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The review deals with the main results of a consistent study of electron-lattice interaction in
crystals in the strong-coupling limit. Small polaron and bipolaron formation is shown to provide a
number of new physical phenomena both in the normal and superconducting states of the system
Two mechanisms of superconductivity are discussed in detail. The first one arises from the
Cooper pairing of small polarons in momentum space (polaron superconductivity). The second
one is due to polaron pairing in real space leading to on-site or intersite bipolaron formation with
superconductivity analogous to the superfluidity of 4He (bipolaron superconductivity). Highly
non-adiabatic motion of (bi)polarons in the narrow band results in fundamental differences of
their superconducting state properties with respect to the predictions of the BCS theory and its
well known strong-coupling generalization. A number of basic properties of high-temperature
metallic oxides being analyzed in terms of (bi)polaron theory of superconductivity is shown to
reveal a satisfactory agreement of its findings with the available experimental data.

INTRODUCTION

The discovery of high-temperature superconductors
(HTSC) (Ref. 1) has become the starting point of the new
stage of intensive studies of the physics of superconductivity
and has drawn attention to a number of nontraditional ap-
proaches to understanding the essence of this phenomenon
itself.

The modern theory of superconductivity is based on the
Migdal-Eliashberg equations,2'3 which can, in principle, ex-
plain thermodynamic and electromagnetic properties of the
normal and superconducting states of metal for the arbitrary
strength of the electron-phonon interaction characterized by
the effective coupling constant A.

The small value of the adiabatic parameter

and the assumption that the electron and phonon Green's
functions are diagonal in the momentum representation
make it possible to derive selfconsistent equations for both
these functions (EF is the Fermi energy, o> is the characteris-
tic phonon frequency and ft = 1 ) . Some properties of the
normal and superconducting states, resulting from this ap-
proach, are compiled in Table II of Sect. 10. As a whole, the
system represents a weakly correlated Fermi-liquid, in
which the Cooper pairs of large radius J" arise if the tempera-
ture is below some critical value ( Tc ) :

Here ne is the electron concentration, and UF is the Fermi
velocity.

It has been widely accepted4 that the Migdal-Eliash-
berg theory adequately describes the electron-phonon sys-
tem for sufficiently large values of the effective coupling con-
stant Л . The self-energy 2 appears to be small with respect to
Ef for reasonable values of Я:

thus making the Fermi-liquid description applicable at least
in the range

Л < Ef/a) » 1.

It has been shown,5 that for larger values of Л vertex
corrections and the energy dependence of the electron den-
sity of states become important, but the formalism based on
the Green's function technique6 in the momentum represen-
tation seemed to remain credible.

On the other hand, some serious doubts have been ex-
pressed in a number of papers7^16 concerning the validity of
the traditional theory of strong electron-phonon interaction
in metals. In particular it has become clear, that the standard
Green's function formalism does not take into account the
possibility of a local violation of translational symmetry of
the lattice diie to the so-called polaron effect.

From a more general viewpoint, an instability of the
boson vacuum develops in the system of interacting bosons
and electrons at a certain critical value of Я = Дс . The new
boson vacuum corresponds to a lower energy state. The po-
laron "collapse" takes place at intermediate values of Я:17

which makes the use of the standard equations for the case of
A>A C doubtful.

Here we intend to review in detail some results of stud-
ies of the last decade of the polaron effect in many-electron
systems with strong electron-phonon interaction.

The single-particle theory of large and small radius po-
larons, developed over half a century after the classical
works of Landau and Pekar,18'19 is discussed thoroughly in
the great number of review papers, monographs and confer-
ence proceedings (see e.g. Refs. 18-22). The main results of
this theory are presented in Sec. 1 . In Sec. 2 we consider the
criterion for the existence of the small radius polaron and the
transition conditions from the adiabatic wide band electron
state to the nonadiabatic narrow band small polaron state.
The Cooper pairing of small polarons which is possible in the
case of their weak interaction is discussed in Sec. 3, where
some physical consequences of the narrow polaron band are
analyzed. Sec. 4 deals with the dielectric properties and vi-
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brational excitations of the strongly coupled electron-
phonon system.

Small bipolarons and their superconducting properties
are discussed in Sees. 5-8. The bipolaron superconductivity
is shown to be qualitatively different from the BCS one.

Two concluding sections contain an analysis of the elec-
tron properties of high-temperature metallic oxides within
the framework of the small polaron theory.12-'5'23^28

The authors are quite aware of the fact that the present
state of experiment as well as of theory, does not permit
making any final conclusions on the nature of high-tempera-
ture superconductivity. That is why we have no intention to
convince the reader that there exists full agreement of the
presented theory with the experimental data. Moreover, we
discuss here only those experiments, that allow a rather sim-
ple interpretation on the basis of the polaron theory. There is
no doubt that some more work will be necessary to establish
the ideas more accurately, this being common to all the theo-
retical approaches developed at the present time. In this re-
spect the polaron theory is one of the alternatives that is
presented here for discussion.

1. POLARONS OF SMALL RADIUS

In a broad widely accepted sense a polaron is a quasi-
particle resulting from the dynamic interaction of a charge
carrier (customarily an electron) with the crystal lattice.
The idea of a possible electron selflocalization in a potential
well resulting from the lattice deformation produced by the
electron was initially introduced by Landau,18 who was the
first to deal with this problem.

The ordinary Hamiltonian of the electron-lattice sys-
tem usually includes four terms:

with He being the kinetic energy operator of the electron in
the unrenormalized Bloch band, Hph—the free lattice Ham-
iltonian, Hc __ ph —the electron-lattice interaction term, and
Hc _ e—the Coulomb interaction of the electrons with them-
selves. In the single polaron problem (one electron in a de-
formable lattice) the last term in (1.1) is absent.

In the single-band approximation He is given by

Я = Y e f k V + c d-2)

where af (ck) is the creation (annihilation) operator for the
electron with momentum k and spin projection \
(k= (k,s)), and e(k) is the bare band dispersion law.

The Hamiltonian of free lattice vibrations is similarly
expressed in terms of the phonon creation and annihilation
operators d£ ,d9 (q=(q,v), q-denotes the phonon wave
vector, v-is the phonon branch index)

lg, d.3)

Here o)(q) is the the phonon frequency.
The electron-phonon interaction is described by the

Frohlich Hamiltonian

H.е-Рн + H.c. (1.4)

with the matrix element U(q) in the following rather general
form

(1.5)

In this expression g0 denotes the dimensionless electron-
phonon coupling constant, v is the crystal volume, and a is an
arbitrary parameter with dimension of length whose value
determines g0 normalization. The value of у — 0 corre-
sponds to the so-called local electron-phonon interaction.
Taking g0 = i(2^2ira/a^(i}0т)1/2, y= 1 and a(q) = ы0

one obtains the familiar Frohlich interaction of an electron
of mass т with the polarization optical phonons20 with di-
mensionless constant a depending on the dielectric proper-
ties of the lattice; co0 will be assumed to be the maximum
value of ca(q).

The historically first and most widely used approach to
the problem was based on two main assumptions, predeter-
mining the polaron state properties.

1. The effective mass approximation for the interaction
of an electron with a rigid lattice. According to it the elec-
tron dispersion law takes the form £ ( k ) = k2/2m corre-
sponding to an infinite electron band width which thus loses
the meaning of the problem parameter.

2. The continuum approximation neglecting the dis-
crete structure of the lattice.

Within the framework of this approach the polaron pre-
sents an example of the typical quantum field theory prob-
lem of a Fermi-particle interacting with a quantized boson
field. It became one of the first applications of the field theo-
ry techniques to solid state physics (for a review of the main
results see Refs. 21, 22).

The analysis of polaron ground state properties simpli-
fies greatly in the limiting cases of weak and strong electron-
phonon interaction. In the weak coupling case one can use
the ordinary perturbation theory while the strong coupling
limit can be approached with the help of the self-consistent
adiabatic method developed by Pekar.19 The electron in-
duced deformation of the lattice gives rise to an effective
potential well with a discrete energy level corresponding to
the localized state of the charge carrier. The whole system of
electron and the lattice deformation moves through the crys-
tal with the effective mass considerably exceeding the elec-
tron mass in a rigid lattice. It was Feynman with his path
integral approach29 who managed to approximate the po-
laron parameters over a full range of a values. His method is
considered now as one of the most reliable and is widely used
in polaron physics.

Polaron radius is the important parameter related to the
size of the lattice deformation induced by the carrier. For the
weak coupling case the uncertainty relations give
/•p s \/^ma>0 as the characteristic size of space fluctuations
of an electron due to emission and absorption of virtual
phonons. In the opposite limit of strong coupling its value is
strongly dependent on the form of the electron-phonon ma-
trix element. For the Pekar-Fro'hlich type of coupling
(y = l,a>(q) = ct>0) anda> 1 a simple qualitative estimate20

gives the value of rp ж l/a^ma>0 decreasing with an increase
of a. In the other case of local type of interaction (7 = 0) the
polaron state becomes unstable for large values of the cou-
pling30'32 and collapses to zero radius if no special cut-off is
made which limits the minimal size of lattice distortion. This
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cut-off just reflects the discrete structure of the lattice and
results in the value of polaron radius of the same order as the
lattice constant. Here we come to the limit where the ap-
proach based on the continuum and the effective mass ap-
proximations is out of the range of validity. Being quite ade-
quate for the problem of large radius polarons it fails to
predict accurate results when the size of the region of defor-
mation is comparable with the lattice constant. In this latter
case we are faced with the small radius polaron state and its
properties will be of main interest for us in the following
discussion.

To begin with let us transform the expressions for He

and He _ ph to the most convenient site representation:

m,m'
s

Tmm'cmscm's' (16)
' '

"

e-ph 4H.c.);

Here c+s(cms) are the creation (annihilation) operators of
an electron on the site with the lattice vector m

ras N"'t « (1.8)

Т , = T( m — m') (1 — 8 ,) is the bare tunneling integral
mm mm

describing the electron hopping from one site to another

k

In the widely explored nearest neighbor approximation
with z being the coordination number, T( m) will be consid-
ered to be the same (and equal to — /) for all the nearest
neighbors. J is the so called hopping integral related to the
bare electron band width D in the following familiar way

= D/2z. (1.10)

For the simple cubic lattice (z = 6) the electron disper-
sion law c(k) in this approximation is given by

e(k) = -2J[cos(akx) cos(a*p cos(akz)], (1.11)

where a is the lattice constant assumed to be identical to the
dimensional length parameter a in Eq. ( 1 . 5 ) . In the range of
parabolic behavior of e ( k ) one has for the effective Bloch
electron mass the value m = \/2Ja2.

Let us discuss the role of the condition for a polaron to
have a small radius rp ^a. In the weak coupling case with
rp ~ \/^mco0 it means that

/£«„, (1.12)

i.e. the urirenormalized band must be extremely narrow.
This limit is of no interest for our discussion of systems with
rather large values of the bare bands D^>a>0 and strong elec-
tron-phonon coupling. In the latter case for the Pekar-Froh-
lich type of polarons the smallness of the radius
rp ~ \/а^ты0 <a is equivalent to the following condition

/s«4. (1-13)

which can be satisfied for sufficiently large bare bands since
a > 1. The quantity in the right hand side of Eq. (1.13) corre-
sponds up to a certain numerical factor to the energy gain of
the system due to electron-phonon interaction. It is the so-
called polaron shift Ep, an important energy parameter
characterizing the strength of the interaction in question. In
terms of Ep and D Eq. (1.13) can be written as

Ep/D>\. (1.14)

This condition for the existence of the small radius polaron
state derived here by simple qualitative arguments is of rath-
er general importance. Its validity for the local type of elec-
tron-phonon interaction was demonstrated in Ref. 32. Later
on we shall return to it again to clear up its fundamental role
in the theory of strong-coupling superconductivity. And
now let us start with the discussion of its physical meaning.

In the adiabatic theory of the large radius polaron19 its
size is determined by the condition of the optimal balance of
the positive contribution of the electron kinetic energy in the
localized state, the positive contribution of the lattice distor-
tion energy and the negative contribution of the electron-
phonon interaction energy. All the aforementioned contri-
butions are of the same order of magnitude and the sum of
them determines the resulting energy gain of the polaron
system with respect to the free electron state in the undistort-
ed lattice. It should be pointed out however that the increase
of the electron kinetic energy controls the reduction of po-
laron radius only as long as the latter remains large com-
pared to the lattice constant, or in other words until the ki-
netic energy loss due to localization does not exceed its
maximum value equal to D. With a subsequent increase of
the coupling the polaron size and the electron localization
kinetic energy become "frozen" at certain constant values
leaving the interaction and distortion terms to be the only
varying contributions to the polaron state energy. The sum
of these terms decreases with the increase of the coupling
thus lowering the polaron energy further, while the polaron
radius (;=o) remains constant. The polaron shift in this lim-
it lying outside the range of validity of the continuum ap-
proach may become very large in comparison with D. It is
obvious that the above mentioned "freezing" takes place in
the intermediate region of parameters Ep<,D (rp>a). It
should be added also that the transition of a polaron from the
large radius to the small radius state may be discontinuous
depending on the type of electron-phonon interaction and
the dimensionality of the system. This problem has been re-
peatedly discussed in the polaron literature (see Sec. 2 and
Refs. 21, 22, 29-32).

As follows from the above analysis the polaron state
properties are essentially determined by the three param-
eters D, a, Ep, with the dimension of energy related to the
main three terms of the Hamiltonian of Eq. (1.1). The char-
acteristic phonon frequency a> as well as the polaron shift
energy Ep will be defined exactly later. These parameters
may be combined in three dimensionless ratios with any two
of them being independent of each other. We shall define the
first one as

Ep/a> (1.15)

and use it in the following as the "effective constant of the
electron-phonon interaction" not to be confused with the
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"effective coupling constant" Я corresponding to the second
ratio

£p/D = A. (1.16)

The third dimensionless ratio which is also to be used later is
the so-called adiabatic parameter a>/D.

The last term in the Hamiltonian Eq. (1.1) describing
the direct Coulomb repulsion of electrons is important for
the understanding of the cooperative properties of the small
polaron system. By introducing the shorthand notations
/= (m,s),j= (n,S), and the electron density operator

n. = etc. s с* с , П.17)

one easily obtains the site representation form of Hc _ e

(1.18)

(1.24)

Band motion of small radius polarons is then viewed as
an intersite tunneling without any change in the phonon oc-
cupation numbers. It is well described by the operator {&у )
averaged over the phonon variables corresponding to the
effective hopping integral20

ст.. в <£..) = (a )6~=Tlj \ i/ > mn' ss = a д~mn ss '

where ^=^(т — n) is the effective constant of electron-
phonon interaction

where Vi} is the matrix element of the Coulomb interaction.
We now turn to the limit of Я > 1 (cf. Eq. (1.14)) corre-

sponding to the small radius polaron state. Having assumed
initially that D>co, we are arriving at the inequality g2^\
confirming that the interaction with the lattice is essentially
strong. As a result the electron kinetic energy term He may
be considered as a small perturbation to be neglected in the
zero-order approximation. The residual part of the Hamilto-
nian (1.1) is then exactly diagonalized over phonon vari-
ables by the familiar small polaron canonical transforma-
tion:20

- cos[q(ni - n)

Яр = (ехр 5,)Я exp(-S,),

where

1,9

(1.19)

(1.20)

Carrying out this procedure one readily finds for the trans-
formed small polaron Hamiltonian

"P =
(1-21)

The operators d + ,dq now describe the ion vibrations near
the displaced equilibrium positions, and c,+ ,c, stand for the
creation and annihilation operators of the small polaron at
the site /". The explicit expression for polaron shift Ep is given
by

£P = ZI^)I2^1W. (122)

It is this quantity that defines the electron energy gain due to
interaction with the lattice when Hf is neglected and the
carrier is localized at one of the sites. It results in additional
effective polaron-polaron interaction of the density-density
type

= vv- vf. (1.23)

In contrast to the last three terms in Eq. (1.21) the first one
which describes polaron hopping now contains matrix ele-
ments nondiagonal in the phonon variables

(1.26)

and Т is the lattice temperature measured in energy units.
In the case of a simple cubic lattice g2 does not depend

on the tunneling direction and is equal to

- 2" [cos(a(/v) cos(aqy) cos(aqz)]} coth
2T

(1.27)

Given the exact expressions (1.22), (1.26), (1.27) for
Ep andg2 parameters, formula (1.15) should be considered
now as an explicit definition of the characteristic phonon
frequency со. Its value is equal to <a0 in the the case of local
type of interaction (7 = 0) with dispersionless phonons
(<a(q) = u)0) at zero temperature and is numerically esti-
mated as ft) a 1.73u>0 f°

r the Frohlich case. The values of the
interaction constant g2 are respectively given by gfc (see Eq.

According to Eq. (1.25) the width W of the polaron
band

W= (1.28)

turns out to be exponentially small with respect to the bare
bandwidth. This exponential renormalization of the tunnel-
ing probability reflects the smallness of the overlap integrals
of the oscillator wave functions describing the deformed
state of the lattice when an electron is localized at neighbor-
ing sites. Due to this renormalization which takes place at
g2^ 1 the antiadiabatic inequality W<o) is fulfilled for the
polaron, which is opposite in sign to that for the electron in
the bare band. This is the polaron effect which causes expo-
nential contraction of the band and the inversion of adiabatic
inequality. Polaron motion from one site to another turns
out to be very slow so that the lattice can relax completely
within the time of its localization at the site. The local unit
comprising a carrier and its concomitant lattice distortion
moving together is referred to as a small or antiadiabatic
polaron. We note that the narrowing of the band increases
with an increase of the temperature. In the low temperature
range Т «и the operator av in the Hamiltonian (1.21) may
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be replaced by its averaged value (1.25), while g2 may be
considered to be temperature independent
(cothM?)/271asl).

The effective interaction between small polarons
(1.23), which we wish to discuss now, includes the direct
Coulomb repulsion as well as the attraction arising from lat-
tice deformation. The value of the latter is determined by the
so-called degenerate three-center integrals of the crystal
field gradients. For the simple cubic lattice we have

£/(?) =
(2WMW(<7))1/2Y

(1.29)

where e(q) is a polarization vector of the vibrational mode,
and M is the ion mass. The contribution of the 1 = 0 site
(occupied by the carrier in a state |0)) to the sum in (1.29)
vanishes identically due to the parity selection rule. It is then
the displacements of the neighboring atoms rather than
those of the occupied site that induce the effective electron-
lattice interaction. Nondegenerate three-center (l^m^O)
integrals

(0|V,£/(r- l) |m) (1.30)

as well as two-center (m = 1^0) integrals may also contrib-
ute to this interaction. The role of the former is usually ne-
glected for the reason of small overlap of atomic orbitals.
Two-center integrals being taken into account give rise to
the phonon emission/absorption processes accompanying
electron transfer between neighboring sites. These may con-
tribute to the damping of polaron states.33 It is worthwhile
to mention that for transition metals there is no commonly
accepted point of view on the role played by the aforemen-
tioned integrals in the electron-phonon interaction. This am-
biguity may be related34 to the strong dependence of the
interaction in d-metals on the screening constant which is
rather difficult to estimate. If the screening radius is small
l/k^a, then the overlap integral smallness of (1.30) may be
compensated by the large value of the crystal field for m = 1.
Dielectric, semiconducting and intermetallic compounds
are characterized by a weaker crystal field screening com-
pared to d-metals. This fact allows one to retain the contri-
bution of degenerate three-center integrals (1.29) as the
most important. According to the above discussion it is these
integrals that determine the atomic level shift arising from
the vibration of the ion surroundings of the site and lead to
exponential bandwidth renormalization.

