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This review is devoted to the description of high-spin hadrons. A relativistic QCD-string model
that reproduces the principal feature of the spectra of orbitally excited hadrons, namely, the
linearity of Regge trajectories, is employed. Particular emphasis is placed on the inclusion of spin
effects. For large orbital excitations, these effects appear as the spin-orbit interaction whose sign
and magnitude are determined by confinement properties. Arguments are presented in support of
the proposition that, for large orbital excitations, the spin-orbit interaction of quarks in the string

model is largely due to the Thomas effect. The consequences of this hypothesis are analyzed
phenomenologically, and the results are compared with experimental data. Specific predictions
are obtained and await experimental verification. Orbital excitations of four-quark and dibaryon

states are predicted.

INTRODUCTION

We present a review of the quasiclassical approach to
the spectroscopy of high-spin hadrons, taking as our starting
point the hypothesis that such hadrons are orbitally excited
analogs of the ‘ordinary’ light hadrons p, 7, N, and soon. We
also examine the characteristic properties of orbital excita-
tions of hadrons containing heavy quarks.

One of the central questions that we analyze in detail is
that of the effects of the quark spin. For large orbital excita-
tions, spin effects appear as the spin-orbit interaction whose
sign and magnitude are determined by the structure of the
interaction responsible for the confinement of quarks. A rel-
atively clear picture emerges when the quasiclassical ap-
proximation is used to calculate dynamic variables, but, of
course, this approach restricts the analysis to large orbital
excitations.

A relatively large number of mesons and baryons with
high spins has now been identified experimentally.' On the
other hand, existing spectroscopic data do not as yet provide
unambiguous evidence for spin-orbit effects. This will re-
quire, for example, the masses of particles on 7-trajectories
with spins J > 3.

It has been established experimentally that the Regge
trajectories are linear to a good approximation. This imposes
relatively stringent restrictions on the choice of the rotator
model capable of providing a reasonable description of real
high-spin hadrons. Actually, the linearity of the trajectory
means that the mass difference AM between neighboring
particles on a given trajectory decreases with increasing J as
1/J "2~ 1/M. We know that, in the quasiclassical descrip-
tion, the separation between neighboring rotational levels is
equal to the rotational frequency w. This frequency de-
creases as @~ 1/J'/? and, at the same time, the energy
(mass) of the rotator is M ~J /2, so that the energy can be
increased by increasing the size of the rotator. Moreover, the
quasiclassical approach must be relativistic, since we are
discussing orbital excitations of hadron states with masses
exceeding the effective quark masses.
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The relativistic model of a string under constant tension
v can account for these properties. In the simplest string
model (the Nambu model®), the string is assumed to be
straight and the quarks massless. The model predicts linear
Regge trajectories

J=-1 M
2y
We have already noted that the spins of quarks localized at
the ends of the string must be taken into account in applica-
tions involving real hadrons, which leads to the problem of
evaluation of the spin—orbit interaction energy in the string
model. Before this can be done, the string itself has to be
specified in some way.

The dual superconducting string model® has been wide-
ly discussed in the literature. It rests on the assumption that
the linear energy density of the string, v, is related to (a) the
gluoelectric field connecting color charges at the ends of the
string and (&) the destruction of the QCD vacuum by this
field. The model can be specified in greater detail, which
leads to the concept of a tube of force of the gluoelectric field,
screened by a current of topological monopoles.® When this
approach is adopted, and the thin-string approximation is
employed, we find that, in the reference frame in which the
quarks are at rest, they experience only the electric field*
that has no interaction with spin. On the other hand, the only
cause of spin precession and, consequently, of the spin-orbit
interaction, is then the Thomas effect.’ (The connection be-
tween the Thomas effect and the non-Euclidean character of
velocity space is examined in Ref. 6.) When the finite size of
the string is taken into account, the result is the gluomag-
netic field whose amplitude is proportional to the transverse
size of the string.*

The magnitude of the effect due to Thomas precession is
found to be large. For J > 2, the corresponding level splitting
is at first comparable with and then greater than the separa-
tion between successive orbital excitations.

We shall use the following formulas to describe experi-
mental data that include the above effects:
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These expressions give the parametric relationship between
the mass M and the total angular momentum J of the string
with quarks (or quark clusters) at the ends. The integrals in
these formulas represent the contribution of the string, E;
are the energies of particles at the ends of the string, |, and s;
are the orbital momenta and spins, respectively, and f(E;)
are functions that determine the /s-contributions to the had-
ron mass, which can be calculated unambiguously from
string dynamics without introducing any additional param-
eters. The total number of parameters is minimal; they are
the string tension v and the effective masses of particles at
the ends of the string. The next step is to derive and justify
theoretically these formulas. This begins with physical argu-
ments for the idealized string model with the Thomas-type
spin—orbit interaction, which can be based on the analogy
between the quasiclassical derivation of the spin-orbit inter-
action in positronium and nonrelativistic quarkonium
(small orbital excitations). The analogy is then extrapolated
to relativistic quarkonium (large orbital excitations, string
limit; §1). The connection between spin precession and the
magnitude of the spin-orbit splitting of quantum-mechani-
callevels is then demonstrated by considering the example of
a spin moving in a scalar potential (§2). The description of
the idealized model itself is presented in §3. Experimental
data and model predictions concerned with orbital excita-
tions of multiquark hadrons are reviewed in §4, as is the
spectrum of small orbital excitations that arise from chro-
momagnetic effects that are also examined in §4. A brief
discussion of the decay of orbitally-excited hadrons in the
QCD-string model is presented in §5.

1. SPIN-ORBIT INTERACTION IN POSITRONIUM AND
QUARKONIUM

We shall take positronium as an example of how the
quasiclassical approach can be used to calculate the spin-
orbit interaction energy. We shall assume that the electron
and the positron revolve on circular orbits around their com-
mon center of mass with angular frequency @. The electron
experiences the Coulomb field of the positron, which gives it
an acceleration. This in turn produces the Thomas preces-
sion of the electron spin, whose frequency is given by

§T= -y - I)Bz;n%l,

where y = (1 — +*) ~'/2, v and m are, respectively, the elec-
tron velocity and mass, r is the separation between the elec-
tron and the positron, 1is the orbital angular momentum of
the system, and « is the fine-structure constant. We know
that the Thomas effect arises because the rest frame of the
electron is not an inertial frame in this case. In other words,
the effect is the result of the non-Euclidian character of the
relative-velocity space which has the Lobachevskii metric
with curvature X = — 1. The Thomas precession frequency
measured against a laboratory clock is uniquely determined
by the velocity and acceleration of the particle:

(1.1)

fw]

ﬁ’r= -y -1 2
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For circular motion, this readily leads to (1.1).

Next, the positron moving relative to the electron pro-
duces a magnetic field H in the rest frame of the electron,
which interacts with the spin of the electron and also gives
rise to its precession. The frequency of this precession is

3 =—'£H=£‘l,
H m m2r3

where ¢ is the charge of the electron.
The total precession frequency of the electron spin,
Q= Q.T + Q 1 18 therefore given by

3=

(1.2)

(1.3)

2»12r3
The corresponding contribution to the energy is Q. s_,
where s__ is the spin of the electron. This is the spin-orbit
part of the Breit potential of positronium associated with the
electron:’

V,s=§(s_+s+)- 1(s_+s,). (1.4)

i

Let us now consider the quark-antiquark system. The
essential difference between this and positronium is the con-
finement effect that we shall take into account in the spirit of
the bag model.® We shall assume (and here we differ from
the traditional version of the model) that quarks with effec-
tive masses m, ~ 1/3 GeV are nonrelativistic (small orbital
excitation) and that the quark-confining bag is spherical.’
According to the bag model, confinement then means that,
first, the energy necessary to produce the bag that contains
the quarks and the fields due to them s (47/3)R *B, where R
is the bag radius and B is the difference between the vacuum
energy densities outside and inside the bag. Second, the
gluoelectric field satisfies the condition n'E® = 0 on the bag
surface, where n is the unit normal to this surface. This con-
dition can be satisfied only if the resultant color charge of the
quark and antiquark is zero, i.e., only white states are al-
lowed. In accordance with the boundary condition for the
gluoelectric field, the static solution for this field inside the
bag is®

E?=E., +E&,,
X(xr -
&m:ga(r—:i—a?l)x 3

and for x>r

,, 2r
Efa = f_

e (1.5)

whereg” is the color charge of the quark (which includes the
coupling constant), r is the separation between the quarks, R
is the bag radius, x is the distance between the center of mass
of the system and the point of observation, E {4 is the gluo-
electric field which is constant inside the bag (i.e., indepen-
dent of x), and the divergence of this field inside the bag is
zero because it has no sources there. The specific form of
Ef,is given by the boundary condition

n(Ez,, +Ei,) = 0.

In equilibrium, in which the sum of the electrostatic and
vacuum energies [ (47/3)R 3B — (g°/r) + (§F*/R*)]isa
minimum in R, we have R*~r

1t will be important for our analysis to know the source
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of the field E {, induced inside the bag. If the vacuum out-
side the bag is a dual superconductor,>'° the field E 2, is due
to currents of colored magnetic monopoles circulating on
the surface of the bag. The form of E { , readily leads to the
surface density of these currents:’

fo g dlml

by (1.6)

The striking fact is that the gluoelectric field outside the bag
is then identically zero, as expected for the dual supercon-
ductor. Suppose now that the quark-antiquark system ro-
tates around a common center of mass with frequency w.
The spin of a quark must then precess with a frequency
whose Thomas component is

- VY,
Qr=-@-1)F=- _gz_zmgﬂ 1—- 2’:; 1, (1.7)
where v, =g°E 4 = 2g°r/R? is the additional (as com-
pared with the Coulomb) force acting on the quark (we note
that this force is independent of distance for R >~ r). The
magnetic component of the quark spin precession is coupled
to the magnetic field produced in the rest frame of the quark
by both the moving antiquark and the ‘moving’ surface cur-
rents. It is given by

ESH‘-gaHa— Y

= mq = mzrj Sty (1.8)

The resultant frequency?) = ﬁr + q H 1S
3= 32 3 Ve 1.9
2mlP 10 mir (-9

The second term in (1.9) is the bare ‘string’ contribu-
tion to the quark spin precession. So far, this term has been
small in comparison with the first, i.e., Coulomb, contribu-
tion (we assume that 7€ R). The conditions r<R and r~R 3
are not mutually inconsistent if 7<B ~'/4, i.e., if 7 is much
less than the characteristic hadronic scale determined by the
constant B.

