
cule, (R 2)0 = Nb2. When dimensional considerations are
taken into account, this quantity can be written in the form

= Nb2f(N, B/b3). (1.10)

This turns out to be particularly significant when one investi-
gates dilute polymer solutions whose behavior is discussed in
Refs. 11-15.

1.2. Macromolecule in a concentrated system

We now turn to the concentrated polymer solution or
melt. We assume that the system contains и identical macro-
molecules per unit volume. The position of each macromole-
cule can be defined, as before, by specifying certain points
along the macromolecule, spaced at distances that are equal,
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but not too small; as before, we shall refer to these points as
particles. If we take N + I points to define the position of the
macromolecule, we shall need 3n(N+ 1) coordinates to
specify the state of the entire system. The state of the system is
described by the distribution of all the particles, and the corre-
sponding equilibrium function is

ж=| (1.11)

where t"r is the coordinate of the 7th bead of a macromolecule
labeled a or, in short, the coordinate of the point ay, ц and the
matrix A are given by (1.2) and (1.3), respectively. The po-
tential energy associated with the "lateral" interaction be-
tween the chains depends on the difference between the co-
ordinates of all the particles in the system.

There is particular interest in the distribution function
for a single macromolecule and in the mean dimensions of a
macromolecular coil in the system.

In contrast to the case considered in Section 1.1 [see
(1.10)], the root mean square end-to-end distance is now a
function of three parameters

= Nb2f(N;B/b3,nb3), (1.12)

where b is the mean separation between neighboring particles
in a chain and В is the second virial coefficient. The number of
macromolecules is related to the concentration с of the poly-
mer in solution:

n = 6,026 -1023c/Af- cm 3.

In a dilute solution, the macromolecular coils exist inde-
pendently of each other. The parameter nb3 in (1.12) then
has a very slight effect. However, as the concentration of the
polymer increases, the separation d between the coil centers
decreases, and when

d = 2{S2)in, (1.13)

where (S2) is the mean square radius of gyration, the coils
begin to overlap. This condition defines the critical molecular
weight for a given concentration, or the critical concentration
of the solution for a given molecular mass, for which overlap
begins.

Dilute
solution

Semidilute
solution

Concentrated
solution

о Concentration /

FIG. 2. Schematic diagram showing the mean size of a macromolecular coil
as a function of the polymer concentration. The example is taken of a ma-
cromolecule in a good solvent, so that at low concentrations
(R2)/(R2)0>\. The curves illustrate two variants of this dependence.

Further increase in the the concentration of the polymer
is accompanied by mterpenetration of the coils. As shown in
Refs. 16 and 17, the mean dimensions of the coils are then
found to approach their unperturbed values, i.e., values they
would have had in the ©-solvent (Fig. 2).

For concentrations approaching the limiting value
(c-> 1), the system of macromolecular coils becomes spatially
homogenenous, and portions of different macromolecules are
found at each point; i.e., the molecular coils become entan-
gled. Volume interactions are then screened2 and the coil be-
comes ideal; i.e., the coil dimensions in the concentrated sys-
tem are the same as the dimensions of ideal coils. This is
confirmed by direct measurements of the dimensions of ma-
cromolecular coils in concentrated solutions and melts (cf.
Refs. 18 and 19). By integrating (1.11) with respect to the
coordinates of the particles of all the macromolecules except
the chosen one, we obtain

W= (1.14)

where, as before, // is given by (1.2).
The entanglement of macromolecular coils in a concen-

trated system leads to a specific topological interaction be-
tween macromolecules in the system, i.e., to the formation of
sites and tangles. This interaction is particularly conspicuous
in nonequilibrium phenomena.

Discussions of dynamic phenomena in polymers are fre-
quently based on assumptions about the structure of the sys-
tem, which is often taken to be a network with characteristic
site lifetime and nearest-neighbor separation.19 A modifica-
tion of this is the theory that postulates a certain internal
scale, such as the diameter of a tube in which macromolecular
displacement, i.e., reptation, is possible, but this hypothetical
internal scale has not been detected anywhere except in dy-
namic phenomena, and its existence should be a consequence
rather than the starting point of the theory. The theory that
we shall consider below does not rely on the assumption of an
internal scale, but it does assume that the mean size (R 2 ) and
the macromolecular number density и (or concentration c)
are the most significant parameters of the system.

We shall not discuss here the spatial correlation func-
tions introduced in Refs. 2 and 16 for a more detailed descrip-
tion of system dynamics, or the relative position of the mono-
meric branches, since they are relatively unimportant in our,
admittedly very coarse, approximation.

1 .3. Dynamics of a macromolecule in the monomolecular
approximation

We shall consider the motion of a macromolecule when
the above system is deformed with a constant velocity gradi-
ent tensor

so that a particle located at rf is dragged with mean velocity
Vfjff, which leads to the stretching of the macromolecular coil
as the system is deformed. We shall also use the following
notation for the symmetrized and unsymmetrized velocity
gradients, respectively:

Yy = 0/2XV0 + v,,), си. = (l/2)(v.y - vy,.).

When we consider relatively slow motion of concentrat-
ed polymer solutions or melts, each macromolecule will be
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schematically described as consisting of TV + 1 linearly cou-
pled Brownian particles, so that we shall be able to look upon
the system as a suspension of n (N + 1) interacting Brownian
particles suspended in a viscous "monomeric liquid." The col-
lective motion of the entire set of macromolecules is then de-
scribed by a set of stochastic Markov equations which, for
slow motion, can be written in the form

r f f

= J «s>tf ~ vP<-.ds - J

m- -W^-vf)-

(1.15)

where t*a is the coordinate of the particle labeled a, which
belongs to a molecule labeled a, and т is the mass of a Brow-
nian particle associated with a piece of the macromolecule of
length M /N. The first term on the right is the hydrodynamic
drag force, determined through the matrix Baa b/3 by all the
Brownian particles in the system. The second term represents
the force due to nearest-neighbor Brownian particles along
the chain, and the third term is the direct interaction between
all the Brownian particles. The last term represents the ran-
dom thermal force whose statistical properties are, as usual,
defined so that the equilibrium values of the calculated quan-
tities are the same as those already known. Intramolecular
friction forces (internal viscosity and kinetic stiffness) that
arise when the macromolecular coil is deformed13'14 are omit-
ted because they are small in comparison with other forces.

A force acting on any part of the system gives rise to the
excitation of the entire ensemble of Brownian particles, so
that when the behavior of the system and the mechanical
forces are investigated we have to consider the collective mo-
tion of all the particles in the same way that, for example, we
examine the motion of the ensemble of atoms in a solid. Our
first task is therefore to find the normal coordinates of the
polymer system, i.e., the variables that vary independently of
one another.