If the resulting interaction of the polarons (1.23) on the
same or neighboring sites turns out to be attractive, the
ground state of the system will correspond to polarons cou-
pled in local pairs (bipolarons). The propertiesof these pairs
are essentially determined by the specific form of the elec-
tron-phonon interaction as well as by the phonon mode type.

In the case of Frohlich type of coupling with polariza-
tion optical phonons the explicit calculation of the attractive
part of the interaction (1.23) gives the result35

7=1, (1.31)

where q0 <x I/a is the Debye wavevector, Si(x) is the inte-
gral sine function and /?,-, = | m — n | . In a similar way for the
interaction via longitudinal acoustic phonons one obtains35

where./! (x) is the spherical Bessel function of the 1st kind.
According to Eq. (1.31) the exchange of optical phon-

ons leads to the long-range attractive potential decreasing
with the distance as l/R. In the case of acoustic phonon
exchange the potential of Eq. (1.32) is an oscillating func-
tion falling off a l/R2 at large R. For a sufficiently strong
effective interaction small radius on-site (Anderson) or in-
tersite (Heitler-London) bipolarons may be expected for
the both types of coupling.

In compounds with complex molecules polaron pairing
may be produced also via the interaction with local intramo-
lecular vibrations. Neglecting the dispersion of the phonon
mode yields the result

' * ^ ' 0* V P Ij \L.JJ)

implying the attraction to be possible only if the polarons are
on the same site.

Having discussed the interaction properties, we come to
the conclusion that the "contact" term

as well as the intersite one at the adjacent sites

(1.34)

(1.35)

are of the primary importance for interpolaron attraction
( ( i j ) denotes the nearest neighbor sites).

For y, being expressed as

Vi=*kVtt-
s*E'' d-36)

one obtains according to the Hubbard estimate36 for d-met-
als 8k ~ (2/a)exp( — ka) =0.1 (a is in units of the Bohr
radius). It means that the intersite Coulomb repulsion is
drastically reduced compared to the contact term due to
screening and large lattice constant values. Meanwhile the
phonon induced intersite attraction may turn out to be of the
same order as the on-site one. Summing over only the nearest
neighbor (|1| = a) terms in Eq. (1.29) and adopting spheri-
cal symmetry for the wave function of the state |0), one ar-
rives at the result

<5ph = S(a)/S(0),

where

(1.37)

(1.38)

The factor <5ph does not contain any parameters since q^ I/a
in the expression (1.38). Direct calculation in the case of a
simple one-dimensional chain with co2(q) <x [ 1 — cos(^a) ]
gives

-i

= Jsin^ cos(x)
Ldx Г sii

J 1 -
sin2(;c)

cos(x) 2'(1.39)

у =-1/2, V (L32)

Hence the intersite attraction may be achieved in a simple
lattice even if the contact term is of a repulsive character. For
a complex lattice consisting of two diatomic molecules the
intersite pairing turns out to be preferable due to the lattice
symmetry itself. It may be provided by the interaction with
the optical mode of intramolecular vibrations. It should be
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noted in addition that in compounds with spatially separated
complexes a bound state of two small polarons may be
formed on a small group of identical ions within the confines
of the cell.

The resulting interpolaron on-site or intersite interac-
tion being attractive, a cooperative instability develops in the
small polaron system leading to the bipolaron condensate
state. Two qualitatively distinct situations are found to be
possible. The first one corresponds to intermediate values of
the effective interaction constant g, being strong enough to
provide the small polaron formation, and weak enough for
bipolaron binding energy A not to exceed the polaron band-
width: Д< W. This is a limit of the large radius bipolarons
quite similar in nature to the familiar Cooper pairs of elec-
trons. The characteristic time interval (ss 1/Д) is sufficient
for the polaron to make many hops through the medium and
to return back to its partner, thus spreading the paired state
over a large number of lattice sites. The traditional methods
of superconductivity theory including the Hartree-Fock
mean field approach9'37 reformulated in the site representa-
tion are quite adequate for the description of this limit, when
the carrier concentration is comparable to the atomic one.
The second situation deals with the higher values of the in-
teraction constant when contact or intersite attraction be-
comes much greater than the polaron bandwidth. In the lim-
it of very large g2 values the Д > ̂ condition is guaranteed by
the power law increase of the attraction as well as by the
exponential contraction of the band. This being the ease, one
has the system of the local on-site/intersite bipolaronic pairs
well separated from each other in space. Their cooperative
properties are drastically different from those of the conden-
sate of Cooper pairs.7'8

Up to now the existence of small polarons and bipolar-
ons has been demonstrated in a diverse assortment of materi-
als. A few examples of unpaired single polaron states were
experimentally observed in some alkali halides KC1, LiF,...
(Ref. 20), in rutile TiO2 (Ref. 38), and in manganese oxide
MnO (Ref. 39) as well as in other transition metal oxides
(LaCoO3,SrTiO3) (Refs. 20,40). The possibility of the ex-
istence of nonoverlapping local pairs associated with impuri-
ty centers in amorphous semiconductors was pointed out by
Anderson.41 In a regular crystal small bipolarons were ini-
tially observed and studied in Ti4O7 (Ref. 42) in the
(Ti, _XVX)4O7 system (Ref. 43), and in vanadium bronze
Na^VjO; (Ref. 44). Lately the list of bipolaron structures
was extended by addition ofWO3_x (Ref. 45) PbTe (Tl)
(Ref. 46) and possibly of some other compounds. There is
also a number of well-known materials whose properties
may be interpreted in terms of polaron and bipolaron states.
Specifically one should mention intermetallic A-15 com-
pounds such as Nb3 Sn, V3 Ga, V3 Si, Chevrel phases, name-
ly, PbMo6S8 (Refs. 37, 47, 48), and the thoroughly studied
ceramic BaBi^Pbi _XO3 (Refs. 49, 11). It is a well-known
fact that the anomalous properties of the latter as well as the
ideas of polaron theory for Jahn-Teller compounds became
a starting point in Bednor/ and Miiller experiments1'50

crowned by the discovery of high-temperature superconduc-
tivity in a similar ceramic system La2 _ x Ba^ CuO4. There-
fore it does not seem surprising that it is the polaron theory
that is considered by a number of authors 12'23~27 to be the
theoretical basis for understanding this new phenomenon.

2. VIOLATION OF THE MIGDAL THEOREM

The effective coupling constant (1.16) being expressed
in a form more conventional for superconductivity theory

A=M(0)V, (2.1)

where V=Ef is the characteristic electron-phonon interac-
tion energy and ЩО) & \/D is the electron density of states
at the Fermi energy, is identical to the well-known BCS theo-
ry constant determining the temperature of the supercon-
ducting transition

Т «шехр(-Ш) (2.2)

for Я < 1. In the opposite case Я > 1 this formula does not
work and one arrives at the strong coupling limit described
usually in terms of the Eliashberg equations3 for the self-
energy part of the electron Green's function. Those equa-
tions are essentialy based on the results of the Migdal study2

of the strongly coupled electron-phonon system in a normal
metal. It is the small value of the adiabatic parameter

cu/£F«w/£>«l, (2.3)

that leads to some significant simplifications in the equations
for the Green's functions, the so called "Migdal theorem"
being one of them. According to Migdal one can neglect the
interaction vertex corrections which are of the order of
(m/M)l/2, and in addition use the bare electron Green's
function instead of the renormalized one in the important
ranges of the momentum integration space in the corre-
sponding integral equations. The renormalized electron
mass m* exceeds the bare electron mass m by the factor
(1 + Я) thus leading to the characteristic electron energy of
the order of EF / ( 1 + Я). Therefore sometimes it is conclud-
ed (see e.g. Ref. 51) that the Migdal theorem is violated if
Ef/( 1 + Я) «D, or under the condition

A >EF/w » 1, (2.4)

corresponding to the extremely high Я values (Я > 10-100).
However it should be kept in mind that this condition guar-
antees the internal selfconsistency of the approach that is
limited to the continuum as well as to the effective mass
approximations. The polaron band narrowing effect which
may take place for considerably lower Я values than those
specified by condition (2.4) is totally ignored in it. The au-
thors of Ref. 5 have undertaken an attempt to take into ac-
count the finite value of the electron bandwidth D by substi-
tution of the Lorentz density of states into the standard
equation for the self-energy part of the electron Green's
function. They have demonstrated the possibility of a rather
strong renormalization of the band up to the values of the
order of o) with the corresponding values of Я of the order of
D /o) in agreement with (2.4). Obviously this modification of
the theory is yet not sufficient to take account of discreteness
of the lattice in a consistent way and to reproduce the expo-
nential narrowing of Eq. (1.28). For this to be done one
should give up both the continuum and the effective mass
approximations. We wish to argue in the following that po-
laron collapse of the electron band takes place at rather mod-
erate effective coupling values

1 (2.5)
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and corresponds to polaron transition from the large radius
state to the nonadiabatic small radius state. The Migdal
theorem is thus strongly violated under this transition.

Let us consider one of the most studied polaron models
referred to as the Holstein or the Molecular Crystal Mod-
el.52 The electron motion in a simple cubic lattice is then
described by Eqs. (1.6), (1.9)-(1.11), while the electron
interaction (1.7) with the dispersionless phonon mode
(co(q) = co0) is taken to be of local type with у in (1.5) equal
to zero. The vibrational mode in this model is usually inter-
preted as being related to the intramolecular degree of free-
dom of the site and is sometimes referred to as a "breathing"
mode.

The transformed Hamiltonian (1.21) for the single po-
laron case can be written as

(2.6)

where d,+ (dt) are the phonon operators in the site represen-
tation, describing the creation and annihilation of the single
vibrational quantum at the rth site. It would be more correct
to use g0 and ca0 parameters instead of g and со in the latter
equation but this makes no difference for the case of zero
temperature considered in this section. If the first term in
Eq. (2.6) is neglected, the ground state of the system corre-
sponds to a polaron localized at the arbitrary site c,+ |0),
/ = l,...,N. It is an TV-times degenerate state with the energy
E0 = — g2^ if the spin variable is not taken into account.
The first term in the lowest order of perturbation theory
removes this degeneracy of the atomic energy level by trans-
forming it to the polaron band with dispersion emerging as

ep(k) = - - Ep, (2.7)[cos(akx) + cos(aky)

and corresponding to the polaron ground state energy at the
bottom of the band equal to

Eo = ~EP ~ \De~^ = ~^w ~ \w- (2'8)

The exponential damping of the first correction might
seem to confirm the criterion (1.14) or (2.5) for the exis-
tence of a small polaron state insofar as the constant g2 is
greater than unity. But this is actually not the case, and the
expansion parameter turns out to be of the power rather than
exponential form. To make this result evident one has to deal
with the second order of perturbation theory with respect to
the kinetic energy term of Eq. (2.6). Polaron-phonon inter-
action in this order comprises the emission and absorption of
an arbitrary number of phonons in the polaron hopping pro-
cesses, thus leading to the second order polaron self-energy
represented by the diagrams of the type of Fig. 1. Their sum
gives the power law correction to the ground state energy E0 ,
which becomes equal within the power degree of accuracy to

2 1 2 -i

D
= -E

(2.9)

(see also Refs. 53,54). This result demonstrates that it is I/A
that plays the role of the true expansion parameter in the

FIG. 1. Polaron self-energy diagram.

strong coupling limit. In accordance with Eq. (2.9) the con-
dition for the existence of the small polaron is given by

X = l/2 ,1/2 (2.10)

For z = 6, for example, this inequality works well even at

There have been a number of attempts to calculate the
polaron characteristics in order to study the nature of po-
laron transition from the state with a large radius (a broad
band) to the state with a small radius (a narrow band).
These attempts have been based largely on variational meth-
ods and have shown that the dependence of ground-state
energy on A is nonanaly tical and that the renormalization of
the polaron mass is discontinuous at the transition point.
Emin,55 for example, predicted the transition to occur at
A = Ac s=0.6 for the three-dimensional variant of the Hoi-
stein model with a>0/D = 0.05. A numerical Monte Carlo
simulation method, however, has apparently yielded the
most reliable results for the same system.56'57 In particular,
de Raedt and Lagendijk56 have observed a fairly sharp tran-
sition between two states, suggesting a possible nonanalytic
behavior near the critical value of the coupling constant. The
transition region in this case turned out to be the narrowest
for a 3D lattice and the widest for a ID lattice. The results
reported in Ref. 56 for the case a>0/D = l/2z correspond to
the critical values Ac s=0.85 andAc s0.45fora!Z) lattice and
3D lattice, respectively.

There is another important result of the Monte Carlo
studies of Refs. 56, 57 concerning the critical values of the
coupling constant A c . Specifically it has been shown that the
numerically estimated polaron ground state energy appears
to be well approximated by the polaron shift formula

Eo = ~ (2.11)

in the strong coupling region, and by the second order per-
turbation theory result (with -ff e _ p h in the Hamiltonian
(1.1) considered as a small perturbation)

(2.12)

in the weak coupling region. This fact is itself rather obvious.
More surprising is the fact that the numerical values of Ac

coincide, within a small error, with the estimate obtained by
equating the expressions (2.11) and (2.12). This circum-
stance supporting the idea of a sharp transition provides us
with a simple procedure for determining Ac for any chosen
value of the adiabatic parameter a>0/D. The results of the
calculations for a local interaction (7 = 0) and for the Froh-
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lich interaction (y = 1) of an electron with a dispersionless
phonon mode in a simple cubic lattice are shown in Fig. 2.
The small polaron mass renormalization factor at the transi-
tion point

m*/m = exp g?, (2.13)

is also presented in this figure, where gl is the critical value
of the electron-phonon interaction coupling constant. In
particular, it follows from Fig. 2 that at D/o)0 >5 the values
of/l> 1 correspond to the small polaron state and the Migdal
theorem is inapplicable. In the case of a wider bare band,
where Z>/<y0>20, its range of validity is limited to even
smaller values of Я<0.7.

3. POLARON SUPERCONDUCTORS. SOME PHYSICAL
CONSEQUENCES OF THE NARROW BAND

Let us turn to a discussion of superconducting correla-
tions in the small polaron system when the resultant interac-
tion between them is weak in comparison with the polaron
bandwidth.9 The relevant part of the polaron Hamiltonian
(1.21) after averaging (1.25) takes the form of the extended
Hubbard Hamiltonian:

(3.1)

with the Fermi energy eF being measured from the middle of
the polaron band shifted with respect to the initial zero ener-
gy level by the value of Ep.

In the second term in parentheses we shall retain only
the contact vu = v0 and the nearest neighbor intersite
v^ =У! interaction terms. In addition we shall restrict our-
selves to the case of singlet pairing.

In the weak coupling limit polarons constituting a pair
(bipolaron) make numerous hopping transitions during the
characteristic time interval, thus spreading the bound state
over a large number of sites. As a result, a bipolaron does not
differ qualitatively from a Cooper pair, and standard Har-
tree-Fock approximation may be applied to the Hamilto-
nian (3.1). By introducing two order parameters

A0= - Д1 = -Z (3.2)

and transformir g to the k-representation one rrives at the
usual BCS Han .iltonian

iaf

JO4

Л7"

w

FIG. 2. Critical values of the effective coupling constant and of electron
mass renormalization as functions of the adiabatic parameter.

н

where
fc,s (3.3)

(3.4)

is the energy of the polaron with momentum k in the nearest
neighbor approximation measured from the Fermi level
(ef = 0 for the half-filled band), and

a = (3.5)

is the polaron hopping integral for the neighboring sites.
In contrast to the BCS theory taking account of the

intersite interaction term results in spatial dispersion of the
order parameter which has the form

A(k) = A0 - A j [2(£R + ep)/ W], (3.6)

corresponding to s-wave pairing. More generally d-wave
singlet as well as p-wave triplet types of pairing are possible
for the Hamiltonian (3.1) (see the review article of Ref. 58
and references therein).

Applying the standard diagonalization procedure to
the Hamiltonian (3.3), one obtains for the order parameter

A(k)
7th- 2T

(3.7)

With Eq. (3.2) in mind one is easily able to find the equa-
tions for АО and A!

л =

 v°\ ДОО
0 "2,2(|2+|A(k)l2)1/2

•th-
x1/2

2Г
(3.81

л = _ V
2\l/2

2Г
(3.9)

which may be rewritten as a single equation of BCS-type, but
with the potential depending on energy

(W/2)-*F=1 / «
-(W/2)-ef

£F)
(W/2)2

I2 l ' / 2

where Я = z|y, \/W has the meaning of the effective cou-
pling,

"pCO-fS'tf-w din

is the dimensionless density of polaron states, and
ц = u0/zu, is the contact to intersite interaction ratio. The
value of/n < 0 is possible if the contact Coulomb repulsion is
sufficiently strong.

The quantity that plays the role of interaction in the
BCS-like equation (3.10) for the order parameter is
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(w/iy (3.12)

We note that all the parameters (A,/*, W) may be explicitly
expressed in terms of the atomic wave function matrix ele-
ments of the corresponding potentials and the phonon spec-
trum. Insofar as Np (£) describes the narrow polaron band
with integration limits being determined by the bandwidth
value, the explicit form of the Np (£) function as well as the
Fermi level position in the polaron band may greatly influ-
ence the magnitude of Д and Tc.

The critical temperature is determined by Eq. (3.10) in
the limit Д-.0:

Д(|)=Г

(3.13)

If one takes for simplicity the energy independent density of
states Np (£) = 1 from the solvability condition of Eq.
(3.13) with respect to Д0 and Д, one obtains in the limit
Tc < [ ( W / 2 ) 2 - 4 ]1/2 (Refs. 9 and 37)

,\ 1/2

1 - w2

xexp -
1 l r [ 3e* ll P 4 e r

2\(W/2)2 \ W2

J
4eF

W2 ** 1-72
1 +jf |

W2

(3.14)

This expression represents the analytically derived equiva-
lent of the well-known MacMillan formula for the case of
weak and intermediate coupling of polarons. In the small
polaron regime under the condition W<(a (antiadiabatic
limit) the polaron bandwidth plays the role of the Debye
temperature and retardation is absent. In the limit of Л ̂  1 a
simplified formula for Tc emerges as

1/2

т =1 с
W2

expl-

(3.15)

It is seen that Tc is governed by both the contact and nearest
neighbor intersite interaction terms, with the latter depend-
ing on the Fermi level position in the band. For the half-filled
band (£F =0) the nearest neighbor contributions are com-
pensating each other and superconductivity survives only if
contact attraction is present (/x>0). Because of the expo-
nential dependence of the polaron bandwidth Won g2 a con-
siderable change in the value of Tc may be produced even by
a small change in the phonon frequencies. A softening of the
phonon spectrum results in an increase_of g2 and decreases
the polaron bandwidth thus leading to A growth. A similar
strong dependence of Tc on the Fermi level position in the
band exists which provides the Tc correlation with the num-
ber яе of electrons per atom in the partially filled band. Since

(W/2)(n - 1),

in the model with Np(^) = const (2£>-lattice), Eq. (3.15)
leads to Tc (ие) dependence of the following type:

•(«e-iri
(3.17)

For negative or small positive// values Eq. (3.17) as a func-
tion of ne has two maxima separated by a deep minimum at
ие = 1. The Tc decrease in ne -»0 and ne -»2 limits with Fer-
mi level approaching the boundaries of the band is interpret-
ed as a result of a reduction of the number of states contribut-
ing to pairing. The minimum at ие = 1 is provided by the
above mentioned compensation of the nearest neighbor con-
tributions to the interaction constant.