Let us now increase the orbital angular momentum of
the system. The quark-antiquark separation will then be
greater, and the bag will stretch out into a string.'' We shall
assume that the effect of the antiquark on the quark can be
neglected, i.e., the force acting on the quark is largely due to
the surface magnetic currents. We then have

§T= - - )3,
- —cs
g, = e H’=C m 3; (1.10)

where we have taken into account the fact that H*
~vE* ~y’w0|E*, since E° and H° are adjacent parts of the
string (separated by distances of the order of the string di-
ameter d) and g” E* = is the force acting on the quarks
(string tension). The relation between v and v, is® v = (3/
2)'?v,,,. The coefficient C, which depends on the shape of
the end of the string, will not be calculated. In the limit of a
thin string (d—0, v = const), 5 <O, so that the quark-
spin precession is largely due to the Thomas effect.
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2. SPIN PRECESSION AND SPIN-ORBIT INTERACTION
ENERGY

From now on we shall confine our attention to high
orbital angular momenta, long strings (L ~/'/?), and negli-
gible Breit contributions. The string (gluon field tube) will
be assumed to be thin, so that the influence of the chromo-
magnetic field of the string on the quark spins can be neglect-
ed and the Thomas precession is the dominant effect in spin-
orbit interaction. For low velocities (v< 1), there is no
difficulty in finding the corresponding energy correction by
taking the nonrelativistic Hamiltonian H so that the equa-
tion_§ = {H,s} becomes the equation for spin precession
$ = Q,+s, where 1, is the Thomas frequency.'> As / in-
creases the motion of the ends of the string becomes relativis-
tic, and > 1. In this region, the precession frequesncy {2 is
greater by the factor y than the angular frequency @ that
characterizes the separation between neighboring rotational
levels. Strictly speaking, to find the corresponding energy
correction, we must then start with the relativistic quantum-
mechanical equation, and solve the eigenvalue problem.
However, we will proceed in a different way and examine in
detail the case of a particle width spin in a scalar potential,
which will produce similar spin behavior. The analogy be-
tween the two cases is that the Thomas effect is the source of
spin precession in both cases. The problem of spin precession
in a scalar potential can be solved exactly, and the solution
gives the connection between the spin precession frequency
and the spin-orbit interaction energy.

We begin by writing down the classical description of
spin in a scalar potential. We then introduce quantization
and use the quantum-mechanical equation (Dirac equation)
to find the Is-correction to the energy. For high orbital exci-
tations, the energy can be expressed in terms of quasiclassi-
cal variables. The results obtained for the scalar potential
enable us to find the Is-splitting for a string with quarks in
the case of large /, which is, of course, our main problem. In
addition, the analogy with the scalar potential then enables
us to include the quark spins in the action for the open
Nambu string. The corresponding equation for spin preces-
sion is found to be the same as the equation for Thomas
precession.

2.1. Particle with spin in a scalar potential

We shall use the Lagrangian formalism with con-
straints to describe a classical particle with spin in a scalar
potential m = m(x). A similar approach was first used by
Berezin and Marinov to describe the spin of a free particle'?
and a particle in an electromagnetic field.’* The equations
describing spin precession are then found to be the same as in
the classical case, which is not unexpected because they have
the form § = {}»s where Planck’s constant cancels out on
both sides.

In the Berezin—-Marinov formalism, the particle spin is
described in terms of Grassmann variables. For example, in
the nonrelativistic approximation, the three-dimensional
vector s is written as a vector product of anticommuting
Grassmann variables:

&Y.

The phase space of the particle with spin is constructed by
adding a three-dimensional Grassmann space to the usual

s =

DO -
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six-dimensional space.
In the relativistic case, the spin 4-vector s, is described
in terms of the 4-vector £,

i
Su = 2ouvabatp

where u,, is the particle 4-velocity. The nonphysical longitu-
dinal components £, are eliminated in the Berezin—-Marinov
approach by introducing the additional Grassmann variable
£5 and imposing a constraint condition. We thus postulate
the following action for a free particle with spin'*'*

So= [imz—Lie b, — 84— (b - EiNan;
where z = (x%) /2, u, =X, /z,and 4 is a Lagrangian multi-
plier (Grassmann number).

We are interested in the motion of the particle with spin
in an external scalar field which is equivalent to the intro-
duction of a position-dependent mass m = m(x). The action
for a particle with spin in a scalar potential can be construct-
ed to ensure a closed algebra of Poisson brackets for the
Hamiltonian constraints. This is achieved by introducing a
derivative interaction between the spin and the scalar field
into the Lagrangian: '

5=y +if (ksz o,

where f,, = (1/m)d, m.
The spin 4-vector s,, is actually related only to the trans-
verse components £, :

(2.1)

i N
Su = 2uvaptlallgs Ty = ~EpapliaSps (2.2)
where,, = £, — u,, (4£). This turns out to be important in
the derivation of the precession equations containing time
derivatives.

It is clear from (2.2) that £ ~#'/2. By taking the vari-
ation of the action (2.1), we obtain the equations for &£:

A A
$“=-2-u# +f#§5z, &'5=i+ %)z (2.3)

with the constraint condition
(uf) ~&5=0. (2.4)

From the equation of motion for the canonical momen-
tum
) j A
P, = mu, + iEYEsu, + 5, ~ u, (b)), (2.5)

in which we have retained only zero-order terms in the
Grassmann variables, it follows that

W;‘ =f;4 - u};(fu)’ (26)

in which w,, = &, /z. The terms in the equation for p, that
are quadratic in the Grassmann variables give higher-order
corrections in 7 to the equation of precession, but these will
be of no interest to us at present.

Equations (2.3), (2.4), and (2.6) readily lead to the
following equations for the transverse components:
M, = — 4, (wn)z, and (2.2) enables us to find the analo-
gous equation for spin precession:

2.7)

5, = —u“,(ws)z.
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This equation describes the Thomas spin precession, as ex-
pected in the absence of fields (e.g., magnetic fields) that
interacts directly with the spin.

Transforming to the three-dimensional form and using
so to denote the spin in the rest frame, we find from (2.7) that
- .
0= - -5k
where ¢ is the laboratory time. In the special case of motion
on circular orbits, the Thomas pg:cession frequency mea-
sured against a laboratory clockis 0 = — (¥ — 1)@ where
@ is the rotational frequency.

The relation given by (2.4) can be rewritten in terms of
the canonical momentum:

ds,
?t—= [a_lso]’ (2.8)

®=pt—mb;=0. 2.9)
The Poisson brackets, defined by
_AOB A OB A3 3B .AY 3B
W Blos. = dp, ox, ~ ox, 3p, ~ 'O, %, * o ok (210
are given by the following expression for 4 = B = &:
{®, Bpp = P2~ m? = 2i(3,mE ). (2.11)

Hence, using (2.5), we see that the algebra of Poisson brack-
ets is closed.

We shall now attempt to calculate the spin-orbit split-
ting energy due to spin precession. To do this, we write the
energy £ = p, in terms of the canonical variables:

e=p?+m?+ 2i(E)m]) /=) + ieﬂo(fE)ES (2.12)
where £, = (p* + m?)"/%. We shall be interested in the ener-
gy correction whose sign is determined by the sign of I's,. We
shall consider the special case of motion on a circular orbit
for which w, = (0,w). The sign of I's, changes, for example,
when we replace v with — v. We shall therefore separate out
those terms in the energy that depend on the direction of v.
This will be done by writing the scalar product #£ in the form

uE =380~ 8, (2.13)
where Z is the Grassmann variable in the rest frame of the
particle. This also means that s, = (i/2)¢;, £, &,. From
these relations we find that the spin-orbit level splitting is

Ae =i’%ﬂ, (2.14)
0

where the level with positive I's, has the lower energy. If we
use the classical equation of motion, we can rewrite this cor-
rection in the form A¢ = yw. In the relativistic region, the
spin-orbit splitting that we have obtained is the same as the
exact energy corresponding to the Thomas precession, i.e.,
Acr = (¥ — D)w. The term with — 1 can be obtained by
considering the quantum-mechanical equation with
allowance for the dependence of the states themselves on I-s.

As for the free particle width spin, quantization in-
volves the replacement of £ with the operators

1/2 1/2
~ ﬁ ~ R
EF = ('2') VsV 55 = (i) Vs

The odd constraint (2.9) then becomes the Dirac equation

(2.15)
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in the scalar field. The even constraint, on which the Poisson
bracket (2.11) for odd coupling vanishes, becomes the cor-
responding integrable equation.

We also note that the external scalar field preserves the
invariance under transformations associated with the free-
dom to choose the parameter 7, and also invariance under
the transformations

E‘“"E‘“"'P”P: 55"55"""[’,

x”-x#+i§#p, (2.16)
which constitute the simplest example of supersymmetric
transformations.

2.2. The /s-coupling energy In a scalar potential

We shall now calculate the spin-precession energy, tak-
ing the quantum-mechanical equations'® as our starting
point. In contrast to the standard procedure for taking /s-
coupling into account, which involves an expansion in pow-
ers of v/c, the method presented below is valid in the general
case, including the ultrarelativistic limit.

The solution of the Dirac equation (5 — m)y = 0fora
scalar potential m = m{(r) can be written in the form

Ny,

= _r , I+0I'=2
14 ((_1)(l+l l)/Zg(r)le'm J

(2.17)

where we are using the notation adopted in Ref. 7 in which j
is the total angular momentum. The functions fand g satisfy
the following set of differential equations:

) +xf = (e + m)gr=0,

(gr) — =g+ (e ~m)fr=0, (2.18)

where x = — (1 + L.&). This set of equations is readily re-
duced to the second-order equation for the function F = fr/
(e+m)'”?

F' + (€2 = V¥e, )F =0, (2.19)
where
2
Vi 2 tmit g e+m 2€,+m+re.+m'
(2.20)

Wesshall be interested in positive values of £ for which (2.19)
has solutions that vanish at » = 0 and «. For potentials of
the form m ~7" and /> n, the last three terms in ¥ 2 can be
treated as a perturbation. Near the minimum (r = r,) of the
function /(I + 1)/7* + m*, we can use the approximate
expression

V2= Vz(eo, ro) t K4 - ro)z, 0

/2
£, = [L(I—;Tll+ mz(ro)J )

(2.21)

r=ro

k4=%[x1;_lz+m2].,

Hence, for large /, the motion is quasiclassical and the lowest

eigenvalue £7 can be calculated from the formula
2= V(e rg) + k2. (2.22)

By definition of r,, we have
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m'(rg) = (3 = m%(rg))/ rym(ry). (2.23)

The /s-correction to the energy can now be found from
(2.20):

® y= o
ngeo’ m(ry)

A, =(y - 1) (2.24)

Hence the separation between levels with opposite spin ori-
entations relative to 1 is

Aﬁ, =(y - Do,

where o is the separation between neighboring rotational
levels with the same sign of I's. For a potential that increases
in accordance with a power-type law, we have
y = (n + 1)"/2. The quantity k ~/'/n'/*/r, then character-
izes the radial momentum, and (2.24)-(2.25) are valid
when K €m(ry) ~1/rgnt/2

For an exponentially growing potential m = u exp
X (ar), the most interesting region corresponds to orbital
momenta for which

(2.25)

Eeos, (2.26)
where r, is a solution of
(al ar) ¥
ary = (7‘—2 ) (2.27)

It can be shown that rotation can be relativistic only when
(2.26) is satisfied. As before, the effective mass is deter-
mined by the quantity 7 (r,). We the have ¥ ~ (ar,)'/? from
which it is clear that the motion becomes relativistic for
I>u/a. If, however, u/a <1, but I>u/a, we have (u/
a)exp(ary) > 1 and the y-factor lies in the range [In(a/
,U.) ] l/2<7<11/3.

Condition (2.26) is automatically satisfied if u/a> 1,
in which case 1 <y </ '/

We note that for all the above potentials there is a region
for which k> m(r,). For example, for the exponentially
growing potential, the condition k> m(r,) is satisfied for
1?3 <In(a/u). However, in this case, the y-factor, which is
now characterized by the ratio £,/k, satisfies the condition
vy <€l ~1¢ i.e., the motion is nonrelativistic.