The identification of the normal coordinates can be car-
ried out in two stages, bearing in mind the particular proper-
ties of the system (strong interaction along the chain and
weak interaction between the macromolecules). The task of
the first stage is to determine the dynamics of a single macro-
molecule, surrounded by all the others. Evaluation of the
mean characteristics is not the only way of taking the influ-
ence of the latter into account. The validity of the so-called
monomolecular approximation rests essentially on the funda-
mental experimental fact that quantities that characterize the
behavior of the polymer system have a well-defined single-
valued dependence on the length of the macromolecule. This
is followed by the second stage in which the normal coordi-
nates of an individual macromolecule are determined.

To implement the first stage, we must eliminate all vari-
ables, other than those that refer to the chosen macromole-
cule, from the set of stochastic equations given by (1.15).
Judging by published results,20"22 this procedure is not too
simple, but the form of the final results can be written down
before the calculations are carried out. The requirements of
covariance and of linearity in coordinates and velocities, de-
termine23 the general form of the equation for the dynamics of
the chosen molecule:

+ да-
The fundamental property of this equation is the pres-

ence of resistance and drag forces, represented by the first and
second terms with memory, as confirmed by the direct analy-
sis of this problem.21 Strictly speaking, we should also write
down these terms in the form of nonlocal expressions, since
excitation directly through the chain propagates to a distance
(R2), i.e. a distance that is large in comparison with the size
of the Brownian particle under consideration. However, for
the sake of simplicity, this will not be done here, although the
consequences of a nonlocal effect will be noted latter. Equa-
tion (1.6) also relies on the questionable assumption that each
particle in the chain is in the same isotropic situation. The
third term on the right of (1.16) represents elastic forces on
each Brownian particle due to its neighbors along the particle
chain, which ensure the integrity of the macromolecule.
These forces are assumed to be the same as in dilute solutions,
but 'lateral' interactions are not taken into account for the
reasons mentioned in the last Section.

Equation (1.16) is the most general equation for the dy-
namics of an individual macromolecule in the case of a linear
dependence on coordinates and velocities. However, the
memory functions /3(s) and £>(.$) cannot be determined from
general considerations: they must be found by calculations
such as, for example, those reported in Ref. 2, or simple model
considerations must be abandoned as was done in Refs. 24
and 25 (we shall return to this later).

The first term in (1.16) represents the resistance-drag
force experienced by a particle when the system is deformed:

(1.17)

Each Brownian particle in a chain, except for the first
and the last, which are unimportant for long chains, can be
looked upon as a particle in a cell consisting of flexible elastic
rods (Fig. 3) immersed in a monomeric liquid. The resistance
experienced by a moving particle can then be divided into two
terms, namely, the resistance due to the liquid, represented by
a coefficient f, and the viscoelastic reaction of the rods, due to
the entanglement of the ambient macromolecules. In the sim-
ple case of a single relaxation time,

where we have introduced the relaxation time of the ambient
medium which, as we shall see later (cf. Section 2.2) is the
characteristic relaxation time of a molecular coil. This sug-
gests that the theory is self-consistent and the coefficient В is a
measure of the increase in the friction coefficient due to the
fact that, for slow motion, the particle leaves behind a wake of
ambient macromolecules. When this effect is taken into ac-
count, and the environment (a concentrated solution of the
polymer) is looked upon as a nonlocal liquid, it is found26

that, for a small Brownian particle, the coefficient Б increases
with increasing length of the macromolecules surrounding
the chosen macromolecule:

В ~ M6, <5 > 2. (1.19)
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FIG. 3. Bead in a cell: the motion of the bead is resisted by the 'monomeric'
liquid and the viscoelastic reaction of the 'cell' walls.

For sufficiently long chains, 2?> 1. The estimate obtained
for the exponent is therefore very approximate and must be
improved.

The second term in (1.16) represents the intramolecular
resistance due to the change in the shape of the macromolecu-
lar coil. In contrast to the dilute solution, here this effect is due
to the entanglement of the macromolecules and to the resis-
tance due to the motion of the particles relative to one another
(Fig. 4). The resistance force can be written in a form that is
linear in the coordinates and velocities:

(1.20)

where

(?/T)£e-J/r. (1.21)

The relaxation times that appear in the memory func-
tions given by (1.18) and (1.21) are equal because they are
both determined by the macromolecules in the environment.

The above equation is a generalization of the equation for
the dynamics of the macromolecule in a dilute solution: the
effective viscosity of the liquid in which the Brownian particle
moves has been replaced in the case of the concentrated solu-
tion with an effective viscoelastic liquid, which brings in the
concept of microviscoelasticity. Of course, if the relaxation
times in (1.18) and (1.21) are short in comparison with the
characteristic relaxation time of the macromolecule, then
(1.16) becomes identical with the equation of motion of the
macromolecule in a viscous liquid, which was used in Ref. 15
to describe the dynamics of dilute polymer solutions.

FIG. 4. The mechanism of 'intramolecular friction': relative motion of
points a and ft on a given macromolecule is accompanied by the deforma-
tion of chain Г, which gives rise to additional energy dissipation.

In terms of normal coordinates, to which we transform
in accordance with the rule denned by (1.5), the set of equa-
tions for the Brownian particles, given by (1.16), now as-
sumes the form

'-*ds ~ J

(1.22)

The eigenvalues Av are given by (1.7). Equation (1.22)
should also contain a description of the static properties of the
stochastic force, denned so that (<j>"i(t)) = 0. The second-or-
der moment

. О = (1.23)

depends on velocity gradients and can be expanded into a
series in powers of this quantity. The first-order term cannot
in general satisfy the conditions of symmetry under the inter-
change of the arguments of the function (1.23), and must
therefore be discarded. This means that, to within first-order
terms in velocity gradients, the correlation function has the
same form as in the equilibrium, i.e., time-independent, case:

The random force correlator is determined by demand-
ing that, in equilibrium, the moments of velocities and coordi-
nates must be known. In our simple case, the Fourier trans-
form of the correlator does not depend on the mode number:

К(ш) = J = IT Re В [со ], (1.24)

where the one-sided Fourier transform of a function is indi-
cated by brackets:

(1.25)

For functions defined by (1.18) and (1.21), we have

В
1 - OUT I '

(1.26)

Equation (1.22) and the definition of the stochastic force
can be looked upon as the first-order approximation (linear-
ity in coordinates and velocities and in velocity gradients) to
nonequilibrium phenomena in dilute polymers. This excludes
effects due to nonlinear terms, e.g., the reptation phenomena
noted by de Gennes,27 which appear when the difference be-
tween mobilities along and at right angles to the chain is taken
into account. This can be described by terms of order greater
than the first in a rigorous theory of motion of a macromole-
cule in a concentrated system. However, before we turn to this
problem, we must examine the effects represented by linear
terms.