Let us now discuss some of the consequences of the po-
laron band narrowing for the normal phase.

3.1. Polaron heat capacity

In the normal phase for sufficiently high temperature
the correlations due to interaction are unimportant and in
first approximation the polaron contribution to the heat ca-
pacity as well as to the magnetic susceptibility can be evalu-
ated without taking v^ into account. In the temperature
range of Г «o/2 with the polaron band being almost inde-
pendent of Т this contribution is described by the expression
for the heat capacity of a Fermi-gas:

CP=-2T f
~

ТдТ

(3.18)

where/stands for the Fermi distribution function.
Eq. (3.18) provides a linear temperature dependence of

Cp in the low temperature limit Т4, Wand a power law de-
crease ос Г -2 for 7> W. If JVP (|) = 1, one has

Cp =

Cp =

л2 NT
3" W

3T2

Т « W,

Т » W,

(3.19)

where ne denotes as previously the number of electrons per
atom in the partially filled band, and np = Nne is the polaron
number in the normalization volume. The numerical calcu-
lation which is required in the intermediate region reveals
negligible changes of the position of the maximum CP with
variation of band filling (ис):

TV * 0,2W, (3.20)

and a gradual increase of maximum value with ие from the
value of Cp s0.27V at ие = 0.2 to the value of CP ^0.6N at
«e = l.

On the whole the temperature dependence of the heat
capacity is similar to the Shottky anomaly except for the low
temperature range with the linear Г-dependence of CP in-
stead of the exponential growth typical of two-level systems.
The polaron heat capacity in the considered region
(T<a>/2) is formally the same as the electron one in the
well-known phenomenological model of Clogston and Jac-

(3.16) carino,59 where all the Brillouin zone states are contributing
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to the formation of the density of states peak (narrow energy
band).

As a consequence of the nonlinear behavior of the po-
laron heat capacity the coefficient y( T) = CP/T turns out
to be a function of temperature varying from the value

Cp/T = (2тг2/3)*|лг (0) at , Т = 0 (3.21)

to zero at 7> W. In the last equation Nf (0) is the dimen-
sional density of polaron states at the Fermi surface, the tem-
perature is expressed in the usual units (AT), and kB is the
Boltzmann constant. The most appreciable change of y( T)
is predicted in the temperature range T<, Tmax.

3.2. Spin susceptibility

In the model considered the narrow peak in the density
of states arises due to the polaron band which comprises all
the states of the Brillouin zone rather than a small part of
them as in the Labbe-Friedel models. This fact provides us
with the possibility to get absolute values of spin susceptibil-
ity considerably higher than those for the ordinary wide-
band metals.

Taking in analogy with the previous treatment
Np (£) = 1 we can write for the polaron paramagnetic sus-
ceptibility

(3.22)JL *(-*)•
The Fermi energy is fixed by the polaron concentration

relation

As a result we have

(3.23)

and

exp(neW/2T) - 1
-exp[(ne-l)HV2rj ' (3-24)

neW. ехр[(2-Я е)ИУ2Г1-1

(3.25)

For 7> W Eq. (3.25) reduces to the Curie law

(3-26)

For IX W the xp saturates and approaches the limit

(3.27)

We wish to note that for temperatures T< W Eq. ( 3.25 )
should be considered only as an estimate because the polaron
band structure or equivalently the energy dependence of the
density of states Np (J") become important in this region.

To conclude the discussion of the polaron theory results
for the normal phase we refer to the more detailed review of
Ref. 48 where these and some other consequences were uti-
lized to analyze the physical properties of superconducting

materials such as A- 15 and C-15 compounds, ternary chal-
cogenides and some others. It was concluded in particular
that the unusual properties of most of these materials, name-
ly, the large and strongly temperature-dependent values of
the magnetic susceptibility Д'(Г) and the С /Т ratio, the
anomalous temperature behavior of resistivity, the phonon
spectrum softening as the temperature decreases, are due to
the strong interaction of «/-electrons with phonons resulting
in small polaron formation and polaron band-narrowing ef-
fect.

4. NORMAL STATE OF STRONGLY COUPLED ELECTRON-
PHONON SYSTEM: DIELECTRIC PROPERTIES AND
VIBRATIONAL EXCITATIONS

It will be our primary aim in this section to discuss the
dielectric response of a many-polaron system and the effect
of polaron-polaron interaction on the phonon frequencies.
The rigorous expression for the Hamiltonian is developed on
the basis of the small polaron canonical transformation. It
contains the main part of the electron-phonon interaction in
the diagonal form leaving the rest in the form of the polaron-
polaron interaction and of the residual small polaron-
phonon interaction. The last two contributions are taken
into account by the ordinary random phase approximation
(RPA) and perturbation theory in the reciprocal coupling
constant I/A, respectively. The polaron Green's function is
obtained. The study of the static and dynamic response
shows that due to the exponentially large mass renormaliza-
tion the Debye radius and the plasma frequency appear to be
much smaller than they are for a weakly coupled electron-
phonon system and depend on temperature for T>W. Small
polarons screen effectively the on-site Coulomb interaction,
reducing it to the value of the order of W. At the same time
the on-site attraction, if it is present, is enhanced by many-
body effects. We generalize our expression for the phonon
self-energy by taking into account the polaron-polaron in-
teraction. The polarization loop with small polaron lines is
analyzed in the site representation and the vibration excita-
tion spectrum is obtained. One of the most interesting results
is the existence of a new type of vibrational excitations
emerging from the coupling of phonons with low frequency
polaron plasmons. We refer to these excitations as "plas-
phons".

4.1. Polaron-polaron and polaron-phonon interactions, and
the polaron Green's function

The interaction of carriers in a doped dielectric parent
compound with a dielectric matrix as well as with each other
will be described as previously in terms of the Hamiltonian
(1.1)-(1.4), where the Яе_е contribution (1.18) will be
taken in the form

"e-e = 2 + Яе'_е. (4. 1 )

In Eq. (4. 1 ) V( q) = 4ire2/vq2 is the Coulomb repulsion ma-
trix element (the Fourier transform of Vtj in ( 1.18). H'e_c

corresponds to the carrier interaction with the dielectric ma-
trix, accompanied by the polarization of the electron shells
of the ions that cannot be included in the crystal field. This
polarization is described below by the dielectric response
function £d (q,&>) assumed to be constant in the frequency
and momentum region under consideration. Thus one can
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omit the H'e_e term while replacing the bare Coulomb inter-
action by the renormalized one:

V=V/ed. (4.2)

In this way the theoretical formalism becomes well defined
to describe both the electron-phonon and electron-electron
correlations of the carriers.

It is worthwhile to note that parametrizing the electron-
phonon and the Coulomb interactions by the matrix ele-
ments being dependent only on the momentum transfer, we
neglect the contributions proportional to the overlap inte-
grals of atomic orbitals at the different sites. This approxi-
mation is good for sufficiently narrow bare bands with the
width not exceeding the crystal field value. The site-nondia-
gonal ("hopping") terms are responsible for the polaron
bandwidth and may reduce the small polaron mass through
the electron-phonon interaction. In simple metals with the
wide bare bands the hopping terms are dominating in the
electron-phonon interaction and may destroy selflocalized
polaronic state. In lead, for example, with Я > 1 there is no
evidence of small polaron behavior.

Strictly speaking, the subdivision of electrons into "car-
riers" and "inner" electrons is being consistent for semicon-
ductors only, when the parent dielectric compound does
really exist. For metals our Hamiltonian may be considered
generally as the bare one with the matrix elements of no
direct physical meaning. Nevertheless we believe, that it can
be used in metals also, provided that strong electron-phonon
interaction including the possible polaron collapse of the
band is treated in a proper way.

The canonical transformation (1.19) of the initial
Hamiltonian (1.1) gives rise to the explicit polaron Hamil-
tonian Яр (1.21) which for the purposes of this section is
expedient to express as the sum of three terms

Here the main part of the electron-phonon interaction is in-
cluded in the Hamiltonian of "zero order" approximation
diagonal with respect to the phonon variables

(4.4)

and two other contributions describing the residual polaron-
polaron and phonon-polaron interactions are respectively
written as

cies, which play the dominant role. Following the analysis of
Sec. 2 this term at Л > 1 will be treated as a perturbation for
both the polaron and phonon Green's functions.

According to the previous discussion the polaron-po-
laron interaction in the site representation (see Eqs. (1.21),
(1.23)) is governed by the matrix elements vu of the form

where in the case of polarized optical phonons one has20-35

(4.8)
m - n

(e0 is the static permittivity of the crystal). This result ob-
tained from Eq. (1.5) for the case of y = l and
g0 = i[2ire2(£^' — £0~' )/ata0 ]

l/2 is valid in the long wave-
length region only. In contrast to the long-range interaction
via the optical phonons, for the interaction via the acoustic
modes or the intramolecular vibrations the corresponding
term is of short-range type (see Eqs. (1.32), (1.33)). Thus
at large distances the polaron-polaron interaction takes the
form of the effective Coulomb repulsion

-nk, (4.9)

or

i;.,= e2 / |m-n|ed (4.Ю)

depending on the type of phonons strongly coupled with
electrons. This fact makes it possible to treat vtj on the
ground of the usual RPA for the long-wave excitations. At
short distances the polaron-polaron interaction may be at-
tractive, thus leading to the instability with respect to small
bipolaron formation at a low enough temperature.7

Later on in this section we consider the polaron-polaron
and the polaron-phonon correlations in the normal state as-
suming only that the temperature of the system is above the
small bipolaron pair formation temperature, which, in turn,
is higher than the critical temperature of the superconduct-
ing (superfluid) transition.

Let us write the zero order Hamiltonian in the momen-
tum representation

(4.11)
k,s

where

(4.12)

-p-ph ff-4 ,,-, j (46)

In accordance with the proceeding sections the matrix ele-
ment cry diagonal over phonon variables and describing the
polaron band motion is obtained as the temperature average
of the operator atj carried out with the phonon density ma-
trix. It is further assumed that the element u,-, in Eq. (4.5)
now contains the renormalized Coulomb interaction Vtj

rather than Vv and the polaron shift term Ep is excluded by
the equivalent shift of the energy reference level.

In contrast to the ordinary Frohlich interaction the po-
laron-phonon term Яр _ ph gives rise to multiphonon verti-

is the small polaron energy dispersion in a narrow band.
Thus the free polaron Green's function is given by

Gk(con) = (iwn-^ + efr
l (4.13)

with <у„ = irT(2n +1). In the site representation it corre-
sponds to

exp[-ik(m - n)](toB - (4.14)

Taking into account the exponential smallness of the po-
laron bandwidth one can obtain for the polaron Green's
function in the "total localization approximation" (TLA) :
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which turns out to be useful in the temperature range 7> W.
In this approximation one has

= Т I2 И >
— п.е

and for the small polaron distribution function:

(4.16)

(4.17)

Taking into account the finite polaron bandwidth ^^W
one gets corrections of the order of A ~'exp( — g2). They are
exponentially small compared to the main power-law cor-
rections of the residual polaron-phonon interaction, which
are proportional to Я ~2. We shall ignore them since Я ~' is
small.

4.2. Response function of small polarons

In the RPA the effect of the polaron-polaron interac-
tion may be characterized by the dielectric "constant"
£(o),q), which describes the response of small polarons to
the longitudinal electric field with the wave vector q and the
frequency со. In this way the screening behavior of the sys-
tem and the plasmon frequency may be calculated:

q) = 1 - - nk)(o, - |k

(4.18)

where u(q) is the Fourier component of the polaron-polaron
interaction matrix element.

Let us start with the static permittivity. For Т = 0 in the
long wavelength limit ^->0 one arrives at the usual Debye
screening:

1/2

(4-19)

where Np (0) = Ne (O)exp(g2) is the density of states in the
polaron band on the Fermi level, which is exponentially en-
hanced with respect to the electron density of states Ne(0),E
equals e0 or ed depending on the type of phonons taking part
in the interaction. One can see from Eq. (4. 19) that the De-
bye radius of small polarons rD is much smaller than that of
electrons due to the strong enhancement of the effective
mass. In the short wave-length limit <?>&F, with &F being
the Fermi wave-vector, one obtains

e(0, q) = (4.20)

where a is the lattice constant, the q-vector is directed along
the x axis, the concentration is small ие < 1 and £k for simpli-
city is taken in the nearest neighbor approximation

|k = -2(Wlz) [cos(akx) + cos(aky) + cos(e*z) ]. (4.21)

The short wavelength behavior of the dielectric re-
sponse function is completely different from that of free elec-
trons (wide band). In the latter case the polarization loop
goes to zero like l/q2 for q$>kf. On the other hand, small
polarons screen effectively the short-range interaction due
to the finite bandwidth. For the case of contact interaction

v(q) = UJN (4.22)

with Uc > W/zne the screened potential Uc is given by:

{Uczne/W[l-cos(qa)]}'

"c<— •с zne

(4.23)

(4.24)

We therefore conclude that the correlation effect result-
ing from modification of electron trajectories by two-parti-
cle collisions reduces the intra-site interaction (the Cou-
lomb self-energy) to a value of the order of the bandwidth
when the self-energy is much larger than the bandwidth.
Kanamori60 was the first to prove this result for electrons in
transition metals.

Let us turn to the temperature behavior of the small
polaron response and show that the correlation effect en-
hances the short-range attraction and on the contrary re-
duces the short-range repulsion.

For the temperatures 7> W one can use TLA, Eq.
(4.17), with the following result

e(0, q) = 1 + [u(q)JVne(2 - ne)/2T]. (4.25)

The screened short-range interaction is given by

Uc = UCT/(T ± Tb), (4.26)

where

Tb=\Uc\(2-ne)ne/2 (42?)

is the characteristic temperature and the upper (lower) sign
in Eq. (4.26) corresponds to repulsion (attraction) of the
carriers. It follows from Eq. (4.26) and Fig. За, that in the
temperature range T< Tb the short-range Coulomb repul-
sion is substantially suppressed by the screening. In the case
of attraction according to Eq. (4.26) there is a singularity in
the two particle correlator at Т = Тъ. Thus 7"b appears to be
the critical temperature for the small bipolaron formation.
The short-range attraction is enhanced near Tb (see Fig.
3b).

The small polaron response becomes dynamic at rather
low frequency values a> > W:

FIG. 3. Screened short-range interaction between small bipolarons as i
function of temperature; /—repulsion, 2—attraction.
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e(w, q) = 1 - (ш2/а>2)

with the temperature-dependent plasma frequency

(4.28)

ktt'k+q - «k). (4.29)
k

being proportional to 1/rin the 7> Wregion. At low tem-
peratures T< Wand, concentrations the long-wave plasmon
has the frequency

со2 = 4nNe2ne/m*s, (4.30)

which is much smaller than the common values of this quan-
tity due to the exponential mass renormalization
m*/m = exp(g2).

Thus we come to the conclusion that in the simple RPA
the small polaron response is of a rather unusual character
with a small temperature-dependent Debye radius and plas-
ma frequency. For the case of repulsion the polaron plasmon
has a well defined dispersion with zero damping in the entire
region of wave-vector space. If y(q) < 0 for some values of q,
the plasmon disappears in this region of q-space.

4.3. Phonon sell-energy

The phonon self-energy Eph is given to the second order
in polaron-phonon interaction by the sum of diagrams of
Fig. 4, which can be expressed in terms of the multiphonon
correlator:61

where

(4.31)

(4.32)

and — \/Т<т < l/T. The first order diagrams as well as the
second order terms containing two polarization loops are
exponentially reduced by a factor exp( — g2).61

For imaginary values of r the correlator of Eq. (4.31)
was calculated by Lang and Firsov.62 Toget<l>(T) for real r-
values one has to make a substitution ?-» — J'|T| in Eq.
(A 1.7) of Ref. 62 thus arriving at the result

(q)(M-^r)]l
J

(4.33)

where

y(q) = (2N)l'2U(q)/aj(q) (4.34)

is a dimensionless electron-phonon interaction matrix ele-
ment,

/ = i{cos(q[c - a ]) + cos(q[c + b])

- cos(qc) - cos(q[c - a + b])},

(4.35)

and a = m — n, b = m' — n', с = n' — n. The sum of dia-
grams of Fig. 4a gives

= ~T

(4.36)

where

(4.37)

шп == 2лпТ, ain, = 2лп'Т. (4.38)

and и>„ = lirnT, (йп, = 1-пп'Т.

Taking the simple loop П<0) for the polarization opera-
tor П, one arrives at the result of Ref. 61. Taking further into
account polaron-polaron correlations we obtain in RPA
(Fig. 4b)

i.p
(4.39)

To get the solution of Eq. (4.39) we use the Fourier
transform of the function П :

' - n) + zk'(n' - m) + z'g(m' - n') ].

(4.40)

The Fourier-component of the polarization operator has to
satisfy the following equation:

П(К, k', g)

(4.41)

+ y(k - k')^ FI(k + g' - g, k' + g' - g, g') ],
g'

where

, k') = 2(nk - nk (4.42)

One can replace k,k' in Eq. (4.41) by k + g and k' + g, re-
spectively, to obtain

n(k + g, k' + g, g)
(4.43)

= n(°)(k + g, k' + g) [Nd Q + u(k - k')A(k, k') ],

with

_ g . k + g , g ) . (4 4 4 )
b g'

FIG. 4. Phonon self-energy diagram (a); polaron polarization loop (b). Taking the sum in Eq. (4.43) Over g we find
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/i(k, k') = Ml(°)(k, k')£- Vn, k - k'). (4.45)

The substitution of Eq. (4.45) into Eq. (4.41) leads to the
result

, k')

u(k - k' - g, k' - ,̂,. k - k'H
(4.46)

To carry out the summation in Eq. (4.36) one can express
Ф(г) in the form

ф« = <WVn> + ф«- (4'47)

The function Ф(т), defined by this equation behaves like

Ф(г) a exp(2£V<°M) - 1, (4.48)

varying rapidly within the characteristic time interval
r < E ~ '. Thus its Fourier component Ф(а>„ ) appears to be
frequency-independent for the entire а>„ range under consi-
deration. Substituting Eq. (4.47) into Eq. (4.36) one gets

where

(4.50)

is the frequency-dependent resonance contribution, and

A(q) = Т on = 0)

(4.51)

is the frequency-independent softening. The Fourier trans-
formation in Eqs. (4.50), (4.51) gives

п = О)

' - n)
k, k',

g (4.54)

zg(m' -n')].