It is clear from these examples that the situation in
which the effective fermion mass is due to the radial localiza-
tion of the fermion, and is determined by %, while the motion
in the quasiclassical region is relativistic, can occur in poten-
tials that increase more rapidly than the exponential poten-
tial. An example of this is provided by a fermion in a spheri-
cal cavity of fixed radius R. The condition on the boundary,
which ensures that the particle remains confined, and is con-
sistent with the Dirac equation, is®

inﬂy}y =y, (2.28)

This condition violates the ¥ invariance, as indeed should be
the case in scalar confinement. The fermion is initially as-
sumed to be massless, so that the function # satisfies the free
Dirac equation py = 0 inside the cavity. The problem can be
solved exactly (see Appendix 1), and the resulting value of
the spin-orbit splitting energy is, as before, greater by a fac-
tor of ¥ than the separation between neighboring rotational
states.

It will be useful later to have one other way of calculat-
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ing the Is-splitting energy in a scalar potential. Let us evalu-
ate the expectation value of the square of the Hamiltonian:
(H?) = f¢y* H*p, d*r. For a Dirac particle, H = @*p + Bm,
so that

H? = p? + m? + im’'(n7). (2.29)
The result for Ag,, (Appendix 2) is identical with (2.25),
and the contribution proportional to ¥ arises from the term
containing m’ whereas the -1 term occurs when the I-s de-
pendence of the wave function is taken into account.

It is now convenient to recall the attempt to perform a
classical calculation of the energy correction (see last Sec-
tion). The spin-dependent correction to £° has the form
2i(f5)ésm [see (2.12)] where f, = (1/m)d, m, so that
whenm = m(|r|) we havefm= (1/m) (0,m’'n). The quanti-
ty 2i(f€)£sm becomes im’ (ny) in the course of quantization,
which is identical with the last term in (2.29). Hence it is
clear that the evaluation of the Is-splitting energy in the clas-
sical approach produces the term Y@ which is the leading
term in the relativistic limit. The -1 term arises only in the
quantum-mechanical approach in which the /s dependence
of the states themselves is taken into account.

In the case of motion in a vector potential, terms pro-
portional to ¥ in the spin precession frequency are found to
cancel out. Similar cancellation occurs in the energy as well.
Hence, the Is-splitting cannot be calculated for the vector
potential at the classical level.

We thus arrive at the conclusion that, when the only
source of spin precession is the Thomas effect, the spin-orbit
splitting energy is equal to the precession frequency

Q=0-13,

where the energetically most favorable orientation of the
spin is along the axis of rotation. The important conclusion
that follows from this is that, in the ultrarelativistic limit, the
Is-splitting exceeds by a factor of exactly y the separation
between rotational levels and, in this sense, constitutes a sig-
nificant effect.

We now turn to the formulas that will be used to calcu-
late the mass spectra of high-spin hadrons. We begin by sum-
marizing the conclusions of §§1 and 2. In §1, we started with
positronium and calculated the spin-orbit part of the Breit
potential. We then considered the g7 system and examined
spin-orbit effects for small orbital excitations for which the
shape of the object is still nearly spherical and the quark
velocity low. We showed that there were additional contri-
butions to the Is-coupling that were due to confinement in
the ¢g system. As / increases, and the hadron stretches out
into a tube of chromoelectric lines of force, these contribu-
tions alter the nature of the /s-coupling both qualitatively
and quantitatively, and the Thomas component of the quark
spin precession begins to dominate. We shall therefore as-
sume in our discussion below that the precession of the spins
of the quarks at the ends of the relativistic string is entirely
due to the Thomas effect.

In §2 we examined the connection between the quark
spin precession frequency and the spin-orbit coupling energy
by considering the example of a quark in a scalar potential in
which the Thomas effect was the sole cause of spin. The
conclusion was that the spin-orbit splitting energy was equal
to the Thomas precession frequency. We shall use this result

(2.30)
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when we consider the idealized QCD-string model in con-
nection with the spectra of high-spin hadrons.

3. THE SPECTRUM OF HIGH-SPIN HADRONS IN THE MODEL
OF ASTRING WITH /s-COUPLING

The results obtained in the preceding Sections enable us
to find the connection between the total angular momentum
J and the mass M (Regge trajectories) in the string model by
expressing J and M in terms of the angular velocity » of the
string. We recall that we are interested in relatively high
orbital momenta for which the quasiclassical approach is
valid.

The string tension v and the quark mass m, will be
regarded as parameters. The mass m, will be understood to
mean the effective mass of the quark, defined in the comov-
ing frame. The reasons for the appearance of the effective
mass are relatively clear. They are: the localization of the
quark in the longitudinal (along the string) direction, due to
the centrifugal barrier, and also localization in the trans-
verse direction, determined by the transverse size of the
string. The effective mass interpreted in this way is obviously
independent of the rotational frequency of the string, so that
the latter can be looked upon as a parameter.

In the quasiclassical limit, the energy (mass) M and the
total angular momentum (spin) J of the string with quarks
at the ends can be found from the following formulas:'*'’

L/2 dx
v
AE,,
- (wx)Z ]1/2 a- v2)l/2 + Is
2
L2 G.1)
vidx2dx
J= f ————“—‘[1 ~ (wx)z]l/2 + Sl + SZ;

~L/2

where L is the length of the string and v = wL /2 is the quark

velocity. There is also an additional condition that follows

from the requirement that the quark at the end of a string

must be in equilibrium:
dlpl _

Ph=v, 3.2)
where p is the quark momentum and 7 is the time measured
in the comoving frame. In the laboratory frame, this condi-
tion assumes the form

—]-p-l--v(l )12, (3.3)
which is equivalent to
mwy =vly, y=1/(1-»A)2 (3.4)

Having evaluated the integrals in (3.1), and having substi-
tuted the explicit expression for the Is-coupling energy, we
obtain the final result in the form

2
(arcsm v+ U)’) a(s; +s)(y— 1),

J=slm+s2w+a%(arcsin_v+¥); (3.5)
where s, ,5,,, are the projections of the quark spins onto the
axis of rotation.

Asthe orbital angular momentum increases, the motion
of the ends of the string becomes relativistic, but the relativ-
istic regime develops relatively slowly:
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w 1/4
y= [_—2] M, (3.6)
erq

In this limit, the connection between the mass M and
the total angular momentum J is given by

3/4

2
2 8 |*Mg
M* = 2rvlJ + 3”(21,]

1/4

- (Sme)(%] JUAC 3T

T
mq

Itis interesting to note that the Is-correction to the mass
produces the same deviation from the linearity of the trajec-
tory as the inclusion of nonzero quark mass in string dynam-
ics.

An attempt to find the /s-correction to the energy of a
massive fermion localized at the end of the string was also
undertaken in Ref. 18, using the approach proposed in Ref.
19. The correction found in Ref. 18 in the nonrelativistic
limit is identical with the correction due to the Thomas spin
precession. At the same time, the spin precession equation,
which is readily obtained from the equation for ¥ given in
Ref. 18, has nothing in common with the Thomas preces-
sion. Hence, it follows that the approach employed in Ref. 18
is not internally consistent.

The influence of spin degrees of freedom was discussed
in Ref. 20 in the context of longitudinal vibrations, but no
specific results were obtained for the string spectrum with
allowance for quark spins.

Spin effects in orbitally excited mesons were also dis-
cussed in Ref. 21. A closed set of Hamiltonian constraints
was sought for a rectilinear string with massless quarks,?'*?
whose spins were described in terms of the Grassmann vari-
ables. Four Regge trajectories corresponding to different
orientations of quark spins were obtained after quantization
of this degenerate system by the Dirac method. Experimen-
tal data on meson trajectories were described in terms of four
adjustable parameters, fitted to each quartet of trajectories,
and the common slope a’. The spin-orbit splittings were
found in this model to be small and practically constant for
large J, and M}_, ,<M;_,<M;_,_,. We shall see that
the explicit inclusion of Thomas precession leads to signifi-
cantly different predictions: the spin-orbit splitting is found
to be comparable with the separation between neighboring
resonances on a given trajectory, and the ordering of the
levels is such that states with maximum total spin have lower
energy for given /.

4.DESCRIPTION OF EXPERIMENTAL DATA

The formulas given by (3.1)-(3.5), which determine

the relationships between J and M, can be generalized in a

fairly obvious way to the case of different quark or quark
cluster masses at the ends of the string:

M =2 |arcsin v, + arcsin v +—1—+L

@ ! 2hur v,

= sio(yy = 1) = sy, — 1), (4.1)
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v . , L
J =5 + sy + —arcsii v +arcsia v, + —+ =1, (4.2)
2w 1

2 Y Y2l

and the conditions for the equilibrium of the quarks at the
ends of the string are

ouuy}=v,  ougpi=v; (4.3)

where u,, i, are the quark masses, v,,, are the quark veloc-
ities, and 7, = (1 — v?) ~"/2. When p, #u,, there are addi-
tional conditions that determine the position of the center of
gravity of the string with quarks:

WX =V, WXy =U,, (4.4)

It is readily verified that the momentum of a string seg-
ment x, with cluster u, is equal to minus the momentum of a
segment x, of a string with cluster u,. For given ., &£,, and v,
the formulas given by (4.1)—(4.3) give the dependence of J
on M in parametric form.

We begin our description of experimental data by con-
sidering orbitally excited mesons qq(q = u or d) with quan-
tum numbers J°¢ = 1~ ~,2%*,37~...(p,» trajectories).?
The position of the particles on the (M 2,J) plot is defined by
(4.1)-(4.3) with

Hy=py=mg, S5 =85= 1/2.

The parameters m, and v are determined by the masses of
the two particles with the appropriate quantum numbers.
We recall that the model must work for high orbital excita-
tions, so that it is more correct to choose high-spin particles
when the parameters are determined. Since there is no iso-
spin dependencein (4.1)—-(4.3), the model predicts degener-
acy in total isospin (in this case T=0 or 1). If we take m,
and v in accordance with (4.1)-(4.3), we can uniquely pre-
dict the positions of the remaining particles on the @ and p
trajectories, and also the masses of orbitally excited analogs
of pions with quantum numbers J°¢ =1+~27 "3+~ |
that are degenerate in terms of mass with particles with
T7=0.

The next step is to determine the masses of orbitally
excitated strange mesons gs. This can be done by introduc-
ing only one additional parameter, namely, the effective
mass m, of the strange quark, which can be determined from
the position of a single point, say, a point on the K* trajec-
tory. The remaining masses of the gs levels, and also the
masses of mesons ss with hidden strangeness, are predicted
unambiguously. Similarly, the behavior of the mass of the
charmed quark m_ enables us to calculate the mass of the
orbitally excited analogues D, D*, D, and D¥ of the 7, and
¥ mesons. Mesons consisting of a light and a heavy quark
occupy a special place and will be discussed in a separate
Section.

To calculate the masses of orbitally excitated strange
baryons, we have to introduce two new parameters, namely
the masses of the strange diquarks qq where T=S=0or 1
(denoted by m,and m |, respectively ). We shall see that of all
the possible configurations describing orbital excitations of
baryons, the energetically most convenient is the configura-
tion consisting of a quark and a diquark at different ends of
the string. In general terms, this is the scheme that we shall
use to calculate the masses of orbitally excited hadrons, and
then compare the predictions of the model with experiment.

Kobzarev et al. 263



i 11 ) | 1 1 L) 1 A

2 4 6 8 M M2 GeV?

FIG. 1. Masses of orbitally excited qq (q = u,d).

Our calculations will be presented in the form of trajectories
on the (M ?,J) plot; the experimental data will be taken from
the tables reproduced in Ref. 1.

4.1. g mesons (q=u,d)

The string tension v and the effective mass m, of the
light quark, which are involved in calculations of the mass of
the qq states and are fixed as indicated above, are as follows:

my=340McV,  (2m)!/2 = 1,07Gev.