The set of equations given by (1.22), which will be pre-
sented later in a different form in (1.53), determines the low-
frequency modes of the thermal motion of a system of weakly-
interacting macromolecules for v = 1,2,... .
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1.4. Correlation functions and relaxation times

The average size and shape of a macromolecular coil in a
deformable system are described by the correlation moments

It is readily shown using (1.6) that, in equilibrium, these mo-
ments take the form

A macromolecule will on average form a spherically
symmetric coil in both dilute and concentrated solutions. De-
formation of the system produces a change in the shape and
size of macromolecular coils.

To calculate these moments, we start23 with (1.22),
which is conveniently written in the form

- *) + * - *) ~ *

(1.28)

where the functions^, ца, and va are determined by their
Fourier transforms

^[UJ]=/S[cU]^[cU], яв [»] = ?[» ]*«[»] (1-29)

and vanish for s-»0 and s-^ oo.
Differentiating (1.28) with respect to time, and integrat-

ing by parts, we find, using the properties of the integrands,
that

+ №„(«>«(< - *) + ^a(s)<o^t - s))pf(t - s) }ds.

(1.30)

Iteration of (1.28) and (1.30) can be used to expand the
normal coordinates and velocities of Brownian particles into
series in powers of small velocity gradients of the medium and
then, by multiplying and averaging, to obtain the expression
for any grouping. The moments of coordinates and velocities
evaluated in this way23 are written out below:

+ 2 J ^a(s)Ma(syylk(t — s)ds,
0

00

2 I ft (s)M (s)y.,(t — s)ds,
J

0 f (1.31)

fia(s)Ma(s) }yik(t -

- s)

These moments are given to within terms of the first or-
der in velocity gradients. A different procedure, described in
Section 1.6, has to be used to evaluate the second and higher
order terms.

The functions fta (s) and Ma (s) and their derivatives
must be known before we can evaluate the moments (1.31).
The one-sided Fourier transform of the function ца (s) is giv-
en by (1.29). The other function is denned as the coordinate
correlation function

with (1.27) taken at s = 0. The expression for the one-sided
Fourier transform is found from (1.28) and (1.30), using the
fluctuation-dissipation relation given by (1.24). It takes the
form

В [со ] — imeo

пка
(1.33)

This expression is valid for an arbitrary function В [со],
but to reconstruct the correlation function, we start with
(1.26), derived in the last Section for a simple model. In the
present model, inertial forces acting on the Brownian parti-
cles are then unimportant, so that we can neglect the mass,
but the final expressions will contain the following function of
a nonnegative argument:

lim e~£"m — \ n ~ _* (1341i f l / ' ^ n v 1 .-*—у
m-»0 I '

E(t) = -

If we carry out these calculations for

in the absence of inertia (m = 0), we obtain28

1 1 ,„+ -*/2r* __ -f/2r~

(1.35)

These expressions contain the two relaxation times r£
and т~ of the macromolecular coil. They are given by

(1.36)

+ 0 + B

where т% = т*/а2 represents the Rouse relaxation times, i.e.,
the relaxation times of the macromolecule in the viscous liq-
uid.

The relaxation times are now determined not only by the
Rouse relaxation time, but also by a further three parameters,
namely, the relaxation time т of the medium, which acts as an
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initiating parameter for the relaxation process, the measure В
of the increase in the particle friction coefficient due to the
wake behind the particle when it moves slowly among the
chains, and the internal viscosity E associated with the resis-
tance to deformation of the coil due to its entanglement by
ambient macromolecules. All three parameters increase with
increasing length of ambient macromolecules.

It is also interesting to consider the simpler case in which
£ can be neglected in comparison with £B and £E. However,
an incorrect result is obtained by going to the limit in (1.33):
it is essential to maintain the order in which the limit is ap-
proached. We first take т ->0 and only then g -»0. The result
is

t t

0-37)
T

r<« %a

a

These expressions can be used with (1.31) to calculate
any moments in which we are interested. For example, we can
show that, after a perturbation, the single-time moments of
the coordinates approach (m = 0,f = 0,gB ^0) their equilib-
rium value in accordance with

a ~"T

We note that, in simple cases, the optical anisotropy of
polymeric systems is directly related28 to differences between
the moments of coordinates, (pfpl} — (pfpl)0> so that bire-
fringence experiments can reveal the relaxation of moments
and can yield estimates of the relaxation times. Analysis of
this situation28 shows that there is good agreement between
measured and theoretical relaxation laws.

1.5. Mobility of macromolecules

There are significant differences between the thermal
motion of a macromolecule in a dilute solution and a macro-
molecule in a melt (amongst other macromolecules). In the
former case, the macromolecule moves as a Brownian particle
in a viscous liquid, and its displacement is given by the stan-
dard expression

<Aq2) = 6/y (1.39)

where D0 is the coefficient of diffusion, which is inversely
proportional to the mobility of the macromolecular coil. For a
molecule in a flowing liquid without volume effects

00 - TIM.

Let us now consider the thermal motion of a macromol-
ecule constrained by other macromolecules.25 We shall calcu-
late the mobility of a macromolecule in thermodynamic equi-
librium in which there are no velocity gradients and
viscosity-type forces do not arise, so that we can start with the
equation of dynamics, i.e., (1.16), without the second term on
the right-hand side, and use the expressions for the moments
obtained earlier.

We shall calculate the root mean square displacement of
the center of mass of a diffusing macromolecule in a time t,
using the expression

(Aq2) = J J<q(s)q(U)>d5d«. (1.40)
0 0

This reduces to the evaluation of the time-domain velocity
correlation function

We now turn to the expression for this function given by
(1.31), and consider the simple case without inertia for which

We then find that the displacement of the center of mass of a
macromolecule is

(1.41)

Figure 5 shows the displacement as a function of the ratio
r/rfor5=100.

For short times of observation, t^T/B, the expression
for the displacement takes the form

<Aq2) =

and is identical with (1.39) which was written for the dis-
placement of a macromolecule in a flowing viscous liquid.
The constraints due to the other macromolecules then be-
come insignificant, and the expression for the diffusion coeffi-
cient of a macromolecule in a flow is the same as for the corre-
sponding monomeric viscous liquid:

D0 = 7УЛ5.

The mobility of the macromolecule falls sharply for
t = т/В, but the displacement remains constant over a certain
time of observation, and is given by

<Aq2) = (1.42)

The characteristic time r/B is thus associated in the the-
ory with a characteristic scale; i.e., we have a localization
effect. The dimensionless quantity ̂  can be interpreted as the
ratio of the square of twice the characteristic scale to the root
mean square end-to-end distance of the macromolecule:

_ хг (2|)2 ^ (2|)2

8 2 -
(1.43)

-з

-J -г -1 D
log («A)

FIG. 5. The displacement of the center of mass of a macromolecule, calcu-
lated from (1.41), demonstrates the existence of the localization scale f.
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The quantity £ may be expected to be a characteristic of
the system of chains, and is independent of the length M of the
macromolecules forming the system, so that

The situation is different for long observation times t%>r.
Constraints by neighboring macromolecules then play a sig-
nificant part, and (1.41) gives the expression for the displace-
ment:

(Aq) = (bT/N£B)t.

