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Studies on the dynamics of multilevel quantum systems in a coherent radiation field are reviewed.
Major attention is paid to phenomena of quantum nonlinear resonance and the interaction of two
quantum nonlinear resonances, and also to the analysis of the real physical systems where these
phenomena are realized.

INTRODUCTION

Before we proceed to the main part of this article, we
considered it necessary from the outset to indicate the set of
problems that will be discussed in the article. This is all the
more necessary since the title of the article contains a combi-
nation of the words "quantum" and "chaos," which today
can be interpreted very broadly. Actually, up to now the
theory of quantum chaos has linked a great many varied
problems that bear little relation to one another at first
glance. This and the search for a formal criterion of quantum
chaos and its connection with the characteristics of classical
chaos, the study of the structure and statistical properties of
the energy spectrum of systems with broken integrals of mo-
tion, the comparison of the quantum-mechanical and the
classical descriptions of the dynamics of nonautonomous
systems, the theory of scattering by complex objects, and
much else. (A brief review of some fundamental problems
entering into the group of problems of quantum chaos, to-
gether with a wide selection of references, is contained in the
recent review of Ref. 1.) The original linking element of all
the approaches is, first, choosing systems that manifest to
some degree a chaotic dynamics in the classical approach;
second, conducting the analysis in the quasiclassical region
of parameters. We note that a chaotic regime of motion can
be manifested by the overwhelming majority of classical dy-
namic systems. Therefore it will not be wrong if we give a
definition of the theory of quantum chaos as the field of con-
temporary physics that studies quantum systems in the qua-
siclassical region of parameters.

In the initial stage of the establishment of the theory of
quantum chaos the chief aspect of the studies was a purely
theoretical question: what is chaos in quantum systems? (In
a more general formulation, this is a question of the relation-
ship between classical and quantum mechanics. This ques-
tion has not lost its pertinence even today.) However, in the
course of time, when an understanding of the fundamental
features of "chaos" in quantum systems has been attained
(at least Hamiltonian systems), the applied aspect has be-
gun to advance to first level-what new features can the theo-
ry of quantum chaos bring to the traditional fields of phys-
ics? What phenomena are to be explained in terms of the
theory created afresh. The heightened interest in the applied
aspect is assisted in no small degree by the enhanced possibil-
ities of experimental physics that enable one to study quan-
tum objects in the region of large quantum numbers and at
high intensities of external fields.

One can treat this study as the application of the theory

of quantum chaos to the problem of the behavior of a quan-
tum object under the action of coherent radiation. Here the
formulation of the problem looks no more complex than the
formulation of the problem of the behavior of a two- or
three-level system under the action of a periodic perturba-
tion: there is a system of levels and we are interested in the
dynamics of the populations of the levels and the behavior of
various observable quantities (e.g., the polarization), etc.
However, rejection of the finite-level approximation (which
is a necessary requirement in the analysis of the system in the
quasiclassical region of parameters) enables one to study the
dynamics more completely and to discover the specific re-
gimes of motion, which, on the one hand, are analogous to
the dynamics of a classical system, and on the other hand,
have substantial differences owing to the quantum nature of
the object.

This review is based on studies of authors on the stated
theme in the past decade. Here one of our aims was to devel-
op as much as possible a universal approach to analyzing
systems in the quasiclassical region of parameters. Such a
universal approach to analyzing systems in an external peri-
odic field exists in classical mechanics and consists of three
fundamental stages: transformation to "action-angle" vari-
ables, singling out of the nonlinear resonances of the system
with the external field, and then taking account of the influ-
ence of the resonances on one another. Evidently, in the
quantum analysis it is rational to follow this scheme, and the
structure of the study reflects it. We note also that in classi-
cal mechanics one can distinguish two limiting cases: the
existence in the system of a small number of resonances (in
the limit only two), and of a large number, in the limit an
infinite number of resonances. Along with their common
features, these two limiting cases also have substantial differ-
ences. In particular, in the latter case the phenomenon of
diffusion occurs, which is absent in the former case. A quan-
tum analysis of the phenomenon of diffusion is contained in
the review of Ref. 2. Running ahead, we note that these two
limiting cases strongly differ also in the quantum approach.

In writing this work, we have put foremost consistency
and integrity of presentation. For this reason we have tried
to restrict the treatment to as few references as possible, al-
though this involved a certain increase in the size of the re-
view. We address the review to researchers working in the
field of quantum optics and radiophysics. Therefore our fun-
damental aim in this study is the quantum analysis of con-
crete physical objects, while the question of the correspon-
dence of the classical and quantum descriptions (as was
already noted above, this aspect is necessarily present in
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studies devoted to quantum chaos) is put on the second lev-
el.

Taking the occasion, we express our thanks to G. M.
Zaslavskii, together with whom we have obtained a large
number of the results presented in the review, and also to B.
V. Chirikov for constant attention to the work, for useful
discussions, and critical remarks.

LAN ISOLATED NONLINEAR RESONANCE

1.1. Classical nonlinear resonance

The concept of nonlinear resonance plays a fundamen-
tal role in modern classical mechanics.4"5 Rather than refer-
ring the reader to the cited books, we shall examine the phe-
nomenon of nonlinear resonance using the very simple
example of a plane rotator situated in the field of circularly
polarized radiation

Я = (y/2/2) + Vcos(6 - wt). (1.1)

In (1.1) / is the angular momentum, у ' is the moment of
inertia, в is the variable canonically conjugate to /, a> is the
frequency of the external field, and Vcos(9 — at) is the en-
ergy of interaction of the rotator with the external field. If we
understand the rotator to be a two-dimensional model of a
heteropolar molecule, then we have V = — Ed (E is the am-
plitude of the external field, and d is the dipole moment of
the molecule), and в — at is the angle between the vectors of
the dipole moment and the external field.

The free movement of the rotator amounts to rotation
at the frequency fi = 7/. If the frequency of rotation of the
rotator coincides approximately with that of the external
field, then the rotator becomes entrained into nonlinear res-
onance, and its angular momentum 7 undergoes slow nuta-
tions. We can easily describe these slow motions if we trans-
form to the variables A/ = / — /*, where / * is the center of
the resonance, and 0 = в — cot. As we can easily derive from
(1.1), the variation of the variables Л/ and ® is described by
the effective Hamiltonian

[y(A/)2/2] + Vcose. (1.2)

The Hamiltonian (1.2) is commonly called the nonlinear-
resonance Hamiltonian. We note that formally the Hamilto-
nian of (1.2) coincides with the Hamiltonian of a mathemat-
ical pendulum in the field of the force of gravity. Figure 1
shows the phase portrait of the system of (1.2). The period
of the motion of a point on the trajectory Г (i.e., the period of
nutation of the plane rotator) depends on the initial condi-
tions. For the region close to the center of the resonance

~0, ® = тг), we can expand cos О in (1.2) in a power

FIG. 1. Phase portrait of the system of Eq. (1.2) ( f = 1, V= 1).
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FIG. 2. Eigenfrequency of a nonlinear resonance; nph =(yV)ln,

series and T?z2ir/(yV)1/2. The corresponding frequency is
one of the two fundamental characteristics of the nonlinear
resonance, and henceforth we shall call it the phase frequen-
cy and denote it by flph:

: (yV)1/2.•ph (1.3)

Figure 2 shows the dependence of the frequency of motion
along the trajectory as a function of the variable
/ = ( l / 2 i r ) <f> A/e/0, which has the dimensions of action and
is a characteristic of the trajectory in phase space. (Geomet-
rically J is proportional to the area bounded by the trajec-
tory. ) As we approach the separatrix, which corresponds to
the value J* = (8/n-)(F/y)1/2, f i ( J ) approaches zero
logarithmically. We note also that the second branch in Fig.
2 (J>J*) is doubly degenerate, which corresponds to the
possibility of rotation of the pendulum in different direc-
tions.

Along with flph, another fundamental characteristic of
the nonlinear resonance is its width

Ы = 4(K/y)1/2. (1.4)

This corresponds to the dimension in terms of action of the
region bounded by the separatrix. As applied to our exam-
ple, 81 reflects the maximum amplitude of nutation of the
rotator. We note that, on passing through the separatrix, the
amplitude of the nutations declines jumpwise by a factor of
two.

1.2. Examples of isolated nonlinear resonance in different
systems

We considered it expedient to present two more exam-
ples of nonlinear resonance to show its universal nature. In
addition, the preceding example does not reflect the typical
situation, since the original Hamiltonian is directly written
in angular variables. As the second example let us examine
the behavior of an electron in a circular orbit in a classical
hydrogen atom under the action of a circularly polarized
UHF field. In this example we found it necessary to trans-
form preliminarily to action-angle variables. In action-an-
gle variables the unperturbed Hamiltonian of the system has
the form Я0= - e4m/2h2n2 = -R/2n2 (h denotes
Planck's constant K). Here n is the dimensionless action
(n = I /h), and т and e are the mass and charge of the elec-
tron, while R is Rydberg's constant. The position vector of
the electron in the circular orbit is r = (r(n)cos®,
r(n )sin 0) (as before we consider the two-dimensional case
for simplicity). Here r ( n ) =an2 is the distance from the
nucleus to the electron (a = h2/me2), 0 = fl(n)t, and
ft (и) = R /n3 is the frequency of revolution of the electron.
Then the Hamiltonian of the atom in the field of circularly
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FIG. 3. Structure of the nonlinear resonance in a molecule for
different values of the detuning Я — a> ( W~y, Д—0 (a), y/2
(b), y ( c ) , a n d 3 y / 2 ( d ) ) .
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polarized radiation has the form

Я = -(Л/2л2) - eEr(n)cos(6 - cat).

We shall find the center of the nonlinear resonance и* from
the condition ft (n *) = со. Let us restrict the treatment to the
case и*>1 (Rydberg atom). Let us expand H0(n) up to
quadratic terms in the neighborhood of n*, and keep only the
zero-order term in the perturbation. Upon transforming to
the variables A / = / z ( n — n*),® = в — cot, we arrive at the
Hamiltonian (1.2), where y = — ЗЛ/^(и*)4 and
V — — eEa(n*)2. When the condition 6I/hn*^l is satis-
fied, the role of the dropped terms is reduced to insignificant
distortions of the phase curves in Fig. 1 and the ft(/) rela-
tionship in Fig. 2. Yet if the latter condition is not satisfied,
the nonlinear resonance has a somewhat more complex
structure.

As the last example we shall examine a weakly nonlin-
ear oscillator (a model of a vibrational degree of freedom of a
molecule) under the action of the periodic perturbation

Я = Q/ - (y/2/2) + »71/2cos 0-cos cat.

(Here we have со ~ ft, and we assume that / is not too large,
7/<^ft). Using the resonance approximation, we transform
the Hamiltonian to the form

яен = (й - ШХ - (У/2/2) + (WV2)/1/2cos в.

Figure 3 qualitatively shows the phase portrait of this sys-
tem. We see that the structure of the resonance is rather

complex and depends on the value of the detuning
Д = ft - со. When the condition SI>I* is fulfilled (Fig.
3d), the structure of the resonance practically coincides
with that shown in Fig. 1.

1.3. Quantum nonlinear resonance (QNR)

Let us proceed to study QNR, the concept of which was
introduced in Refs. 6-9. Analogously to what we did in Sec.
1.1, we shall examine the phenomenon of QNR using the
concrete example of the system of (1.1). The Schrodinger
equation for a plane rotator has the form

, О.

H = -(уЛ2/2)Э2/ав'2 + Vcos(0 - cot).

(1.5)

(1-6)

In the absence of a perturbation the system possesses a com-
plete set of eigenfunctions n) = (2-ir) ~ 1/2exp(/'nf3), which
corresponds to free rotation of the rotator in one (positive n)
or the other (negative и) direction. The external field causes
transitions between adjacent states of the rotator, and one
can ask the question of the dynamics of the populations of
the levels \с„ (t) |2(^(0,?) = 2с„ (О |и».