To calculate the frequency-dependent contribution 2^ one
can expand the simple polarization loop in a power series
with W/со as a small parameter:

n(°)(k, k') = 2
nk - nk, (nk, - n

(4.55)

Substitution of Eq. (4.55) into Eqs. (4.46), (4.52) leads to

2ph (Ч- «„) = - /9(4X»J(q)/ [o»(4)(«J + wg(«l)) ], (4-56)

where

(4.57)

is the dimensionless plasmon-phonon coupling constant.
To extract the main contribution to A(q) one can use

the TLA thus obtaining

n(k, k', g;

2Г
,
°g.O

v(k - k')(2 - n£)n,
27X0, k - k')

(4.58)

The second term in the figure brackets of the last expression
is independent of g. Therefore the direct polaron-polaron
interaction does not contribute to the phonon softening:

(4.59 )

k ,g

. k - q. g;'

(4.52)

' k' + q> ~
8 ~ q;

k, k'. <un,
g

-n(k, k', -g;a>n,)]

+ $(k - q, k', - g)[n(k, k', -g + q;,

-n(k, k', -g;eun,)l,

where
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(4.53)

where

0). (4.60)

By expanding the exponential in Eq. (4.33) in a power se-
ries, in accordance with Eqs. (4.38), (4.47) and (4.60) for
the case of dispersionless phonons w(q) = <o0 we obtain

2oL k

2 sinh[(A:-2p)a>o/2r]

ч'

(4.61)

The terms with/> = 0 andp = k are dominant in the
temperature range. In this case

ф (0) = T2(a)/a>0g
2(a). (4.62)

In the multiphonon diagram technique in contrast to the
ordinary one there is an additional possibility to connect
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both external phonon lines to the same vertex of the loop and
not only to different vertices. As a result one arrives at the
compensation of the greater part of the softening calculated
in Refs. 61,63. Taking this fact into account the final expres-
sion for the softening can be written as

T2(a)[l-cos(qa)] (463)

4.4. New type of vibrational excitations

The strong electron-phonon interaction, А >ЯС, results
in a rather small value of the plasma frequency, comparable
to the frequency of phonons, as well as in the coupling of bare
phonons with polaron plasmons, Eq. (4.57). Therefore the
real vibrational excitation appears to be a superposition of a
phonon and a plasmon, referred to as a "plasphon." To find
out the plasphon dispersion law an analytic continuation is
required of 2p

e

h

s (q,u>n) into the region of real values of fre-
quency fl. Keeping in mind that £p

e
h
s has only simple poles

й>„ = + "<V Eq. (4.56), this continuation may be carried
out by the trivial substitution icon -»П in Eq. (4.56), thus
leading to the following equation for the plasphon frequen-
cy:

Q = w(q) + 2ph(q, П),

or

Q - A(q) - = 0.

(4.64)

(4.65)

Eq. (4.65) has three different solutions:

(4.66)

(4.67)

(4.68)

where

фЗ — П~.

cos a =
( 3co2)3/2

(4.69)

and a> = ta — Д. All parameters in Eqs. (4.66)-(4.69) are
assumed to be q-dependent.

Only two solutions fl, and П2 appear to be real and
positive, while the last one, П3 (or fl2 depending on the
choice of a ) is negative and has no physical meaning.

We thus conclude that the vibrational spectrum of the
lattice strongly coupled to the carriers contains two
branches of excitations corresponding to the propagation of
the mixed phonon and plasmon states instead of the bare
phonon branch. In the weak plasmon-phonon coupling case,

1, the plasphon dispersion law takes the form:

Q,i2 = ~{S

(4.71)

In the fi^Q limit fl, ( + ) and Я2 ( — ) describe phonons
with the renormalized frequency и and the plasmons, re-
spectively. The ratio of the two plasphon contributions to
the phonon Green's function

з
D(q, Q) = У -

/ = i !

is equal to

(4.72)

Even in the weak coupling case it may be of the order of
unity:

P2/P1 = (Д - Д0)/(Д + Д0), (4.73)

if the plasmon and phonon frequencies have sufficiently
close values. Here Д0 = 5 — o>p stands for the bare and

Д = (4.74)

± [(5 - 0 11/2

—for the renormalized gap between the two branches of ex-
citations.

5. BIPOLARON OF SMALL RADIUS. BIPOLARON BAND

As has been pointed out already, for a sufficiently
strong electron-phonon interaction the contact or the inter-
site attraction of small polarons may greatly exceed the po-
laron bandwidth thus leading to localization of the polaron
pair on the same site (or nearest neighbor sites). These small
bipolarons being spatially separated prove to be qualitatively
different in their cooperative properties from the condensate
of Cooper pairs. In this section we wish to formulate the
small bipolaron theory by presenting it in the universal form
independent of the number of sites involved in the localized
single bipolaron formation. With Л denoting the bipolaron
binding energy (i.e. the difference between the energies of
the bipolaron state and the uncoupled two-polaron state)
the small parameter W /L 4,1 arises providing us with a con-
sistent treatment of the strong polaron attraction on one site
or inside the lattice cell. The initial Hamiltonian (1.21) is
thus reduced to the bipolaron one which describes the inter-
action and the tunneling of the spatially separated electron
pairs—small bipolarons. As a result of the fact that pair cor-
relations inside the lattice cell are large compared to the con-
tributions from intercell hopping it is convenient to subdi-
vide the total Hamiltonian Яр into the part (Я0) describing
the motion and the interaction of the polarons inside the cell
and the residual part of interaction (Я,) to be treated as a
perturbation. The Hamiltonian H0 may have eigenstates of
different type corresponding either to the on-site singlet An-
derson bipolaron or to the two-site singlet (triplet) Heitler-
London bipolaron,7 which depends on the explicit form of
the Vy matrix elements and the structure of the lattice. The
localized bipolaron levels are split into bands due to the in-
teraction term //, which tends to destroy the bipolarons in
the first order and delocalizes them in the second order. The
hopping motion of bipolarons is caused by virtual transitions
to the unpaired polaron states, while the interaction includes
besides the ordinary Coulomb and phonon-exchange terms
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the additional virtual polaron-exchange part.7

We shall for the sake of simplicity restrict our further
discussion to the on-site bipolaron case. Then shifting the
origin of the energy by the value of Ep we arrive at the fol-
lowing representation for the Hamiltonian (1.21) in terms
ofH0 and#, portions

= V0 2
cm t °m t cm icm ; 2 vi,ninj

ij

(5.1)

where — v0 = Д is the bipolaron binding energy. Under the
condition A > W which leads to the absence of real polarons
at zero temperature the bipolaron motion may be described
by a new canonical transformation S2, which is similar to the
electron-polaron transformation Si. It is fixed by the re-
quirement to eliminate from Hp those terms that destroy the
bipolaron state:

= (ехр52)Яехр(-52),

where

(5.2)

(5.3)

Ef, Ev are the energy levels corresponding to the eigenstates
(f\, |v) of the Hamiltonian H0.

Neglecting the terms of higher order than
gives

Яр + 1S2> Яр L + ̂ 52Н0 + H0S2> ~

or in explicit form

(5.5)

(Ef-Ev)(Ev-Ef,) •
m*m'

The nonzero matrix elements of 52 act between a localized
bipolaron state and a state of two polarons in different cells.
Eq. (5.5) defines matrix elements of Hb in the subspace con-
taining no real polarons. Hence |/) and [/') represent the set
of H0 eigenstates describing the bipolarons localized in dif-
ferent cells. Intermediate states |v) on the other hand refer
to configurations involving two unpaired polarons, so that

Ef- Ev = -Д

and «

(5.6)

denote the phonon occupationwhere n^
numbers.

It is clear that the lowest eigenstates of the Hamiltonian
ffb are in the subspace, which involves only those cells that
are either occupied by a bipolaron (с*, c+t |0)m ) or are emp-
ty ( 1 0) m ) . The bipolaron band motion takes place via a tran-

sition to the virtual unpaired state implying a single polaron
tunneling to the adjacent site and a change of the phonon
state of the lattice. The subsequent tunneling of the second
polaron restores the initial energy state of the lattice and
creates a bipolaron on the neighboring site. When the char-
acteristic bipolaronic kinetic energy is small

«to, (5.7)

the bipolaron tunneling processes accompanied by emission
or absorption of real phonons have small matrix elements
and may be neglected. In this case one can average Eq. (5.5)
using the phonon density matrix

p = ехр(-ЯрЬ/Г)Тг ехр(-ЯрК/Г) (5.8)

and obtain the effective fermion Hamiltonian in the form

ЯЬ = -

- У Yc+c.,c+c.,(f
Z-l £.11 I J 1 V '

(5.9)

where (...) denotes the phonon average, 8-> + 0, and

a(r) = ехр(гЯ ьт)а exp(— i f f hr). (5.10)

At low enough temperature

Г«Д, (5.11)

where the real polarons are absent it is convenient in the
Hamiltonian (5.9) to replace polaron operators by bipo-
laron operators defined as

j+ _ c+ c+ f fr _ c c /5 j2)

and obeying the mixed commutation rules

(5.13)

The Hamiltonian (5.9) is then expressed in the form

v + + _ + (5'14)

where tmm, is the bipolaron intersite hopping integral

'(oL .(т)о_ ,(0))ехр[(-гД + 3)т], (5.15)

vmm, is the matrix element of the interbipolaron interaction

on neighboring sites

Vn' = 4<W , _ , . .
(5.1O)

d)r ],

and

e(2) =
mm'
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is the bipolaron self-energy renormalization.
In the following we shall omit the first term of Eq.

(5.14) thus shifting the origin of the energy to the level of the
bipolaron state localized on the site. The second term in Eq.
(5.16) describes the effective repulsion of bipolarons. The
reason for this repulsion is quite clear: a virtual hop of one of
the polarons making up a bipolaron to the neighboring site is
forbidden when it is occupied by another bipolaron.

The temperature average over the phonon variables in
(5.15) and (5.16) is carried out in a standard way20 thus
leading to

хехр -2 - cos(qlm - m' ])}

cos{fi>(g)[r+(//2D]}
smh(u)(q)/2T)

(5.17)

where g2 is T-dependent effective constant of the electron-
phonon interaction (1.26). The only difference in the analo-
gous temperature average of the matrix element vmm, is the

opposite sign of the argument in the second exponential of
Eq. (5.17).

At temperature Т = 0 for the case of electron interac-
tion with the single dispersionless phonon mode of frequen-
cy o) the matrix elements t , and y< 2 >, may be written in a

•̂  mm mm •*

more simple form:10

2rL
t , = •mm

mm

(-2g2)"

n=0

1
1 + (лси/Д)'

(5.18)

(5.19)

Eq. (5.18) makes it possible to get an estimate of the
effective bipolaron mass m** by relating it to the effective
mass of an electron in its initial bare band т and the hopping
integral ratio

m/tn = £-.«'/7* .1. /s опч1 mm mm < \j.£\jj

In the limit of Д ̂ со the sum in Eq. (5.18) may be well
approximated by the first term which gives the result

m/m*" = (l/z)(£>M)e~2g* (Д <<cu), (5.21)

where D = 2z| Tmm, | is the electron bandwidth. In this case

the bipolaron motion from site to site proceeds via incoher-
ent hopping of each of the two polarons which constitute the
bipolaron with no emission or absorption of virtual phonons
in the intermediate state. It implies the obvious relation be-
tween the bipolaron hopping matrix element and the polaron
bandwidth W= D exp( - g2)

W" (5.22)

inThe effective bipolaron repulsion (5.19) may be expressed n
a similar way in the parameter range under consideration as

2g2 (Д«со). (5.23)

In the opposite limit of A > a> the possibility of virtual

phonon emission in the unpaired intermediate state gives
rise to a much heavier bipolaron mass

The effective bipolaron repulsion on the neighboring sites is
also greatly enhanced in this limit

i$m:/Tmm, « (l/z)£>/A (Д»со). (5.25)

It is quite clear that the approximate relations (5.21)
and (5.22) obtained previously in Ref. 7 correspond to re-
placement in Eqs. (5.15), (5.16) of the temperature average
of the product of two operators by the product of the tem-
perature averages of both of them. This procedure is equiva-
lent to taking the initial average with the phonon density
matrix of Hamiltonian Eq. (5.1) thus reducing it to the Hub-
bard Hamiltonian with attraction (UH u b < 0) and a narrow
temperature-dependent band W. Therefore the phenomeno-
logical negative- U Hubbard Hamiltonian appears to be ap-
plicable to a polaron system only in the limit of
со > | UHub = A. In the opposite limit of со < Д the bipolaron
Hamiltonian can not be parametrized in the form of an at-
tractive Hubbard Hamiltonian with strong coupling.

Summing up the analysis of the preceeding sections let
us discuss the qualitative picture of the major changes in the
electron spectrum taking place as the effective coupling con-
stant Я increases.

The electron which occupies a site, (Fig. 5a), gives rise
at Я> 1 to a static lattice deformation of a size of the order of
the lattice constant. The ground state ceases being the vacu-
um for the unrenormalized phonons, and the middle of the
electron band (atomic level) is shifted down by the value of
Ep. As a result an electron is moving in a narrow polaron
band carrying the local lattice deformation with itself, (Fig.
5b). This deformation is also responsible for the small po-
laron pairing on one site, or on two neighboring sites, (Fig.
5c), depending on the value of the Coulomb repulsion. If the
polaron-polaron binding energy Д is low enough, (Д< W),
the ground state becomes a condensate of the polaron Coo-
per pairs. If Д > W, on the other hand, the ground state is a
condensate of charged bosons—bipolarons, moving in a nar-
row bipolaron band (Fig. 5d).

6. BIPOLARON SUPERCONDUCTORS. EXCITATION
SPECTRUM AND THERMODYNAMICS

6.1. Ground state

According to the previous section the low-lying eigen-
states of a narrow band crystal may be described in terms of a

D

ЕЛ
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FIG. 5. Schematic picture of polaron and bipolaron band formation.
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bipolaron Hamiltonian. With the energy origin chosen at the
level of the bipolaron state localized on the site it is given by

(6.1)

Hb = 'Ч 2 *m*m + 2 ("mm^mVm'V
rnxm'

where /j, is the chemical potential of the system containing no
unpaired polarons. To study this Hamiltonian just as in the
BCS theory it is convenient to use the well-known pseudo-
spin analogy, as the bipolaron operators are fully equivalent
to the set of Pauli spin matrices

*i-«i-^. *« = 5Ь + И5,. фт = (1/2) - З'ш, (6.2)

с* _
5 - 2i O

o
2 0 -i

In this pseudospin language a half-unity spin is associated
with each lattice site. Its z-projection is assumed equal to
— 1/2 for a site occupied by a bipolaron and to + 1/2 for an

empty site. The corresponding pseudospin operators pre-
serve the boson character of bipolarons if they are localized
on different sites. On the other hand they obey the Pauli
principle which prohibits the presence of two bipolarons on
the same site.

Replacement of bipolaron operators by pseudospin
ones in Eq. (6.1) transforms it into an anisotropic Heisen-
berg Hamiltonian

= A* 2 2
mxm'

(6.4)

where the bipolaron chemical potential /u plays the role of
the external magnetic pseudofield and is determined by the
number of electrons per unit cell ne

1-я. (6.5)

It will be usually assumed that ие < 1. For 1 < ne <2 holes
should be used, all the results being the same.

The anisotropic Heisenberg Hamiltonian (6.4) has
been investigated in detail in the theory of magnetic materi-
als. It was used also in the studies of quantum solids64 (the
model of boson lattice liquid for 4He). In this latter case the
operator bm describes a helium atom on site m with the Pauli
statistics being equivalent to the large on-site repulsion.
However, while in those cases the magnetic field and pres-
sure respectively are independent thermodynamic variables,
for a bipolaron crystal the electrical neutrality condition
(6.5) fixes the total "magnetization". Moreover, the inter-
action between bipolarons is assumed to be repulsive while
the long range interaction in quantum solids is of an attrac-
tive nature (4He). We show in the following that these two
facts lead to the existence, in addition to homogeneous (su-
perconducting and normal) phases, also of charge-ordered
inhomogeneous phases with a bipolaron condensate in one
of them.

To find the ground state of the pseudospin Hamiltonian
(6.4) we use the "semiclassical" method of the theory of

magnetism. The pseudomagnetic field Hm on the site m is
defined by

Hm = — (ft + 2uS^,)ez + 2/S-1,, (6.6)

where v = zvmm,, t = ztmm,, m' is the index of the nearest

neighbor sites to the site m, er is the unit vector in the z
direction, and Si,, is the component of the pseudospin vector
of the site m' which is orthogonal to the z axis.

Taking without loss of generality SJ, = 0, we have at
T=0:

with в being the angle between Sm and the z axis which is
fixed by the minimum energy condition Sm ||Hm. Taking ac-
count of Eq. (6.5) we arrive at the following set of equations
for в and the chemical potential /u:

sinO = t sin в'
l(ju + v cos в')2 + t2sin V ]1/2>

— (fl + tJCOSg')

[0 + и cos в')2 + <2sin20' ]1/2>

cos 0 + cos в' = 2(1 - ne).

cos в = • (6.8)

Here в' is the angle for the nearest neighbors.
The combination of the first two equations of (6.8) al-

lows us to solve for the chemical potential fj,:

ft = -(i7cos0 + t sin в-cot в ' ) , (6.9)

and to obtain the following equation for в and в'

0 = (cos в - cos в')

x[l + COS0-COS0' - (i>/0sin0-sin0'].
(6.10)

Together with the last equation of the set (6.8) it provides
the solution for в and в'.

As a matter of fact two solutions are possible.
The first one is a homogeneous ("ferromagnetic") so-

lution with full equivalence of all the sites:

cos д — cos 0' = 1 — «e,

(6.11)

In this case the bipolarons are distributed uniformly over the
crystal lattice:

"b = «e/2'
and

b * ffl ш* ^ ' * \ 0.1 ̂  J

The second solution is the "antiferromagnetic" one,
where cos в ^cos в' and two sublattices occur which have
different densities of bipolarons, пь ^п'ь:

\
nh = -^(l — cos 0)

b 2 (6.13)

= j{ne +[! + (!- ne)
2 + 2u(l - ne)(M')-1 ]'/2}

= l{«e - LI + (1 - nc)
2 + 21*1 - /g&i'r111/2b
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(6.15)

It is clear from these equations that the "antiferromagnetic"
solution exists only in the range of sufficiently high electron
concentration:

n e > n c = 1 - [(u-0/0»+011/2
(6.16)

Therefore, at «e>rcc the repulsion between bipolarons re-
sults in formation of a charge-density wave (CDW) state.