Hence it follows that, in this particular situation, the mo-
tion of a test chain is also coupled to the motion of neighbor-
ing macromolecules, and the diffusion coefficient is deter-
mined both by the length M of the test macromolecule and by
the length of the ambient macromolecules:

D ~ (1.44)

The diffusion coefficient for long chains is small, and we
then encounter a competing mobility mechanism that gives a
different dependence of the diffusion coefficient on the length
of the macromolecule. It is important to remember that a
particle that is part of a macromolecule surrounded by other
macromolecules exhibits anisotropic mobility; i.e., the mo-
tion of a bead along the molecule is easier than motion in the
perpendicular direction. This can be taken into account by
introducing an anisotropic mobility or, more coarsely, by in-
troducing a tube of finite diameter 2J" [£ is denned by (1.42)]
formed by the surrounding macromolecules, so that the only
possible motion is motion along the tube, i.e., reptation.27 The
diffusion coefficient of the macromolecule does not then de-
pend on the length of the ambient macromolecules27

D ~ (1.45)

Thus, for long observation times, we have two competing
mechanisms for the displacement of a macromolecule with
diffusion coeffients given by (1.44) and (1.45). By studying
the mobility of a macromolecule of length M among chemi-
cally similar but shorter macromolecules of length M0, we
can differentiate between these mechanisms because they
have a different length dependence of the self-diffusion coeffi-
cient:

D ~ D ~ ЛГ2. (1.46)

Of course, when the macromolecules are long enough,
the reptation mechanism predominates, and this has indeed
been confirmed experimentally.29

We note once again that reptation is a nonlinear effect.
To describe it, we must add nonlinear terms to the equation of
motion (1.16). These are in effect added in Ref. 27 by intro-
ducing the tube. However, it would be wrong to conclude in
the light of existing experiments that the concept of molecular
reptation can provide a description of relaxation phenomena,
including viscoelasticity. Actually, to construct first-order
theory, it is sufficient to confine our attention to terms in the
equation of motion for the macromolecule that are linear in
coordinates and velocities.

A detailed analysis of particle displacement in a chain is
given in Ref. 30 for observation times t<£r/B for which the
displacements of chain particles are small, small-scale motion
of the beads confined to the scale |" can take place (chain in a

tube), and large scale chain conformation is frozen. For long
times of observation, the particle mobility is reduced, but dis-
placement is unrestricted, and higher-order effects that were
not examined in the theory become possible, e.g., sliding in a
tube, as discussed by de Gennes.27 This picture of motion is
confirmed by studies of quasielastic neutron scattering by spe-
cially prepared samples.31

1.6. Relaxation equations

When the dynamic equations were formulated and the
moments were evaluated, this was subject to the condition
that the relationships used were valid to within terms of the
first order in velocity gradients. On the other hand, when the
moments are calculated in the higher-order approximations
based on the model of a macromolecule moving in a medium
consisting of all the other macromolecules, we must also al-
low for the fact that deformation of the medium makes it
anisotropic because each Brownian particle moves in an an-
isotropic viscoelastic liquid. This was neglected when the
analysis was confined to linear effects.

The amplification coefficients В and E in the dynamic
equations [cf. formulas (1.18) and (1.21 ) ] will now be writ-
ten as tensor quantities that depend on the tensor

where the gyration tensor of the macromolecular coil is given
by

0=1

In the linear approximation,

(1.47)

To calculate the moments, it is convenient to write down
the dynamic equations (1.16) for a macromolecule in the
form proposed in Ref. 32.

The external resistance force given by (1.17) in accor-
dance with the function (1.18) can be split into two terms,
one of which is constant and equal to £ (rj — vy7/f), and the
other satisfies the equation

d/7
dt * = -S (1.48)

Similarly, the internal resistance (1.20) can be taken in
the form

AOf
-НГ (1.49)

It is readily verified that, in the linear approximation,
these relations are given by (1.17) and (1.20), whereas in the
nonlinear approximation, equations (1.48) and (1.49) give
the expressions for the forces that are covariant under time-
dependent transformations. We note that more detailed infor-
mation about the covariance principle for relaxation phenom-
ena can be found in Ref. 33 (page 13).

As before, it is convenient to transform to normal coordi-
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nates. Taking the forces in terms of the new variables «r,

we can rewrite (1.22) in terms of the newly defined forces
(1.48) and (1.49) in the form

= -

(1.51)

These stochastic forces are determined by the corre-
sponding correlation functions which, as usual,34 are found
from the requirement that, in equilibrium, the set of equations
given by (1.51) must lead to well-known results. This condi-
tion determines the random-force correlation function

<,О = '

where, by virtue of (1.24), we have

-f

Next, following Ref. 32. we introduce the new variable
<p " (the acceleration) and, eliminating the variables Г" and
Т f from ( 1 . 5 1 ) , we write down the dynamic equations in the
following form:

т (r

V"

These are stochastic equations with a random force that
is related to the above random forces by

(1.54)

which can be looked upon as the equation for the random
quantity <p ] for given random £ ". It is readily seen that, if the
relation

(I^CO^'CO) — 27?(B(.. + £;.)<5 '&(t - t'), (1.55)

is satisfied, the random-force correlator satisfies the following
relation by virtue of (1.54):

The quantity (1.52) differs from the above expression only by
the presence of the first term, so that, iff = 0,£B =£Q,£E ^0,
the random source in (1.53) becomes <5-correlated. However
we cannot proceed to this limit immediately, since we are
interested, in the final analysis, in the results obtained for

i.e., we must first pass to the limit т = 0.
The set of stochastic equations given by ( 1 . 5 3 ) is equiva-

lent ( in the linear case ) • to { 1 . 1 6 ) with the memory functions
defined in Section 1 . 3 but, in contrast to the latter case, ( 1 . 5 3 )
is written as a set of Markov stochastic equations. This en-
ables us to determine the variables that describe the collective
motion of the set of macromolecules. In this particular ap-
proximation, the interaction between neighboring macromo-
lecules ensures that the phase variables of the elementary mo-
tion are the position coordinate, the velocity, and the
acceleration. The set of elementary modes describes the dy-
namics of the entire set of entangled and weakly-interacting
macromolecules.