Figure 4 shows the initial stage of the evolution of the
system of (1.6), where as the initial condition we have cho-
sen the population of the single level я* whose transition
frequency to the above-lying level is in resonance with the
external field: En. _, - Е„. = ha, Е„ = yh 2/2. After the
characteristic time Т = 7r/2ftph ~ ( V y ) ~l/2, a certain finite
number of levels becomes populated, and further transitions
occur only inside this group of levels. The number of levels
involved in the dynamics of the transitions depends on the
location of the initially populated level with respect to the
level n* (the center of the resonance). Figure 5 shows the

0,2

a
0,2

a
п,г

-w a w

FIG. 4. Dynamics of the populations of the levels of the system of Eq.
(1.6). Values of the parameters: y= 1, V=\. <u = 0.1, A = 1/5

FIG. 5. Mean population (over the period of the phase oscillations) of the
levels of the systems of Eq. (1.6). The dots indicate the location of the
initially populated level. The values of the parameters are the same as in
Fig. 4. (Diagram from Ref. 10).
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time-averaged population of the levels for different initial
conditions (the location of the initially populated level is
denoted by the dot). We see that, as we go from case (b) to
(c), a "transition across the separatrix" occurs. The given
numerical calculation illustrates one of the possibilities of
"experimental" determination of the width of a QNR. Here,
in the light of the correspondence principle, the width is de-
termined by the formula

dn =6I/h = 4(V/y)1/2M, (1.7)

Here SI is the width of the classical nonlinear resonance of
(1.4). The given parameter plays an important role, and as
will be shown below, determines the degree of classical char-
acter of the QNR. The greater the value of the parameter Sn,
the closer the dynamics of the QNR is to the dynamics of its
classical analog. Conversely, as Sn -»0, the QNR degener-
ates into a two-level system, which has a specifically quan-
tum dynamics.

Besides the dynamics of the populations, the question is
important of the dynamics of the various observables. Below
we shall mainly treat the dynamics of the induced polariza-
tion. The choice of this quantity is due to the fact that the
Fourier spectrum of the induced polarization determines the
emission spectrum of the system in the field of the electro-
magnetic wave. As the two mutually perpendicular compo-
nents of the induced polarization we have

p = (y>(9, t)\cas0|v>(0, t)), P = (y>(0, 0|sin0|v(0, 0).
У (1.8)

Let us make the following substitution in (1.5) and (1.6):

V(0, 0 = exp(-iEn.t/h)4>(e, l)exp(in'O), e = 0-cat. (1.9)

(This substitution is equivalent to transforming to the vari-
ables Д/ and © in the classical analysis.) Then for the func-
tion ф(®,1) we have ihd<f>/dt — Н^ф, where

H ff = -(уЛ2/2)о2/эе2 + и cos e - л(а> - у/ш*)а/дв .
(1.10)

Here we can neglect the last term, since according to the
condition we have уНп*^ш. Below we shall call the Hamil-
tonian of (1.10) the Hamiltonian of the QNR. In the new
variables the formulas of (1.8) acquire the form

Px = pc(0cos cut - pt(0sin <ot, p ж pf(0cos (at + pc(0sin ait,
(1.11)

pc(0 = <*(e,0|coeewe,0>,

,0|sin

Figure 6 shows the evolution of pc (t) in the case of initial
population of the single level л* (i.e., #(©,0) = (2ir) ~l/2,
and/>s (t) in this case equals zero). We see that, in the course
of two or three periods of the phase frequency, pc (t) reaches
the steady-state valuepc (f) ~ — 0.3. We note that this value
is not associated with the frequency and the amplitude of the
external field, and as will be shown in the next section, is only
a function of the initial state of the system.

In closing this section, let us consider the influence of
detuning. In contrast to a two-level system, for QNR a vari-
ation of the external frequency does not lead to an apprecia-
ble change in the regime of dynamics of the QNR nor to a
change in its fundamental parameters—flph and Sn. Actual-
ly the condition of exact resonance has the form

?0 40 50
t

-7

W 20 30 40 S3

10 20 40 50
t

30 40 SO

FIG. 6. Dynamics of/?,, (t) = (cos ®> for a QNR. Values of the param-
eters: y = l , K = l , < u = 0;at the initial instant of time a single level with
n* = 0 was populated. The values of Planck's constant are: A = 1/8,1/16,
1/32, and 1/64. The corresponding values of the quasiclassicity param-
eter are indicated in the diagram.

Е„. + 1 — £„. =7/1 (и* + 1/2) =ы. Hence we see that a
change in the frequency by an amount greater than yh leads
simply to a shift of the center of the resonance to another pair
of levels. Variation of the frequency о within the bounds of
the nonlinearity yh is manifested only in some "subtle" ef-
fects at times substantially exceeding the characteristic time
of the QNR ( ~ l/nph ). Thus the concept of detuning is not
very constructive, and is replaced by the concept "center of
the QNR."

1 .4. Correspondence times of classical and quantum
dynamics

Usually in comparing classical and quantum dynamics
one compares the trajectory of a classical particle and the
trajectory of the center of a wave packet having well defined
values of the variables. In the case of the system of (1.10)
one can also construct a wave packet with well defined val-
ues of the action and the phase

, 0) ехр[-2(и - - в,,) ],

(1.12)

Here the center of the wave packet is given by the values of л0

and ©o, while the uncertainties in action and phase are, re-
spectively, equal to <<5/л)) / 2~А(5л)1 / 2ося1 / 2, and
<<5©2> ~ (Sn) ~ I/2 <xA 1 / 2 (5л is defined in (1.7). Figure 7
shows the variation of the mean value (cos ®) for different
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FIG. 7. Dynamics of the quantum average (cos 0) in the case of an initial
condition in the form of the wave packet of Eq. (1.12) withA = 1/128 and
the dynamics of a classical particle (A = 0). The values are: /„ = 0,
®0 = 1.57; the values of the rest of the parameters are as before.

values of 8n. We see that, with increase in the quasiclassica-
lity parameter 8n, the dynamics of the quantum averages
tracks the dynamics of the classical particle for a longer
time. We can show analytically that the correspondence
time increases as <5и1/2

However, this simplified concept of the correspondence
time, as we see it, is extremely incomplete. The point is that
quantum mechanics is fundamentally probabilistic in char-
acter; for this reason one must compare the behavior of the
quantum-mechanical average with the behavior of the aver-
age over an ensemble of classical particles. Here the classical
ensemble is determined by the choice of the initial state of the
quantum system. There are two limiting cases, which corre-
spond to a choice of the initial state of the type of (1.12) and

, 0) = (2тг)-1/2ехр(шв). (1.13)

(The value of the action is strictly determined, and the phase
is completely indeterminate.) In the former case we must
compare with the quantum packet a Gaussian packet of clas-
sical particles having a width of the order of h1/2. In the
latter case the classical ensemble amounts to an ensemble of
particles uniformly distributed in phase, with the value of
the action / = hn. From the standpoint of physical applica-
tions, the latter case is substantially more important, since it
corresponds to population at the initial instant of time of a
single level, which is easy to effect in a real experiment.

Figure 8 shows the dependence of the average value
((cos 0)) over an ensemble of classical particles uniformly
distributed in phase at the initial instant of time with

10 20

FIG. 8. Dynamics of theaverage p l ' ( t ) = «cos 0» for the system of Eq.
(1.2) over an ensemble of classical particles uniformly distributed in
phase at the initial instant of time with /0 = 0. The parameters are as
before. (FromRef. 6).

7(0) =0. The initial period of oscillations is determined by
the frequency flph of (1.3). Subsequently, owing to the de-
pendence of the frequency on the initial position of the parti-
cle, a "dephasing" of the motion of the individual particles
occurs, and the value of {(cos ©}) reaches the steady-state
value ss — 0.3. Graphs of the quantum-mechanical averages
<<*(©,?) |cos0|^(0,r)> for ф(&,0) = (2ir)-}/2 were
shown in Fig. 6. Comparison of Fig. 8 with Fig. 6 shows that
the curves rapidly converge to their classical limit with in-
crease in the parameter 8n. In the scheme of the numerical
experiment described above, the fundamental question con-
sists not in determining the time of strict correspondence in
the behavior of the classical and quantum averages, but in
determining the mean level of "quantum fluctuations." The
question of the law according to which the level of quantum
fluctuations declines with decreasing h (or, as is equivalent,
with increase in the parameter 8n) deserves exceptional at-
tention (since a knowledge of the given relationship would
enable one quantitatively to indicate the degree of applicabil-
ity of the classical approach) and has been little studied up to
the present. We only note that (as will be shown in Sec. 2.7)
this law is not universal and depends on the type of motion
(regular or chaotic) of the classical system.

1.5. Spectral properties of quantum nonlinear resonances

Let us proceed to discuss the spectral properties of
QNRs. In studying the behavior of quantum systems under
the action of a periodic perturbation, the fundamental role is
played by the concept of the quasienergy functions (QFs)
and the spectrum of quasienergies of the system, the quasien-
ergy spectrum (QS). By definition the eigen-QF is the eigen-
function of the operator of evolution of the system in the
period of the external field and has the form

V(6>, 0 = 9,0- (1.14)

Here we have ifik (0,t + T) = ifik (9,t) (Tis the period of the
external field), and Ak is the value of the quasienergy. We
note that, as is implied by (1.14), the quasienergies are de-
termined apart from a phase coefficient exp(ilcot); I is an
integer). The QFs form a complete basis, and the solution of
the Schrodinger equation can be represented in the form of a
linear combination of QFs:

= 2 <*kexp(-utt/h)vk(e, t).
k

(1.15)

Here ak is determined from the initial conditions. The latter
formula reflects the importance of the concept of the qua-
sienergy states of the system. In essence, the quasienergy
states determine the possible dynamics of the system and, if
we know only the QS and the structure of the QFs, we can
predict, at least qualitatively, the behavior of the different
quantum-mechanical averages.

By using the substitution (1.9) one can easily show
that, for the system being studied of a plane rotator, the QF is
$k (#>f) ~<J>k (в — <У?), where the d>k (0) are the eigenfunc-
tions of the effective Hamiltonian of (1.10), while the eigen-
values of Heff determine the QS of the system. (We note here
that formally the Hamiltonian of (1.10) with
Д = yhn* — <y = 0 coincides with the Hamiltonian of a
quantum mathematical pendulum.) Figure 9 shows the QS
of a system in the form of the eigenfrequencies (cf. Fig. 2).
The value of Uk = (Ak + , — Ak )/h is plotted along the ver-
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FIG. 9. Eigenfrequency of the QNR. The value of П» = (At + , - Яь )/А
is plotted along thej> axis, where Ak is the value of the quasienergy. Values
of the parameters: V=\, y= 1, A = 1/20 ( f t p h ) =
k * = (8/я-Л) ( K//)I / 2. (From Ref. 7.)

tical axis, and the number k of the quasienergy state along
the horizontal axis. We see from the diagram that the spec-
trum of quasienergies has three branches. The first branch
corresponds to a "vibrational regime" (k<k*), and the sec-
ond and third (k > k *) correspond to a "rotational regime."
Here we must make a slight remark on the "resonance" val-
ues of A. In particular, when Д = 0, owing to the symmetry
properties of the Hamiltonian (1.10), its eigenfunctions are
either even (even index k) or odd (odd index k) functions of
0. Therefore, when Д = 0, the rotational states are a super-
position of rotation in both directions. However, since the
splitting of the levels is exponentially small, we can con-
struct new functions

(1.16)

These have the asymptotic behavior ^(0) = (2тг)~1/2

Xexp( ± ik®) as &-» oo and are approximately eigenfunc-
tions. This procedure is incorrect only for values of k close to
k * = (3/77-A) ( V/Y) 1/2• This region corresponds to the se-
paratrix of the nonlinear resonance, where the difference of
the classical from the quantum system is substantial. In par-
ticular, we see that the frequency of the quantum nonlinear
resonance, in contrast to that of the classical resonance, does
not take on a value of zero. States that belong to this region
cannot be assigned to rotational nor to vibrational states. We
can obtain an estimate for the width of this region (the num-
ber of quasienergy levels) (see the Appendix)

A* - ln<5n. (1.17)

Here Sn is the width of the QNR.
Finally, we note another difference of the QNR from

the classical nonlinear resonance, which involves the possi-
bility of tunneling through the separatrix.7"9 This tunneling
effect can be easily explained on the basis ofEq. (1.16).Leta
group of levels below the separatrix of the QNR be populat-
ed at the initial instant of time (negative n, \n\>Sn/2).
Then, when t = 0, the expansion of the wave function is per-
formed over the functions of (1.16) with negative k. Since
the eigenvalue A2k of the function ф2ь (©) does not coincide
exactly with the eigenvalue of the function 02/t+1 (0), a
group of levels lying symmetrically (with respect to the cen-
ter of the resonance) of the initially populated levels will
become populated in the course of time. The characteristic
time of this process is determined by the quantity h /ДА,
where ДЯ is the magnitude of the splitting of the levels Я2*
and Л 2k-i- This time greatly exceeds the characteristic time

of the dynamics of the QNR (~ Hp h '). For this reason we
shall in subsequent discussion set aside the tunneling effects
as "second-order" effects.