Figure 6 illustrates the bipolaron distribution over the
cells in the ferromagnetic and antiferromagnetic states as a
function of the electron concentration ne. The energy of the
system is

E = ̂ N[2fi(\ - ne) + vcose-cos6')-ts\ne-sm9']. 6.17)

Substituting Eqs. (6.11) and (6.13)-(6.15) into Eq. (6.17)
we get the energies of the ferromagnetic and antiferromag-
netic phases (E and E' respectively):

£= -тЛ

E' = -4-M).
4

(6.18)

From Eqs. (6.18) it follows that for ие>ис the antiferro-
magnetic (CDW) state is the ground state of the bipolaron
system. Both phases exhibit off-diagonal long-range order:

The only exception is ne = 1, where sin в' = 0. Ferro- and
antiferro-ordering of pseudospins means "locking" the
phase of the multielectron wave function. The ground state
of the bipolaron crystal represents therefore either a homo-
geneous bipolaron condensate phase (BS-phase) at ne <nc

or a charge-density wave coexisting with condensate (M-
phase) at nc>nc. It will be shown by further analysis of the
excitation spectrum that both these phases may be supercon-
ducting.

6.2. Phase (Г-л)-сНадгат of a bipolaron crystal

An increase of temperature leads to evaporation and at
some point to disappearence of a condensate phase. The (T-
n) phase diagram as it was initially pointed out in Ref. 9 has
to contain four phases: two low-temperature phases with off-
diagonal long-range order (BS, M), and two high-tempera-

1,0

0,5

-̂  ^ <: I --i_.

FIG. 6. Average bipolaron occupation of a site as a function of electron
concentration in the ferromagnetic phase (inclined solid line) and in the
antiferromagnetic phase (dashed line).

ture phases, namely, the normal one (N) and the charge-
ordered (CO) or, equivalently, charge-density wave
(CDW) phase. The qualitative features of this diagram may
be analyzed with the aid of finite temperature mean-field
approximation ( MFA ) being applied to the anisotropic Hei-
senberg Hamiltonian (6.4). Taking

m' m' (.o.zu;

we obtain for the mean value of pseudospin at the site m:

<Sj = (Hm/2|Hj)th(|HJ/2r). (6.21)

Let us consider the homogeneous phases, where

<Sm> = S0, S* = (l-ne)/2. (6.22)

We find from Eq. (6.21)

li = -2(IF0 + <0)Sg, (6.23)

where

jkm
(6.24)

are the Fourier-components of the interaction and the effec-
tive hopping integral respectively (U0 = v,t0 = t).

To the linear approximation in 5J ̂ 0, Eq. (6.21) pro-
vides the critical temperature for transition from the con-
densate (BS) phase to the normal (N) phase:

т = /(l-n e )/ln [(2- -)/„!. (6.25)

According to Eq. (6.25) Tc becomes equal to zero for «e = 0
and approaches a maximum value of T™a* — t at ие = 1.

In extension of the studies of Refs. 7 and 8 the phase
diagram of the bipolaron system described by the pseudo-
spin Hamiltonian (6.4) and the condition (6.5) has been
calculated numerically by Kubo and Takada65 by means of
the MFA of Eq. (6.20) with allowance for a CDW. For a
certain value of the interaction with the second coordination
sphere which was taken into account, these authors claimed
the possibility of two new phases corresponding to the in-
commensurate CDW-phase and incommensurate M-phase.

The complete (Т — n) phase diagram of the Hamilto-
nian (6.4) together with the condition (6.5), was derived by
Robas/kiewicz et al.66 It is shown in Fig. 7 for v/t = 2.

We note that the transition into a charge-ordered state
at ле = 1 was considered earlier by lonov et a/.67-68 within
the framework of the phenomenological Hubbard model
with strong contact attraction. The homogeneous conden-

\2n-

FIG. 7. MFA (Г-л) phase diagram of a bipolaron crystal for (v/t) =2
(Ref. 66).
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sate state was analyzed by Kulik and Pedan.69 Using a MFA
they obtained for Tc the result of Eq. (6.25). Since / is sup-
pressed by the exponential factor exp( — 2g2) for a bipo-
laron crystal one has the condition t <U. Therefore a homo-
geneous condensate phase exists only in the narrow range of
concentrations

ne < nc « t/H. (6.26)

However, it was shown in Ref. 8 that for the spin Hamilto-
nian of Eq. (6.4) the pseudomagnonlike fluctuations be-
come essential in this range and Tc (ис) dependence differs
fromEq. (6.25).

In the range of «e •x 1 MFA turns out to be also inappli-
cable because of the important role of dynamical correlation
between the pairs which arises from their interaction v. This
fact was established in Ref. 70 in the analysis of the charge-
ordered state in the Hubbard model. In particular taking
into account the dynamical correlations results in a decrease
in Tc at ne ~ 1 and limits from below (ле > 1/z, Ref. 70) the
range of concentration where a CDW does exist. We thus
conclude that expression (6.25) for Tc as well as the whole
phase diagram obtained within the framework of the MFA
are only of qualitative importance.

6.3. Excitation spectrum of the low-temperature coherent
phases

The excitation spectrum of the Hamiltonian (6.4) was
found for zero temperature in Refs. 7 and 8 and for a nonzero
one in Refs. 65 and 66. It is magnonlike with a linear disper-
sion in the long-wavelength limit both for the BS and for the
M (mixed) phase. In the latter case, MFA-RPA (Refs. 65
and 66) gives a linear behavior for the entire temperature
range for the M phase, except at Т = О.7 However, it turns
out that if one takes into account quantum zero-point fluctu-
ations, one obtains a linear dispersion for the excitation spec-
trum of the mixed phase for T= 0 also.65

The application of MFA to obtain the excitation spec-
trum with the classical pseudofield Hm, Eq. (6.20), leads to
a gap in the spectrum proportional to t (Ref. 69), which
corresponds to local spin flips. This is an artifact of the MFA
which leads to exponential temperature dependence of the
specific heat. The true excitations of the spectrum are pseu-
domagnons with a gapless dispersion.

We shall now generalize the MFA results concerning
the excitation spectrum by taking into account quantum
fluctuations, and determine the thermodynamics of the su-
perconducting phase within this scheme. It turns out that
this leads to qualitative changes in the phase diagram as
compared to MFA (see Fig. 7).

Using the RPA equations of motion for double-time
retarded Green's functions, one arrives at the following tem-
perature-dependent excitation spectrum of the BS phase:"

= R [(t - vksin20)(< ~ *K) (6.27)

where R is the occupation probability which obeys the fol-
lowing equation:

1 ^4 k , kR'1 =— V — ,coth—-,
N a>k IT (6.28)

Ak = - uk)sin20],

and

cos в = (2nb - l)/R .

(6.29)

(6.30)

determines the angle between Sm and Hm . The supercon-
ducting order parameter is given by

S* = <S*>, Sx = (1/2)* sin в = (1/2) [Л2 - (2nb - 1)2]1/2.

(6.31)

The quantity R is defined in such a way that it includes quan-
tum as well as thermal fluctuations. We note that MFA gives
fl = la t r=0.

In the nearest-neighbor approximation one easily ob-
tains fromEq. (6.27)

1 1(1 - yk), (6.32)

with

z|m|ia (6.33)

so that

cak ~ sk + 0(*2) при k -* 0. (6.34)

The "sound" velocity is temperature-dependent:

s(T) = R sin 66 [t(v+ 0 ]1/2,

. (6.35)

62 = i X [(km)/*!2-
|m|=a

The boundary line between the BS and the normal phase
determining Tc (nb ) is given by the condition

'О, (6.36)

which is the same as S * = 0. The boundary of the BS phase
with the mixed phase M is determined by the condition of the
instability of the spectrum, Eq. (6.32), against doubling of
the lattice periodicity, i.e.,

(6.37)

where 2Q is the smallest reciprocal-lattice vector.
Together with Eq. (6.32), Eq. (6.37) reduces to

2 -+ (2nc

b - I) -jj
(6.38)

where R(T,n,v/t) has to be determined from Eqs. (6.28)-
(6.30). We should mention that s becomes imaginary for
v < — t, which indicates that the system becomes unstable
with respect to a transition into a phase of bipolaron "drop-
lets".

Let us derive the critical concentration n£ as a function
of v/t at T = 0. Substituting

Л(0) \-1 (6.39)

where

into Eq. (6.28) we obtain together with Eq. (6.30), the self-
consistent equation for the zero-point fluctuation contribu-
tion ̂ 0
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[(2nb - 2г(>0)\1 + vrl)-vrl]yk}/2

[{1 - ' HO - yk

(6.40)

The numerical solution of Eqs. (6.38)-(6.40) for a simple
cubic lattice is shown in Fig. 8. One can notice the qualitative
difference of the behavior of «£ determined in this way as
compared to the MFA results (Refs. 7 and 66). The quan-
tum fluctuations extend the region of stability of the homo-
geneous superconducting BS phase. Thus, the BS phase ex-
ists even in the limit v/t -> oo provided

2nh< 0,156, (6.41)

for a simple cubic lattice, contrary to the MFA result which
gives rfb = 0 in this limit. The behavior of the order param-
eter S* as a function of v/t, determined numerically from
Eqs. (6.31), (6.39), and (6.40) is shown in Fig. 9. One can
see that the bipolaron interaction suppresses the order pa-
rameter, contrary to MFA results in which the order param-
eter is independent of v.

From Eq. (6.28) one obtains the following temperature
expansion for R(T):

R(T) = [4(S*(0))2 + (2nb - 1)21I/2

- (T2/65/2)(l + vrl)l/2t\Sx(Q))2 + 0(Г4).

(6.42)

Let us now consider the low-temperature behavior for
the internal energy and the specific heat Cs. Using the RPA
the internal energy is determined at low temperatures by

/T)-irl, (643)

where E0is the ground-state energy. For a simple cubic lat-
tice direct calculation yields

(0) [t(t + ̂  ]3/2 •

(6.44)

In the derivation of this result we used the expansion of R in
Eq. (6.42). In this way we arrive at the power-law tempera-
ture behavior of the specific heat:

v) ]

x {T3 + (27T5/Sx(0)t(t + v) ]}.
(6.45)

We should mention that the temperature range of validity of
Eq. (6.45) diminishes as иь -»0. At fixed nb and a sufficiently
high temperature the quadratic term in Eq. (6.34) will be
dominant and will give rise to

Г372. (6.46)

In concluding this subsection, we shall derive the
expression for Tc. Substituting S* = 0 into Eqs. (6.28)-
(6.30), we obtain

1
(6.47)

The numerical solution of Eq. (6.47) for a simple cubic lat-
tice gives rise to the concentration dependence of the critical
temperature for a bipolaron superconductor which is plotted
in Fig. 10.

For a dilute system (иь < 1), we obtain from Eq. (6.47)
the following analytic expansion:

0,/SS

-1 0 I

FIG. 8. Ground-state phase diagram (T= 0). RPA (solid line), MFA
(dotted line).

',0

FIG. 9. Concentration dependence of the order parameter of a supercon-
ducting phase at Т = 0. For nb > rf~b, a mixed phase with two order param-
eters exists.
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FIG. 10. Critical temperature of a bipolaron superconductor as a function
of concentration. RPA result—solid line, MFA result—dotted line, clus-
ter approximation result for v/t — 1—dashed-dotted line. The Tc for the
ideal Bose gas is indicated by the dashed line.

3,31(nba-3)3/2

т
(1 -

(6.48)

where т** = 3/ta2 is the bipolaron effective mass (for the
case of a simple cubic lattice). In the opposite limit of high
density, |2nb - l|<l,Eq. (6.47) gives

Т «-*~
(4 - I)2' (6.49)

where с = 1.5164, 1.393, and 1.345 for simple cubic, base
centered cubic, and face centered cubic lattices, respectively.
One can see from Fig. 10 that the region 2иь <0.2ГС is practi-
cally the same as for the ideal Bose gas. In contrast, the MFA
result, Eq. (6.25), as well as the cluster approximation,70

gives a qualitatively different concentration dependence of
the critical temperature Tc oc [ln( 1/иь) ] ~' for low densi-
ties and overestimates Tc (by a factor of about 1.5) for
2nb = 1. Moreover, in the cluster approximation the Tc (иь)
curve intersects the ль axis not at nb = 0, but at
иь =exp(-z).

We would like to stress that the RPA has proven to be
very fruitful in problems of magnetism (Refs. 71-74). In
particular, it predicts the absence of long-range order in one
and two dimensions for a short-range interaction at finite
temperatures, in agreement with exact theorems.

6.4. Normal-state properties of a bipolaron system

One of the most striking features of a bipolaron system
is that above Tc the normal phase is characterized by an
ensemble of Bose particles on a lattice, forming a very nar-
row bipolaron band. This is quite different from ordinary
BCS superconductors which above Tc go into a metallic
state characterized by an ensemble of electrons on a lattice,
forming a fairly broad electron band.

We shall in the following consider some of the thermo-
dynamic normal-state properties of a bipolaron system. This
can be done easily if the concentration of bipolarons is small.

In this case, neither the hard core nor the effective interac-
tion between bipolarons on different sites is important. Our
initial Hamiltonian of Eq. (6.1) thus reduces to

ЯЬ ~ ~ (6.50)

where the b operators are of the boson type. This is due to the
fact that within the physically relevant subspace of either
singly occupied or empty sites, they satisfy the commutation
relations

[Ьт t 0— ]_ == 1 — ^WL , ( 6 5 1 )

which reduce to the relations of Bose-statistics for small bi-
polaron concentration (nb < 1 ).It will be shown in the fol-
lowing that as far as the temperature dependence of the spe-
cific heat is concerned, such bosonlike bipolarons behave in
practically the same way as fermions (electrons) with a rela-
tively narrow band. We shall include in the present discus-
sion electrons (s= 1/2), singlet bipolarons (s = 0), and
triplet bipolarons (s = 1) (s denoting the spin).

The corresponding expressions for the specific heat and
the chemical potential which have to be evaluated are the
following:

b.e

= -2(5

n = 2(s

'7
-t-ц

(6.52)

, ,e(e)

(6.53)

where/bl, (e) denote, respectively, the Bose and the Fermi
distribution function / b > e (e) = l /{exp[(E -fj.)/T] :p 1},
(j. denotes the chemical potential, and N(e) is the energy
density of states.

We are interested in the temperature dependence of the
thermodynamic quantities on a temperature scale of the or-
der of the bandwidth (a few or about ten meV). Moreover,
we restrict ourselves to a discussion of the normal-state
properties, well above Tc—the transition temperature to the
superfluid phase. Under these conditions the fine structure
of the N(e) function for the low-lying energy states is of no
importance. Hence, we choose a constant density of states

JV(£) = l/2t, (6.54)

for which Tc =0 and which permits us to treat the normal
phase in a consistent fashion. In such a way we can compare
self-consistently the thermodynamic behavior of electrons
and bosons in the normal phase down to zero temperature.

Introducing the dimensionless parameters/? = t /Tand
fi* = Ц/Т, we obtain for bosons using Eqs. (6.52)-(6.54)

2s + 1 -zi (6.55)
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/г* = In 1 -

ехр/3-ехр[(-2и*+1)Я' 2s + Г (6.56)

Substituting Eq. (6.57) into Eq. (6.55), we obtain

In the high-temperature limit (/?<!), we find from Eq.
(6.56)

(6.57)

0 < l . (6.58)

The coefficient in the l/T2 term of the last expression is
physically quite obvious. Specific heat is related to the prob-
ability of absorption of thermal energy, which is proportion-
al to the number of occupied initial states («*) timesafactor
(и* + 1 ) coming from the number of final states and reflect-
ing the two contributions characteristic for Bose systems,
i.e., processes connected with spontaneous and induced
emission.

Let us next consider the low-temperature behavior of
the specific heat. For Дп, /3> 1 we obtain from Eq. (6.57)

ft' * -ft - exp(-2n*j8). (6.59)

which shows that the chemical potential at low temperature
is localized near the bottom of the band (/г^; — f) and is
practically temperature independent. Substituting Eq.
(6.59) into Eq. (6.55), we get for the specific heat

Cb = (2s + 1)л:2/6/3 (0n, /3 » 1). (6.60)

This result shows that bosons in narrow band at low tem-
perature have a temperature-independent specific-heat coef-
ficient у = С /Т, just as for electrons. The linear temperature
dependence in fermion as well as boson systems is related to
the existence of a quasilocked chemical potential. For com-
parison we quote here the results for the electron specific
heat in the same limiting cases. Based on the constant den-
sity of states as before, one arrives at

С е «л[1 -(n/2)]/32/3 03 si),
(6.61)

If n < 1, an intermediate temperature region exists for
!/«>/?>! in which the boson and fermion specific heat
shows logarithmic behavior,

Cbe « -2n (6.62)

Thus bosons and electrons in narrow-band systems
have similar temperature dependences of their specific heat
in the normal phase (see Figs. 11 (a) and l l ( b ) ) with the
following ratio of у at low temperature yb/ye = s + 1/2. It
is necessary to point out that the temperature region in
which we expect linear behavior of the specific heat can be
very small if n 41 • In this case, we find for у a fairly sharp rise
as one approaches Т = 0 which will abruptly turn over into a
constant for extremely small temperature (T^nt). For real
systems which show a transition to a superconducting phase,
the region for the linear temperature behavior of the specific
heat can practically disappear if the critical temperature is
high enough. In particular, for ideal bosons we have
Гс ос n2/3t (Ref. 8). In this case, the low-temperature behav-
ior will be given by Eq. (6.62) down to Tc.

The \/T2 law for the specific heat at high temperature,

common to both fermions and bosons originates from the
finite width of the band, which is a direct consequence of the
discreteness of the lattice. The classical behavior for the spe-
cific heat is only obtained for continuous media which have
infinite bandwidth.

Let us now briefly discuss the magnetic susceptibility
for bipolarons in the normal phase. For singlet bipolarons
evidently the spin susceptibility is zero due to the fairly large
binding energy of those bipolarons (typically, Л г; 0.1 — 1
eV) . For triplet bipolarons, however, the magnetic field cou-
ples to the spin of those bosons and the magnetic susceptibil-
ity is determined by the linear term of the induced magneti-
zation

M(H) = - /b(e , (6.63)

where H denotes the magnetic field and /UB , the Bohr magne-
ton. We thus obtain

. о t-u4fig /*

^= -"Г J

(6.64)

which, together with the corresponding expression for the
chemical potential of triplet bipolarons, Eq. (6.56), finally
gives us

-
Xt

( 6.65 )
-\

At high temperatures (/?«,/?< 1 ) we obtain from Eq. ( 6.65 ) a
Curie behavior (just as for narrow-band electrons47 given
below for comparison):

(6.66).

At low temperatures (/?«,/?> 1) the behavior of the suscepti-
bility of triplet bosons differs significantly from that of elec-
trons (see Fig. 12):

Xt = (4ив//)ехр(2ц/9/3) « exp(2m/37),

const.
(6.67)

Thus, we have shown that while the specific heat for narrow-
band systems is the same for bosons and fermions this is not
true as far as the susceptibility is concerned. It is well illus-
trated in Figs. 11 and 12.