We can now use (1.53) without any fundamental diffi-
culty, to find the equations for any moment, e.g., for

For example, in the above case
(m = 0,f = 0,gB ^Q,£E /0), it can be shown that, to within
terms of the first order in the small nonlinearity coefficients
P — x and £ = v, the relaxation equation is35

(1.56)

where the relaxation time is given by (1.36).
In the time-independent case, the solution of the relaxa-

tion equation given by (1.56) can be readily found in the form
of an expansion in powers of velocity gradients. If we confine
our attention to terms of the second order in velocity gradi-
ents, we obtain

4л2, BrR

(1.57)

The first terms in this expression are, naturally, identical
with the expression obtained in the corresponding approxi-
mation in Section 1.4.

2. THE VISCOELASTICITY OF CONCENTRATED POLYMERS

When we described macromolecular dynamics, we as-
sumed that the environment could be characterized by a de-
layed reaction, i.e., by viscoelasticity. We are now in a posi-
tion to calculate the mean stresses in the system and to
determine the parameters of the viscoelastic behavior. We
find that the relaxation time of the environment found in Sec-
tion 1, is equal to the relaxation time of the entire system,
which we have already calculated. The theory is thus seen to
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have the necessary self-consistency without requiring any ad-
ditional conditions or assumptions.

2.1. Stresses under deformation

A very concentrated polymer solution or melt is a system
of entangled chains that we investigate on the basis of the
monomolecular approximation; i.e., we consider that the sys-
tem can be represented by a set of noninteracting macromole-
cules whose behavior is described with allowance for their
environment. Each macromolecule is schematically repre-
sented by a chain of N + 1 Brownian particles, so that the
system may be looked upon as a suspension of Brownian par-
ticles but, in contrast to the dilute solution, these particles are
suspended in a viscoelastic liquid. The set of Brownian parti-
cles can be characterized, as in the case of the dilute solution,
by mean density

,o(\, 0 = 2 "i<<5(x - Г")) = m(N + J>(x, 0 (2.1)

and mean momentum density

P(X, ov(x, 0 = 2 «^Ot - «")>• (2.2)

The angle brackets represent averaging over the ensem-
ble of realization of random forces in the particle equations of
motion. The sum in (2.1) and (2.2) is evaluated over all the
Brownian particles.

When the equations of motion are formulated, which is
equivalent to the derivation of the expression for the stress
tensor,33 we have to take into account the presence of the two
interacting and interpenetrating continuous media formed by
the viscoelastic liquid carrier and the interacting Brownian
particles that model the macromolecules.

However, the contribution of the carrier in the case of the
concentrated solution is slight, and we shall ignore it hence-
forth.

We shall use standard procedure36 to find the stress ten-
sor. We start with the definition of the momentum density,
given by (2.2), which is valid for an arbitrary set of Brownian
particles. Differentiating (2.2) with respect to time, and using
the equation of motion given by (1.16), we find the equation
for the mean momentum density of the Brownian particles:

о ^̂-т~я7.2,

(2.3)

where the elastic force AT£ and the intramolecular friction
force Gk are given by ( 1.4) and (1.20), repectively. In (2.3),
we have separated out the mean drag acting on the Brownian
particles:

= - 2 1

Next, we use the formal expansion of the 6-function into
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a Taylor series around the center of mass q" of the ath macro-
molecule, and retain only the first two expansion terms:

<5(x - r*) = «3(x - cf).

Substituting this expansion into the right-hand side of
( 2 . 3 ) , we obtain an equation that has the form of the equation
of motion and determines the mean stress. Assuming that all
the macromolecules are identical, and neglecting the statisti-
cal dependence of the position of the centers of mass of the
macromolecules on the other coordinates, we write the stress
tensor in the form

a& = -" 2 Of ft 1,

where n is the macromolecular number density. In (2.4), the
sum is evaluated over the particles in a given macromolecule.

Recalling the expression for the forces К and G, and as-
suming that the particle velocities are described by the local
equilibrium distribution, we write the stress tensor in the fol-
lowing form in terms of normal coordinates:

nT
a— 1

(2.5)

This expression can also be written in the symmetrized
form35 and determines the stress tensor in terms of the corre-
lation functions of coordinates and velocities of the beads,
obtained in Section 1.4. The monomolecular approximation
ensures that the stress tensor of the system is the sum of the
contributions of all the macromolecules.

We note that, if <p(s) is independent of time (r-»0), the
expression for the stress tensor, given by (2.5), reduces to

Л'

« 2

(2.6)

If we use the moments for the macromolecular coil in a vis-
cous liquid in this expression, the result is identical with the
expression for the stress tensor in a dilute polymer solution in
the theory of Cerf37 and Peterlin.38 In this approach, internal
viscosity is taken into account in the linearized variant.

2.2. Dynamic modulus and relaxation times

Polymer systems have appreciable elasticity. Initially,'9

this elasticity was ascribed to the presence of a network in the
system formed by long macromolecules with junction sites.
The expression for the modulus of elasticity was written by
analogy with the theory of elasticity of linear polymers:4

G'e = nTMlMe, (2.7)

where Me is the length of a macromolecule between neighbor-
ing sites.

Attempts to describe the viscoelastic behavior of the
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polymer system in terms of sites and nets were unsuccessful,
although the concept of an internal scale has survived and has
been used to write down a formula analogous to (2.7).

The viscoelastic behavior of the polymer system can be
seen with particular clarity by imposing a one-directional os-
cillatory motion

У it
.-hat

The expression for the stresses, given by (2.5), then assumes
the form

and determines the complex viscosity 17 = 17' — iij1 '. It is also
convenient to describe the system in terms of the dynamic
modulus which is related to the dynamic viscosity by

G(<o) = G'(co) - iG"(a>) = -iwt)(a>).

Later in this Section, we shall examine the dependence of
the dynamic modulus of concentrated polymer solutions as a
function of frequency, polymer concentration, and molecular
weight. These functions have been the subject of extensive
experimental investigation.19 For example, Fig. 6shows39 the
dynamic modulus of polystyrene. This is a typical graph for a
linear polymer of high molecular mass and narrow molecular-
weight distribution.

To calculate the dynamic modulus, we turn to the
expression given by (2.5)

To begin with, consider the case of low frequencies, so
that f can be neglected in comparison with ffl in ( 1.26) . The
moments (1.31) can then be determined with the help of
( 1.37), so that after some rearrangement we obtain

log t

FIG. 6. Experimental and theoretical values of the real (a) and imaginary
(b) components of the dynamic shear as functions of frequency. The points
are taken from Ref. 39 for polystyrene with molecular weight 215000 at
T= 160 "C. The theoretical values of the shear modulus and its compo-
nents (dashed curve) were calculated by Yu. K. Kokorin for В = 3 000,
E = 20 000, x = 0.08, r* = 5X 10"5 s, иГ = 1.7X 105 dyne/cm2.