1.6. The action-angle quantum-mechanical representation

In Sec. 1.3 we studied the QNR phenomenon using the
example of a system whose Hamiltonian was directly written
in terms of angle variables. If the original variables of the
problem are not angles, then one must preliminarily trans-
form to the action-angle quantum-mechanical representa-
tion.13 This representation is close to the energy representa-
tion, yet is more convenient for our purposes. Let us examine
the transformation to the action-angle representation using
the example of a one-dimensional system. Strictly speaking,
the form of the representation depends on whether the spec-
trum of the system is semibounded (as, e.g., in the case of a
linear oscillator, where the states are numbered by the index
и > 0), or not ( — о о < и < о о ) . However, often in the case of
a semibounded spectrum it is convenient to introduce fic-
tional levels with a negative index n. An example of this
approach is given in Ref. 14, which treats the behavior of a
particle in a rectangular potential well under the action of an
external periodic field. Therefore we shall consider below
that the index n runs through values from — oo to oo.

The basis of the action-angle quantum-mechanical rep-
resentation is two noncommuting operators / and Л, which
(in the energy representation)have the form

ln,m ~

/, Л]=-АЛ,
. л

= Л+Л=1.

Then we can represent any operator A in the form

/=0

(1.18)

(1-19)

-̂  /N.

Here the a, (I) are operator functions of /. If now we per-
form an isomorphism of the Hilbert space of the system onto
the space of periodic functions |и)<-»(277-) ~1 / 2ехр(ш#),
then the operator Л turns out to^be written in angle variables.
Here we have / = — ihd /дв, Л = ехр (Ю).

We can also show that in the quasiclassical approach
the functions a, (/) are the coefficients of the expansion of
the classical variable A (1,6) in a Fourier series. The latter
property is extremely convenient, since often the analysis of
the problem is conducted in the quasiclassical region. In this
case we simply replace the^variable /in the classical Hamil-
tonian with the operator / = — ihd /дв. The error in this
procedure will be of the order of h. As an example let us
present the form of the Hamiltonian for a linear oscillator in
the field of a periodic wave in the action-angle representa-
tion

+ (JK/2)cos <ot-

We can easily see that in the region of large quantum
numbers neither the 1/2 in the first term nor the sequence
order of the operators in the second term plays a role, and the
given Hamiltonian can be obtained by quantization of the
classical Hamiltonian H = fl/ + WIl/2cos в- cos at.

In closing this section let us consider the phase (or an-
gle) operator. The phase operator is defined as в = в. How-
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ever, this operator is not defined over the entire space oT~
periodic functions, but only over a dense subset consisting of
functions that take on a zero value for 9 = 0 or в = 2ir ( Ref.
15) (we can easily see that in this subset [0,7] = — / A ) .
However, for us these mathematical subtleties are not essen-
tial, since the phase operator is not needed in real physical
problems.

1 .7. QNR in systems having no classical analog

In this section we wish to show that the concept of QNR
can be substantially expanded, and this allows us to use the
concept of QNR to analyze quantum systems having no clas-
sical analog. The fundamental idea consists in the following.
As was already noted above, the dynamics of quantum sys-
tems in an external periodic field is determined by the qua-
sienergy states of the system. Therefore systems having the
same structure of the QS should behave similarly. The defin-
ing features of the QS of a QNP are the presence of two
branches (one of which is doubly degenerate), separated by
a "separatrix." Precisely this property determines all the fea-
tures of the dynamics of the QNR.

As the first example let us examine a two-level system,
which we shall associate with two vibrational (or electronic)
levels of a molecule, under the action of a linearly polarized
resonance field.16 If the molecule is fixed (i.e., has no possi-
bility of rotating) , then the QS is defined trivially and has the
form

Л, 2 = (АДо>/2) ± l(Ed/2)2cos2e + (AAW2)2]I/2. (1.20)

Here Я 1>2 are the two quasienergy levels, Д« is the magni-
tude of the detuning from resonance, E is the amplitude of
the external field, d is the value of the matrix element of the
transition, and в is the angle between the polarization vector
of the field and the vector of the dipole moment of the transi-
tion. Yet if the molecule exists in free space, the structure of
the QS is considerably more complex. In analyzing the prob-
lem we shall restrict the treatment to the two-dimensional
case and the two-level approximation in the vibrational de-
gree of freedom. In this case the wave function of the mole-
cule can be represented in the form

О =

(1.21)

Here c/a (?) is the amplitude of the populations of the vibra-
tional-rotational level corresponding to the energy
E — Ea+Bl2(a = 1,2; and В is the rotational constant of
the molecule). The Hamiltonian of the system has the form

H ••
Е2 О 2 /1 0 о d

о (1.22)

and one assumes that (E2 — Et)/h — a> = Ata^w. (As an
illustration Fig. Юа shows the structure of the eigenenergy
spectrum of the system and the transitions caused by the
external field.) Omitting the mathematical part (see Appen-
dix II), we shall formulate only the end result. The eigen-
quasienergy states of the system have the form

0 =
(exp(-iwt) 0\1ф¥\в)

О 1 U*>(6)
(1.23)

а -

-Tt/a. Tt/a.

FIG. 10. a—Structure of the energy levels and transitions of the system of
Eq. (1.22). b—Structure of the transitions in a semiconductor in the field
of a standing wave.

Here we find the values of the quasienergies A.k from the
equations for the eigenvalues of the following effective Ham-
iltonians:

-Вд2/дв2 + U12(0), 1.24)

АДо>/2 ± (ЛДа»/2)2]1/2.

The simplest cases are those of exact resonance

Н§2) = -Вд2/дв2 ± (Ed/2)cos в (1.25)

and that of detuning large in comparison with the Rabi fre-
quency

(1.26)
- Вд2/дв2 + (£2</2/4АДа»)соА,

-Вд2/дв2 - (E2d2/AhAco)cos2e.

Below we shall return to discussing the dynamics of the sys-
tem (1.22) in these two limiting cases. Here we shall only
note that, as we see from the last formulas, the structure of
the QS of a rotating two-level molecule resembles the struc-
ture of the QS of the QNR of (1.10). Thus we expect to see in
the dynamics of the system (1.22) features characteristic of
a QNR. To avoid misunderstanding, we note again that in
this review we are treating only the case of a strong field, and
Eq. (1.24) is presented precisely for this case. More concre-
tely, the depth of the potential well Ul >2 (f?) in (1.24) is as-
sumed to be much larger than the rotational constant of the
molecule (i.e., a large number of levels is involved in the
dynamics of the transitions).

As the second example let us examine the QS of an elec-
tron in a semiconductor in the field of a standing electromag-
netic wave17

Я = Я„-(г//ис)А(г,Ор.

х"ч

Here H0 determines the band structure of the semiconductor
£a(k) ,A(r , f ) is the vector potential: A=(Ec/
o))cos(qr)cosu)f. This problem is interesting also in that, de-
spite the three-dimensional formulation, it reduces to one-
dimensional without any additional approximations. Actu-
ally, let the wave propagate along the x axis with
polarization of the vector E along the z axis. Then we can
easily convince ourselves that the external field "couples"
states with the wave vectors k = (kx,ky,kz) and
k' = (£* + 4>ky,kz) (see Fig. lOb). Thus the values of the
projection of the quasimomentum vector ky and kz do not
vary and one can treat them as parameters of the problem.
Correspondingly, kx is denoted as k in Fig. lOb, while
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sa(k) — £a(k,k>,,kz). We see from the diagram that the
structure of the transitions in the semiconductor is analo-
gous to the structure of the transitions in the previous exam-
ple. The role of the rotational constant is played by the quan-
tity у = h 2q2/2ma , where ma is the effective mass of the
electron in the band. Using the same mathematical method
as in the previous example, we can show that the QS of the
electron amounts to 2ir/aq (a is the lattice period) of the
subbands along the direction of kx and has a structure simi-
lar to that of the QNR. In particular, in the case
— m, = m2 = m* with exact equality of the frequency of the

external field to the energy gap, the effective Hamiltonian
determining the location of the boundaries of the subbands
has the form

ffef{ = (£2</2/2)cos20.

Here d denotes the magnitude of the matrix element of the
transition between the bands (d<eh /mcoa). For the classi-
cal analog of Яе(Г, ( — ihd/de~>I) defines the concept of the
separatrix, and hence one can introduce the concept of the
width of the resonance. As the last formula implies, the
width of the resonance in a semiconductor, just as in the case
of an ordinary nonlinear resonance, is proportional to the
square root of the energy of interaction of the system with
the field.

1 .8. QNR and the orientation of molecules by an infrared field

This section can be considered as an example of using
the theory of QNR presented above in analyzing a concrete
physical phenomenon: the orientation of molecules by an
external high-frequency field. This phenomenon is widely
known in liquids and dense gases, where relaxation pro-
cesses are substantial. Below we shall show on the basis of
the model of ( 1.22) that orientation is possible even in the
absence of relaxation processes. In this case the macroscopic
orientation of a molecular gas is a consequence of the nontri-
vial dynamics of the transitions, which can be described
within the framework of QNR concepts.18

Let us examine the case of a detuning \Ed /Л Д« | = £ < 1
that is large in comparison with the Rabi frequency. In this
case the QS of the system is determined by the equation for
the eigenvalues of the effective Hamiltonians of ( 1.26). The
quasienergy eigenfunctions have the form (1.23), whereby
(see Appendix I) the QFs corresponding to the Hamiltonian
with index 1 have the property ф\^ (в) ~ \,ф?\в) ~Е. Con-
versely, for the QFs corresponding to the Hamiltonian with
index 2, we have ф^(в) ~ \,ф\*\в) ~е. Let the system ex-
ist at the initial instant of time in the ground vibrational
state, i.e., ^2(#>0) = 0- Then the expansion of the solution
over the basis of the QFs (see Eq. (1.15)) occurs mainly
over the QFs of the Hamiltonian /. Relying only on this fact,
we can make the following statement: in the process of time
evolution ф(в,1) is of the order ofs, i.e., the population of the
upper vibrational level remains negligibly small; ^, (6,t) can
be represented as the sum of slowly and rapidly (with the
characteristic frequency Дю) varying terms. Here in abso-
lute magnitude the rapidly varying term is of the order of e;
the slowly varying part tf>t(e,t) obeys the Schrodinger equa-
tion

with the Hamiltonian of (1.26); the induced polarization
vector of the system is parallel to the external field vector
and, apart from terms of the order of e2, has the form

(1.28)

P(t) = -

sp(t)cosa)t.

Evidently the factor <^,|cos20 \ф}) = |cos20 > in ( 1.28) char-
acterizes the mean orientation of the molecules. A uniform
angular distribution of the molecules corresponds to the val-
ue (cos2 в ) = 1/2. A value above 1/2 corresponds to pre-
dominant orientation of the molecules along the field, and
below 1/2-transverse to the vector E. By the substitution
в = 2® the Hamiltonian H ̂  is transformed into the Ham-
iltonian of the nonlinear resonance, while the value of
(cos2 9 ) is determined by the value of the quantum-mechan-
ical average (cos ©} for the QNR (cos2# )
= (1 + (cos©>)/2. Since, in the process of evolution of the

system of (1.10), (cos©) acquires values differing from
zero ( see Fig. 6 ) , a predominant orientation of the molecules
in the molecular gas will arise under the action of the in-
frared field that depends on the sign of the detuning Aa>,
either across or along the direction of polarization of the
vector E.

An additional study was performed in Ref. 1 8 of the
process of orientation in the case of a pulsed laser regime (in
this case the amplitude of the field E in Eqs. (1.27) and
(1.28) should be replaced by the envelope of E( t) . It turned
out that, when the condition r~ ' >fiph is satisfied (т is the
duration of the pulse, and fiph is the phase frequency of the
QNR), the orientation of the molecules occurs more effi-
ciently. We note that, since the mean orientation of the mole-
cules enters into the formula for the induced polarization,
the orientation effect is reflected in the polarization proper-
ties of the medium. Figure 1 1 shows a graph of the normal-
ized envelope />(?) =p(t)/(d2Em^/hka)) in the case of a
Gaussian form of the pulse E(t) =£maxexp[ — (t/т)2] for
two values of the detuning equal in magnitude and opposite
in sign. We see from the diagram that the orientation effect is
very significant, and can alter the polarization properties of
the medium by an order of magnitude. In turn, the change in
the polarization properties of the medium at the instant of
passage of the electromagnetic field pulse through it will be
reflected in various physical processes. In particular, Ref. 19

-400 -200 0 200 400
t

, f)ldt (0, 0 (1.27)

FIG. 11. Dynamics of the normalized envelope of the polarization. Values
of the parameters: В = 0.00125 cm ~ ', energy of interaction with the field
(£У)2/4АДй> = ± 2 cm~ ', pulse duration т= ЗХ 10" 10 s. The period of
oscillation of the curve 1 is determined by the period of the phase oscilla-
tions. (From Ref. 13.)
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experimentally studied the influence of the dynamic orienta-
tion of the molecules on the process of nonlinear-optical fre-
quency shift in naphthalene vapor.