7. ELECTRODYNAMICS OF BIPOLARON
SUPERCONDUCTORS

In this section we deal with the electrodynamic equa-
tions for bipolaron superconductors.11'13

In analogy with the procedure used in exciton theory75

we start with the transformation of the bipolaron Hamilto-
nian to a representation containing Bose operators instead of
the Pauli bipolaron operators:
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b

FIG. 11. (a) Temperature dependence of у = С/3 for electrons (dashed
line) and for singlet bosons (solid line), (b) Ratio of the triplet (s = 1)
and singlet (x = 0) boson specific heat to the electron specific heat
(л = 0.25).

v=0
(7.1)

v=0

where am and a* are operators obeying Bose-statistics:
[am,a+, = Sam, 1. The first few coefficients /3V determined
by the substitution of Eq. (7.1) intoEq. (5.13) are:

00=1, /J,--l, /32 = (1/2) [1 + 0/3/3)],... . (1.2)

We transform further to field bipolaron and boson operators
defining them by the relations:

- ТГ/2 2 a<r-

(7.3)

Here N is the total number of unit cells, and S(r — m) is the
eigenfunction of the f-operator in the coordinate representa-
tion.

The transformation (7.1) for the field operators takes
the form

(7.4)

i + ... .+ I

0,5 1,0 1,5 T/t

FIG. 12. Temperature dependence of the inverse magnetic susceptibility
for electrons (dashed line) and for triplet bosons (solid line).

Substituting the operators bm and b + expressed with the aid
of Eqs. (7.3), (7.4) in terms of ^(r) and i/>+ (r), we obtain
the Hamiltonian of the interacting boson field

Я = Jd2rc/Vv+(r)f(r -

+

(7.5)

where

t(m ~

HUP,

~ m)<5(r' - m')
(7.6)

and H VP includes the terms with powers of ф higher than the
fourth (nonpair interaction). In the momentum representa-
tion

where

r, 2. V -

k

<(m)exp(-ikm),

(7.7)

- 0 1'

(7.8)

We thus obtain a Bose gas with a complicated nonpair inter-
action of the particles, consisting of dynamic, y(r — r'), and
kinetic, f(r — r'), contributions. Since t contains an expo-
nential reduction factor exp( — 2g*), one has the following
condition to be met in systems with strong electron-phonon
coupling: у>Л This allows us to take account only of the
dynamic part of the interaction.

A quasi-classical approximation for the magnetic field
is sufficient here, since real fields are weak compared with
characteristic atomic fields: eHa2<£l (a is the lattice con-
stant).

If the variation of the vector potential is rather slow, the
bipolaron hopping integral is renormalized as follows:

t(m, m') = t(m - m')exp[-2zeA(m)(m - m') ]. (7.9)
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The dynamic interaction v(m — m') in a magnetic field re-
mains unchanged, while for ~t(r — r') with allowance for re-
normalization (7.9) we obtain:

Zfr- r') = - ̂  £ *4+2вАехр[Л(г- г')]. (7.10)
k

Using the weak coordinate dependence of A and expanding
in the vicinity of k = 0, we have

(7.П)

(7.12)

where

m'

According to the analysis of the preceeding section the
spatially homogeneous state of thebipolaron Hamiltonian is
realized only in the limit of low atomic concentration of the
particles:

tlv. (7.13)

In the opposite case a bipolaron charge-density wave ap-
pears. In the following we confine ourselves to the analysis of
the magnetic properties of the spatially homogeneous super-
conducting phase.

To present the results in analytic form, we consider the
region of small values of the gas parameter:

where

m"
4л

(7.14)

(7.15)

is the scattering length in the Born approximation and
n = nb/a3 is the particle density. As a result the Hamilto-
nian of a strongly coupled (A > 1 ) electron-phonon system
on a lattice reduces to that of a charged dilute Bose gas:

Я = -ft (r) - - 2feA(r

(7.16)

where /j. is the chemical potential.
In the following we consider the case of a short-range

interaction.

7.1. Lower critical field

The evolution equation of the Heisenberg field operator
\!>(r,t) for the Hamiltonian (7.16) may be written as

(V - 2/>A(r))
i "

, т)и(г - r'

(7.17)

We represent the field operator in the form ^ = if>0 + i/>,
where ф0 is a c-number having the meaning of a macroscopic

wave function normalized to the particle density in the con-
densate. It is defined as that part of the ^-operator which
decreases the number of particles in the condensate by unity,
leaving the rest part of the system unchanged:

V0(r, r) = (m, N\$\m, N+ 1) for N-*<*>, A V l ' = const,

(7.18)

where N is the total particle number, Fis the system volume
and the ^(r,r)-operator describes the overcondensate part.

The set of equations for ^0 and \f> is

(V - 2ieA(r
( 2m"

+(r', r)?f(r', т)}^0(г, т) (r,

(7.19)

r', т)).

/-'w;r - r')[|^0(r', r)|2f(r, т) (7.20)

т)ф(г, т)

(r'. т) + V0(r', T)v0(r, т)у +(r', т) |.

This set should be supplemented by the Maxwell equation

curlcurl^(r) =4^JS, (7.21)

where Js is the density of the superconducting current. The
latter is determined by the order parameter
i/>s = ^rt^exp(igp) normalized to the density of the super-
fluid (superconducting) component ns =ps/m**. How-
ever in the dilute gas approximation (7.14) one can assume
^s be equal to if>0 and express Js in terms of the macroscopic
wave function 1/>0 . Then with allowance for gauge invariance
one has

J. = - (7.22)

Consider now Eq. ( 7. 1 9 ) for if/0 . In the steady-state case
1/>0 is independent of time: дф0/дт = О. Taking the short-
range potential in the form v(r — r") = v0S(r — r ' ) , we re-
write the equation for 1/>0 as follows:

(V
(7.23)

^"-w-*1

The condition (7.14) was also used here allowing us to ne-
glect the overcondensate particle density with respect to

At low temperatures a dilute Bose gas becomes super-
fluid. In the present case of a charged Bose gas we can thus
determine the critical magnetic fields that destroy supercon-
ductivity (superfluidity) of this system. First we point out
the analogy between the set of Eqs. (7.21)-(7.23) and the
equations of the Ginzburg-Landau phenomenological theo-
ry.

Recognizing that the chemical potential of the homoge-
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neous dilute Bose gas is f*zsnv0 (Ref. 76), one has for the
characteristic length parameters

Ая = On**/lfore2n)1/2, | = (2m**rtu0)-l/2, (7.24)

which are respectively the field penetration depth and the
characteristic scale of if>0 variation. The Ginzburg-Landau
parameter is x = /я**(1>0/16тге2)1/2. The large value of the
bipolaron mass gives rise to the assumption that the condi-
tion for type-II superconductivity is met:

x » 1. (7.25)

Using Eqs. (7.21)-(7.23), we can calculate the lower
critical field Hc1 in which a normal vortex appears in a su-
perconducting Bose gas. At large к in analogy with the stan-
dard superconductivity theory

ЯС,(Г« О) (7.26)

where Ф0 = тт/\е\ is the magnetic field flux quantum. Sub-
stituting expressions (7.24) for AH and J" into (7.26) we
obtain

m
In m

1/2

(7.27)

We now calculate the thermodynamic critical field ffc

meaning the field in which the homogeneous superconduct-
ing and normal phases are in thermodynamic equilibrium.

Let us assume that the energy of the ground state E(0)
is determined by the particle interaction energy. Neglect of
the kinetic energy of the superconducting phase represent-
ing a homogeneous condensate means the neglect of the
overcondensate contribution which is small in terms of the
gas parameter (7.14). The normal phase is a homogeneous
state in which the particles occupy a lower Landau level that
is degenerate over the positions of the particle-orbit centers.
Allowance for only the interaction energy in this state is
equivalent to neglect of the susceptibility.

We thus obtain for the superconducting (S) phase

Es(0) « n\V/2.

For the normal (N) state

(7.28)

where n, is the particle density in the rth state. By virtue of
homogeneity we have

and

: n\V.

(7.30)

(7.31)

The double value of the energy compared to that of the su-
perconducting state is due to the additional exchange inter-
action of the particles on the lower level. As a result we ob-
tain:

Яс(0)2/8л: = /-N(0) - Fs(0) = n2u0F/2,

and we arrive at the critical field value

(7.32)

Яс(0) « (4яи0)
1/2п. (7.33)

The thermodynamic critical field of a charged Bose gas
has already been calculated by Schafroth.77 He considered
an ideal charged Bose gas as a model of a superconductor
and obtained for the thermodynamic critical field the value
H0 = 4тги/40, whereto =e/2m**. Comparing Eq. (7.33)
with the Schafroth result

яс/я0. (7.34)

we see that under the condition (7.25) the thermodynamic
critical field is determined exclusively by the interaction
while the contribution due to the charged Bose gas diamag-
netism is negligibly small.

7.2. Upper critical field. "Dirty" limit

It is known77 that the ideal charged Bose gas does not
condense in a homogeneous magnetic field. We wish to dem-
onstrate now that the interparticle interaction results in the
finite magnetic field value of condensation and to determine
the critical curve Hc2(T).n

First of all we shall calculate the upper critical field Hc2

of a charged Bose gas taking into account scattering by im-
purities. The coherence length will be shown to be signifi-
cantly different from both the interparticle and the interato-
mic distances.

As usual Яс2 is defined to be the field value correspond-
ing to the first nonzero solution of Eq. (7.23) for \j>0. Ap-
proximating Eq. (7.23) to the lowest order in ip0 we get

[V - 2ц?А(г) ]2

1m"*
(r)

where/i = ц — vn. In deriving Eq. (7.35) we have confined
ourselves to the short-range interparticle interaction

v(r - r') = v0<5(r - r') (7.36)

and have utilized the effective mass approximation.
Consider the random impurity potential C/imp(r) de-

scribing the scattering of bosons. The effective mass approxi-
mation [f(k) = —t+ k2/2m**] remains valid provided
that Hc2 is weaker then the intra-atomic fields. Hence only
low-energy states of the band (f<<u*) are relevant:

<и* = 2<гЯс2/от*<«. (7.37)

The chemical potential fi to the lowest order in ф0 is deter-
mined by the equation

de-
e, Яс2)

• = n, (7.38)
ехР[(е-/Г)/Т]-1

where N(e,Hc2) is the field-dependent single-particle den-
sity of states. It is however more convenient to express p.
explicitly from Eq. (7.35) and to put it into Eq. (7.38). In
this manner we obtain for H = Hc2

/Г=е0(Яс2), (7.39)

where e0 (Hc2) is the lowest eigenvalue of the Schrodinger
equation (7.35).
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Let us begin with the ideal charged Bose gas without
scattering, C/imp =0. Then

i~ 1 / 2 (7.40)

and

(7.41)

Substituting Eqs. (7.40), (7.41) into Eq. (7.38) we get

4л:2п
= 0,

(7.42)

so that the upper critical field of the ideal charged Bose gas is

яс2 = о. (7.43)

This result has been known for a long time and was
initially obtained by Schafroth who was the first to prove
that the charged Bose gas in analogy with the one-dimen-
sional neutral one does not condense in a homogeneous mag-
netic field.

In order to obtain a nonzero Hc2 value one has to take
into account boson scattering due to interparticle as well as
particle-impurity interaction. Both interactions destroy the
one-dimensional character of the low-energy excitations in a
magnetic field and smear out the one-dimensional singulari-
ties of the ideal density of states, Eq. (7.40). For sufficiently
"dirty" and dilute Bose systems one can neglect interparticle
scattering compared to particle-impurity scattering. More-
over, if the mean free path / is large enough,

» n-1/3 (7.44)

as is usually the case for BCS superconductors, N(e,H) may
be determined by means of the analytical ladder approxima-
tion which has been developed for semiconductors in a mag-
netic field.78'79 For low energies it gives79

n)
8я2Г3/2

[27 + 2 Ч

[-3 Г3

е3 . 'о

1 4

(г6

0

27

?Г3е 1„

1/2 ,1/3

1/2 1/3

(7.45)

27

where

Г= е - Г0 = (7.46)

nimp is the impurity concentration,/is the scattering ampli-
tude, and

fi = eQ = [ш* - (ЗГ0/\/"2) \I1. (7.47)

Let us consider the rather wide temperature range:
a* -^T<TC. In this case two contributions to the integral Eq.
(7.38) are important. The first one arises from the low-ener-
gy regime £<«* within which one has to use the expression
(7.45), while the second one corresponds to the high-energy

regime, a>* < f< T, and is described by the classical density of
states:

TV;., (*) = (e/2)1/2(,n**)3/2/*2. (7.48)

Subdividing the integration interval in Eq. (7.38) into a low-
energy part with the density of states in the form of Eq.
(7.45) and a high-energy part with the density of states in
the form of Eq. (7.48) we finally obtain

where

1/4
3/2 1-3/4

(7.49)

(7.50)

is the coherence length,

00

G Г dx
J x

К « 0,8, Г1 = 4™lmp f\ ' Tc = 3,31n2/3/m".

FromEq. (7.50) it follows that |(Г) is much larger than the
interatomic distance, its temperature dependence being dif-
ferent from that expected from the BCS theory. In particular
Hc2 (T) of a charged Bose gas appears to have a positive
second derivative

d2ffc2/dT2 > 0 (7.52)

and a nonlinear behavior near Tc (see Fig. 14). It is interest-
ing to note that the interatomic distance (~n ~1/3) of the
charged Bose gas is a direct analog of the coherence length £0

in the BCS theory:

£ = v/T ~ n"1^3 (7.53)

if one takes vc = 2(Tc/m**)1/2 instead of the Fermi veloc-
ity. In the considered case of weak scattering the physical
coherence length £, Eq. (7.50), is greater than £0 from Eq.
(7.53):

|»(Й/-)1/4 » fc (7.54)

The Meissner effect for bipolaron superconductors was con-
sidered in Ref. 8 and the penetration depth was obtained

which considerably (by a factor of \]m**/m) exceeds the
London penetration depth /1L.

We are now in a position to estimate the Ginzburg-Lan-
dau parameter x for a charged Bose gas in the "dirty" limit:

1 т
1/2

(7.56)

It turns out to be much greater than unity for all reasonable
values of n and /.

We thus come to the conclusion that a charged Bose gas
is a type-II superconductor. For Г-»0 Eq. (7.49) gives for-
mally Hc2 = oo. However, for very low temperatures 7r< 1
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(т denoting the scattering time) localization of bosons in a
random potential must be taken into account thus reducing
Hc2 to a finite value. The ladder approximation giving rise to
Eq. (7.45) is not relevant in this region.

7.3. Upper critical field. "Clean" limit

Let us treat the interaction between the particles in
terms of temperature Green's functions.

We choose the unperturbed wave functions to be Lan-
dau solutions of the Schrodinger equation in a uniform mag-
netic field

2eH
(7.57)

If the interparticle interaction is ignored the temperature
Green's function in a magnetic field is equal to

where <o7 = 2irjT,j = 0, +1, +2,... . The total number of
particles in the system is given by

N = Т Urn
т-»0- v

(7.59)

After substitution of the Green's function, Eq. (7.58), into
Eq. (7.59) one can see that the divergence of the integral
over pz leads to the absence of Bose-condensation for all
temperatures. This fact reflects the quasi-one-dimensional
character of motion in a magnetic field. Let us write down
the Dyson equation

/-•-1 /•'-l v П fifT)G = C/Q — Z. v /.OH)

To calculate the self-energy part we confine ourselves to
the loop approximation (Fig. 13). The neglected diagrams
are small in terms of the parameter 2/u> which in turn is
small because the interaction is weak. In the wave function
representation given by Eq. (7.57) one can rewrite Eq.
(7.60) as

GJ =(<^)~1<5

w'-2v,." (7.61)

The smallness of the interaction (7.14) allows us to use the
diagonal approximation. It is convenient to express the Dy-
son equation (7.60) in the coordinate representation

G(x, x') = G°(JC, x')

x, z)D(z - z')G(z, z')G(z', x'),
(7.62)

where x = (x,r), т is the "imaginary time",

G(X, *') = Г
v'

D(z - z') = Г

(7.63)

соу.)ехр[йи,(т - T')]exp[iq(z - z')],

(7.64)

(7.65)

Substituting Eqs. (7.63) and (7.64) into Eq. (7.62) we ob-
tain for the self-energy part the equation

(7.66)

v',k

where/*' = <v|exp(/kr)|v'). It will be sufficient to consider
the interaction induced renormalization of the spectrum as-
sociated with the lowest Landau level which makes a singu-
lar contribution to (7.59) at (Oj = 0. The Bose-condensation
point is fixed by the condition

ц m Z0(0) + (o>/2), (7.67)

with 20 (0) being the value of 2V at k = pz = 0.
The static component of the self-energy part 20 (0) de-

pends on the renormalized interaction Z>(k,0). The latter is
determined by the polarization operator

II(k) = T ̂  2 СДсо.,)С(-ю.,)|У|;'(К)|2. (7.68)
V,V' ID,]'

We shall look for the lowest-level energy in the form

n")+J\p]° (7.69)

and limit our treatment to the temperature range of
We introduce the dimensionless momentum and energy
variables instead of pz and e

pz =
(7.70)

To the lowest order in rj Eq. (7.66) for e(p) is reduced
to one singular nonlinear integral equation

(7.71)

x f *L
£(*

dg

Substituting e(pz), from Eq. (7.69), and neglecting the p\
term we find a = 1/2 and

Л

FIG. 13. Green's function diagrams in the loop approximation for an
interacting charged Bose gas.
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4 = (и0/4л3)(т"со)2Г2. (7.72)

Summation of (7.59) over all levels except the lowest
one may be carried out with no allowance for quantization,
since 7><y. For the lowest level one should use the spectrum
of Eq. (7.69). In this way we obtain for the upper critical
field ЯС2

n(l-f3 / 2 ) =
2eH.c2

(7.73)

1л2

•— w -

Evaluation of the integral yields

Яс2(Г) = 0,18*0т"гУ2(1- (7.74)

where t=T/Tc.
Expression (7.74) differs from Hc2 of the ordinary su-

perconductors in the second derivative sign (it is positive
here) and in the nonlinear growth near Tc (Fig. 14).

The expression for/is obtained by direct substitution of
Eq. (7.74) into Eq. (7.72):

- *3/2)3Гс

3//и**]1/4. (7.75)

We see that the temperature range of validity of Eq. (7.74)
(2<w) is bounded from above: (1 — ?)/77>0.03. For ?-»0
Eq. (7.74) is formally divergent. It should be noted, how-
ever, that in this limit the use of an expansion in powers of tj
to derive (7.71) is erroneous in view of a possible boson
localization in the self-consistent interaction potential. This
localization is similar to localization in the random potential
of impurities.

8. TRANSITION FROM BCS TO POLARON AND BIPOLARON
SUPERCONDUCTIVITY

As has been pointed out for the first time in Refs. 9,12,
and 15, a sharp polaron narrowing of the electron band leads
to a considerable enhancement of Tc due to an increase in the
density of states. The transition from the standard supercon-
ductivity of BCS-type to polaron superconductivity (PS)
with an increase in A may be continuous or discontinuous,
depending on the value of g2 and the type of electron-phonon
interaction.