In Fig. 1, trajectory 1 (the p trajectory) corresponds to
quark spins aligned along 1. The quantum numbers of the
particles on this trajectoryare J° =2++37~ ..andT=0
or 1. Experimental data are in good agreement with the pre-
dictions of this model. Trajectory 2 has a different projection
of the spin of one of the quarks (s, = —s, = + 1/2). The
Thomas correction is zero in this case. The quantum
numbers of particles on this trajectory are J°¢ =1%-,
2-%,3%*7,.,T=0 or 1 (7 trajectory). The number of
states on trajectory 2 is greater by a factor of 2 because
the quark spins can add to O or 1.

The mutual disposition of the particles on trajectories 1
and 2 is in fact determined by the spin-orbit splitting: the
model predicts that a particle with spin J and parity P on
trajectory 1 should be lighter (by the amount corresponding
to the Thomas shift) than the particle with spin J — 1 and
the same parity P on trajectory 2. Experimental data ob-
tained for low J are in conflict with this prediction (the case
of low J will be discussed below in greater detail). However,
when / = 3 (J = 3 on trajectory 2), there are indications of
qualitative agreement. Unfortunately, there is a lack of ex-
perimental data for higher spins on trajectory 2, and it is
precisely this region that is of particular interest from the
point of view of spin-orbit effects predicted by the string
model.

4.2.q3 and s8 mesons

The introduction of only one further parameter, name-
ly, the mass of the strange quark, enables us to calculate the
spectrum of orbital excitations of K, K*, and ¢ mesons.
These predictions are again deduced from (4.1)—(4.3). The
mass of the strange quark can be determined, for example,
from the mass of K*(1780) with J* =3~. This gives
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FIG. 2. Masses of orbitally excited strange mesons.

m, = 440 MeV. The predicted masses of the remaining orbi-
tal excitations of K* mesons are indicated by trajectory 1 in
Fig. 2. The spins of both quarks are aligned along the axis of
rotation in such a way that the total angular momentum J is
a maximum for given orbital angular momentum. If we
know the quark masses we can also calculate the spectrum of
orbital excitations of K-mesons with quantum numbers
JF.=1%,27,3%, and so on. The model predictions are
shown by trajectories 2 and 2’ in Fig. 2. The sum of the
projections of quark spins is then zero, and J = /. The resul-
tant spin of the quarks can be 0 or 1, so that the number of
states is greater by a factor of 2. Trajectories 2 and 2’ corre-
spond to different superpositions of states with different to-
tal quark spins.

Figure 2 also shows the experimentally established par-
ticles. The absence from the kaon spectrum of lighter parti-
cles with quantum numbers J* = 3% and 4~ could be a seri-
ous argument in support of the hypothesis that the spin-orbit
interaction is due to the Thomas precession.

If we know the string tension and the effective mass of
the strange quark, we can calculate the mass spectrum of the
orbitally excited analogs of the ¢@-meson with
JP¢ =2%%,37~,4* ", and so on. The model predictions are
shown in Fig. 3 (trajectory 3) and are compared with experi-
mental data. Figure 3 also shows the predicted mass spec-
trum. of the orbitally excited system ss with quantum
numbers J7¢ = 177,27 +,3%~, and so on. The trajectories
shown in Figures 2-3 exhaust the predictions of the model

7
7+ J 4
sb
5 —
4t
3 -
(1850)
2 | #
1 telises)
1 1 1 1 L 1 ) E— i\ 1
2 4 6 8 W M2 Gev?

FIG. 3. Masses of orbitally excited ss.
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for the mass spectrum of the lightest excited states of gs and
s§ with all the possible quantum numbers J*. The ground
states of K and K* do not, of course, appear in this discus-
sion.

4.3. Orbital excitations of baryons

A number of additional questions arises when the mass
spectrum of orbitally excited baryons is calculated. The first
is: what is the configuration that corresponds to the mini-
mum mass of a state for given quantum numbers? We can
imagine three different possible configurations describing
orbital excitations of baryons (Figs. 4-6). (In all three
cases, the string tension is, of course, the same as for the
mesons and is equal to v.) Let us compare the energies corre-
sponding to these configurations, assuming that the quark
spins are aligned along the axis of rotation. We can then
readily see that the configuration indicated by the star in Fig.
4 corresponds to the following dependence of M on J (as
before, defined parametrically):

M=3m, 15=3,

2 3 (4.5)

where M and J are given by (4.1)-(4.3) withy, =y, = m,.
For large J,
3
M} = S\ (4.6)
The energy corresponding to the configurations of Fig.
5 can also be readily calculated from the formulas that speci-
fy the meson trajectory:
1
My=M+m, Jy=J+3. (4.7)
However, it is clear that this configuration is unstable be-
cause the centrifugal force (in the absence of the spin-spin
interaction) tends to push the quark toward the end of the
string. We shall not examine this configuration any further.
The energy of the configuration shown in Fig. 6 de-
pends on the mass of the diquark. For high angular mo-
menta, when the contribution of the diquark mass can be
neglected, we have

Mlzll = 2wl (4.8)

Comparison of (4.6) and (4.8) shows that the star-type con-
figuration is energetically inconvenient at high J. Finally, for
low J (orbital angular momentum >1) we must take into

o ]

b 9 9

FIG. 5.
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FIG. 6.

account all the terms in M and J. The choice of the most
energetically convenient configuration can then be solved
only numerically. Anticipating a little, we note that, for low
J, the most convenient configuration is the one with a quark
at one end and a diquark at the other.”*** The mass of the
diquark must be known before we can calculate the energy
and the angular momentum. We note that, in this situation,
the very concept of the mass of a colored cluster is meaning-
ful if the localization of the quarks along the string by the
centrifugal force does not change with increasing J. If we use
the arguments put forward in Ref. 4, we can show that the
localization of the quark in the longitudinal direction is of
the order of AL = L /J'/? where L is the string length. For
high angular momenta, L ~4J '/2/(27v)'/?, so that AL ~4/
(27rv) /2. The localization of the quark in the transverse di-
rection will obviously not change either because it is deter-
mined by the cross section of the string, and the string prop-
erties do not depend on J. The diquarks in baryons are
antisymmetric in color, so that 7=S=0or 1.

We begin with states that have the maximum possible
spins, taking first the lowest orbital excitations (/=1).
Then, by identifying the predicted particles with experimen-
tal data, we attempt to determine the diquark masses.

It is clear that baryons with a triplet diquark should
have the lowest mass for given spin J. Particles with quan-
tum numbers J* = 5/27,7/2%,9/2~, and so on should lie
on this trajectory. This prediction is in agreement with ex-
periment. As in the case of mesons, the model predicts de-
generacy in isospin. Since the diquark isospin is 1, baryons
with 7’y = 1/2(N) and T’y = 3/2(A) should lie on this tra-
jectory. The trajectory is defined by (4.1)—(4.3) with

.“1=mqv sl=]/2; Hy=my, S2=1.

Figure 7 shows the predictions of our model, i.e., the
trajectory (N — A), for m, = 550 MeV. It also shows the
experimentally identified particles with the lowest masses

for the corresponding quantum numbers J* . Judging by this

T (n-4),

T
i
i
l
|
N
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Q
4
&)
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FIG. 7. Masses of orbitally excited levels of the system q — qq, with
JP=5/2-7/2%, .., T=1/2,3/2.
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figure, the model agrees with the experiment, beginning with
J = 7/2 (which corresponds to / = 2) onward. The discrep-
ancy between the model predictions and experimental data
for small J suggests that the chromomagnetic field must be
taken into account. This is discussed in some detail later.
Clearly, these effects are important only for the lowest orbi-
tal excitations. It is also important to recall that, strictly
speaking, the model is not valid for the lowest orbital excita-
tions, so that we can conclude that there is qualitative agree-
ment with experiment for low J. Usually, the Ty = 3/2 bar-
yons shown in Fig. 7 describe the so-called A trajectory (see,
for example, Ref. 25). The isospin degeneracy predicted by
the string model appears to agree with experiment (see Fig.
7). It would be interesting to verify this prediction for higher
spins.

Let us now consider trajectories with a singlet diquark,
for which the spin of the quark sitting at one end of the string
and the orbital angular momentum combine so as to produce
the highest possible result. The lightest baryons with
JF =3/27,5/2%,7/27, and so on should lie on this trajec-
tory. The diquark isospin is zero, so that the total isospin is
fixed at T'y = 1/2. Experimentally identified baryons that
satisfy these criteria are usually described by a nucleon tra-
jectory (N, trajectory®®). The number of such particles is
small: apart from the proton (which does not fit our diquark
classification of trajectories), only two nucleon resonances
have been established experimentally, namely, N(1680)
with J® = 5/2% and N(2220) with J® =9/2%. We note
that the mass of N(1680) is practically the same as the mass
of w;(37). Both these particles are described in the string
model as orbital excitations with / = 2, and one of them is
obtained from the other by replacing the antiquark with the
singlet diquark. Since the spin-orbit correction for mesons is
roughly speaking twice as high, the singlet diquark is lighter
than the quark, and is substantially lighter than the triplet
diquark. A numerical fit carried out for the mass of the
N(1680) gives my=220 MeV. We note that
m, — mg= (m, —m_)/2. This would be the case if the spin
mass splittings were determined in both situations by the
interaction between the colored magnetic moments of the
quark.

The model predictions for other nucleon excitations in-
volving the singlet diquark are shown in Fig. 8 (N, trajec-
tory). This was calculated from (4.1)-(4.3) with

u=m, s =1/2 s, =0.

q Mo = My,

The experimental data of Fig. 8 include the baryon with
J* =13/2%. Inthe 1990 tables of elementary particles,” this
particle is shown as N(2700). Two experiments are cited in
support of this, but their results do not overlap. They are
3000 + 100 and 2612 + 45 MeV. It is possible that these re-
sults are more correctly interpreted as providing evidence
for the existence of two nucleon resonances. One of them
(with the lower mass) is shown in Fig. 8 and the other will be
taken into account below". Figure 8 also shows the data for
N(1520) and N(1700) with quantum numbers J* = 3/2~,
which can be interpreted as the first orbital excitation of the
nucleon. There is, of course, little hope of quantitative agree-
ment. In addition to magnetic effects, we must also take into
account configuration mixing. We note that the ground state
of the nucleon has an equal probability of containing di-
quarks with .§ = 1 or § = 0. Appreciable mixing of configu-
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FIG. 8. Masses of orbitally excited baryons q — qq, with J* =3/27,
572+, ..,T=1/2.

rations with different diquark spins can also occur for the
lower orbital excitations. In this sense, baryons with J* = 3/
27 are superpositions of states lying on different trajectories.
We note that the concept of clusterization is valid for small
configuration mixing. Judging by Fig. 8, configuration mix-
ing and chromomagnetic field effects become relatively in-
significant from / = 2 onward (on the N, trajectory this cor-
responds to J* = 5/2%).