2. THE INTERACTION OF TWO NONLINEAR RESONANCES

2.1 . Onset of chaos in the interaction of two classical
nonlinear resonances

In Sees. 1.1 and 1.2 we examined the phenomenon of
nonlinear resonance in classical systems. Here we deliberate-
ly chose as examples systems in which only one nonlinear
resonance is possible. This situation is not typical. As a rule,
in a nonlinear system under the action of an external field
several nonlinear resonances arise together. Here the mutual
influence of the resonances on one another leads to the ap-
pearance of regions of chaotic motion.3"5 We note that two
nonlinear resonances already suffice for the appearance of a
chaotic component.

As a very simple system in which the phenomenon of
interaction of two nonlinear resonances takes place, let us
study a plane rotator under the action of the linearly polar-
ized field

Я = (Yl
2/2)

+ 2V cos в -cos at. (2.1)

Here, as before, we have 2V = — Ed, and в is the angle be-
tween the field vector and the vector d. This model is a two-
dimensional idealization of a polar molecule in a UHF field.
Upon resolving the linearly polarized field into two circular-
ly polarized components 2 V cos в cos
Xcot — Vx [cos(<9 — cot) + cos(0 + <ot)], we find that two
nonlinear resonances occur in the system at the values / f 2

= ±to/y with the width SI determined by Eq. (1.4):
Д/ = 4( Vy) 1/2 . The mutual influence of the resonances on
one another is characterized by the Chirikov parameter of
overlap of the nonlinear resonances, which is the ratio of the
sum of the half- widths of the resonances to the distance be-
tween them:

+ (Sl2/2) }/\Гг - (2.2)

Figure 12 shows the Poincare cross section for the system of
( 1.2) for different values of the parameter AT. The cross sec-
tion is constructed by numerical integration of the equations
of motion over the period of the external field. We note that
the system being studied with one and one-half degrees of
freedom can be put into correspondence with a system with
two degrees of freedom

я tt (y/2/2) + 2Kcos 0-cos ф. (2.3)

Here ф = cot is the phase of the field, and /is the canonically
conjugate variable to ф. HeSf determines the quasienergy of
the system, which is an integral of the motion. This situation
has been used for monitoring the accuracy of calculation.

We see from Fig. 12 that for small values of К the chief
consequence of the influence of the nonlinear resonances on
one another is the appearance of secondary nonlinear reson-
ances and thin stochastic layers in the vicinity of the separa-
trices of the nonlinear resonances. With increasing К the
thickness of the stochastic layers increases, and at K~4 al-
ready the entire central region of phase space is occupied by
the stochastic component. If the initial conditions /(0),
0(0) belong to this region, then the trajectory of the system

-7

3,6

2л"

4'."f: b

'"•, "'.'-*.• '.я---''.'.'•'•'''.' '

Ju

о -..•:.-:-;

FIG. 12. Structure of the phase space of the system of Eq. (2.1) for differ-
ent values of the parameter^. The dots correspond to values of 7(f ),#(')
for / = Tn; Г is the period of the external field, and n is an integer. Values
of the parameters: V= \,y= 1; a: <u = 3.5 (K = 0.57), 46 trajectories of
duration <100 T; b: <y = 1.5 (K = 1.33), one trajectory of duration 200
periods; c:ia = 0.45 (K = 4.44), one trajectory of duration 2000 T. Break-
down of the last invariant curve separating the resonances occurs at
AT = 0.97.

i ( t ) , d ( t ) amounts to a random process. The measure of the
"chaotic character" of a trajectory is the Lyapunov index of
exponential instability a,3 which determines the rate of di-
vergence of two trajectories that are close at t = 0:

d(t) ~ (2.4)

( d ( t ) is the distance in phase space between the two close-
lying trajectories). For the values of the parameters that we
shall use below (7 = 1, F=0.5, « = 0.3; К = 4.71), nu-
merical experiment yields the mean value <r = 0.1. Thus,
when the initial conditions differ by 0.01, two trajectories
diverge in phase even after two or three periods of the exter-
nal field.

In closing this section we note that for the system being
studied the chosen value K~4 corresponds to the greatest
degree of chaos. This value of the parameter К corresponds
to the case of coincidence in order of magnitude of the intrin-
sic frequency of the nonlinear resonance of (1.13) with the
frequency of the external field. A further increase in the val-
ue of К has the result that the two resonances "merge" into
one, and the dynamics of the system is again close to regular
(in this case the intrinsic frequency substantially exceeds the
frequency of the external field and the adiabatic theory of
perturbations is applicable3).
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FIG. 13. Dynamics of the average value p l [ ( t )
= < (cos в) > for the system of Eq. (2.1) over an ensemble

of particles uniformly distributed in phase at the initial
instant of time with /(0) = 0. Values of the parameters:
K=0.5, r= 1, ft) = 0.3 (7s: = 4.71). (FromRef. 11.)

2.2. Dynamics of the classical averages

Below, for purposes of comparison with the results of a
quantum-mechanical analysis of the system of (2.1), we
shall need information on the behavior of the averages. Let
us restrict the treatment to the case of developed chaos,
when Kzz4. Figure 13 shows the behavior of p^(t)
= «cos 6>» for the value К = 4Л\ (У =0.5, y=l,

со = 0.3; cf. Fig. 8, which corresponds to the choice ta = 0).
As the ensemble over which the averaging was performed,
we chose, just as in the case of Fig. 8, an ensemble of particles
uniformly distributed in phase with / = 0 at the initial in-
stant of time. Since we associate the system of (2.1) with a
dipole molecule, then evidently/»^(r) characterizes the mac-
roscopic orientation of the molecular gas. We see from Fig.
13 that, in the course of 1-2 periods of the external field,
pcc(t) reaches a steady-state regime, which amounts to peri-
odic oscillations at the frequency of the external field. The
initial stage (up to times t = 30 in Fig. 13) corresponds to a
transition period during which the particles (representatives
of the ensemble) uniformly fill all the phase volume accessi-
ble to them owing to the exponential instability. From this
instant on, the average over the ensemble equals the average
over the phase volume of the chaotic component

JJ d0d/cos0

(The volume of the region G(t) is constant.) Further oscil-
lations ofp^(t) involve the change in the form of the phase
space G ( t ) accessible to the particles, which, as we see from
Fig. 14, oscillates at the frequency to.

We see by comparing Figs. 8 and 13 that, both in the
case of an isolated resonance and in that of a system of two
interacting resonances, the behavior of the averages over the
course of a relatively short time amounts to a regular pro-
cess. However, there is a substantial difference. In the case of
the integrable system of (1.2) the form of the curve strongly
depends on the form of the ensemble (the initial conditions).
In the case of the nonintegrable system of (2.1) the form of
the curve is universal and does not depend on the initial
conditions (with the proviso that each representative of the
ensemble belongs to the chaotic component). This univer-
sality of the behavior ofp^(t) is introduced by the chaotic
character of the motion of the individual particles. Conse-
quently mixing occurs in the system, and the average over
the ensemble of any quantity equals the average over the
phase volume and does not depend on the choice of ensem-
ble.

2.3. Interaction of QNRs

A system of two interacting resonances is one of the
simplest models of classical stochasticity. Hence it seems
natural to use it to study quantum chaos. We should note
that this model differs in principle from the other popular
model of quantum chaos—a quantum rotator under the ac-
tion of 6-pulses20 (see also the references in Ref. 2). The
latter model is the simplest representative of a class of sys-
tems having an unbounded volume of the chaotic compo-
nent of phase space. In these systems the phenomenon of
diffusion occurs, and in going to the quantum-mechanical
description the main effect is a decline in diffusion. To ex-
plain the phenomenon of the decline in diffusion an analogy
has been adduced between the localization of the QFs of the
quantum rotator and the Anderson localization of electrons
in a solid.21 This approach has proved very fruitful, and has
enabled understanding the features of diffusion in other
quantum systems having an unbounded chaotic phase vol-
ume (in particular, in the hydrogen atom under the action of
microwave radiation2).

The system of two interacting resonances being dis-
cussed represents a class of systems having a finite volume of
chaotic phase space. Here the phenomenon of diffusion is
absent and one needs other methods of analysis. Evidently
the quantum analog of the system (2.1) has the form

Я = -(уА2/2)Э2/Эв2 + 2Kcos 0-cos cat (2.5)

(We note that, when a = 0, Eq. (2.5) transforms into the
Hamiltonian of an isolated QNR of (1.10).) We shall exam-
ine the properties of the system of (2.5) from three different

FIG. 14. Poincare cross section of the system of Eq. (2.1) at different
instants of time: a: („ = Tn; b: t, = (7Y4) + Tn; с: t, = (Т72) + Tn.
The values of the parameters are as before. The diagram reflects the form
of the phase volume of the system of Eq. (2.3) that is filled with the
chaotic component (the variable J can be excluded from the treatment
owing to the conservation of quasienergy).
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FIG. 15. Mean population of the levels of the system of Eq. (2.5). The
dots indicate the location of the levels having transitions in resonance with
the external field (centers of the QNR). Values of the parameters: V=\,
Y=\,h = l/10;a:&) = 3.5 (K = 0.57), b: a = 3 (K = 0.67), c: (a = 2.5
(K = 0.8), d: ш = 2 (K= 1). (FromRef. 10.)

standpoints. From the standpoint of the dynamics of the
populations of the levels, this involves the structures of the
eigen-QFs and the behavior of the quantum-mechanical
averages (the observables). As an observable quantity we
shall consider, as in Sec. 1, the induced polarization (see
(1.8)), normalized to the quantity d:

Figure 15 shows the time average of the population of
the levels of the system for different values of the quantity со.
At the initial instant of time the ground state of the system
was populated. The dots in the diagram denote the levels
such that the transitions from them are in resonance with the
external field (i.e., the centers of the resonances). We recall
that the external field gives rise to transitions only between
adjacent levels. Case a corresponds to capture of the system
into a secondary resonance (see Fig. 12), which can be treat-
ed as being isolated, while case b corresponds to overlapped
resonances. In this case, in a time of the order of the period of
the phase oscillations, a finite number of levels (~ Sn) be-
comes populated, and thenceforth the populations of these
levels fluctuate without any visible regularities. We note that

in the quantum case the overlap of nonlinear resonances oc-
curs somewhat earlier (for a lower value of the Chirikov
parameter of (2.2) ) than in the classical case. This involves
the fact that one must take account of the finite width of the
transition region of the QNR in the vicinity of the separatrix,
which at low values of the parameter of quasiclassicity intro-
duces substantial corrections to the critical value K.

2.4. Structure of the QFs. Chaotic delocalization

Let us examine the structure of the eigenfunctions of the
operator of evolution of the system in the period of the exter-
nal field

т
Щв) = Т exp[-(i/h)fff(t)dt] (2.7)

о

as a function of the value of the parameter K. An important
characteristic of a QF is its degree of delocalization, which
we take to mean the number of effectively nonzero coeffi-
cients in the expansion of the QF in the unperturbed basis:

As a graphic characteristic of the degree of delocalization,
the concept of "dispersion" D was proposed:22

Figure 16 shows the "dispersion" of the QFs as a function of
its "center of gravity" n. Each point corresponds to one QF.
We note that in Fig. 16 only the QFs are represented that
have odd symmetry, i.e., half of all the QFs. In this case the
expansion is performed over the functions
\n) = TT~ l/2 sin(nf9). The diagram for the even QFs has a
similar form.

We see from the diagram that, when К < KCT (Kcr ~ I ) ,
the points mainly lie on three branches. This structure of the
diagram reflects the structure of the QFs of isolated QNRs.
The middle branch corresponds to QFs corresponding to the
vibrational regime (see Sec. 1.5), and the upper and lower
branches to QFs corresponding to the rotational regime.
Here the most delocalized functions are those which corre-
spond to the region of the separatrices of the nonlinear re-
sonances. We note also the presence of secondary QNRs,
which look like excursions on the lower branch. An analyti-
cal method was proposed'2 for calculating the QFs of the
secondary QNRs, and it was shown that the structure of the

n

3D

20 D го D

FIG. 16. Relationship between the "dispersion" and the "center of
gravity" of the eigenfunctions of the operator of Eq. (2.7). Values
of the parameters: K= 1, у = 1, A = 1/10; а: ы =•- 3.5 (К = 0.57)-
resonances not overlapping; b: со = 0.45 (К = 4.4)-strong overlap
of the resonances. (From Ref. 26.)
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secondary QNRs resembles that of the primary ones. In this
sense the quantum system copies the features of the classical
system (see Fig. 12). However, while in the classical case
secondary nonlinear resonances exist of any order, in the
quantum case the maximum order of a secondary QNR is
determined by the condition 81 ш ~ И (81 {k} is the width of
a secondary classical resonance of the k th order). (A more
detailed study of the self-similarity properties of quantum
systems in the subcritical region of the parameter К is con-
tained in Refs. 23-25.)