Thus, at low frequencies, the viscoelastic behavior of the
system is determined by two sets of relaxation times

2тг (2.9)

in which for small a and the above large В we have

The dynamic modulus of the system is determined by
two relaxation branches and is a function of frequency and of
the above dimensionless parameters

G(cu) = G(car*, В, %, у). (2.10)

Figure 7 shows the measured modulus40 and the theo-
retical results based on (2.8) in the low-frequency region. The
individual terms in (2.8) are also shown separately for the
two relaxation modes. This demonstrates that the principal
contribution to the modulus is due to the branch with relaxa-
tion time т°а. The contribution of the first term in (2.8), which
is due to ultraslow relaxation processes, was practically unno-
ticable for most of the systems that were investigated: the first
term had a slight effect on the imaginary part of the modulus
and a small knee appeared on the real part.

To analyze these results, consider the asymptotic behav-
ior of (2.8). The modulus reaches a plateau at high frequen-
cies:

Ge' = lira G(o>),

whereas, at low frequencies, the expansion

G(cy) = -icotj - со2!/ (2.11)

log G', log G"

7 logo)

FIG. 7. Experimental and theoretical values of the dynamic shear modulus
as a function of frequency. The points are taken from Ref. 40 for hydrogen-
ized polybutadiene with molecular weight of 215 000 at 130 °C. The theo-
retical values of the modulus and of its two components (dashed and
marked 1 and 2 in the figure) were calculated by Yu. K. Kokorin from
(2.8) for x = 0.0056, ф = 7.5, and B» 1.
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determines the viscosity rj and the elasticity v. Equation
(2.11) can then be used to determine the elasticity for very
low frequencies vm and intermediate values of v.

We now need estimates of the parameters x and ̂  before
we can proceed. A preliminary estimate of x which, according
to (1.43), can be interpreted as the ratio of the square of the
tube diameter (2£)2 to the mean square end-to-end distance
(R 2>0 , shows that^< 1 for arbitrary ф and sufficiently long
macromolecules. For large N, this enables us to replace sum-
mation by integration and to obtain expressions for the char-
acteristic quantities:

~ nT

12*(1+V) 8 X(i +

" Г ., !/2

Ьг2 ж ( v \

'-Нт-f if
(2.12)

v = пТ(т*Ву л2 тф ( 2v
- AX т*.!, I Д

3/2

These expressions are valid for arbitrary i/> and small x- We
can then distinguish between two cases, namely, for systems
consisting of very long molecules we have ^> 1 in the almost
complete absence of the solvent, whereas ^< 1 for concentrat-
ed easily flowing polymers.

When ^> 1, the following simple formulas follow from
(2.12):

(2.13)

We note that, in this particular case, i.e., for^<^ 1, ̂ > 1, the
main contribution to the modulus is provided by the second
relaxation branch with relaxation times т°а: the ratio of the
second to first terms in the definition given by (2.8) for со -> oo
is equal to ifx ~ '> so tnat the experimental detection40 of ul-
traslow relaxation processes—the first relaxation branch—
was quite sensational. The relaxation times on the second
branch are very close, so that the dependence of the modulus
on frequency could be approximated by a relation with the
single relaxation time

JL _ 2т*вх = т.
e

The relaxation time that we have determined may be
referred to as the principal viscoeleastic relaxation time; it is
equal to the relaxation time that was introduced to character-
ize the medium surrounding the chosen macromolecule; i.e.,
for ^> 1 the theory is self-consistent. This fact was noted in
Ref. 23.

We note, recalling the previously mentioned interpreta-
tion ofy as the ratio of the characteristic scale to the size of the
coil [ formula (1.45)], that the expression for the modulus on
the plateau can be written in the form

(2.14)

Comparing the expression that we have obtained with
(2.7), we note that the length Me between the links, deter-
mined in the usual way, is actually related to the characteris-
tic scale 2f. Although a network is not present in a concen-
trated solution, there is a characteristic length, which had
earlier been assumed to be the distance between neighboring
network sites. The characteristic length (tube diameter) 2£ or
length Me between chain joints can be estimated from the
modulus with the aid of the above formulas. A summary of
the estimated characteristic lengths is given in Ref. 41.

To extend the theory to higher frequencies, we have to
consider the general case where the microviscoelasticity is
given by (1.26). If we use (1.31) and (1.35), we find that, in
this case, the dynamic modulus is also a function such as
(2.10) and is determined by five relaxation branches. Figure 6
shows the calculated and measured dynamic shear modulus
of polystyrene together with the contributions due to the re-
laxation branches for values of x and В chosen so as to ensure
agreement with the modulus on the plateau and the length of
the plateau. Good agreement is achieved at high and low fre-
quencies.

The slowest of the relaxation branches (ultraslow relaxa-
tion) is then practically absent from these plots. The second
branch with relaxation time r is the significant one. The re-
maining branches merge together and form a group of slow
relaxation times, so that two groups are usually noted,' name-
ly, slow and fast. This picture is typical for concentrated poly-
mer solutions and melts.

2.3. Viscoelasticity of dilute polymer mixtures

By studying a mixture of two polymers, one of which is
present in much smaller amounts, we have a unique opportu-
nity to obtain direct information about the dynamics of a cho-
sen isolated macromolecule in a viscoelastic liquid consisting
of the matrix macromolecules.24

Consider a linear polymer with macromolecular weight
M0 and a small impurity of a similar polymer with high mo-
lecular weight M. We assume that the amount of the high-
molecular impurity is so small that its molecules do not inter-
act with each other, so that the medium in which the
molecules propagate is a system consisting of the linear poly-
mer with molecular weight M0, which is characterized by the
modulus G0 (u>) = — /u»?7o (<У).

The change in stress produced by the small amount of
macromolecules of another kind is, clearly, determined by the
dynamics of the noninteracting impurity macromolecules
among the macromolecules of another length, so that this case
is of particular interest from the standpoint of the theory of
viscoelasticty of linear polymers.

We now turn to the case of low frequencies for which the
dynamic modulus can be written in the form of the expansion
given by (2.11). We begin by considering the characteristic
quantities

c-0
(2.15)

c-O

as functions of the length (or the molecular weight) of the
macromolecules of the matrix and the impurity. The index 0
refers to the matrix and с is the impurity concentration.

The viscoelastic behavior of dilute polymer mixtures was
investigated experimentally in Refs. 42 and 43. The values of
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[т/] and [v] were found in Ref. 24 for mixtures of polybuta-
dienes of different length and narrow molecular-weight distri-
butions

[ч} ~

[v] -

(2.16)

Following Ref. 24, we can calculate the characteristic
quantities from the formulas given in the last Section. For the
above mixtures of polymers, we must consider В, Е, and т as
functions of M0, and т* as a function of M, so that we now
have

= т/2т*е ~ (2.17)

The quantity % is again small, which ensures that the
formulas given by (2.13) are valid and we find from them that

_:Т CTV
(2.18)

We assume that the length of the macromolecules in the
matrix is such that the discussion and results of the last Sec-
tion apply to them, so that

where n0 is the number of macromolecules per unit volume
and TO is the characteristic relaxation time of the macromol-
ecules of the matrix, where f£~M^.