4.4.Other baryon trajectories

So far, we have confined our attention to baryon excita-
tions in which the particle spins at the ends of the string have
the most favorable orientations for spin-orbit coupling. We
now consider states with the triplet diquark for which
J=1+41/2. As on the (N — A), trajectory, here again we
should have isospin degeneracy. Moreover, the resultant
quark spin should be 1/2 or 3/2, so that the number of N and
A states is greater by a factor of 2. In the string model,
J =1+ 1/2 can occur in two different ways:

(we recall that the diquark mass m, is already fixed). The
corresponding trajectories will be denoted by (N — A), and
(N — A), (Fig. 9). Particles with J* =3/27,5/2%,7/2",
and so on lie on these trajectories. The trajectories (N — A),
and (N — A),. correspond to the different superpositions of
states with different resultant quark spins

1/2 1/2
(23 e 1) - (1) (L L L
v=(5) vl+d) - vl

oMMz A2
UK RO
Of course, in reality, the superposition of states must be de-
termined with allowance for the coupling between colored
magnetic moments of quarks, which we have not considered.
Itis clear from Fig. 9 that (N — A), and (N — A), are
very close to one another. It may be expected that allowance
for the spin-spin interaction (subject to the assumption of a
triplet diquark) will have little effect on the predictions of
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FIG. 9. Masses of orbitally excited baryons q — qq, with J* =3/27,
5/2%, .., T=1/2,3/2.

the model. As we have already said, we have neglected con-
figuration mixing because trajectories with singlet and trip-~
let diquarks are well separated. We also note that there is no
configuration mixing for the A resonances. Hence, the de-
generacy of the N and A trajectories can be regarded as ex-
perimental confirmation of the absence of configuration
mixing in nucleon resonances. As already noted, this mixing
can be seen in the lower excitations (J* = 3/27). Figure 9
shows the same resonances as Fig. 8, but withJ* =3/2". It
is clear that they lie between N, and (N — A),. trajectories.
Figure 9 also shows the nucleon resonance J© = 13/2*
mentioned earlier.

All that we have said in this Section remains in force for
trajectories with the triplet diquark and J=17—1/2,
JF =1/27,3/2%,5/27, and so on. The model predictions
and the experimental data are shown in Fig. 10 [(N — A),
and (N — A), trajectories].

Figure 11 shows the orbital excitations of nucleons con-
taining the singlet diquark. As before, configuration mixing
of the lower excitations lying on the (N — A);, (N — A),,
and N, trajectories is possible (see Figs. 10 and 11). The
resonance N(1535) with J* = 1/2~ is therefore shown in
both figures. Figure 11 also shows the model predictions for
orbitally excited baryons containing the triplet diquark and
having spinJ =1 —3/2 [ (N — A), trajectory]. The N and
A resonances with quantum numbers J* = 1/2%,3/27,5/
2%, and so on should lie on this trajectory.

The trajectories shown in Figs. 7-11 are thus seen to

L (N_d)/ (N-a)y

A
e
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3
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FIG. 10. Masses of orbitally excited baryons q — qq, with /© = 1/27,
327, .., T=1/2,3/2.
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FIG. 11. Masses of orbitally excited baryons q — qq, with J* = 1/2",
32+, ..,T=1/2 (trajectory N, and q—qg, with JF =1/2",
3727, ..., T=1/2,3/2 (trajectory (N — A),).

exhaust the model predictions for the spectrum of baryon
resonances that constitute orbital excitations in the system
of three nonstrange quarks.

4.5. The spectrum of A hyperons

We now turn to strange baryons. The first interesting
feature is the spectrum of orbital excitations of A hyperons.
We have already shown that the energetically most favorable
configuration is a string with a quark and a diquark at the
ends. Since the A hyperon consists of u, d, and s quarks and
has isospin 0, the possible subdivisions into color clusters as
a result of orbital excitation are as follows:

ays—ud (T=8=0),
b)q—gqs(T=1/2,8=0),
)q-gs(T=1/2,8S=1) (g=u, d).

In actual fact, physical particles can look like superpositions
of states corresponding to these subdivisions, especially if
the masses of the different diquarks are close to one another.
However, the properties of N and A trajectories show that
the singlet diquark is significantly lighter than the triplet
diquark. It follows that the configuration s-ud (S = T'=0)
may well be favored and that the lowest levels in the spec-
trum of A hyperons will have a small admixture of other
configurations. If this is indeed the case, then we can predict
the mass spectrum of orbital excitations of A particles with-
out introducing new parameters. All that needs to be done is
to make the following substitutions in (4.1)-(4.3):

u,=mg, py=my s,=1/2, s5,=0.

The results of this are shown in Fig. 12 together with the
experimental data. It is clear that there is good agreement,
which confirms the above assumptions. The determination
of the spectra of other strange baryons will require at the
very least the introduction of additional parameters (masses

of diquarks with nonzero strangeness).

4.6. Mesons consisting of diquarks

One of the important points in the description of baryon
trajectories was the introduction of the diquarks qq, and qq,
into the model. The diquarks were found to be relatively
light, and the natural question that has arisen is: what is the
mass spectrum of meson states described by a string with
diquarks at the ends? The existence of multiquark hadrons
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FIG. 12. Orbital excitations of the A hyperon with J* = 3/2~, 5/2+, ..

and, in particular, those with exotic quantum numbers, has
been under discussion in the literature for some time (see,
for example, Refs. 1 and 26-31). Current candidates for
multiquark hadrons have already come forward, but their
status is not entirely clear (see Refs. 1 and 29-31). It may
well be that orbitally excited four-quark mesons in which the
diquarks are held apart by a centrifugal barrier will become a
very effective source of information on multiquark systems.

In the string model, the masses of the qq — a mesons
are predicted unambiguously as soon as the diquark masses
are fixed. We recall that we are considering diquarks that are
color triplets, so that the string tension v is at a minimum
and is equal to the string tension in ‘ordinary’ mesons.

The spectrum of orbital excitations with singlet di-
quarks at the string ends can be calculated from (4.1)—(4.3)
with

By =, =my 5 =5,=0.

These calculations are shown by trajectory | in Fig. 13.
States lying on this trajectory have isospin 0. The quantum
numbers are J* =17-,2%*,3~_, and the G-parity is
equal to the C-parity.

The masses of orbitally excited 4q levels constructed
from the singlet and triplet diquarks (qq, — qq, and
qq, — 9q,) can be calculated from the same formulas with

By =mg, fp=mg; 5;=0, sp=1L

The numerical results are indicated by trajectory 2 in Fig.
13. The states qqo — qq, and qq, — qq, (indicated by |1)
and [2)) are obviously degenerate. It is also clear that these
states do not have specific C and CP parities. States with
definite C and CP are the linear superpositions:

0

T N S | 1 1 T T |

0 M2 GeV?

FIG. 13. Orbital excitations of mesons consisting of non-strange diquarks
compared with qq excitations (dotted trajectories).
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n=-t -
ll)—n(fl) 12)),

=L
12) = — (1) + 12)).

The diquark isospins are O and 1, respectively, so that the
total isospin is fixed and equal to 1. The quantum numbers of
states of the form |1)’ are JP© =2~ ~,3%~,47*... and are
equal to the quantum numbers of particles on the 7 trajec-
tory. States of the form |2)’ have quantum numbers
JPE€ =277,3%*+ 4~ ~,... Thestates |1)’ and |2)’ with dif-
ferent C parities but the same quantum numbers J* are de-
generate. The degeneracy can be lifted by the exchange inter-
action or, for example, by interaction with open hadron
channels because of the different C, i.e., different G, parities.
For comparison, Figure 13 also shows the 7 trajectories
(dashed trajectory 3). It is interesting to note that the reson-
ances on the 7 trajectory are somewhat heavier than the 4q
states with the same quantum numbers J* (cf. trajectories 2
and 3 in Fig. 13).

Finally, consider mesons consisting of triplet diquarks.
The masses of the states with the energetically most favor-
able orientation of diquark spins can be calculated from
(4.1)-(4.3) in which

By=py=my, s =s5=1

(trajectory 4 in Fig. 13). The total isospin canbe 7= 0,1, or
2. In our model, these states are degenerate. The quantum
numbersareJ7© =3~ 7,47+ 5, and are the same as on
the p trajectory (trajectory S5). It is clear that trajectories 4
and 5 are practically identical, and that the separation be-
tween particles with the same J does not exceed 20 MeV for
high orbital excitations.

This is how the model predictions look in relation to the
masses of states with the energetically most favorable orien-
tations of diquark spins in Is-coupling. Particles constructed
from triplet diquarks qq, — qq, are the lightest for given
spin J.

They include particles with isospin 7" = 2, and it would
be interesting to verify the existence of such particles experi-
mentally.

Apart from the results given above, the model offers a
number of further predictions characterized by different di-
quark spin orientations relative to the direction of 1, so that
the corresponding masses are different by an amount equal
to the spin-orbit interaction energy (cf. Ref. 32). Compari-
sons with other models and a discussion of the relation to the
baryonium problem are also presented in Ref. 32. It is clear
from the above results that the model predicts a large num-
ber of boson resonances near and above the NN threshold.
We also note that many of the predicted resonances lie below
this threshold. The lightest of them is the meson constructed
from singlet diquarks with 7°(J€)=0"(1"") and
masses in the range 1.2-1.3 GeV.

The C-meson with hidden strangeness was discovered
relatively recently®® and was found to decay along the @7°
channel and to have quantum numbers J© = 1. The mass
of this meson is ms = 1480 MeV. It was described in Ref. 33
as a four-quark object of the form qgss. In the string model,
this meson can be interpreted as the first orbital excitation of
the system consisting of strange diquarks with zero spins,
i.e., @S, — qs,. If this is so, then this experiment can be used
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to determine the mass of the strange diquark and to predict
the masses of higher orbital excitations. The mass of gs,
turns out to be 360 MeV, which is greater by 140 MeV than
the mass of the nonstrange quark qq, (we recall that, in our
model, the effective masses of the strange and nonstrange
quarks differ by 100 MeV). The masses of the next orbital
excitations on the C-meson trajectory are 2% (1.88 GeV),
37(2.19GeV), and 47 (2.46 GeV). According to our mod-
el, particles with isospin 0 should lie at the same points.

4.7.Dibaryons

There are many reasons why it is interesting to consider
orbital excitations of six-quark states. First, the ground
states of these systems are relatively heavy because of the
strong spin-spin repulsion between the quarks and the possi-
ble increase in the constant B, i.e., the vacuum energy den-
sity.>**® Second, these states should readily decay into open
hadronic channels and are therefore relatively wide. The di-
vision of 6q systems into clusters, e.g., by the centrifugal
barrier, should therefore be favorable from both the energy
point of view and from the point of view of stability against
decay into colorless hadrons.

Orbital excitation of 6q systems were considered earlier
in Ref. 37. The new point in our discussion is the inclusion of
the spin-orbit interaction of clusters. It turns out that the
spin-orbit interaction not only provides a correction to the
energy of the rotating dibaryon, but also determines the
choice of the energetically favorable subdivision into quark
clusters.

An analysis of the relatively well-known rotational
series of dibaryons 3F,(2.25), 'G,(2.43), *H.(2.7),
'15(2.9),... was used in Ref. 41 to show that the most favor-
able configuration was the diquark qq; and the four-quark
cluster q5, with T=0and S = 1 (Fig. 14). The mass of the
cluster q5, was found to lie in the range 1.05-1.15 GeV.

By replacing the diquark qq, with qq, we obtain a series
of dibaryons with T = 0. The lowest state in this series, d’,
has /=1 and J®* =2". It is relatively light, i.e.,
m(d") = 1.95-2.05 GeV. It is important to note that this
dibaryon cannot decay in the NN channel because of its
quantum numbers. The principal decay channel is therefore
NN=. However, this also is possible only if the d’ lies above
the NN7 threshold (2.02 GeV). When this is not so, the
principal decay mode is electromagnetic, i.e., d’ — dy. Figure
14 shows the predictions for the remaining orbital excita-
tions on the d' trajectories.