With increase in the overlap parameter k, the QFs be-
longing to the lower slope become delocalized, and when
K~4, a large group of QFs has a high degree of delocaliza-
tion. This group of functions corresponds to the chaotic
component of the phase space of the system of interacting
classical resonances. We see from the diagram that this
group lacks any regular structure, and the points, at least
externally, lie at random. Correspondingly the QS also has
no regular structure. In this case, to describe the QS it is
expedient to introduce the statistical methods of analysis.
(A corresponding statistical ensemble can be chosen by
weakly varying the parameters of the system. ) A statistical
analysis of the QFs and the QS has been performed in Ref.
26. Here we shall only present the histogram of the distribu-
tion of states between adjacent quasienergy levels for the
"chaotic" group of functions (Fig. 17). As is known, for
completely chaotic systems (like billiards with negative cur-
vature) the statistics of the distribution of states between
adjacent levels is close to the Wigner-Dyson function, but
for completely integrable systems it is close to the Poisson
function (see Refs. 1 and 2). As we see from Fig. 17, in the
case being discussed the statistics is intermediate between
the Wigner-Dyson and the Poisson statistics.

2.5. Structure of the QFs. Two-dimensional delocalization

The chaotic delocalization of QFs discussed above is an
important manifestation of chaos in a quantum system.
However, the analysis of QFs presented above is not com-
plete. Actually, in calculating the QFs on the basis of the
evolution operator of (2.7), we lose information on the
"temporal" dependence of the QFs. We can obtain this in-
formation as follows. Let us represent the eigen-QFs in the
form of a double Fourier series

, 0 0 ]ехр(шв). ( 2.8 )

50

О 3 4 S/Л

FIG. 17. Distribution of the distance i between adjacent quasienergy lev-
els for chaotic states. The quantity Д corresponds to the mean distance
between levels, Д = htu/N (./Vis the number of levels). Values of the pa-
rameters: V= \,r = 1,*= l/20,0.45<u><0.46(/r=4>).Thesmooth
curve corresponds to a Poisson distribution. (From Ref. 26.)

Upon substituting the quasienergy solution
= exp( — \Akt/h)i/rk (9,t) into the Schrodinger equation

with the Hamiltonian of (2.5), we obtain the following two-
index equation for the value of the quasienergy Ak :

[(yAV/2) (K/4)

We note that Eq. ( 2.9 ) can also be treated as the equation for
the eigenvalues of the effective Hamiltonian Hef[ of (2.3),
where /^ - ihd /d6,J^ - ihd /дф, ф = cat. Equation (2.9)
was solved numerically, and the accuracy of calculation was
monitored on the basis of the orthogonality of the QFs. The
characteristic structure of the QFs of a system of two inter-
acting QNRs is reflected in Fig. 1 8b, which gives the values
of the coefficients с„_т . We see from the diagram that, be-
sides the delocalization "along the n axis," a delocalization
occurs "along the т axis," i.e., the sum over т in (2.8)
contains a large number of terms. One can obtain an estimate
of the degree of delocalization over т (the number of terms
8m in the sum over т in ( 2.8 ) on the basis of a quasiclassical
approach. As Fig. 14 implies, in a chaotic regime the quanti-
ty/varies in the interval SI^4( У/у) 1/2 • Since the quasien-
ergy of the system of (2.3) is a conserved quantity, the vari-
ation of the variable / is accompanied by a variation in the
variable J in the interval

&J ~ ydI2/2a>. (2.10)

The developed stochasticity corresponds to a choice of the
external frequency со of the order of the phase frequency of
the nonlinear resonance flph = (yv)1/2. Taking this remark
into account, we have the following value for the region of
variation of/:

&J «<5/2/2(yV)1/2 = 4(Wy)1/2 = 61.

Upon quantizing the variables / and / we obtain the charac-
teristic degree of delocalization of the QFs: 8m~8n~8I/h.

The delocalization of the QFs along the т axis is a
strong manifestation of chaos in the quantum system being
discussed and leads, as will be shown in the next section, to
important physical consequences. We note that, in the case
of a regular regime of motion, delocalization along the т
axis is absent: as an illustration Fig. 18a shows the structure
of the QFs of the isolated QNR of (1.6). We see that only the
coefficients с„ m with n + т = const differ from zero. That
is, the sum over т in (2.8) contains only one term (one can
easily obtain this result analytically from (1.9). In the case
K^.1 (two resonances, weak interaction), the structure of
the QFs is close to that presented in Fig. 18a (elements
weakly differing from zero appear on two adjacent diagon-
als), and can be calculated by perturbation theory.

2.6. Spectrum of the induced polarization

Let us proceed to discuss the physical consequences of
two-dimensional delocalization. We shall examine the quan-
tum-mechanical average of an arbitrary operator:
( A ( t ) ) = (i/>(e,t)\A\if>(6,t)). In view of (1.15), the follow-
ing expansion is valid

,0>- (2.11)

Let us estimate the number of lines JV in the frequency spec-
trum of the variable (A (t)). Let the initial state of the system
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FIG. 18. Structure of the QFs of an isolated QNR (a)
and a system of two interacting QNRs (b) Values of
the parameters: У=2,у= 1,<ц = 1. (From Ref. 28.)

correspond to the ground state. Then, evidently, the number
of nonzero coefficients ak is determined by the degree of
delocalization Sn. Thus the spectrum of (A ( t ) ) will contain
~Sn2/2 lines at frequencies (A/ — Ak )/h. Now let us take
account of the fact that the functions i/>k (6,t) are periodic
functions of the time. Consequently every line is "convert-
ed" into a series of lines separated by an amount that is a
multiple of со. However, while in a chaotic regime the spec-
trum (\l>i (6,t) \A \if/k (6,t)) consists of the order of 8m lines,
in the regular case we have only several lines and their num-
ber does not increase with increase in the quasiclassicity pa-
rameter Sn. To summarize what we have presented above,
we obtain the following estimate for the number of lines N in
the frequency spectrum:

~ dn". (2.12)

Here a = 2 for the case of regular dynamics and a = 3 for
chaotic dynamics. We note that the presented estimate is an
upper bound, and for a more exact estimate of the quantity N
we need further studies. However, it is clear that in a chaotic
regime the value of or is always larger than in a regular re-
gime. _

Figure 19a shows the Fourier spectrum of A(a>)
( A ( t a ) = (A(t))exp(ic0t^the bar indicating averaging over
time) of the observable A = cos в for the system of (2.5)
with the following values of the parameters: у = Ь К= 0.5,
со = 0.3 (AT = 4.71), and A = 1/16, with the ground state

populated at the initial instant of time. According to (2.6),
{cos в) is the normalized induced polarization along the di-
rection of the external field :PX (t) =/>c ( t ) . (Wenotethatin
the case of a symmetrical initial condition Py (t) = 0). As we
have already noted above, the spectrum of the induced po-
larization determines the emission spectrum of the system
and can be studied experimentally. Figure 19b presents the
frequency spectrum ofpc ( t ) for the case of a regular regime
of motion, which corresponds to the choice со = О. The time
of averaging was chosen equal to T = 840, By comparing
Figs. 19a and 19b we see that in the regular case the spectrum
ofpc (t) consists of a small number of well resolved lines. In
the chaotic case the number of lines is considerably larger.
This effect is a consequence of two-dimensional delocaliza-
tion and is one of the more marked manifestations of chaos in
quantum mechanics for systems with a bounded volume of
the chaotic component. We should note that, in the case
under discussion (a molecule in a UHF field), one needs a
high degree of resolution to detect this effect. With a low
degree of resolution (short averaging times in the numerical
experiment), the qualitative difference between the two
cases is lost. In Sec. 2.9 we shall discuss the behavior of a
molecule in an infrared field, where the effect being dis-
cussed is manifested considerably more markedly and the
difference in the spectrum of the induced polarization for the
chaotic and regular cases remains on the qualitative level,
even at a low degree of resolution.
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FIG. 19. Spectrum of the induced polarization in the
cases of chaotic (a) and regular (b) dynamics of the
system of Eq. (2.5). Values of the parameters:
V =0.5, f=\, A = 1/16; a: <y = 0.3 (AT = 4.71), b:
u> = 0. Averaging time: Т = 840. (Here and below the
spectrum is given only for positive values of ш, while
for negative u> the graph is symmetrical to that given.)
(FromRef. 11.)

2.7. Correspondence times

We shall begin the discussion of the problem of the cor-
respondence times with the question of the connection be-
tween the dynamics of the wave packet of (1.12) and the
dynamics of an individual classical particle. One can easily
show that in this case the correspondence times are logarith-
mically small. Actually, we shall set the quantum packet of
(1.12) in correspondence with a packet of classical particles
with a width in terms of action of the order of Л (8n)1/2 and
of phase of the order of 8n ~1/2. In view of the local instabil-
ity of (2.4), the rough dimension of the packet will increase
as exp(crr), and in the course of the characteristic time

г - (2.13)

the packet will "spread" in phase by an amount of the order
of 2тг. Thus in the course of the time т neither the dynamics
of the averages over the classical ensemble nor, all the more,
the dynamics of the quantum averages will follow the trajec-
tory of a classical particle that corresponds at the initial in-
stant of time with the center of the packet. One can obtain
the time of (2.13) also in a more rigorous way by starting
directly with the quasiclassical representation of the wave
function.29 To illustrate what we have presented above, Fig.
20 shows graphs of cos 6(t) for a classical particle with the
initial conditions 7(0), 0(0) = 3.14 (this trajectory is chao-
tic with a value of the parameter of local instability a = 0.4)

and of the quantum average (cos в) for an initial wave func-
tion of the form (1.12) for A = 1/128. We see that a corre-
spondence time is practically absent. We recall that, in the
regular case (see Fig. 7) for the same values of Planck's
constant and parameters of the system, the correspondence
time is rather large. In closing this paragraph, we wish to
draw attention to Ref. 30, which was devoted to comparing
the evolution of the Wigner function and the roughly ap-
proximated Wigner function with the evolution of the classi-
cal distribution function specifically for the case of an initial
condition in the form of a Gaussian packet with a width

FIG. 20. Dynamics of the quantum average (cos в ) of the system of Eq.
(2.5) (K=0.5,y= l,fi) = 0.3,A= 1/128) inthe casein which the initial
condition is chosen in the form of the wave packet of Eq. (1.12) with
/o = 0, 00 = 3.14 (1) and the value of cos #(<) for a classical particle with
these same initial conditions (2) (the given trajectory is chaotic with
«7 = 0.4).
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FIG. 21. Dynamics of the average pc (t) = (cos в) of the
quantum system of Eq. (2.5) in the case of an initial condi-
tion in the form of population of a single level with л = 0. The
value of Ais 1/16 with the other parameters as before. (From
Ref. 11.)

Let us proceed to the case of an initial condition of the
form of (1.13). Despite the fact that in a chaotic regime
there is no correspondence between the behavior of an indi-
vidual classical particle and a quantum packet, there is cor-
respondence for the dynamics of the averages, and in the
quantum case the graph of the quantum-mechanical average
(cos в) repeats in general features the graph of the average
over the classical ensemble (see Fig. 13), even for small val-
ues of the quasiclassicality parameter (Fig. 21). As has al-
ready been noted in Sec. 1.1, in this case the question of the
correspondence times transforms into the question of the
level of quantum fluctuations. Figure 22 shows the variation
of the mean level of fluctuations

S2 = «cosfl>- «cose»)2

(here (cos#) is the quantum-mechanical average, and
((cos в >) is the classical average) and the values of Planck's
constant h = (1/2)M for regular and chaotic dynamics. We
see that in the regular case the convergence is considerably
better. At present we cannot indicate with assurance the law
according to which the decrease in the level of fluctuations
occurs with decreasing h. This question needs further study.

In closing this section we note another approach to the
question of the correspondence of classical and quantum-
mechanical description of a dynamic system, based on com-
paring the spectra of the observables. As one can easily
show, in the classical case the spectrum is continuous. In
particular, the spectrum of the process shown in Fig. 8 is
determined by the relationship

results from the analysis of the frequency spectra of chaotic
systems.

2.8. A dipole molecule in a UHF field

In the previous sections our fundamental model was a
plane rotator under the action of a periodic, circularly or
linearly polarized, field. Evidently this system is a two-di-
mensional idealization of a dipole molecule in a UHF field.
In this section we shall show that this idealization in the case
of a linearly polarized field is completely regular and that
transition to the three-dimensional case does not entail sub-
stantial changes in the theory.