Using the above relations, and recalling that n~c/M, we
find that

[r,] ~ [v] - M~1M. (2.19)

These results do not depend upon the dependence of В on
the length (molecular weight) of the macromolecule, which
we have already estimated [ see equation (1.19)].

We note that by considering the competing mechanism
of thermal motion—the reptation of the macromolecules—
we obtain44 the characteristic viscosity of the mixture:

[?] ~ Л/~3А/3. (2.20)

Comparison of the theoretical formulas (2.19) and
(2.20) with experimental data shows that the experimental
indices are closer to those in (2.19) than to those in (2.20).
This comparison confirms that, in so far as the influence of the
chosen macromolecule is concerned, the ambient macromole-
cules are equivalent to a certain viscoelastic medium, and
shows that the reptation model is unsuitable for the descrip-
tion of relaxation processes. As already noted, the reason for
this is that the reptation effect is due to terms of order higher
than the first in the equation of motion of the macromolecule,
and it is actually the first-order terms that dominate the relax-
ation phenomena. Attempts to describe viscoelasticity with-
out the leading linear terms lead to a distorted picture, so that
one begins to understand the lack of success of the reptation
model in the description of the viscoelasticity of polymers.
Reptations are found when one considers nonlinear effects in
viscoelasticity,

The above results are valid for 3f> A/0. This is so because
we have ignored the fact some of the macromolecules of the
matrix were replaced by impurity macromolecules.

Actually, the system that contains n0 matrix macro-
molecules per unit volume and и impurity macromolecules

per unit volume can be characterized by assuming the additi-
vity of the change in the characteristic quanitites

When M^M0, the above expressions reduce to (2.13),
and the expression for the characteristic quantities assumes
the form of (2.18). On the other hand, when M<gM0, the
characteristic quanities are negative and are independent of
the lengths of the matrix and impurity macromolecules

[v] ~ (2.21)

2.4. Dependence on the concentration, temperature, and
length of macromolecules

Thus, in the monomolecular approximation or, in other
words, in the mean-field approximation, the dynamic shear
modulus of the melt or the concentrated solution of the poly-
mer (2.10) is represented by a function of a small number of
parameters whose significance was discussed in the previous
Sections.

In the limiting case of concentrated solutions and melts
of high-molecular polymers, we assume that 5> 1. Hence it
follows that т> т*, which imposes certain restrictions опд', so
that 1/25 <x < 1. For these values of В and %, the theory is
found to be self-consistent for ф > 1, so that once again, as was
shown in Section 2.2, the formulas for the dynamic modulus
lead to the expressions for the characteristic quantities:

The significance of the dynamic modulus and of the
characteristic variables as functions of the polymer concen-
trations с and the length M of the macromolecule can be ex-
amined experimentally. The quantities В and^ as functions of
с andMat high concentrations can be written as functions of a
single argument. Actually, since the above kinetic restrictions
on the motion of a macromolecule are related to the geometry
of the system, the only parameters in this case are the number
of macromolecules per unit volume and the mean square end-
to-end distance

The dimensionless quantities В and % are therefore uni-
versal and independent of the chemical structure of the poly-
mers when expressed as functions of the dimensionless pa-
rameter

~ cMl/2 (2.23)

To determine the form of the functions j(Z) and B(Z),
we turn to the data obtained for almost monodisperse samples
of polymer melts of different molecular weight. Since experi-
mental data19'43 show that for high molecular weights
ri~Ms+l,G'e ~M°, where, as a rule 8 = 2.4, it follows from
(2.22) that
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В ~ ~ Z~2.

where т*~М2.
Theoretical estimates [cf. (1.19) ] show that 8 = 2. The

parameter E, which does not appear in (2.22), can also be
represented by a power function whose exponent estimated
from the relaxation time of ultraslow processes as function of
the molecular weight43 is the same as the exponent in the
expression for B:

f ~ 723& .

Using the above expressions together with (2.22), we
obtain the following functions of concentration and molecu-
lar mass (length) of a macromolecule:

(2.24)

~ ТсъМ°, т ~

These formulas establish the relationships between func-
tions of the characteristic quantities. For example, in accor-
dance with experimental data,19 the dependence of 77 and of т
on the length of a macromolecule is the same. The behavior of
the initial viscosity is the most widely studied: the measured
functions45"47 are close to the theoretical results given by
(2.24).

We note once again that the above discussion and expres-
sions are valid only for very long macromolecules and in the
limit of very high concentrations. For semidilute solutions,
the analysis should also include a further dimensionless pa-
rameter (cf. Section 1.2), but then the results become more
complicated. In particular, the expressions for the parameters
В and E appear to be different because E /B tends to zero on
dilution.

The temperature dependence of the characteristic quan-
tities in (2.24) requires separate examination.

The friction coefficient g in (2.24) is a function of tem-
perature, concentration, and (for small M) of molecular
weight:

? = C(T, с, М),

The coefficient of friction is due to the motion of small
portions of the macromolecule, so that its temperature de-
pendence is similar to that found for low-molecular liquids,
and can be written in the following form45 at temperatures
much higher than the glass point:

7- „VlT а т е лС е , \L.L:>)

where U is the activation energy that depends on molecular
weight (for small M), concentration, and also temperature if
the temperature range in which viscosity is considered is
large. Near the glass point Tg, we have45

ГЙг-VT. (2-26)

where A is an individual parameter,^ is the volume fraction
of free volume, and a, is the expansion coefficient of the liq-
uid. The quantities A and fg are practically independent of
concentration and molecular weight, so that the dependence
of £ on с and M is determined by the dependence of Tg on
these quantities.

We note that, since the parameters В, Е, and^ are practi-
cally independent of temperature, the shape of the curves
showing G /n Т as a function of the frequency т*а> does not
change with increasing temperature, so that we can have su-
perposition with the reduction coefficient obtained from the
temperature dependence of viscosity in accordance with the
rule

CKoja, ту = (р(Т0)Т0/р(Т)Т)С(ш, Т),

where the reduction coefficient is given by

(2.27)

(2.28)

The above expressions define a method of reducing the dy-
namic moduli measured at different temperatures to an arbi-
trarily chosen standard temperature T0 . We note that (2.28)
offers a relatively insignificant improvement on the usual
expression 39

2.5. Nonlinear effects during flow

Irreversible flow of the system becomes appreciable for
times of observation longer than the relaxation times of the
system, the longest of which is, according to (2.9),
т, = т( 1 + x + Ф)/1х- Sincex< 1. we find that for ф<&1, the
time r, exceeds the principal relaxation time т by one or two
orders of magnitude, whereas for ^> 1 it increases by several
orders of magnitude. Since the observation time t is usually
associated with the relatively long principal relaxation time т,
the system does not exhibit appreciable reversible deforma-
tions for ^> 1, whereas for ф^. 1 it flows readily.