[+
T

W N
T

by
T

| 1 4 1 1 | { 1 1

!
0 M2 GeV?
FIG. 14. Orbital excitations with double the baryon charge.
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5. LOW VALUES OF J. MODEL-INDEPENDENT ANALYSIS OF
P-WAVE HADRONS. THE SPECTRA OF MESONS
CONSISTING OF ALIGHT AND AHEAVY QUARK

For low orbital excitations, the quark spin precession is
influenced both by the Thomas effect and by the chromo-
magnetic field due to the presence of the vector interaction
between quarks and the induced chromoelectric field (see
§1). We shall now use the language of potential models***
to estimate the contribution of different spin effects, taking
P-wave mesons as an example. With these estimates as the
starting point, we can try to predict the values of / for which
there should be a transition to a reversed level ordering (as
compared with the Coulomb case), with the Is-splitting
dominated by the Thomas effect. Mesons constructed from a
light and a heavy quark occupy a special place from this
point of view. Once we know the different spin-dependent
contributions, we can interpret the details of the spectrum of
P-wave A resonances, having first found the effective Hamil-
tonian for the interaction between the quark and the triplet
diquark.

We start with the fact that the masses of P-wave ha-
drons can be calculated as follows. First, by solving the wave
equation, we find the center of the multiplet and then, as
corrections, we calculate the spin splittings on the assump-
tion of the same coordinate dependence of P-level wave func-
tions (actually, a weaker assumption is sufficient: it is
enough to assume equal matrix elements of operators that
appear in the effective Hamiltonian, and determine the con-
tributions of tensor and spin-orbit forces). The second part
of the problem can be treated separately in a model-indepen-
dent manner, i.e., without using any specific wave functions.

5.1. Spin effects in the spectra of P-wave mesons

The spin-dependent effective Hamiltonian obtained
from QCD in Ref. 44 can be written in the following form
when the Lorentz invariance is taken into account:*

av, ( s S
Hs=_l_.l Bt W T
r or 2mf 2m%

av,( s S S +s
+1272 L2 2y
r or 2,,,1 2m;  mym,

1
m,m,r’

av. av.
SN0 = FPES) + s

+
m m,r ar

(5152)
(5.1

(we note that allowance for the color structure in the case of
qq is a trivial problem; the corresponding factors are includ-
edin V;). This expression contains terms of the order of (v/
¢)? and is written in the center of mass system of the quarks.
The quantities 5, , and m,, are the spins and the effective
masses of q and g, respectively. The Hamiltonian (5.1) hasa
simple interpretation if we consider that the attraction be-
tween q and q is due to vector (short range) and scalar
(string simulating) interactions, and if we also include the
induced chromomagnetic field (see §1). Actually, the
Thomas precession that includes contributions due to the
vector and scalar potentials has an associated energy propor-
tional to

ot N 31 P (5.2)
+ . .
2mf 2m§
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The chromomagnetic field due to the vector interaction and
the presence of induced charges and (or) monopole currents
influences the spins of q and qq and produces Is-coupling of
the form

s S
(L+_1.) (_n+_z_].,
m omypim m

The total contribution of /s-dependent corrections can obvi-
ously be written in the form of the sum of the first two terms
in (5.1). The remaining two are the tensor and spin-spin
forces. We note that the induced field ensures that the simple
coupling between @V, /dr, which occurs at the level of the
trec approximation in the ordinary potential approach
(Breit’s formula), is now absent. This coupling can also be
broken by the a; corrections to the effective potential V,,
which cannot be regarded as small*® for the q§ mesons
(q — u,d). In the QCD-based formalism,** the coupling be-
tween V', /0r is generally absent. In principle, this coupling
could be established by using the approach developed in
Refs. 47 and 48.

To proceed from the Hamiltonian (5.1) to the mass
formulas, we use the following notation for the matrix ele-
ments {(1/r)aV,/dr):

(5.3)

16V lavz

(r ar (r ar 54
(5.4)

laV3 lav4

rar) rar)-

and assume that S, V, ¢, h are adjustable parameters. It is
implied that the color structure has been taken into account
and the corresponding factors are included in V;. This is a
trivial problem in the case of mesons (see §1), but this can-
not be said about baryons which will be discussed later.

To fix the parameters, we start with the following tradi-
tional particle identification in terms of the quantum
numbers of the qq pair (we use the particle notation adopted
in the 1990 tables given in Ref. 1):

3 3 1
2, Ky —“Pp,a, - P}, b — Pvao—apo’

K,(1270) and K, (1400) — mixture of °P, and 'P,.

It is important to note that this interpretation gives rise
to a number of problems and that other possibilities are dis-
cussed in the literature (see, for example, Ref. 29).

As a preliminary step, we note that the P-wave meson
wave function vanishes at the origin and is localized for > 1
fm. The magnitude of the scalar potential kr(k ~ 1/4 GeV)?
that simulates the string in this region, and appears in the
wave equation as part of the combination m; 4 kr;, exceeds
the effective mass of the quark m; ~ 1/3 GeV by a factor of at
least 2, whereas the scalar attraction acting on the quarks is
stronger than the vector attraction by a factor of at least 2
(Refs. 49 and 50). We can therefore consider that the P-
wave wave function and, together with it, the matrix ele-
ments S, V, and ¢ change very little between nonstrange and
strange mesons (which means that one of the masses must
increase by about 100 MeV). The dependence of spin split-
tings on the quark masses is then essentially given by (5.1).
This means that the same model-independent approach to
the description of spin effects can be used for P-wave qq
(q = u,d) and gs mesons.
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Comparison of the center of the *P, multiplet

e= 2 + 1)m(3p,)/2 @ +1)

J=0

(5.5)

with the mass of the 'P, meson shows that spin-spin forces
are small. We shall therefore assume henceforth that A = 0.
The masses can be readily found from

m=e+a(s, ~ sl + B(s, + s + 1T, (5.6)
which follows from (4.10) where

a=(5-V)m' —m3")/4,

B =(VImmy) - I(S - V)(m% + m;%)/4], (5.7)

y=1t/mm,

and L,s; are interpreted as the matrix elements of the corre-
sponding operators. The contribution of tensor forces can
now be calculated with the help of the formula

T=@i-1)"'@+3)[~1s)? - %(ls) + %ﬂs’ 1,

S=5,+5, (5.8)

It follows from (4.14)—(4.17) that the P-wave masses are
m('P)) =¢,

m(3P,) = ¢ + B — (v/30), (5.9)

m(P)) = ¢~ B + (y/6),
m@Py) = ¢ - 26 — (y/3).

The parameters B8 and y are different for strange and non-
strange mesons, and are expressed in terms of the matrix
elements S, V, and ¢. In addition, the mixing of axial mesons
occurs in the strange sector. The physical states

|K,) = 13P,)os ¢ + |'P )sin p,
'Kl’)= - |3Pl)sin p+ |1Pl)cos P

have masses g, and u, that are the eigenvalues of the mass
matrix

(5.10)

m(’P))
('P,|H |P,))

CP,|H,|'P))
m(Py |’ (5.11)
where (*°P,|H,|'P,) = a2 [see (5.6) and (5.7)]. The def-
inition of the mixing angle @ is the same as the definition
given in Ref. 51 if K, is identified with K,(1400) and K|
with K,(1270); the definition corresponding to ¢ — (7/
2) — @is used in Ref. 52.
Without going into the details of the fit, we reproduce
the parameter values that determine the spin splitting of the
P-levels: for m,/m, =2

5/m2 =570 MeV, V/m2=250 MV, /m? =200 MeV.

(5.12)

Table I lists the corresponding mass splittings and the
values of @ [ for convenience, we reproduce the masses them-
selves, having fixed the position of the centers of the multi-
plets qq and ¢S in accordance with the mass of the b, meson
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TABLE I. Mesons (masses in MeV).

] %i“l_l b

Lo [ & [ & [ 6 [ & [ v

Model 983 1173 1230 1313 1191 1276 1394
Experi- 983 1262 1232,6 1310,7 1270 1401
ment +3 + 23 + 3,0 +1,3 *+ 10 = 10

1404 53,5°
1425,6 56°
+1,5 + 3

and the half-sum of the masses of K, (1270) and K, (1400),
respectively]. It is clear that this model-independent ap-
proach allows us to describe the masses of P-wave mesons to
within at least 20 MeV with the exception of the mass of a,,
which is approximately 80 MeV below the tabulated value.'
Problems associated with the determination of the position
of the a, resonance are discussed in a number of papers (cf.
Ref. 53 and the bibliography in Ref. 1) and can hardly be
regarded as finally settled. We also draw attention to the
prediction of the scalar K& meson (J* = 0™) with a mass of
1.2 MeV (the analog of a,). This particle has not been dis-
covered as yet, and the lightest of all the known scalar kaons
is K¥(1350), which clearly cannot be interpreted as the low-
est *P, state,

An analysis of the spin splittings of P-mesons (includ-
ing mesons consisting of heavy quarks) was also performed
in Ref. 54 (see also Ref. 55) on the basis of the tree approxi-
mation for the effective Hamiltonian. The estimated matrix
elements of the scalar and vector interactions are very differ-
ent from those obtained above [see (5.12)] and lead to sig-
nificant discrepancies from experimental data on K-mesons.
However, in their final answer, the authors of Ref. 54 use a
different parametrization that satisfies the empirical de-
pendence found by them of the matrix elements (7~ 'dV,/
Jr) on the quark masses in a broad range of mass values
(right up to the b quark). However, this parametrization
produces considerable discrepancies from experimental data
on qq and gs mesons (see Table IV in Ref. 54).

It follows from our calculations that the splitting of the
P-levels is largely due to Is-forces. The separate contribution
of the vector and scalar interactions (e.g., to the mass differ-
ence between *P, and P, levels) is of the order of 1 GeV,
whereas the P-wave is dominated by the vector interaction
and the resultant effect is ~300 MeV. A similar picture
emerges in the spectrum of P-wave A resonances whose
masses can be estimated with the same S, V, and ¢.

5.2.P-levels of the A isobar

From the standpoint of the model-independent analy-
sis, the first orbital excitation of negative-parity A baryons is
the simplest of all the excited analogs of light baryons, name-
ly, the 3q system. Such levels can be looked upon as P-waves
in the two-particle quark plus triplet diquark system. There
are obviously five such levels: *P, (J=1/2,3/2,5/2) and
P, (J = 1/2,3/2). Each physical particle with J = 3/2 and
1/2 has its own superposition of states with total quark spin
1/2 or 3/2, determined by the spin-orbit as well as tensor
forces. To obtain numerical predictions, we must specify the
mass and the colored magnetic moment of the triplet di-
quark. We shall assume, following the additive quark model,
that

- s ).‘l’

a
w _S1M 5 A3
Paq=m 2

e
m, 2

(5.13)

and that the mass of the diquark m,, is of the order of twice
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the mass of the quark (subscripts 1 and 2 label the two
quarks in the diquark ). The form of the Is-interaction can be
readily established by analogy with qg. We need only re-
member that the energy of interaction between the chromo-
magnetic moment of the ‘isolated’ quark and the resultant
magnetic field is proportional to

sAJAT + AN,
whereas the analogous quantity for the diquark is
A§(sAf + sADL

Hence, it is clear that the spins s, and s, of the quarks in
the diquark appear with the coefficient 1/2 as compared
with the spin s, of the ‘isolated’ quark.

The Thomas spin precession can be taken into account
by analogy with qg, and the corresponding energy term is
obtained by substituting

5, %5, +5,; S,S;3
in (5.1).

Finally, the contribution of the tensor forces is also

readily found from the corresponding term in (5.10) with

sA{/m = sl/1‘l’/mq + szl‘;/mq, sA9/my -+ sjg/mq.