Let us direct the z axis parallel to the polarization vector
of the external field. Then the Hamiltonian of the system has
the form

H H0- Ed cos в • cos <ot. (2.15)

,,
j (2.14)

Here H0 corresponds to free rotation of the molecule. The
eigenfunctions of H0 are the spherical functions Ф,т, which
correspond to the eigenvalue Et = Bl(l + 1) (B is the rota-
tional constant of the molecule), and | т \ < /. Let us represent
the wave function of the system in the form of an expansion
in spherical functions

(2.16)

Upon substituting (2.16) into (2.15), we obtain the follow-
ing system of equations for the amplitudes of the populations
of the levels:

u>/,

(2.17)

Here the bk (J) are certain functions of/, /* = SJ/2ir, and
the graph of ft (/) is shown in Fig. 2. (In deriving (2.14) we
transformed from integrating over the initial phase 90 to in-
tegrating over/and took account of the fact that cos d(t,00)
is a periodic process with the frequency ft ( J ) . ) In the quan-
tum case the frequency spectrum of the observable pc (w)is
discrete. However, at a finite degree of resolution (finite ob-
servation times), the spectrum of an observable quantity is a
convolution of the discrete spectrum and an apparatus func-
tion F( w) and also is continuous (in a numerical experiment
F(w) is determined by the time of observation T:
\F(w)\ = 2 sin(wT /2)/шГ). Thus we can studythe law ac-
cording to which the "quantum" spectrum approaches the
"classical" as a function of the value of Planck's constant
and the time of observation. Studies of this type are of con-
siderable interest, especially for interpreting experimental

1,0

0,5

2 3 4 5 6

M

FIG. 22. Mean level of quantum fluctuations as a function of h = (1/2)"
in the case of regular (7) and chaotic (2) dynamics of the system. Values
of the parameters as before, time of averaging T= 50.
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We see from (2.17) that the magnetic quantum number does
not vary in the process of interaction of the system with the
field and is a parameter of the problem. Taking this circum-
stance into account, we can rewrite the system of equations
(2.17) in a "prettier" form. Let us denote
с„ (t) = a{

n

m+m - i (0- Then the index я = / — т + I runs
through values from 1 to oo, and Eq. (2.17) acquires the
form

iMcn/dl = Enc - a,t, (2.18)

Vn = [(n - 1)(я + 2m - 1)/(2я + 2m - l)(2n + 2m + 1) ]1/2,

En = B(n + m + l)(n + m).

Now we see that the system of (2.18) is equivalent to the
system of equations for the amplitudes of the populations of
the plane rotator of (2.5) with the additional condition that
we are treating only the solutions odd in в

(2.19)

ihdcjdt = Bn\ - (£d/2)(Fncn_, + Kn+1cn+,)cos cut,

V, =0, Vn = 1/2 (я > 1), В = уЛ2/2.

Thus the rotating polar molecule interacting with the reso-
nance UHF field realizes two QNRs with the overlap param-
eter of the resonances К = Sn/n*, where 8n is the width of
the QNR, Sn = 2(Ed/B)l/2, and n* is the center of the
QNR, и* = (со — В)2В. We obtain the greatest coincidence
with a plane rotator, as we should expect, in the case т = 0.
Then we have Е„ = Bn(n — 1) and
Vn = [(и - 1 )n/(2n - 1) (2n + I)]1/2 instead of En

= Bn2 and Vn = 1/2 for the plane rotator. These differences
introduce only small quantitative divergences into the dy-
namics of the systems (2.15) and (2.19). In the general case
the parameter that determines the degree of divergence is the
ratio of the distance to the center of the QNR и* to the value
of the magnetic quantum number m. Below we shall assume
that n*/m> 1, so that we can use a two-dimensional model
to analyze the rotational dynamics of the molecule.

Let us take up the characteristic values of the param-
eters. The fundamental condition for applicability of the the-
ory presented in the previous sections is the condition Sn > 1,
which in the notation used in this section acquires the form
2 (Ed /B)l/2. Moreover, it is desirable that the chosen mole-
cule can be treated as a rotator (rather than a top), and that
conditions are satisfied that hinder the excitation of the vi-
brational degree of freedom. All these conditions can be sat-
isfied for heavy polar diatomic molecules, e.g., for the mole-
cule Csl. The molecule Csl is a rotator and has the following
values of the parameters: 5 = 708 MHz (2.36xlO~2

cm "' ),d = 12 Л D. The energy of the first vibrational level
corresponds to the energy of the 71st rotational level, which
imposes the condition Sn < 140. If we assume that E = 3
kV/cm (10 COS units), we have a value of the energy of
interaction of the system with the field Ed = 0.61 cm ~ l and
a value of the quasiclassicity parameter Sn = 10. The fre-
quency of the external agent со is assumed to be of the order
of Jlph = (BEd)l/2 = 0.12 cm"' = 3.5 GHz. As the object
of observation, it is apparently expedient to use a beam of
molecules preliminarily cooled to energies lower than the
energy of interaction of the system with the field. For the
example being discussed this yields a temperature ~ 1 K.

The "acceptability" of molecules of the type of Csl for stud-
ies of chaotic rotational dynamics is discussed in greater de-
tail in Ref. 31.

To avoid misunderstanding we note that we are present-
ing here an estimate of a diatomic molecule only for reasons
of simplicity and in no way do we reject the possibility of
using a polyatomic molecule as the object for a real experi-
ment. This is all the more so since the condition
2 (Ed /B)1/2 > 1 is fulfilled for it at a considerably lower am-
plitude of the external field.

2.9. A diatomic molecule under the action of an infrared field

In this section we shall examine the phenomenon of in-
teraction of two QNRs in a diatomic molecule under the
action of an infrared field.32 We shall start the analysis of the
problem with the classical approach and restrict the treat-
ment of the rotational degree of freedom to the two-dimen-
sional approximation. In the classical approach a diatomic
molecule in a 2 state can be correlated with a system of two
point masses with an interaction potential U(r) having a
minimum at r = r0. In action-angle variables the unper-
turbed motion of the molecule corresponds to the Hamilto-
nian H0 = H0(I,L2), where the quantity /characterizes the
vibrational motion of the nuclei (1=0 corresponds to ab-
sence of vibration), and the variable L coincides with the
angular momentum. We shall denote the conjugate variables
to / and L, respectively, by ф and в (в is the angle between
the x axis and the axis of the molecule). Below we shall
restrict the treatment to the case of small values of/and L
(H0(1,L2) =£< U(r0) |). Then, upon expanding H0 up to
quadratic terms, we have

(2.20)Я0 = AQ« - xhQn2 + Bl2,

(2An/OAf)1/2cos ф. (2.21)

In (2.20) and (2.21) we have transformed to the dimension-
less actions и = / /h and I = L/h and used the standard nota-
tion for the frequency of harmonic vibrations fl = d//,/d/,
for the anharmonicity x = h(d2H0/dI2)/fl, the moment of
inertia В = h 2d//</d/,2, and the reduced mass M.

Let us study the process of interaction of the molecule
with the linearly polarized field E( t) with polarization along
the x axis. We shall assume the dipole moment of the mole-
cule to be d = eeffr, where the effective charge of the atoms
is eefr = dQ/r0. Then the Hamiltonian of interaction of the
molecule with the radiation has the form Я1п, =
— (Ed) = — Eeeffr cos в-coscot. Upon substituting r from
(2.21) and keeping only the terms responsible for the reso-
nance interaction, we have

H = Wnl/2cos в-со5(ф - cat), W = -<> «£(2Л/ЙАП1/2,
(2.22)

Here W\& the interaction parameter of the infrared radiation
with the molecule. If we characterize the field intensity by
the intensity of the radiation, then, e.g., for the parameters of
the GeO molecule hco = 985.8 cm" 1 , M= 13.1 atomic
weight units, and radiation intensity 25 GW/cm2, we have
»P= 10.72 cm'1.

We shall represent the linearly polarized field as the
sum of two circularly polarized components: Wn cos в
Xcos(^-uJf) = (W/2)nX [со&(ф - cot - в) + со&(ф
— cot + в)]. Each term in the latter formula leads to the
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FIG. 23. Examples of chaotic (1) and regular (2) trajectories
of a GeO molecule in a linearly polarized infrared field of high
intensity (25 GW/cm2). Duration of trajectories: 10~'° sand
10 ~ " s, respectively. The diagram also shows the location of
the separatrix (dashed lines) and the center (upper solid
curve) of the principal nonlinear resonance due to the left-
polarized component of the external field. (From Ref. 32.)

appearance in the system of a nonlinear resonance, which we
shall treat in somewhat greater detail. Let us study the term
containing the phase^ — cot + в. We shall perform a canoni-
cal substitution of variables (n,l)->(n,k), (ф,в) -»(©,©),
where k = I — n, & = ф — cot + в is the slow phase, and 0 is
the conjugate variable to k. Then the Hamiltonian/f0 4- Я1п,
acquires the form

Я = Л(*)п - yn2 + Ak2 + (HV2)/i1/2cos в • Яе„(и, в) + Bk2,

(2.23)
Д(*) = A(Q - о») + 2Bk, у = xAQ - В.

We see from (2.23) that the quantity k is an integral of the
motion, and thus the problem has been reduced to analyzing
a one-dimensional system having the Hamiltonian
Hefr(n,&), where the quantity k plays the role of a param-
eter.

The phase portrait of the system (2.23) was reproduced
in Fig. 3. As we see from the diagram, at values of the param-
eter Д above a certain critical value (k= — 11 for the cho-
sen values of the parameters), a "principal" and an "asso-
ciated" nonlinear resonance exist in the system. However, at
values of the radiation intensity below 10" W/cm2, the real
dimensions of the associated resonance for most diatomic
molecules are small, and we can neglect its influence on the
dynamics of the system. In the case in which the system is
captured into the principal nonlinear resonance, the motion
of the molecule amounts to periodic changes in the vibra-
tional state n (t) (which are accompanied by a change in the
rotational state l ( t ) = n ( t ) + k) at the characteristic fre-
quency flph ~ 1012 s ~ ' . The maximum and minimum possi-
ble values of n are determined here by the location of the
separatrix of the principal nonlinear resonance. The location
of the separatrix for the chosen parameters of the system is
shown in Fig. 23 by the dashed lines. In the same diagram the
solid lines indicate the location of the center of the principal
resonance (upper curve), and also the location of the hyper-
bolic point of the principal resonance and the center of the
associated resonance. Thus the region of influence of the
nonlinear resonance due to the left-polarized component is
bounded by the dashed lines in Fig. 23. The region of influ-
ence of the nonlinear resonance due to the right-polarized
component will lie symmetrically (with respect to the coor-
dinate axes) to that shown in the diagram. We can easily see
that the nonlinear resonances have a common region of in-
fluence in the vicinity of / = 0; according to what we have
presented earlier, we expect chaotic dynamics in this region.
As an illustration, Fig. 23 shows the projections of the trajec-
tory of a GeO molecule for two initial conditions: a)
и ( 0 ) = / ( 0 ) = 4 , 0(0) = 0(0) =0; b) и(0)=5,
/(0) = 15, 0(0) = ф(0) = 0. We see that in the latter case

the quantity k is approximately conserved (k~ 10). For the
initial conditions belonging to the common region of influ-
ence of the nonlinear resonances (case a), the trajectory is
chaotic. The duration of the trajectories on the real time
scale amounts to 10"10 and 10" n s, respectively.

Let us proceed to the quantum-mechanical analysis of
the system. As before, we shall restrict the treatment to small
values of the quantum numbers n and /. Then the Hamilto-
nian of the molecule under the action of linearly polarized
radiation in the action-angle representation has the form

Я = hQ(J + (1/2) -xJ2) + Bl1

Л . /Ч .-

+ [Ed0 + (W/2)(J 2exp(uf>) + exp(-#)/l/2) ]cos 0-cos tat.

(2.24)

Here we have J = —id /дф, I = —id /дв, and the value of
Wis determined by Eq. (2.22). We shall seek the eigen-
quasienergy solutions of the system in the form

/>. (2.25)

Substituting (2.25) into (2.24) and neglecting the nonre-
sonance terms, we obtain the following two-index equation
for the eigenvalues of the quasienergy:

— <o)n —

(2.26)

In comparing the latter formula with Eq. (2.9) we see that
the system being studied is equivalent in many ways to the
system of two interacting resonances of (2.5). In particular,
the QFs of the molecule for a circularly polarized field (in
the summations in (2.26) one term each is present; the first
sign corresponds to a left-polarized field, and the second to
right-polarized) and the QFs for a linearly polarized field
will have a qualitative difference analogous to that shown in
Fig. 18. This qualitative difference will be manifested in two
main effects.

Let the system exist in the ground state at the initial
instant of time. Then in the case of a circularly (left) polar-
ized field, only the levels with n = 1 will be populated. For
the chosen values of the parameters in the numerical experi-
ment, 6-7 vibrational-rotational levels were excited, which
agrees satisfactorily with the width of the classical nonlinear
resonance (see Fig. 23). In the case of linearly polarized
radiation, 8n ~ 7-8 levels in n and 51 ~ 21-25 levels in / were
involved in the dynamics of the system, i.e., in all, of the
order of 200 vibrational-rotational levels. Thus one of the
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FIG. 24. Frequency spectrum of the envelope^'" (t) of the induced
polarization in the GeO molecule in the case of a circularly (a; regu-
lar regime) and linearly (b; chaotic regime) polarized field. (From
Ref. 32.)

effects of overlap of two QNRs is a substantial increase in the
number of levels involved in the dynamics of the transitions:
8N~8n-8l.