If the electron-phonon interaction results in a contin-
uous transition from a large to a small radius polaron state.

FIG. 14. Temperature dependence of the upper critical magnetic field for
an ordinary BCS superconductor (1), for bosons with short-range inter-
action (2), and for bosons interacting with impurities (3).

the transition from BCS superconductivity of wide band
electrons to bipolaron superconductivity (BS) is anticipated
also to be continuous, Fig. 15. The maximum value T* of
transition temperature lies in the region of PS at Я s 1. To
estimate T* one can use the weak-coupling expression
(3.17), keeping in mind that the mass of a two-site small
bipolaron may be of the same order of magnitude as the
small polaron mass. This estimate is valid for the "crablike"
tunneling of the two-site (Heitler-London) bipolaron, Fig.
16.

One can show that in this case the weak-coupling
expression (3.17) works well for all values of Я.

For the half-filled band, ц = 0, яе = 1:

Гс« 1,14(Ж/2)ехр(-Ж/2и0). (8.1)

То estimate Г* we take v0 =g2<y, assuming the Coulomb
repulsion to be small. As a result Г* is attained at the bare
bandwidth value of

D* = 2g2<u exp g2

and turns out to be equal to

Г = l,14gWe.

(8.2)

(8.3)

The value of D * (or g2) is restricted by the condition (2.10)
for the existence of a small polaron so that in Eq. (8.3) one
has

g2 < 0,5 ln(2z). (8.4)

Substitution of Eq. (8.4) intoEq. (8.3) leads to

rj< l,14(<o/2e)ln(2z), (8.5)

which in the case of a simple cubic lattice (z = 6) can be
written as

7^0,5co. (8.6)

Taking into account that a> may be larger than the opti-
cal phonon frequency (Sec. 2) the values of Г *s 500 К may
seem quite possible.

Let us now consider the case when the transition from
the large-radius polaron state to the small-radius one is of a
discontinuous type, Fig. 17. Two possibilities arise. If the
interaction constant is not too large, #2ss 1, i.e. the adiabatic
parameter a/D is not too small, the polaron band will be
relatively wide near the transition point at Я>ЯС. In this case
PS is possible just above the transition, with an abrupt

FIG. 15. Continuous variation of the critical temperature as a function of
Л (intermediate values of g2). The dashed line corresponds to the Eliash-
berg theory.
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FIG. 16. "Crablike" motion of a two-site bipolaron.

change ofTc,(Fig. 17, curve 1) under the condition that the
binding energy is smaller than the polaron bandwidth:

\swc- (8.7)

With an increase in Я > Яс a smooth transition from
polaron to bipolaron superconductivity takes place.

If on the other hand the adiabatic parameter is small
and g2 > 1, or the binding energy just above the transition is
large:

AC » И'с' (8.8)

a jumplike transition from BCS superconductivity directly
to BS occurs with higher or lower Tc value depending on the
electron concentration and the magnitude of the constant g2,
(Fig. 17 curves 2 and 3). PS is absent in this limit.

An attempt of computer calculation of Tc (A) depend-
ence has been undertaken by Nasu80 within the framework
of a combined version of variational and mean field ap-
proach to the initial Hamiltonian, Eq. (1.1). The variational
parameter p was introduced into the Lang-Firsov transfor-
mation in the following manner (cf. Eq. (1.20)):

n:

i,9 (8.9)

From the physical point of view the parameter/? determines
the "thickness" of the phonon cloud surrounding a polaron.
The transformed Hamiltonian is averaged using the phonon
density matrix as has been described in Sec. 1. The numerical
results are in qualitative agreement with Fig. 15 for interme-
diate values of D/<us*2 and with Fig. 17 for D/cos* 10. It

should be noted however that for/o < 1 the essential portion
of the electron-phonon interaction remains in the trans-
formed Hamiltonian:

"e-ph = О -/>) 2 ,̂. + H.c.), (8.10)

1.0

FIG. 17. Transition from BCS superconductivity to bipolaron supercon-
ductivity at large g2 values.

which being averaged over phonon variables makes no con-
tribution to the final results.

9. POLARON THEORY OF SUPERCONDUCTIVITY AND THE
PHYSICAL PROPERTIES OF HIGH-TEMPERATURE
METALLIC OXIDES

Under the condition of Я> 1 the electron potential ener-
gy associated with the local deformation of the lattice has the
same order or exceeds the value of the bare bandwidth D.
Hence beginning approximately from this value of the effec-
tive coupling the usual carrier tunneling through the lattice
becomes impossible and exponential mass renormalization
occurs. It leads according to the preceeding sections to small
polaron or bipolaron superconductivity with high Tc values.

The polaron superconductors are characterized by a
strong electron-phonon interaction A>1, by a high effective
mass value of the carriers, and by an extremely narrow ener-
gy band. In the case of a bipolaron superconductor one
should add the existence in the normal phase (above Tc) of
Bose-like doubly charged electron excitations.

We wish to show in the following discussion that there
is available certain experimental evidence in favor of these
properties in high-temperature metallic oxides.

9.1. Importance of the electron-phonon interaction

Ample experimental information is now available indi-
cating that the electron-phonon interaction in the new su-
perconductors is strong. Specifically one should mention the
effect of softening at the transition point of certain phonon
modes which was reported in Refs. 81-83 and analyzed in
Ref. 84, as well as the important differences between the
phonon spectra of the superconducting and nonsupercon-
ducting samples of YBa2Cu3O7_ x and YBa2 (CuZn) €>,_.,
with varying oxygen content observed in Ref. 85 by neutron
spectroscopy techniques. The direct observation by infrared
absorption measurements of small polaron states in experi-
ments on photogeneration of the carriers in nonsupercon-
ducting samples which is discussed later in this section is to
be also mentioned here.

Now it is already clear that in all the known high-tem-
perature metallic oxides a measurable oxygen isotope effect
does exist. There are some compounds (see Table I) demon-
strating even higher isotope shift values than those predicted
by the BCS theory (a = 0.5).86

The dependence of a on the dopant concentration for
the ceramic compound La2 _ x Sr^ CuO4 characterized by the
maximum of as: 0.7 at x = 0.12 was studied recently in Ref.
87. One of the possible explanations discussed by the authors
is associated with the strong electron-phonon interaction
with a soft optical phonon mode assumed to be responsible
for the superconductivity. A substantial isotope effect
(a^O.35) too large to be considered simply as "parasitic"
and irrelevant to superconductivity was observed also in the
system Ba-K-Bi-O.88

As far as the "1-2-3" compounds are concerned the sit-
uation is not clear yet. There are some experiments with a
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TABLE I.

Compound

ВаРЬ^дОз

La^Ca^CuO,,
Lalg5SrOJ5Cu°4

YBa2Cu3O7

гс.к

11
20,6

37,0

91,1

Isotope
shift

0,6

1,6

1,0

0,9

BCS Shift K*'

0,63

1,14

2,10

5,21

O18, %

60

75

75

67

dln7- c

3 I n M

0,8!

= 1!

0,31

< 0,1

*'BCS theory prediction for Tc shift with a = 0.5 and 100% substitution by O18.

high degree (s;90%) of oxygen O16^O18 replacement in
~¥Ва.2СщОт-х ceramic samples89 demonstrating an iso-
tope shift of 8TC s 1.5 К comparable with the BCS value.

Small a values in the experiments with substitution of
O16 by O18 may stem from the fact that O16 atoms do not
leave those crystallographic positions the isotope state of
which affects the Tc value. These conclusions have been con-
firmed by the first experiments with the YBCO samples syn-
thesized from the oxides initially not containing the O16iso-
tope:90

a ~ 2,5. (9.1)

This value exceeding the results of the initial partial
substitution measurements by almost two orders of magni-
tude corresponds to a Tc decrease from 92 К in the O16 sam-
ples to 59 К and 77 К in the identically prepared O18 and O17

samples respectively. The giant isotope effect (9.1) is by a
factor of five greater than the limiting BCS value for the
cases of weak and strong electron-phonon interaction.

To explain the isotope effect on the basis of polaron
theory which predicts the formation of heavy small bipolar-
ons having an effective mass m** and condensing to a
charged superfluid Bose liquid when the electron-phonon
interaction is sufficiently strong (/l> 1) let us start with the
following expression for the critical temperature:

Гс=/(«)/т", (9.2)

where/(л) is a function of boson concentration n (per unit
volume) independent of the isotope mass. For low concen-
trations one has

Дл)«3,31«2/3. (9.3)

Following the paper of Alexandrov and Kabanov10 in
the simple case of interaction with the dispersionless phonon
mode of frequency u> we express the bipolaron mass in the
form:

m/m"= (9.4)

Here Д denotes the bipolaron binding energy which does not
depend on the isotope mass M, and M(a,/3,z) is the degener-
ate hypergeometric function a power series expansion of
which leads to the bipolaron mass expressions obtained pre-
viously in Sec. 5. Assuming that a) <x M ~ l/2 and g2 cc M 1/2

we find from Eqs. (9.2), (9.4)

a = g*F(A/a>,

Here

f(x, y)

(9.5)

(9.6)

, y) -
У ox

varies from F(0,y) = 1 to F( oo ,y) = 2.
As is clear from Eq. (9.5) the bipolaron theory makes it

possible to explain the isotope effect with an a > 0.5 value if
g2^ 1. Eq. (9.5) also results in a monotonic increase of a with
g2 or A. At the same time Tc decreases with A. Therefore the
stronger isotope effect is predicted by bipolaron theory for
compounds with lower Tc values in agreement with the data
for metallic oxides (see Table I). Near the maximum of the
Tc (А) function the isotope effect tends to zero.

One of the most interesting manifestations of the strong
electron-phonon interaction is the polaron plasmon-phonon
mixing resulting in the formation of a new type of vibrational
excitations ("plasphons") discussed in Sec. 4. Meanwhile
the "extra" vibrational mode (extra-mode) of high frequen-
cy was observed in a neutron scattering experiment.91 Ac-
cording to the authors' claim it provides evidence of a strong
electron-lattice interaction. Interpreting this vibrational
mode together with the other high-frequency vibrational
mode as plasphon branches of excitations with the observed
frequencies91

Q 2 /2jt=14THz (9.7)

and the relative weight P, /P2 =; 1, one obtains with the aid of
Eqs. (4.70) and (4.73) for the plasma frequency the value

сор/2лг « ml 1л ~ 18 THz. (9.8)

Taking as an estimate the bare phonon frequency equal
to the renormalized one a ~5, we find for the effective cou-
pling the value /9s; 0.1 which should be considered as the
lower bound because in general a» co.

The extra-mode disappears in the long wavelength limit
q -> 0 (Ref. 91) this being the case for the intramolecular as
well as the acoustical phonons. It is not true for the case of
long-wave optical phonons for which in this limit
/? = (e0e ~ l — 1). It disappears also in the small wavelength
limit. This fact may be related to the short-range interpo-
laron attraction v(q) < 0 leading to the disappearance of the
short wavelength plasmon in accordance with Eq. (4.29).

Let us give now an ordinary estimate of plasma frequen-
cy Eq. (4.30) to be compared with Eq. (9.8). Using the
experimental values e = eu =50 (Ref. 92), m* = 25me

(Ref. 93), and choosing ие = 1 (a half-filled band) one ar-
rives at cop s 110 THz, which turns out to be in surprising
agreement with the estimate of Eq. (9.8) thus confirming
the plasphon nature of the extra-mode.

At the end of this subsection we wish to note that the
point contact and the tunneling spectra of superconducting
oxides94 exhibit the same phonon maxima as observed by
neutron spectroscopy. This fact is indicative of strong inelas-
tic scattering of electrons by phonons.

It should be added that the nearly temperature-inde-
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pendent thermal conductivity above the transition in combi-
nation with its sharp rise below Tc also points to a strong
interaction of the lattice with the carriers in high-tempera-
ture superconductors.95

9.2. Heavy carriers

To get Гс s 100K from Eq. (9.2) with the hole concen-
tration «p = (0.5 — 1)X 1022cm~3 (Hall measurements for
YBa2 Cu3 O7 ) one has to take

/n**/m s 40 - 100. (9.9)

For the oxygen band in the Cu-O planes with D = 1 eV and
z — 4 the small polaron formation according to Eq. (2. 10)
needs £2>3 ifu>;s0.1 eV. With this value of g one has

m*/m >20, (9.10)

where т is the band electron mass. It has been mentioned
already that the intersite small bipolarons may have an effec-
tive mass of the same order of magnitude as m* due to pro-
cesses when only one of the two small polarons forming a
pair tunnels between the two sites. Bipolaron effective mass
may therefore be much smaller than that corresponding to
simultaneous two particle transfer described by Eq. (9.4).
Moreover one should remember that in crystals with a large
lattice constant a the band mass may be smaller than the free
electron mass /ие even for rather narrow bands with the
width D^leV:

= z/2Da\ (9.11)

Thus the small polaron and bipolaron masses of the or-
der of a few tens of the free electron mass mc are quite prob-
able and as a consequence may give rise to rather high values
of Tc (> 100 K) even for comparatively low carrier concen-
trations such as x 1021 cm ~3. In this context we would like
to stress that a great number of London penetration depth
measurements both for ceramic and single crystal samples of
LaSr(Ba)CuO,96 BaBiPbO,97 and YBaCuO98-99 with the
field oriented perpendicular to the Cu-O planes give an en-
ormously high value of

ЯЯ&2000А, (9.12)

that is compatible with considerable mass enhancement.
The normal state specific heat fN = Ce/T estimates

obtained by subtraction of the phonon contribution from the
total heat capacity100 lead to an extremely high value of

yN > 40 mJ/mol-K2 for LaBa(Sr)CuO , (9.13)

exceeding the value of yN for A-15 compounds. For
YBaCuO one can estimate yN using the well-known BCS
relation for the heat capacity jump AC at T=TC which,
according to Ref. 101, turns out to be very high:

ЛС>5 J/mol-K. (9.14)

The result is practically the same as in Eq. (9.13). Taking
into account that yN s* m* for free fermions or using the val-
ue of 7N for the narrow-band Bose gas on a lattice11 one
obtains

/n*, m">30«e, (9.15)

which also agrees well with the hypothesis of polaron mass

enhancement. In this regard it would be fair to point out also
that estimates based on optical measurements102 give some-
what smaller mass values m* ~ 10me.

9.3. Narrow band

The heat capacity jump, Eq. (9.14), normalized to a
single carrier turns out to be surprisingly high:

в*в- (9.16)

while from the BCS theory

Eqs. (9.16), (9.17) are unambigiously pointing to the nona-
diabatic character of the carrier motion

0,05 (9.18)

thus confirming the fact that all the carriers participate in
Bose-condensate formation as predicted by the polaron the-
ory of superconductivity.

Localization effects, the almost temperature-indepen-
dent thermoelectric power S, and the difference in activation
energy for S and electrical resistivity of the semiconducting
phase of YBa2Cu3O7_5(5>0.5) are typical for narrow
bands and polaron transport.

The electron photoemission spectra as well as Hall mea-
surements show that the carriers in high-temperature La-,
Y-, Bi- and Tl-based oxides are holes, moving in the oxygen
band. Hence the energy band structure may be viewed as
presented in Fig. 18 with the narrow "oxygen" polaron band
lying inside the Coulomb gap f/between two "copper" Hub-
bard subbands.

9.4. Charged bosons

An unambigious proof of the bipolaron nature of high-
Tc oxides would be observation of charged particles with
zero or unity spin in the above- Tc region. According to Ref.
103 the absence of the thermopower dependence on the mag-
netic field strength up to values of 30 Т lends credence to
models in which the carriers are of Bose type, existing as
pairs with total spin equal to zero.

In the experimentally studied normal-metal to high- Tc

superconductor tunneling spectra an asymmetry in
conductance as a function of bias voltage has been reported.
It was noted"' that for one sign of the bias voltage the con-
ductance rises linearly, whereas for the other it seems to sat-
urate at a finite value. These features were previously pre-
dicted in Ref. 112, as a consequence of different statistics of
carriers on both sides of the barrier, specifically Bose-like
bipolarons on the one side, and ordinary electrons on the
other (cf. also Ref. 113).

The data interpretation for the tunneling conductivity
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remains a rather controversial issue. The experiments114

with a junction of YBa2 Cu3 O7 (thin film) /barrier/Pb (In)
type showed with high reproducibility a gap-like structure in
the conductance which reflects the properties of the quasi-
particle excitation spectrum of YBa2 Cu3 O7. Two gaps were
found (see Fig. 19). The smaller one has a value 2Д/ГС < 1
and disappears at T<TC. The second (and the larger) gap
disappears at T= Tc predominantly by weakening rather
than by a shift of the peak to lower voltages as predicted by
BCS-theory. One might suppose that this temperature-inde-
pendent gap is related to the bipolaron binding energy Д,
while the smaller one is a gap in the superfluid Bose gas
density of states, arising from the long-range Coulomb inter-
action between charged bosons (plasma gap). On the other
hand, if the interaction between bosons is short-range due to
screening effects, one can obtain using Eq. (6.34) for the
superfluid state:

N(e) (9.19)

which is much smaller at low energies than the normal state
N(£) ее д/£.

In the high resolution photoemission experiments with
Bi-Sr-Ca-Cu-O compounds115 an anomalous peak near the
chemical potential was observed. It was interpreted as the
gap in the spectrum with the value

*B= 1), (9.20)

which seems to be temperature-independent for !Г<100 К.
Similar results with the same value of the gap existing possi-
bly even above Tc and independent of the oxygen content
were reported in the infrared absorption experiments for
Y-Ba-Cu-O structure,' 16~118 as well as in the electron energy
loss high resolution spectra analysis.119 Identifying this
anomalous gap with the bipolaron binding energy as it was
suggested earlier one obtains the value

A = 720 K. (9.21)

Taking this binding energy to be equal to the value of
the interpolaron attractive potential \UC \ ==Д==720 К (see
Sec. 4), let us estimate the characteristic temperature Tb of
bipolaron formation (4.27) for the half-filled band

(9.22)

It falls in the range of tetra-ortho stucture phase transition

ш

^

77K-

1,00
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-50 -25 и 25 5D
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FIG. 19. Comparison of the shape of the normalized conductance traces
at T= 4.2 К (left-hand scale) and at T= 77 К (right-hand scale) for a
tunnel junction on thin films of Y-Ba-Cu-O.

corresponding in this approach to the intersite bipolaron for-
mation. In the above-7^ region the carriers are small bipo-
larons with the characteristic activation-like temperature
dependence of mobility.