If we combine all these contributions and substitute explicit-
ly for the matrix element A {1 %, we obtain the following
expression for the spin-dependent energy of interaction be-
tween the quark and the triplet diquark with relative orbital
angular momentum /:

H(A)=_la_:l —i‘lizL+—s—‘L2l
] r
r 2mqq 2mq
\
19%3 1 (Sqq -1y -1 _ _Saq _ Sq_
75 (72 S (mg Fmeg)mg T om? —2,,,2[
aq q

AL 1
+ Eﬁm—g S L(5eg) (54 = 3(545,072 1 (5.14)

where s,, =s, + 55, 8, = ;. This formula readily yields the
form of the /s-interaction in the system consisting of a quark
and asingle diquark if we substitute s,, = 0 and assume that
m,, is the effective mass of the singlet diquark.

We now turn to the evaluation of the spin-splittings of
the masses of A excitations, using the matrix elements
(r~'9V,/dd, ) found from the meson spectrum. As before,
the tensor contributions can be calculated from the formula

T= Q- 7@+ 37 = (05, b, + 3 P(s,8,0))
(5.15)

where (...) . is the anticommutator. However, this formula
does not now reduce to the expression in terms of the total
quark spin operator. For the maximum possible J = 5/2, we
have
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m(*Ps;) =€, + —'-:l-z-[va + 4x — 26%)
q
—S(l+22))- L, x=—% (5.16)
30mq mqq' :

where ¢, is the center of the multiplet.

Each of the J = 3/2 states (we shall denote them by
A,,,and A3, ) isa superposition of “P,,, and 2P, , states (by
analogy with the mixing of 'P, and ’P, in K mesons) and
their masses are the eigenvalues of the mass matrix ||z, ||
where

#1 = m(Pyy)s gy = m(Pyp),
— 4 A -
Mg = P:4/2'”5; |2 Pysa) = H3ye

This also applies to states withJ = 1/2(A,,, and A},,). The
off-diagonal elements of ||u,, || are determined not only by
the spin-orbit, but also the tensor part of H {**. Details can
be found in Ref. 50 and we reproduce only the final result.
ForJ=13/2

(5.17)

2 ¢
mu=eaT g 2[V(3+4x—2x2) S +2xY)1+ 152
q

N T 2[V(3+2x—-4x2)—S(4x2—1)]. (5.18)

V3 V3
Hip= g Ve + %) = S(1 = ) -me:.

ForJ=1/2

= '"(4P|/2)

= — 22 — ___
=A~ o 2[V(3+4x 2x%) — S(1 + 2x%)] o2’

Hap=m(P ) = e, — —"n—z[V(s +2x — 4x%) - S22 - 1),

a (5.19)

iy = —ﬂ-[V(x+x2)—S(l -xH1- —‘2-

\l
The spin splittings can now be calculated by substituting the
values of ¥V, S, and ¢ found in the last Section in (4.25)-
(4.28), and taking x = m,/m,, = 1/2.

Anticipating a little, we note that all the experimentally
established’ lightest negative-parity A resonances can be
identified as P-wave excitations of A. A clearer picture of the
results emerges if we fix the center of the multiplet with the
help of the formula

eA=;(2.I+l)m(2'“PJ)[§(2J+1)]“, s=— 2 (5.20)

Since the sum m (*P,) + m(*P, ) is equal to the sum of the
masses of the diagonal states for each of the possible values
of J (1/2,3/2), €, can be readily expressed in terms of the

TABLE II. A-resonances (masses in MeV).

masses of the physical states by introducing in addition a
summation over s. These calculations are summarized in Ta-
ble I1. It is clear that there is relatively good agreement with
experiment with the exception of the mass of Aj,,. Better
agreement can be achieved by varying the ratio m /m_,
However, no less important is the fact that the model-inde-
pendent description predicts the experimentally observed
relative position of P-levels. We note that the main contribu-
tion to the level splitting comes from the spin-orbit interac-
tion. The /s-coupling was totally ignored in Ref. 56, and all
the splittings in orbitally excited hadrons were described by
tensor forces. The motivation for this was that the /s contri-
butions of the vector and scalar potentials practically can-
celled out. It is clear from (5.16)—(5.19) that this is simply
not possible for all the P-levels. Moreover, the calculations
reported in Ref. 56 did not cover all the negative-parity lev-
els.

5.3. Orbital angular momenta/> 1. Mesons consisting of a
light and a heavy quark

As the orbital angular momentum increases, the contri-
bution of the vector interaction decreases much more rapid-
ly than the contribution of the long-range part of the effec-
tive potential H,. The spin splittings are then dominated by
the Thomas effect. Of course, precise predictions based on
the model-independent approach are hardly possible, but
very approximate estimates show that 7~/'/? and that for
/= 2,3 there should already be a transition to the reverse
level ordering (as compared with the Coulomb case). Spin
orientation along l is energetically favorable. The expermen-
tal situation shows that practically complete cancellation of
different spin-dependent contributions occurs in the D-wave
analogs of light mesons: the masses of w,, p,, and 7, are
practically equal. The reverse level ordering is observed for
the F wave (cf. Fig. 1).

The reverse level ordering and the dominance of the
Thomas effect for / > 2 are much clearer in kaons (cf. Fig. 2).

It follows from (5.11) that, in mesons consisting of a
light and a heavy quark (qQ), the reverse level ordering
should occur for smaller / (Ref. 57). The properties of the
spectrum of orbital excitations of qQ mesons are also dis-
cussed in Refs. 58 and 59.

6.DECAY OF ORBITALLY EXCITED HADRONS

We shall now briefly discuss certain features of the
string-model decay of a hadron, due to the creation of a qg
pair in the chromoelectric field of a string.®>-5> We shall be
interested mainly in two-particle decay modes.

The basic properties of fragments produced during the
rupture of the string can be judged from the simplest version
of the model in which the quark masses and spins are not
taken into account. As an example, we consider the two-
particle decay of a string describing meson excitation.

Suppose that at the time of decay the string lies along
the x axis, the center of rotation lies at the origin, and the axis

| s T a1 a8 T A T A,
Model 1660 1730 1747 1958 1891
Experiment 1600 — 1650 1850 — 2000 1630 — 1740 1940 1890 — 1960
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FIG. 15. Decay of an orbitally excited meson resulting in the creation of a
qq-pair.

of rotation is parallel to the z axis. Next, suppose that the
production of the qq pair and, correspondingly, the ‘rupture’
of the string into two fragments occurs at the point x defined
by — R <x <R (Fig. 15). It is clear a priori that this decay
can result in hadron states that are mixed orbital-radial exci-
tations. Actually, when the string splits into two parts, unba-
lanced attractive forces act at the point of rupture and
should give rise to radial oscillations. The fraction of energy
spent in these radial oscillations and the average spin of a
fragment can be determined as follows.
The momentum and energy of a fragment whose ex-
treme points are at x and 1/w are, respectively, given by
/e
_ vwxdx

pP= f - (wx)le/Z

v
Z,' [1 — (wx)zlllz,

/o (61)

dx
e [ vdx
i{. [1 _(wx)Z]l/Z

v
= o5 arccos(wx),
where w = 1/R is the angular frequency.
The velocity of the center of mass of the fragment is

then given by
V = [1 — (wx)?]"/?/arccos(wx). (6.2)

The intrinsic angular momentum (spin) s and the energy M
of the fragment in its rest frame can be calculated from

f dp ~ VdE
$= V2)1/2
X

and
R
_ [4E-vap
= YN
1=V

where Vis the velocity of the center of mass of the fragment,
given by (6.2), and dP and dE are the momentum and ener-
gy of a string element dx, respectively. Simple calculations
yield

1
= A el - @12
1 1 - gwx!z
+ Zarccos(wx) — arccos(@)|" (6.3)
V —
= w(l - V3172 [am(‘”x) - arccosaz:)x)]' (6.4)

A fragment is in a state of pure rotational excitation if
its mass and intrinsic angular momentum are related by
M? =2qvs. Figure 16 shows M /M, and (2mrvs)“*/M,,
given by (6.3) and (6.4), as functions of the rupture point
(M, is the mass of the initial string). It is clear that
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FIG. 16. Mass of a fragment formed in the decay of a string as a function of
the point of rupture.

M> (2mvs)"/2. The energy excess should be expended in
producing radial excitations:

AE = M — (2vs)!/2, (6.5)

The decay of Regge mesons (if it proceeds in accor-
dance with the above mechanism) should thus lead to the
appearance of mixed orbitally-radially excited states. The
fraction of fragment energy expended in exciting radial os-
cillations is small and varies from zeroatx = — R to0.15at
x = R (Fig. 16). It amounts to about 0.09 for symmetric
decays. We note that the excitation of radial oscillations
should lead to an increase in the effective linear energy den-
sity v of the fragment, which is not taken into account in
(6.4). This means that the fraction of energy transferred to
radial oscillations is actually lower still.

The above model can be used to calculate the fragment
spin distribution. We recall that the decay probability within
the interval dx is proportional to dx[1 — (wx)?}'/?. Figure
17 shows the distribution dw/ds and the function w(s), i.e.,
the probability that the spin of the resulting fragment is less
than s. The average fragment spin calculated from dw/ds is
0.17 of the total spin (angular momentum) of the original
string. Most of the angular momentum is thus seen to be
transferred to the relative orbital angular momentum of the
two fragments. The fact that the fragment spin produced by
the above decay mechanism is small means that the mo-
menta of the mesons produced during the decay should be
largely confined to the plane perpendicular to the spin of the
original meson.

We note that, in reality, the angular momentum of both

0
- dw/c/s
st w(s)-/0

!
42 04 46 48 10 S/s,

FIG. 17. Functions characterizing the probability of formation of frag-
ments with spin s.
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the original string and of the fragments must of course be a
whole number. This in turn means that the distributions that
we have given must really be replaced by histograms.

CONCLUSION

One of the most important problems that arise in any
attempt to provide a quasiclassical description of the spec-
trum of orbital excitations of hadrons is the determination of
the spin-orbit interaction. We recall that the choice of the
quasiclassical rotator as a model is itself severely limited by
the fact that the trajectories are accurately linear for high
spins. Our analysis was based on the relativistically invariant
QCD-string model. This determines the character of the
spin-orbit interaction because only the electric component of
the gluon field is then nonzero in the comoving frame, so that
the precession of the quark spins is wholly determined by the
Thomson effect. The precession frequency can be calculated
unambiguously so long as the string rotation dynamics is
known. The corresponding energy correction is not small
and is comparable, in the region of practical interest, with
the separation of neighboring rotational levels correspond-
ing to the same trajectory. It is also important to recall that
the model predicts the reverse ordering {as compared with
the Coulomb case) of levels differing by the sign of I's. Of
course, all these properties of the spectrum of orbital excita-
tions are typical for sufficiently high orbital excitations. On
the other hand, comparison of the model predictions with
existing data shows that the model begins to work for angu-
lar momenta as low as / = 2 or 3. However, the most impor-
tant verification of the model and of its predictions relating
to Is-coupling would be the discovery of particles that are
spin-orbit splitting partners at higher orbital excitations.