The second effect involves the number of lines in the
induced-polarization spectrum. Let us represent the high-
frequency component of the polarization of the molecule in
the form

Px(t) = p£*>(0cos cot + p£x>(0sin (at,

cot + pW(t)sin cat.

(2.27)

where Г is the period of the external field. Since the emission
intensity of the oscillating dipole is proportional to the sec-
ond derivative of the polarization, the frequency spectrum of
the quantitiesрсл (t) determines the spectral composition of
the high-frequency radiation of the molecule. We note that,
under the initial condition that the ground state is populat-
ed, owing to the symmetry of the solution, we have p[y^=0
for a linearly polarized field, while for a circularly polarized
field we have^' = -р?\р™ = - AU)- Figure 24 shows
the frequency spectrum of the dimensionless envelope Д, (/)
(|/>с(0|<1) in the case of linearly (a) and circularly (b)
polarized radiation (the spectrum of j?s (t) has an analogous
form). We see that in the regular case the spectrum consists
of a small number of well resolved lines. In the regime of
quantum chaos the spectrum is very complex and close to
the spectrum of a random process. This effect is fully analo-
gous to that discussed in Sec. 2.6, and is a consequence of the
two-dimensional delocalization of the QFs of the system.

In closing this section we shall take up the question of
the validity of the two-dimensional approximation. In the
case of a linearly polarized field the three-dimensional model
has an additional integral of the motion (the projection of
the angular momentum on the direction of polarization of
the field). This, as was shown in the previous section, en-
sures the adequacy of the two-dimensional model of the real
situation. The case of a circularly polarized field for the
three-dimensional model is more complex: the system does
not possess an additional global integral of the motion and in
the general case one cannot reduce the two-dimensional
model to a three-dimensional one (however, one can do this
in certain special cases32). The dynamics of a molecule in a
circularly polarized field requires additional study.

2.10. A "rotating" two-level system

It was shown in the previous section that a regime of
quantum chaos can occur in a molecule in the case of linearly

polarized light. Here the condition was assumed to be satis-
fied that the interaction energy of the system with the field
substantially exceeds the anharmonicity constant, W> xhfl.
However, for most diatomic molecules the fulfillment of this
condition requires very high intensities of laser radiation,
which presents certain difficulties from the experimental
standpoint. It was shown in that section that a chaotic re-
gime of motion can be obtained also at substantially smaller
amplitudes of the external field W<xhfl (however, W>B)
under the condition that the external field is modulated at
the frequency v: E(t) = Ecos vf-cos at, while the carrier
frequency <a is in resonance with a vibrational transition
(one can achieve the modulation by using two lasers with
slightly differing frequencies). The condition W<xh$l al-
lows one to restrict the treatment in analyzing the problem
to two vibrational levels. Thus we arrive at a two-level sys-
tem with account taken of the "fine structure of the levels"
due to the rotational degree of freedom (see Sec. 1.7).

According to (1.24) the system of equations in the
wave functions ^Ii2 (0,t) for two vibrational levels has the
form

dt = (£2 - Вд2/дв2)у>2 - dE(t)cos cot-cos 0-y,, (2.28)

(El - Sd2/de2)Vi - dE(t)cos cot-cos 0-V2.

Here E(t) = E cos vt, and d is the value of the matrix ele-
ment of the transition. Let us introduce the function
Ф(0,0 =exp(/<y/)^2(6U) + ^i(#,0- Then, in the reso-
nance approximation (in the approximation of a rotating
wave) and under the condition of exact resonance
E2 — EI = /го, we obtain the following equation for Ф ( 0,r) :

eff н.eff' -Вд2/дв2 - (Ed/2)cos в-cos vt.

(2.29)

The latter is fully equivalent to the Schrodinger equation for
a system of two interacting QNRs (the model of a molecule
in a UHF field) . The absence of modulation corresponds to
an isolated QNR. The function Ф(0,*) fully describes the
dynamics of the system under study. In particular, we have
the following for the value of the induced polarization:

P(t) - d(pc(t)cos cot + pt(t)sin cot), (2.30)
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FIG. 25. Population of the upper vibrational level of the
system of Eq. (2.28) in the cases of a regular (a) and a
chaotic (b) regime. Values of the parameters as in Fig. 26.

Ф(в,1). Before we proceed to the comparative analysis of the
behavior of the envelopes in the cases of regular (v = 0) and
chaotic ( VT^O, K> 1) dynamics of the system, we note that
the characteristic frequencies pc (t) andps (t) can differ by
several orders of magnitude. Actually, as we see from
(2.30),pc (t) corresponds to polarization of the system with

the effective Hamiltonian of (2.29):pc (t) = <Ф|со8 в |Ф).
Thus, according to the results of Sec. 1.8, the characteristic
frequency pc (t) is determined by the frequency of the phase
oscillations Пр1] = (BEd)}/2/h. This frequency corre-
sponds to the slow motion of the system in the rotational
degree of freedom. On the other hand, the characteristic fre-

FIG. 26. Spectrum of the envelope of pt (t) for the
system of Eq. (2.28) in the cases of regular (a) and
chaotic (b) dynamics of the system. (The spectrum of
/>c (/) is shown in Fig. 19.) Values of the parameters:
Y = 2B/h 2 = 1, K= -Ed/2 = l.a: v = 0,b: v = 0.3.
Averaging time 7"= 210. (From Ref. 11.)

W
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FIG. 27. Autocorrelation function of the process ps ( t ) .
Parameters as before. (From Ref. 11.)

10

quency ps (t) is determined by the Rabi frequency:
flR ~Ed/h. This fact is associated with the circumstance
that the envelope for sin o)t determines the absorption law of
the energy of the system (2.28). (The energy of the system is
proportional to the population of the upper level. A graph of
the population of the upper level for chaotic and regular
regimes of motion is shown in Fig. 25. ) Thus, ps ( t) reflects
the fast motion of the system in the vibrational degree of
freedom. Since we are studying the case
8n = 2(Ed/B)l/2 > 1, we have

0R = Edlh aph (Qph = (BEd)ll2/h).

As was already noted in Sec. 2.6, the fundamental mani-
festation of chaos in the system of (2.29) is the "complexity"
of the frequency spectrum of the quantum-mechanical aver-
ages. The spectrum of the envelope of/>c (?) in the cases of
regular (v = 0) and chaotic (v = 0.3, К = 4.71 ) dynamics
was shown in Fig. 19. Figure 26 shows the spectrum of the
envelope ofps ( t ) . As we see by comparing Figs. 19 and 26,
forps (t) the qualitative difference between the regular and
chaotic regimes is considerably stronger. While in the regu-
lar case the spectrum of/>s (w) consists of a relatively small
number of lines and possesses the characteristic structure of
the spectrum of a quasiperiodic process, in the chaotic case
the spectrum ofps (w) is close to the spectrum of a random
process. The fact that we can treat the process ps (t) as a
random process for the system being analyzed when К > 1 is
confirmed also by the behavior of the autocorrelation func-
tion Л (т) =/>„(* + т)л(0 (Fig. 27).

The system studied in this section, as we see it, seems to
be the most acceptable object for experimental study of
quantum chaos in systems having a bounded volume of the
chaotic component. As compared with the diatomic mole-
cule (Sec. 2.9), here, first, one requires a considerably
smaller intensity of the external field, and second, this sys-
tem enables one to treat both the chaotic and the regular
regimes of motion. The advantage in comparison with the
dipole molecule in a UHF field consists in the fact that, in-
stead of (or alongside) pc(t),we can analyze another char-
acteristic — pa ( t ) . The advantage of measuring the quantity
ps (t) lies in the fact that, as the amplitude E of the external

field increases, the frequency interval ps(w) increases in
proportion to E (rather than El/2 in the case of pc (ш)).
Therefore the problem of resolving the frequency lines for
studying the relationship (2.12) is considerably simplified.

CONCLUSION

In this article we have examined from the classical and
quantum standpoints the dynamics of an isolated nonlinear
resonance and a system of two interacting resonances. The
latter system manifests a chaotic regime of motion in the
classical treatment, which engenders interest in the dynam-
ics of this system in the quantum case. As we have noted
above, this system is a representative of a class of systems
having a bounded volume of the chaotic component. In this
it differs in principle from the models of quantum chaos
most studied up to now—a quantum rotator under the ac-
tion of a periodic sequence of 6-pulses and a hydrogen atom
in a UHF field (see Ref. 2 and the references given there).
(In the latter systems in the classical limit the phenomenon
of diffusion can occur, and the efforts of the authors are
directed mainly at explaining the features of diffusion in the
quantum case.)

We can arbitrarily combine the questions dealt with in
this review into three main groups: 1) comparison of the
classical and quantum dynamics of the systems being stud-
ied; 2) the fundamental manifestation of chaos in the quan-
tum approach; 3) application of the theory to analyze con-
crete physical objects. Let us start with the last point. We
examined the phenomenon of QNR and the interaction of
QNRs that arise in molecules under the action of UHF and
infrared fields of high intensity (not below 1 MW/cm2). Of
course, these systems do not exhaust all the systems in which
QNR can occur and the interaction of QNRs. We restricted
the treatment to analyzing the chosen systems, since for
them the phenomenon of QNR and the interaction of two
QNRs are manifested in the most "standard" form.

The question of the fundamental manifestations of cha-
os in the quantum case should be divided into two parts.
They are the "theoretical" manifestations of chaos, which
include the general analysis of the solution of Schrodinger's
equation, the structure of the QFs, etc., and the "practical"
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manifestations of chaos, i.e., the manifestations that can be
detected experimentally. Drawing an analogy with dynamic
systems having an unbounded chaotic component of phase
space, we can give a brief answer to the question that we have
posed as follows. For the latter systems the fundamental
manifestation of chaos is the relative (in comparison with
the regular case) delocali/ation of the QFs, while the practi-
cal manifestation is the phenomenon of diffusion with subse-
quent saturation due to quantum effects. For the systems
discussed in this study having a bounded chaotic component
(in which the phenomenon of diffusion is practically ab-
sent), the fundamental theoretical manifestation of chaos is
the two-dimensional delocalization of the QFs, while the
practical manifestation is the "complexity" of the spectrum
of the intrinsic radiation of the system. In particular, this is
manifested in differing laws of increase of the number of
lines with increase in the value of the quasiclassicity param-
eter (with increased amplitude of the external field) for the
regular and chaotic regimes of motion and with the quasi-
randomness of the behavior of the quantum-mechanical
averages. We note that in this sense the dynamics of the
quantum system is "more random" than that of the classical
system, since the dynamics of the classical averages (as was
shown in Sec. 2.2) amounts to a periodic process.

As regards the latter question of the correspondence
between classical and quantum dynamics, for the systems
discussed here this question is too complex to offer an ex-
haustive answer at present. Therefore, on the theoretical lev-
el we have restricted the treatment only to formulating more
distinctly the problem for further study. However, the pre-
sented numerical calculations of the dynamics of the system
of QNR can be useful on the practical level, since they allow
one to point out the concrete values of the parameters for
which the dynamics of the system (e.g., a molecule in a UHF
field) is close to classical and the approaches of classical
mechanics can be employed. We note also that we have dis-
cussed the problem of correspondence only as applied to the
observable quantities and left aside the analysis of the struc-
ture of the phase space of the quantum system (i.e., the anal-
ysis of the wave function in the Husimi representation or in
the representation of coherent states) as being an unobserva-
ble characteristic of the system, at least at present.

Finally we wish to take up another question that we
have not yet touched upon in this review. This is the question
of taking account of the influence of relaxation processes.
Taking account of relaxation processes for the systems being
discussed constitutes an extremely complex and at the same
time important problem. The complexity arises from the
large number of levels (up to several hundred) participating
in the dynamics of the system, which requires taking nontra-
ditional approaches and methods of analysis. (In Appendix
III we discuss one of these possible methods.) Moreover,
preliminary studies of model quasiclassical systems show
that in a certain sense dissipation restores classical features
in the dynamics of a quantum object.33"36 That is, the dy-
namics of a quantum system with dissipation is closer to
classical than in the absence of dissipation. Therefore the
question of taking account of the influence of relaxation pro-
cesses on the dynamics of multilevel quantum systems is in-
teresting also from the fundamental standpoint of corre-
spondence of classical and quantum mechanics. We hope to
return to this problem in the future.

APPENDICES

I.