Qualitative differences from the BCS-theory predic-
tions are observed in some measurements of the AH (T) tem-
perature behavior including the low temperature range.120

For charged bosons with the short-range interaction
the temperature dependence Лн (Т) may be calculated by a
standard approach with the help of temperature Green's
functions.121 To the first order in the gas parameter
97 = /л|/3 (/is the scattering length for the particle scattering
by each other) it is easy to obtain:

= 1 +
(2л)3

(9.23)

where /„(£•) = l/{exp[e(p)/T] — l}. The quasiparticle
spectrum e(p) in the same approximation is defined by the
well-known expression:

2 1

e(p) =

1/2

(9.24)

Here «0 = n (1 — tV2) is the concentration of the particles
in the condensate and ?= T/TC. Substituting Eq. (9.24)
into Eq. (9.23) one obtains

>/2

6 r(3/2£(3/2)
Г .r>2d;c

.^fr/Tv' (9.25)

where Г ( х ) is the Г-function, g ( x ) is the Riemann f-func-
tion, and

£ = (х(х + д)]1/2, д = 4К(3/2)]2/3?7(1 - t3/2)/t. (9.26)

A few words about the effect of crystal anisotropy on
the above results. Introducing the reciprocal effective mass
tensor (l/m**)ik with the masses in the (x,.y)-plane as-
sumed to be equal and denoted by m^* and the mass in the z-
axis direction denoted by /и**, one can use for the penetra-
tion depths A \j, Л # the result analogous to Eq. (9.23) by
replacing in it m** by mjf* and mf* respectively. Here, Л f,
denotes the penetration depth in the (x,y)-plane, and A „ is
the penetration depth in the z-axis direction. The tempera-
ture dependence of the AH (0)/AH ( T ) ratio will remain the
same as in Eq. (9.25).

To compare our calculations with experiment the data
from Ref. 120 were taken. We used only the most reliable
results obtained for samples with maximum value of grain
size and maximum diamagnetic shielding. Fig. 20 presents a
comparison of these data with the theory (77 = 0.02) in the
low-temperature range. Fig. 21 shows the same for the whole
temperature interval. The power-law character of the tem-
perature dependence at low temperatures is qualitatively dif-
ferent from the [ 1 - (T/TC )4] '1 / 2 law interpolating the
experimental data for ordinary BCS-like superconductors
(dashed line) and can be satisfactorily described in terms of
the charged short-range Bose-gas model.

The long-range Coulomb potential in high-Гс super-
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FIG. 20. Temperature dependence of the magnetic field penetration depth
in the close to zero region at т/ = 0.02.

conductors can become suppressed by light carriers screen-
ing if there is a wide electron band in these compounds. This
screening may be due to the huge value of the static permit-
tivity of the order of e0 = 105, asinBaBiPbO. In this case the
corresponding plasma frequency for such a heavy charged
Bose-liquid will be quite low:

«р = . (9.27)

Nevertheless the existence of the plasma gap, as well as
the lack of agreement between the different measurements of
AH make the interpretation of existing results in terms of
AH ( T ) dependence rather difficult.

The A-like behavior of the heat capacity similar to that
of 4He122'123 and the positive second derivative of the upper
critical field near Tc

 124 anticipated in Ref. 11 should be con-
sidered as important independent arguments in favor of the
bipolaron picture of high-temperature superconductivity.
The nonlinear character of the Яс2 behavior in the vicinity of
the transition point was not so obvious in the initial measure-
ments which were carried out for a number of 1-2-3 com-
pounds because of the relative narrowness of the experimen-
tally accessible temperature interval. In the
"low-temperature" metallic oxides, such as BiKBaO and the
"electron" superconductor NdCeCuO, on the other hand,
the positive sign of the second derivative is observed over a
wide temperature range.125

According to the theoretical analysis of Sec. 7 near the
point of transition to normal phase

яa (9.28)

The data parametrization in terms of this expression results
in v values varying from 0.65 (for magnetic field parallel to

the c-axis) to 0.8 (for magnetic field perpendicular to the c-
axis). It should be pointed out that the value of v as well as
the Г-interval А Г corresponding to the positive sign of the
second derivative of the upper critical field considerably ex-
ceed the values (2v = 4/3, ДГ= 0.2 К) predicted in the
fluctuation theory.

A detailed comparison of the polaron theory results for
Hc2 with experiment was carried out in Refs. 126, 127. As
illustrated by Fig. 22 from Ref. 127 the data for Hc2 in the 1-
2-3 compounds in the region close to Tc (with the field ori-
entation along the Cu-O planes) agree well with the theo-
retical curve. The same comparison for the case of the
lower-Tc K-Ba-Bi-O compound and also for the case of
Eu-Ba-Cu-O (with field orientation perpendicular to the
planes) in the wider T/TC range is shown in Fig. 23 from
Ref. 126. At low temperature and strong magnetic field the
large value of the bipolaron mass may lead to the carrier
localization and as a consequence to a finite value of Hc2 (0),
which may be the case for Eu-Ba-Cu-O.

New data were recently reported by the Argonne Na-
tional Laboratory group128'129 for the Y-Ba-Cu-O single
crystals raising doubts about the reliability of the resistive
method of Hc2 determination as compared to that based on
magnetization measurements. In spite of the apparent differ-
ence in the results obtained by these two methods the abnor-
mal behavior of Hc2 (although to a different extent) may be
seen in both cases. The future study of this problem will
probably raise the question of further detalization or even
modification of our estimates. In our opinion for this to be
done some more experimental information is necessary.

The relation of Tc with magnetic field penetration
depth125 and plasma frequency130 in LaSrCuO and
YBaCuO has the form

Т « А-2 a to
P'

(9.29)

FIG. 21. Magnetic field penetration depth as a function of T'in the entire
temperature range.

Ц35 1,00
Т/Г,

FIG. 22. Upper critical field as a function of temperature for 1-2-3 com-
pounds in the near Гс region with the field orientation along the planes.127

Solid line—bipolaron theory result.
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FIG. 23. Upper critical field as a function of temperature for
EuBa2 Cu, O7 x —Д (field parallel to c-axis) and for Ba0 6, K() „ BiO, —
O.'2<! Solid line—bipolaron theory result.

and is consistent with the expectation for the charged two-
dimensional Bose gas

Гс a n/m". (9.30)

As shown in Ref. 131, the anomalous pressure depend-
ence Tc (p) for the lanthanum and yttrium ceramics rules
out the BCS as well as the Anderson resonating valence bond
(RVB)132 models, but can be explained within the frame-
work of the bipolaron approach. Using Eq. (9.2) one can
easily obtain a very large value of the derivative dTa/dp for
bipolaron superconductors and a much lower value for po-
laronones, Eq. (3.15).

Let us turn now to a discussion of sound propagation in
HTSC.133 A stiffening of the lattice was inferred from the
temperature dependence of the acoustic sound veloci-
ty.1 1 Upon decreasing the temperature, going from the
normal to superconducting state, a stepwise increase in the
sound velocity derivative ds(T)/dT occurs, indicating an
abrupt stiffening of the lattice just below Tc. These results
were obtained both for ceramic and single crystal samples.
Our aim is to show that the bipolaron theory can explain
these findings.

Let us consider a system of free charged bosons on a
lattice which couple weakly to the long-wavelength acoustic
lattice vibrations. Expressing the acoustic phonon self-ener-
gy in terms of the carrier polarization function we obtain for
the renormalized phonon frequency:

(9.31)

where wq = sq, gac (<uq) denotes the coupling of the carriers
with the deformation potential, and e0 is the static permittiv-
ity.

^) = Л "... , -/•. Г; Г7Г7 (9.32)

represents the irreducible polarizability of the charged carri-
ers in the simplest RPA. Using an isotropic effective mass
approximation, e(k) = k2/2m**, we evaluate the relative
change in the sound velocity &s(T)/s and the sound wave
damping Г(&>„)

МП = -( Щс,,

(9.33)
"(q,

Let us first calculate the sound velocity renormalization
As = s( T) — s. In the case of free bosons and 0 < Г< Гс the
chemical potential/isO. For T> Tc /u is determined by the
relation:

, 3/2 oo ;
ГЛ If)!

(9.34)n =
"T\

Zj 3/2'
j=l Г

where tp = exp(^/u), and 0 — l/T. In the vicinity of the
transition point (T— Tc)/Tc~(t— 1)<^1 one has
Дц^0.5429(?3/2- I)2.

Separating out in the sum over k, of Eq. (9.32) the con-
densate state (k = 0,k — q = 0) contribution and replacing
the sum by an integral over k for the thermally excited bo-
sons we obtain:

(1 - r3/2)0(l -
(9.35)

2tl/2 т!
c 0

- \)(Г/Т-х

2

c (&>„ )n/co^£0m
In this expression в denotes the step function,
T* = m**s2/2, and 7 = **s2 represents a
frequency-independent factor since g2

ac (соч ) is proportional
to <yq . For the typical sound velocity values s = 5 x Ю5 sm/s
one can easily estimate T* = 0.8 m**/me K.

In the superconducting state, (T<TC), ^s(T) first in-
creases with increasing T and then begins to decrease. At
T= Tc there is a kink in Д*(Г) arising from the contribu-
tion of the condensed bosons which disappears at the transi-
tion point. Upon a further increase of T the temperature
dependence of the second term in Eq. (9.35) is essentially
determined by the chemical potential behavior. The pres-
ence of a discontinuity in the second derivative of ц with
respect to T leads to a rapid drop of As( T) with temperature,
which becomes negative, then passes through a minimum
and finally tends to zero as As/ys~ — 2T*/T for 7> T*.

The temperature behavior of the sound velocity renor-
malization is thus rather different for charged bosons com-
pared to fermions ( electrons ) . For the case of bosons Дл'
increases with a decrease in T showing a discontinuous rise
of derivative upon passing from the normal to the supercon-
ducting phase. For fermions one can write

(3/2)(Г/Гр)[1 - (л:2/12)(77Гр)2) (9.36)

(Tf — is the Fermi temperature). At T= 7"fcs the sound
velocity slope also changes its value but now it is lower in the
superconducting state and higher in the normal one. The
sound velocity renormalization appears to be larger for bo-
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sons than for fermions by a factor o f ( T c / T f ) 3 provided that
gac is approximately the same for both cases. Moreover the
temperature variation of As for fermions being very small, of
the relative magnitude of the order of ( T / T f )2, is practical-
ly inaccessible for experimental investigation. On the con-
trary for the case of bosons As( Т) should be easily measura-
ble. Its behavior for different T*/TC values is demonstrated
in Fig. 24. To observe the jump in the sound velocity slope
Fig. 25 shows the same quantity in the very narrow tempera-
ture interval near Tc. For Т */Tc = 1 the change of the slope
is quite visible. A qualitatively similar behavior is observed
for T*/TC = 0.5 and 0.1, but it is more difficult to distin-
guish on the scale of Fig. 25.

Let us now briefly discuss the sound wave damping
r(u»q),Eq. (9.33), given by

(9.37)

with

у = •
(9.38)

At low temperature T-^T* one obtains an exponentially
small value for r(u>q) <xexp( — T*/T) which shows a lin-
ear behavior

I>q)/y = TIT (9.39)

with increasing T. It goes through a maximum just above Tc

and then tends to zero as Г(й>„ )/y <x t ~ V2£(3/2) as Т is
further increased (see Fig. 24). This decrease in Г(ыч) is
due to the fact that in the non-degenerate Bose gas phonon
emission and absorption processes have equal probabilities
as T-* oo. The function Г(<а„) depends linearly on the fre-
quency and has no singularities at Tc, because only normal
processes contribute to the damping.

Let us summarize our findings.
1) Charged bosons on a lattice lead to a temperature

dependent sound velocity with a negative tempera-
ture gradient and a jump of the first derivative of
s( T) at T = Tc indicating a stiffening of the lattice
in the superconducting phase. This is opposite to
what is expected for fermions.

2) The damping (ultrasound wave attenuation) is lin-
ear in practically the entire superconducting tem-

1,0

3-5

FIG. 24. Temperature dependence of renormalization of the sound veloc-
ity and the sound wave attenuation in a system of charged bosons on a
lattice for different values of T*/TC (0.05;0.1;0.5;1.0).

FIG. 25. Temperature dependence of renormalization of the sound veloc-
ity in the near Гс region for different values of T*/Te (0.1;0.5;1.0).

perature regime and goes through a maximum above
Tc before decreasing as Г is increased further.

3) The experimental results on sound propagation in
high-Tc oxides seem to favor the picture of charge
carriers which are bosons (bipolarons). For these
materials we expect 0.1 < T*/ Tc < 1 according to
the value of m** and the carrier concentration np.
Choosing T*/TC = I we find upon fitting our
curves (Fig. 25) for T< Tc to the experimental re-
sults133 yy~10~2 cm/s. Once we have fixed these
parameters our theory then predicts

c , (9.40)

which is in good agreement with experiment
(-0.6, -0.8)* 10 -4 cm/sK. Decreasing T*/TC would
decrease the magnitude of the jump in the slope of As( Г) at
the transition point.

The gross features of the temperature dependence of the
sound velocity and its damping are independent of the pre-
cise form of the dispersion e(p) for T< Tc. Only for T> Гс

the finite bandwidth of the carriers may noticeably change
the temperature dependence.

9.5. Direct evidence of polarons (bipolarons) in high- 7"c

oxides

Studies of photoinduced carriers in the semiconducting
"parent" compounds of the high-temperature supercon-
ducting oxides have provided an insight into the nature of
charged carriers and their interaction with the crystal lat-
tice. Photoinduced infrared (IR) absorption measurements
on the three high-temperature oxides, La2CuO4,
YBa2Cu3O7_,5 (5 = 0.75) and Tl2Ba2Ca(1_^Gd^Cu2O8

(x = 0.02) (Refs. 93, 137 and 138) have demonstrated the
formation of self-localized polaron (or bipolaron) states
(see also Refs. 139 and 140).

In the experiment of Ref. 93 the sample was pumped by
a laser beam with the optical quanta energies ^2.5 eV. For
the infrared absorption measurements an interferometer
was used covering the spectral range of 120-8000 cm"1

(0.015-1 e V ) with resolution of 2—4 cm ~ ! . The net change in
the absorption coefficient was determined from the photoin-
duced change in transmission. For the three systems studied
photoinduced IRAV modes and photoinduced phonon
flashes have been reported, indicating the formation of a lo-
calized structural distortion around the photogenerated
charge carrier. In addition, a broad peak of photoinduced
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absorption by electrons at low energy was observed in all
three systems, indicating the formation of localized electron
states deep inside the semiconducting energy gap. The iden-
tification of the gap state with the localized structural distor-
tion was implied by the common temperature and intensity
dependence of the corresponding photoinduced spectral fea-
tures. These two aspects of the data confirm the formation of
self-localized polarons; after photoexcitation, a localized
distortion is formed around the carrier and associated with
this distortion is a localized electron state in the energy gap.
This unambiguous observation of polaron formation pro-
vides direct evidence of the importance of the electron-
phonon interaction in these systems.

The dynamic polaron mass (Md) has been determined
for all three systems. It was proved to be correlated with the
critical temperature of the corresponding superconducting
phase: Tc rises linearly with \/Мй.

9Ъ The strong correlation
of Tc with M& suggests a relationship between polaron for-
mation and high-temperature superconductivity.

The existence of a peak in absorption by electrons at low
energy (^0.095 eV in the case of the Tl system) implies in
the opinion of the authors of Ref. 3 an unusually large low-
frequency polarizability of the formed self-localized polaron
state. As a result, a singlet bipolaron might be stabilized by
the Van der Waals attractive interaction arising from this
large electron polarizability as a possible mechanism for
pairing in real space.

At the end of this section we wish to discuss briefly two
questions concerning the polaron theory and the possibility
of its application to high-temperature superconductivity.

The first one is related to the well-known objection of B.

K. Chakraverty141 who argued that high Tc values can not
be obtained in bipolaron theory for the reason of the required
high value of the effective constant A. > 3 (and a high value of
the bipolaron mass as a consequence). We have already re-
plied to this objection.142 The range of values of Л in which
the polaron and bipolaron picture proves to be valid remains
one of the most important and also difficult issues of the
theory. Our point of view being based on the analysis of nu-
merous studies of polaron properties by different authors
was thoroughly argued both in this section and in Sec. 2
previously. According to the above mentioned studies and to
our own estimates the polaron approach may be applied al-
ready at Л ~ 1. As we have pointed out in Sec. 8, the mass of a
small bipolaron may turn out to be of the same order as that
of an unpaired polaron thus leading for moderate Л to rea-
sonable Tc values agreeing with experiment.

The second question is associated with experimental
observations of the Fermi surface and their interpretation
within the framework of the polaron theory. Generally
speaking small polarons have the same Fermi surface as elec-
trons but with a much lower value of the Fermi energy. Nev-
ertheless this does not mean that there is no problem here at
all. In the recent study of A. S. Alexandrov and J. Ranninger
now in press the photoemission spectra of polarons excited
by photons from the polaron band were calculated and
shown to have a rather similar shape to that of x-ray angle-
resolved photoemission spectroscopy data for the Bi-Sr-
Ca-Cu-O system. Although this circumstance seems to be
rather promising the question remains concerning the over-
all self-contained description of these and all the rest of the
experimental results within the framework of the polaron

TABLE II.
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approach. It is worthwhile to note that similar difficulties
are met by almost all the presently developed theoretical
models of high-temperature superconductivity.

10. FERMI OR BOSE LIQUID?

The nature of the ground state of carriers in high-tem-
perature oxides is one of the most challenging questions. The
classical theory of the normal and superconducting state of
metals, based on the assumption that the Fermi energy is
much higher than any correlation energy, leads to well-
known predictions. Some of them as well as the predictions
of bipolaron theory are listed in Table II.

The classical manifestations of the Fermi-liquid behav-
ior are the temperature-independent Pauli susceptibility,
and the linear heat capacity, along with the field-dependent
quantum oscillations of susceptibility, resistivity, and ther-
mopower in strong magnetic fields (Table II).

On the other hand, the charged Bose-gas exhibits dia-
magnetic behavior in the normal phase, field-independent
resistivity and thermopower up to enormously high magnet-
ic field values pBH*x&, destroying bipolarons. The heat
capacity of the two-dimensional Bose-gas has a linear tem-
perature dependence.

The photoemission spectra are similar for both the Fer-
mi and Bose liquids for the electron energies \E — /г|>Д. А
shift to low energy of the order of A in photoemission from a
Bose-liquid near the chemical potential ц is anticipated.

Nuclear spin relaxation in a singlet Bose-liquid may oc-
cur as the result of the interaction of the nuclear spin with
thermally activated single polarons or triplet bipolarons.
Their bands are expected to lie above the singlet bipolaron
band and the numbers of both are expected to rise exponen-
tially with temperature. That is why the Korringa law is
violated in this system.

The main difference of bipolaron superconductivity
from that of the BCS-type is expressed by the fact that the
total number of electrons, rather than a small fraction of
them of the order of Tc /Ef, participates in the formation of
the superfluid condensate. As a result significant fluctu-
ations in the entire region of 8T~ Tc are anticipated.

A crucial confirmation of the bipolaron nature of high-
temperature oxides would be the observation of electron
(hole) excitations with double (2e) charge and zero (or uni-
ty) spin at temperatures above Tc. In this regard attention
should be drawn once more to the results of thermo-emf
measurement'03 which had revealed its independence of the
magnetic field for values up to H~ 30 T, as well as to the
absence in numerous experiments of an EPR signal above
Tc.

An analysis of many other experiments, presented in
the detailed review articles of Refs. 24 and 28, is also indica-
tive in favor of the polaron theory of the discovered super-
conducting metallic oxides.
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