Flowing polymer liquids exhibit nonlinear effects, a re-
view of which can be found in Ref. 19.

The flow conditions in viscometers are close to simple
shear, specified by a constant velocity gradient tensor

0 v,2 0
0 0
о о

which is why simple shear flow is often used to demonstrate
the properties of the rheological model, i.e., well-established
relations between stresses and kinematic parameters.

When the local stresses that are necessary for the imple-
mentation of shear flow are calculated from (2.5), only the
following shear stresses are nonzero in the first approxima-
tion in the velocity gradient:

°?2 = I7ovi2' (2.29)

Higher-order approximations show that normal stresses are
also necessary for the implementation of shear flow. For small
values of the parameters %, г/>, /3, it can be shown35 that

112 72 2232 „}
i 31 л *' + ,5Л2* 9гкР|

*И(вл

1 + -
, .315* !5Л2* 2125 i

аи + p = nT\~

on ± p =

(2.30)
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Three considerations lead to nonlinear effects in shear,
namely, effective kinetic stiffness of the macromolecules (\f>),
response lag of surroundings (%), and effects associated with
the change in dimensions and shape of the macromolecular
coils (13).

The expressions given by (2.30) lead to the following

expressions for stresses during shear:

1 / 4

(2.31)
15

^33

These expressions are amenable to experimental verifica-
tion. Data typical for concentrated polymer systems19 show
that the normal stress difference ст, l — cr33 is proportional to
the square of the shear stresses for low velocity gradients. The
second difference between normal stresses <r22 — cr33 is small
in comparison with the first, which agrees with the above
statement that % and /? were small.

In contrast to viscous liquids, the instantaneous intro-
duction of a given velocity gradient in a viscoelastic liquid
does not immediately produce the corresponding stress: the
latter is established in a time comparable with the relaxation
time. Moreover, and typically for polymeric liquids, the es-
tablishment of both shear and normal stresses is not monoton-
ic.48'49 Our theory can be used50 to describe these properties,
and this is illustrated in Fig. 8.

It is useful to note that other types of flow exhibit a var-
iety of nonlinear effects. In contrast to the coefficient of shear
viscosity, which decreases with increasing applied stress, the
theoretical longitudinal viscosity

increases with with applied tensile stress, in complete accord
with experimental data.51 The simplest set of equations is ob-
tained in the zero-order approximation in the parameters x
and ф. The material constants are then the individual charac-

FIG. 8. Measured48 (points) and theoretical (curves) values of tangential
stress as a function of shear strain for velocity gradients (in s "') of 0.0182
( ] ) , 0.0313 (2), 0.0627 (3), and 0.125 ( 4 ) . The theoretical curves were
calculated50 for nT= 1270 dyne/cm2, r0=27.5s-', ^ = 0.11, and

teristics of the system, namely, the initial shear viscosity and
the initial relaxation time, which depend on temperature, mo-
lecular weight of the polymer, and its concentration in the
system. The set of equations formulated in this way is the
simplest system that takes into account the behavior of con-
centrated polymer solutions and melts, namely, the gradient
dependence of shear voscosity, the normal stresses that arise
in shear flows, the evolution of stresses during deformation,
the gradient dependence of longitudinal viscosity, and other
effects, so that these equations can be looked upon as the basic
set for the study of inhomogeneous time-dependent flows of
linear polymers.

The statistical theory of flow of polymeric liquids is the
result of considerable effort by researchers, and has taken a
considerable amount of time to emerge. The question there-
fore arises as to whether these equations could not have been
obtained in some other, simpler way? Actually, the first at-
tempts at a description of the flow of polymeric liquids were
phenomenological, but unsuccessful. In the end, the princi-
ples of the thermodynamics of irreversible processes were em-
ployed to formulate a set of equations55 that could be com-
pared with the macromolecular theory.

CONCLUSION

The fundamentals of the above theory of relaxation pro-
cesses in concentrated polymeric systems, which can be de-
scribed as the first-order self-consistent theory, were first for-
mulated23 in 1978, and in a less complete form by another
author56 in 1983. Despite the skeptical response it had re-
ceived from experimentalists, and the continuing research
into this problem,2*-26'28'30-32-35-52 there is no evidence of any
conflict between the large volume of experimental data that
has now accumulated and the above theory. This may be in-
terpreted as showing that the slow relaxation processes de-
scribed by this theory do indeed correspond to processes actu-
ally observed in concentrated polymeric systems.

Relaxation processes in concentrated polymer systems
are thus seen to present a simple picture: in the first approxi-
mation, the dynamics of the system can be described as the
dynamics of the individual molecules moving amongst other
molecules as if they were a medium with delayed response.
The results of the theory can be applied to slow (low frequen-
cy) motions, and are found to be independent of the detailed
structure of the macromolecular chain. In this sense, they are
universal. The chemical character of the polymer appears via
the parameters of the theory. At high frequencies, relaxation
processes and the viscoelastic behavior of the chain structure
are determined by the details of the interaction between the
macromolecules and their neighbors. In the latter case, we
have to start with a macromolecular model that is more de-
tailed than the subchain model, and take account of the orien-
tational correlation between neighboring chain segments.
This has indeed been done by a number of workers.14

The above procedure for the determination of normal
coordinates appears to be validated by the fact that each ma-
cromolecule is a special macrosystem that can be described by
phenomenological parameters and represented by a chain of
Brownian particles that are large in comparison with atomic
scales, but small enough to take part in thermal motion. A
Brownian particle is traditionally considered34 to be moving
in a certain continuous medium that in this case is considered
to exhibit delayed response. The use of average characteristics
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does not spoil the essential picture of slow macromolecular
motion because of the large dimensions of the relaxing parts of
the macromolecule and the small fluctuations in the mean
field in the system. Other considerations such as those involv-
ing correlations between particles in different macromole-
cules appear to be relatively insignificant at low frequencies.
Nevertheless, the above presentation of macromolecular dy-
namics is hypothetical and is verifiable by comparison with
experiment. A theoretical validation of the hypotheses would
also be desirable, and so the urgent problem in the theory of
relaxation phenomena in polymers is to implement the idea of
reducing the 'extra' coordinates in the 'correct' multimacro-
molecular set of equations, possibly by following the example
of Ref. 21. The question thus reduces to a complex technical
problem with a known solution.
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