Let us use the analogy between the Hamiltonian of the
QNR at Д = 0 (HeS = - (?h 2/2)д2/д&2 + У cos 0) and
the Hamiltonian of a particle of mass у' in the periodic
potential К cos ©. Then the physical reason for absence of a
sharp boundary of the transition from a vibrational to a rota-
tional regime consists in the effect of tunneling. Being expon-
entially small for low energy values, the effect of tunneling
becomes appreciable asAk approaches the value of the ener-
gy at the separatrix. In this case the eigenfunctions corre-
sponding to the values of Ak (Amin <Ak < V) cannot be
treated as wave functions of vibrations of the particle in an
isolated potential well. Analogously, upon approach to the
separatrix from above, the effect of reflection over the well
leads to splitting of the levels A2k and A2k +1, which becomes
appreciable when Л <Am a x. То characterize quantitatively
the width of the transition region Amin < A < Am a x, we shall
assume Amax equal to the value beyond which the magnitude
of the splitting of the levels does not exceed a preassigned
small number E (the magnitude of £ can be determined by the
degree of accuracy of observation, e~h/t). We note that the
splitting of the levels A2k and A2/t +1 coincides with the value
of the width of the forbidden band for a particle in a periodic
potential. Analogously, as the value of Amin we shall choose a
value below which the width of the allowed bands does not
exceed the value of £ (as is known, the width of the allowed
band is determined by the magnitude of the tunneling ef-
fect).

Let us estimate the value of Amin. As is known, the rela-
tive width of the allowed bands is determined by the quantity
2Z>1/2/7r(I41), where D is the penetrability coefficient of
the potential barrier separating two potential wells of the
potential У cos 0:

в

D = exp{-(8/A)/[(Kcos в - A)/y]1/2de},

в = arccos(WA). (I.I)

Since we are assuming A to be close to V, the integral in (1.1)
is approximately equal to (я-/2)(К/г)|/2 [1 - (A/F)]-
Upon assuming that e = 2D1/2 /IT, we obtain

~ linei/an. (1.2)

Let us estimate the number Afc of levels lying in the transi-
tion region Amin <A< V. We shall use the quasiclassical
quantization rule, and then we have

г'/

Substituting into ( 1.3 ) the value of П (A ) :3

we have

M= |lne|[ln(32<5n/|lnE|)+ 1/2 ]/8 -

(1.3)

(1.4)

(1.5)

The estimate of Amax and the number of levels lying in the
transition region V<A <Amax can be performed analogous-
ly.
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II.
Upon substituting (1.23) into the Schrodinger equa-

tion with the Hamiltonian of ( 1 . 22 ) and using the resonance
approximation, we obtain the following equation in the
eigenvalues of the quasienergy Л :

+ */-i*> - Ч«; (и. i )
Here the bla are the coefficients of the Fourier expansion of
фа (в). Let us define the vector a as follows:

а;=*д, /even; <*/=*/,2» /odd

Then Eq. (II. 1 ) acquires the form

[До, • X(l) + Bl2\a, -

(H.2)

(Ц.З)

Here x(l) = 0 for / even, ;f (/) = 1 for / odd. We note that
Eq. (II.3) enables us to determine only half of the QFs. The
second half of the QFs corresponds to the other symmetry
and corresponds to a choice of the vector a in the form

e/=*/,2> /evenj e/ = */,p /odd. (H.4)

In this case we again arrive at Eq. (II.3), where^(/) is rede-
fined according to the rule: ̂ (/) = 0 for / odd, %(l) — 1 for /
even.

Let us proceed to analyze Eq. (II.3). We shall derive
from this exact equation in all the components of the vector a
an approximate equation in the even components. For the
odd components we shall use the identity

(П.5)- АЛо) - В/2).

Upon substituting into (II.3) we have

Bl\ + (Ed/4)2

A - ЛД« - B(l + l)2 Д - ЛДо> - B(l - I)2

(П.6)

Assuming approximately that (/ + 1)2=;(/ — l)2ss/2 and
introducing the arbitrary function Ф(0) = (2ir)~1/22a,
Xexp (//#), we obtain

[A - Вд2/дв2 + ЛДш/2 ]^(6)

(П.7)

We note that, if the vector a is denned according to Eq.
(II.4), then the equation for the function Ф(0) in the ap-
proximation being used will have the same form. Thus (II.7)
determines the complete set of QFs.

We are interested in the case in which the amplitude of
the external field is rather large. In this case we can seek the
solution of (II. 7) in the quasiclassical approximation

Ф(в) ~ , A)d0 ]). (H.8)

Here we have Д6Ы) = [A - C/1 > 2(6»)]1 / 2, l/1>2(0)
= ЛДо>/2 + [ ( E d / 2 ) 2 cos2 0 + (АДй>/2)2]1/2.Theeigen-

values Я correspond to the quantized values of the action
/(Я) = (2тг)-'/2Ж0Л)<10. Finally we note that in the
quasiclassical approach the eigenfunctions of Eq. (II.7) co-
incide with those of the effective Hamiltonians of (1.24).
Thus one can formulate the final answer in simplified form
as was done in Sec. 1.7.

III. Taking account of relaxation processes

In this section we shall treat the dynamics of the quan-
tum systems being discussed in the presence of strong relaxa-
tion processes. The condition of strong relaxation means
that the steady-state response of the system to a periodic
agent also amounts to a periodic process at the same frequen-
cy (in moderate dissipation in a classical system (and a
quantum system33) a more complex regime of motion can
occur, due to the appearance in the system of a strange at-
tractor). In particular, the induced polarization of the sys-
tem as f-» oo can be represented in the form of a Fourier
series

(Ш.1)

Here a> is the frequency of the external field. Thus, in the case
of strong dissipation the problem reduces to studying the
dependence of the susceptibilities )££ on the parameters of
the system.

Further, one conducts the analysis within the frame-
work of the following model. We assume that the dynamics
of the system is described by the density matrix p(f ) , which
obeys the equation

ihdp/dt - [Я,p) + T(p ), H = Я„ + Яы(<), (III.2)

T$) = -ihn$-pd, р„ - ехр(-Я0ДвГ) (III.3)

(т/ is the rate of relaxation in the equilibrium state p0). We
have chosen a very simple form for the relaxation term, since
for the given Г (р) the solution of (III.2) can be found exact-
ly.37 Of course, there is a question of the correctness of the
given form of the relaxation term, especially for high values
of the external field. However, we shall not discuss here the
degree of applicability of this model and shall assume that
Eqs. (III.2) and (III.3), at least qualitatively, correctly de-
scribe the dynamics of the quantum system with account
taken of the influence of the heat bath (e.g., molecules in the
equilibrium medium of a buffer gas) for arbitrary values of
the amplitude of the external field.

According to Ref. 37 the established regime of motion is
described within the framework of the model of (III.2) and
(III.3) by the density matrix

(Ш.4)
*./

(III.5)

In (III.4) we have introduced the concept of the quasien-
ergy matrix of the system. In the coordinate representation
we have .R "t>/> (*'\x\t) = i/>k^x',t)ipf(x,t), where ̂  (x,t) is
the QF of the Hamiltonian H corresponding to the quasien-
ergy value Л k, and x is the set of coordinates of the^ system.
We note that the coefficients rkl and the matrices R ^k'l} are
periodic functions of the time. Thus the expansion (III. 1) is
valid for the polarization of the system (P(t) =Tr(<5/3),
where d is the dipole-moment operator). Equations (III.4)
and (III.5) imply that the properties of the density matrix
p(t) are determined by the properties of the QFs and QS of
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FIG. 28. Form of the absorption line for the model of the vibrational
degree of freedom of the molecule of Eq. (Ш.6):Д = (fl — ca)/yhisthe
dimensionless detuning. The value of the dimensionless perturbation
parameter W= - Ed /yh2 is: a: W =0.1,b: W= 10. Parameters of the
heat bath: 77 = r//yh = 0.1, hil/kB T- 1 (From Ref. 37.)

-10 W

the system. We present below the results of calculating the
susceptibility for the model of the vibrational degree of free-
dom of a molecule in an infrared field (see Sec. 1.2):

Я = АО(а+а+1/2)

- rh2(a+a)2 - (Ed/2)[a+exp(-io)t) + a exp(tof)]
(III.6)

and the model of the rotational degree of freedom of a mole-
cule in a UHF field (Sec. 2.3):

Я = -(уА2/2)д2/а02 - Ed cos 0-cos cat, (Ш.7)

the structure of the QFs of which has been discussed in detail
in the review.

Using the properties of the QFs of the completely inte-
grable system of (III. 6), we can show that in Eq. (III.l)
only the x(c's) differ from zero. In particular, %\ , which de-
termines the form of the absorption line of the system, is
found by the formula

/>*

Here the/? ^<> are fae elements of the quasienergy matrix. It
is convenient to render the values of the quasienergy dimen-
sionless by using the value of the nonlinearity y. Then Eqs.
(III. 8) and (III. 6) imply that %\ is a function only of the
dimensionless magnitude of the perturbation

W = — Ed /yh2, the dimensionless detuning
Д = (П — a))/Yh, and the dimensionless rate of relaxation
77 = i]/yh. A. graph of д'8, (^,Д) as a function of Д is shown
in Fig. 28 for two values of the parameter W: a) W= 0.2; b)
W = 10. Figure 28a serves as a test; the peaks correspond to
the transitions 0-1, 1-2, etc., while the width of the peaks is
determined by the value of 77, which was chosen equal to 0.1.
Case (b) reflects the characteristic form of a QNR line. The
form of the absorption line can be explained on the basis of
the properties of the QFs and QS of the quantum nonlinear
resonance. The spectrum of quasienergies of the system
(III.6) is shown in Fig. 29 (the value of the quasienergies is
plotted in units ofyh2). The several first lines with practical-
ly equal splitting correspond to the QFs of the "center" of
the QNR. The degree of delocalization of these QFs is deter-
mined by the width of the QNR, while the distance between
the quasienergy levels is determined by the phase frequency
of the QNR. These states form a broad, smooth curve (see
Fig. 28b) with a characteristic width in dimensioned vari-
ables of the order of yhdn =;Пр1,. The quasicrossings of the
lines in Fig. 29 correspond to one-photon, two-photon, etc.,
resonances. These quasienergy states determine the reso-
nance peaks on the right-hand slope of the line. With in-
creasing intensity of the external field, the relative height of
the peaks diminishes. In closing this paragraph we note that,
in contrast to the pure quantum case W = 0.1 (curve in Fig.
28a), the width of the QNR lines does not depend on the
value of 77 if rj < ПрЬ.

Let us proceed to discuss the system of (III.7). As we
have already noted repeatedly, the fundamental qualitative
difference of the QFs of a nonintegrable from an integrable
system is the property of two-dimensional delocalization

-so -

FIG. 29. Spectrum of quasienergies of the system of Eq. (III.6) for
W= 10 as a function of Д. The magnitude of the splitting of the several
first levels is determined by the value of the phase frequency of the QNR.
(From Ref. 37.)
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tern of (III.7) from the standpoint of classical mechanics,
and correspondingly, to the greatest degree of two-dimen-
sional delocalization of the QFs in the quantum-mechanical

-5
a

FIG. 30. Values of the coefficients xl for the system of Eq. (III.7) as
functions of the magnitude of the perturbation V= — Ed/h. Values of
the parameters: yh = 1, со = 2, tj = 0.1, kB T= 0.5. (From Ref. 28.)

(see Sec. 2.5). As applied to the problem discussed in this
section, this property is reflected in the anomalously large
number of effectively nonzero terms in Eq. (III.l). This
number is determined approximately by the degree of delo-
calization of the QFs along the т axis. Figure 30 shows the
results of numerical calculation of ̂  for the following val-
ues of the parameters of the system (III.7): yh = 1, ca = 2,
1 < V< 16 (V= Ed/h) and parameters of the heat bath:
i) — 0.1, kB T= 0.5. Upon varying Via the chosen interval,
the overlap parameter of the resonances К of (2.2) varies in
the range К = 0.7-2.8. We see from Fig. 30 that, when К > 1
(У> 2), a large number of harmonics is generated (owing to
the symmetry properties, the even harmonics are absent).
We also see that the concept of the number of harmonics is
well denned.

Apparently the generation of a large number of har-
monics is one of the most marked manifestations of quantum
chaos. We can propose the following experimental scheme to
verify this effect. We fix the amplitude of the external field at
a value that ensures the fulfillment of the condition of quasi-
classicality £»> 1, and vary the frequency so as to alter the
stochasticity parameter K. When К < 1 we shall observe the
generation of only the first harmonic. As the frequency of
the field is reduced, we expect at Kzz 1 a rapid growth in the
number of generated harmonics. We should expect the maxi-
mum number of harmonics at К ̂  4.5. This value of AT corre-
sponds to the "most chaotic" regime if we examine the sys-
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