APPENDICES

1. To find the spin-orbit splitting for a massless fermion
confined to a cavity, we have to solve the Dirac equation
Py = 0 with the boundary condition in, ¥, ¥ = ¥ and com-
pare the energy levels corresponding to wave functions ¢
and _ given by (2.17) for equal values of /

RS2, .
v, ~ X S R (AL1)
* "Rl—lgj_,l-l )

For #_, the total angular momentum is j, =/ + 1/2 and
I's >0, whereas for i_, the total angular momentum is
Jj_ =1—1/2and I's < 0. The corresponding energies will be
denoted by e, and € _, and R, will represent spherical Bessel
functions. The boundary condition then yields the following
equations:

R;_(e_R) = —R[e_R),

-1
(A1.2)

R 1(e R) = R{e\R),
where R is the cavity radius.

These equations can be solved'? for large J, using the
asymptotic expansions for the Bessel functions.®® The solu-
tions are

e, = %(1+ c, M+ o), C, =080,
(A1.3)
e_= %(1 +Cl' 2+ 0(1)), C,=1,856.
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The energy difference increases with / as follows:

e_—e, =%cz”3, c=cC,-C,, (A1.4)
where the level with parallel / and s has the lower energy. The

separation between the rotational levels which, we recall,
characterizes the rotational frequency for large /, is given by

Ae,=Ac, =Ae_=

(Al5)

-

The spin-orbit splitting for large [/ is thus
£_ — £, > Ag,. Since we assumed that the fermion mass in-
side the cavity was initially zero, the effective mass is deter-
mined by radial localization. Using the properties of the Bes-
sel functions, we can verify that the fermion wave function is
nonzero in a relatively narrow layer near the surface. The
layer thickness is AR ~ R /1?/3, The effective mass of the fer-
mion is therefore m g ~12//R. The fermion energy is £,~ 1/
R,sothat y = go/m g ~11>.

2. Wesshall now calculate the Is-splitting for a particle in
ascalar field, using the following expression for the square of
the Hamiltonian:

H:=p*+ m?2+im'(ny), n=r/r. (A2.1)

The following equations relating the functions fz, f? — g%,
and f? + g° can be readily found from (2.18):

=Ll pp_ 22, ®
8= 5(7f =Py + (P + &),
(A22)
£-2=2F+8) - L0

Integrating ¢~ H * by parts, and using (A2.2), we obtain
the following expression for the square of the energy
2= (H?):

“ (6)
2 _(n2 2\ _ ml,_m-_, m- _ 3
e ={p* + m) f¢+2€2[m() o2 +(4e2)2 ...}vpd r
C m® Q)
R _m7, mY 3
+ f‘l’ ps [m 42 + (452)2 ...]VJd r,
(A2.3)

where m*®® = 3*m/3r*. Most of the dependence on Is is
contained in the last term. As before, we assume that ¥ de-
creases sufficiently rapidly at infinity. For large J, the func-
tion ¢ is nonzero near r = r, so that the /s-splitting is given
by

Q) ©)
e, =—2—|m'(rp) - z (2r°) s i"z’) —...|- (A24)
27, 4eg (4¢p)

For power-type and exponentially growing potentials,
(A2.4) gives the following result in the relativistic region:

Aey =yw, o=Ac,. (A2.5)

The wave function ¢ is also found to depend on l-s. The
additional contribution to the /s-splitting energy therefore
arises from the term (p? + m?}). This contribution is readily
taken into account, and the final result is

Ag = (y — Do. (A2.6)
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DThis also applies to the resonance N(2600); cf. Figs. 8 and 9.

2The quantity & is fixed quite firmly by the slope of the Regge trajectories
because M ?~4k! for large ! in potential models with linearly rising
potential.

'Review of Particle Properties, Phys. Lett. 239 (1990).

2Y. Nambu, Phys. Rev. D 10, 4262 (1974).

*G. t’"Hooft, Phys. Scr. D 25, 13 (1982).

*I. Yu. Kobzarev and B. V. Martem’yanov, Yad. Fiz. 52, 296 (1990)
[Sov. J. Nucl. Phys. 52, 296 (1990)].

°L.. H. Thomas, Philos. Mag. 3, 1 (1927).

%V, 1. Zakharov, Thesis, MIFI, M., 1963.

V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Relativistic Quan-
tum Theory, part I, Addison-Wesley, Reading, MA, 1971 [Russ. origi-
nal, Nauka, M., 1968].

8A. Chodos et al., Phys. Rev. D 9, 3471 (1974).

9A. T. Aerts and L. Heller, ibid. D 23, 185 (1981).

'°C. Rosenzweig, Preprint NSF-ITP 88-19.

'""A. Chodos and C. B. Thorn, Nucl. Phys. B 72, 509 (1974).

'2yu. I. Kobzarev, B. V. Martem'yanov, and M. G. Shchepkin, Yad. Fiz.
44, 475 (1986) [Sov. J. Nucl. Phys. 44, 306 (1986)].

3F. A. Berezin and M. S. Marinov, Pis’'ma Zh. Eksp. Teor. Fiz. 21, 678
(1975) {JETP Lett. 21, 320 (1975)].

"F. A. Berezin and M. S. Marinov, Ann. Phys. 104, 336 (1977).

!SB. V. Martem’yanov and M. G. Shchepkin, Yad. Fiz. 49, 708 (1989)
[Sov. J. Nucl. Phys. 49, 438 (1989)].

'®B. V. Martem’yanov and M. G. Shchepkin, Yad. Fiz. 45, 302 (1987)
{Sov. J. Nucl. Phys. 45, 189 (1987)].

7p. J. Mulders, A. T. Aerts, and J. J. De Swart, Phys. Rev. D 19, 2635
(1979).

'8R. D. Pisarski and J. D. Stark, Nucl. Phys. B 286, 657 (1987).

K. Kikkarwa, T. Kotani, M. Sato, and M. Kenmoku, Phys. Rev. D 18,
2606 (1978).

°W. A. Bardeen et al., ibid. D 13,2364 (1976); D 14,2193 (1976); 1. Bars
and A. J. Hanson, ibid. D 13, 1744.

2'V. 1. Borodulin, M. S. Plyuschai, and G. P. Pronko, Z. Phys. C 41, 293
(1988); V. I. Borodulin, O. L. Zorin, G. P. Pron’ko, A. V. Razumoyv,
and L. D. Solov’yev, Preprint IFVE 84-202, Serpukhov, 1984.

2G. P. Pron’ko, A. V. Razumov, and L. D. Solov’ev, Preprint IFVE 85-
74, Serpukhov, 1985.

231, Yu. Kobzarev et al., Yad. Fiz. 45, 526 (1987) [Sov. J. Nucl. Phys. 45,
330 (1987)].

24 A. Martin, Preprint CERN-TH 4259, Geneva, 1985.

3A. B. Kaidalov and A. F. Nilov, Yad. Fiz. 41, 768 (1985) [Sov. J. Nucl.
Phys. 41, 490 (1985)].

26R. L. Jaffe, Phys. Rev. D 15, 267, 281 (1977).

*'T. Barnes, Preprint RAL-85-005-1985.

Z*R. P. Bickerstaff, Philos. Trans. R. Soc. London A 309, 611 (1983).

N. N. Achasov, S. A. Avyanin, and G. N. Shestakov, Usp. Fiz. Nauk
142, 361 (1984) [Sov. Phys. Usp. 27, 161 (1984)].

*°E. P. Shabalin, Yad. Fiz. 40, 262 (1984) [Sov. J. Nucl. Phys. 40, 166
(1984)1].

275 Sov. Phys. Usp. 35 (4), April 1992

31E, P, Shabalin, Pis’ma Zh. Eksp. Teor. Fiz. 42, 111 (1985) [JETP Lett.
42, 135 (1985)].

371, A. Kondratyuk, B. V. Martem’yanov, and M. G. Shchepkin, Yad.
Fiz. 46, 1552 (1987) [Sov. J. Nucl. Phys. 46, 921 (1987)].

338, 1. Bityukov et al., Preprint IHEP 86-110, Serpukhov, 1986.

34A. Yokosawa, Phys. Rep. 64, 47 (1984).

33M. M. Makarov, Fiz. Elem. Chastits At. Yadra 15, 941 (1984) [Sov. J.
Part. Nucl. 15,419 (1984)].

3T, A. De Grand et al., Phys. Rev. D 12, 2060 (1975).

37p, J. Mulders, A. T. Aerts, and J. J. De Swart, ibid. D 21, 2653 (1980).

38y, A. Matveev and P. Sorba, Nuovo Cimento A 115, 217 (1978).

31, Yu. Kobzarev, B. V. Martem’yanov, and M. G. Shchepkin, Yad. Fiz.
29, 1620 (1979) [Sov. J. Nucl. Phys. 29, 831 (1979)].

4°L. A. Kondratyuk, M. L. Krivoruchenko, and M. G. Shchepkin, Pis’ma
Zh. Eksp. Teor. Fiz. 45, 10 (1986) [JETP Lett. 45, 10 (1987)].

“1L. A. Kondratyuk, M. I. Krivoruchenko, and M. G. Shchepkin, Yad.
Fiz. 45, 1252 (1987) [Sov. J. Nucl. Phys. 45, 776 (1987)].

42w, Kwong, J. L. Rosner, and C. Quigg, Ann. Rev. Nucl. Part. Sci. 37,
325, 1987.

“3A. A. Bykov et al., Usp. Fiz. Nauk 143, 3 (1984) [Sov. Phys. Usp. 27,
321 (1984)].

“4E. Eichten and F. L. Feinberg, Phys. Rev. D 23, 2724 (1981).

“’D. Gromers, Z. Phys. C 26, 401 (1984).

“6Pantaleone and S. H. Tye, Phys. Rev. D 37, 3337 (1988).

*7Yu. A. Simonov, Nucl. Phys. B 307, 512 (1988).

“N. G. Dosch and Yu. A. Simonov, Phys. Lett. B 205, 339 (1988).

“M. I. Krivoruchenko, Pis’'ma Zh. Eksp. Teor. Fiz. 38, 146 (1983)
[JETP Lett. 38, 173 (1983)].

3°M. G. Shchepkin, Yad. Fiz. 53,279 (1991) [Sov. J. Nucl. Phys. 53, 177
(1991)].

51C. Daum et al., Nucl. Phys. B 187, 1 (1981).

528h. S. Eremyan and A. E. Nazaryan, Yad. Fiz. 49, 823 (1989) [Sov. J.
Nucl. Phys. 49, 512 (1989)].

53], lizuka et al., Phys. Rev. D 39, 3357 (1989).

34V, Gupta and R. Kogerler, Z. Phys. C 41, 277 (1988).

55M. G. Olson and C. J. Suchyta, Phys. Rev. D 35, 1738 (1987).

36N. Isgur and G. Karl, ibid., D 18, 4187 (1978).

37N. 1. Schnitzer, Preprint BRX TH-269, 1989.

38A. B. Kaidalov and A. V. Nogteva, Preprint ITEP-28, Moscow, 1987,

39L. A. Kondratyuk, B. V. Martem’yanov, and M. G. Shchepkin, Yad.
Fiz. 47, 1747 (1988) [Sov. J. Nucl. Phys. 47, 1107 (1988)].

%A. Casher, H. Neuberger, and S. Nussinov, Phys. Rev. D 20, 179
(1979).

613, Schwinger, ibid. 82, 664 (1951).

%2]. Yu. Kobzarev, B. V. Martem’yanov, and M. G. Shchepkin, Yad. Fiz.
48, 541 (1988) [Sov. J. Nucl. Phys. 48, 344 (1988)].

$3M. Abramowitz and 1. A. Stegun (eds.), Handbook of Mathematical
Functions, National Bureau of Standards, Washington, D.C., 1965
[Russ. transl., Nauka, M., 1979].

Translated by S. Chomet

Kobzarev et a/. 275



