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If a charged particle radiates electromagnetic waves,
then reaction forces due to the radiated field act on the parti-
cle. In many problems in the theory of radiation (for exam-
ple, in the case of Cerenkov radiation, synchrotron radi-
ation, and undulator radiation) the radiation losses of a
particle are equal to the work performed by the retardation
forces. In the case of Cerenkov radiation this equality holds
on any path segment, while in the case of synchrotron and
undulator radiation the equality holds for the time-average
of the corresponding quantities over a sufficiently long time
interval (for example, over one period of revolution): The
average work performed by the retardation force is equal to
the average radiated energy.

In the general case, however, such an equality does not
hold. In the present paper we examine a more general rela-
tion that follows from the law of conservation of electromag-
netic field energy. This relation relates the radiated energy
and the work performed by the retardation forces.

For simplicity, we examine below a field in empty
space. At the end of the paper we examine the changes intro-
duced by the refractive properties of a medium.

Suppose that we have found the solution of the Max-
well's equations for a prescribed current density j(r,r) and
charge density p(r,t); i.e., we have determined the electric
field E(r,r) and magnetic field H(r,/). We choose in space a
volume V, which is, generally speaking, arbitrary within
wide limits and is bounded by a closed surface S. Then Max-
well's equations yield the following relation for the fields E
andH:

(1)

where [EH] means the vector (cross) product. Here the
symbol V in the integrands indicates that the integral ex-
tends over the chosen volume Fand the symbol S indicates
that the integral extends over the surface 5" bounding this
volume.

The relation (1) is called the law of conservation of
electromagnetic field energy. The quantity

н> = • 8л (2)

is called the energy density of the electromagnetic field. The
integral of this quantity

= \vdV-
Ч52 + Я2

(3)
V V

over the volume V, gives the total electromagnetic field ener-

gy in the volume V. Thus the left-hand side of Eq. (1) is the
rate of change of the electromagnetic field energy in the vol-
ume V (or the change in this energy per unit time). This
change is produced by the work performed by the electric
field E on the currents j in the volume V (the first term on the
right-hand side of Eq. (1)) and by the flow of energy
through the boundary of the volume V, i.e., through the sur-
face S (the second term on the right-hand side of Eq. (1)).
The scalar product j(r,0 -E(r,0 is the work performed by
the field E(r,0 on the current j(r,f) per unit time per unit
volume surrounding the point r. Correspondingly, the work
performed by the electric field on the currents in the element
of volume d V per unit time is

da = jEdK (4)

The second term on the left-hand side of Eq. (1) de-
scribes the flow of electromagnetic energy through the sur-
face Abounding the volume V.

We introduce the vector

This vector is called the Poynting vector, and it deter-
mines the flux of electromagnetic energy through the surface
Abounding the volume V. The energy flux through the sur-
face 5 is written in the form

П ^ J [EH JdS. (6)

We underscore the fact that the law of conservation of
electromagnetic field energy (1) contains the integral of the
Poynting vector (5) over the entire surface bounding the
volume V. It would be incorrect to identify the expression

dn=£toS (7)

as the electromagnetic energy flux through the surface ele-
ment dS. Indeed, the conservation law (1) is written in inte-
gral form and is obtained from the corresponding local rela-
tion

dt ~&T Jb-^uiTiB...!, (8)

which can be considered to be the law of conservation of
electromagnetic field energy at a point. The left-hand side of
Eq. (8) is the rate of change of the energy density at a given
point of the field, and this quantity consists of the work per-
formed by the electric field on the current at the given point
and the divergence of the Poynting vector at this point.
Thus, the change in the electromagnetic energy density de-
pends not on the Poynting vector itself, but rather on its
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divergence. This means that the solenoidal part of the Poynt-
ing vector does not contribute to the electromagnetic energy
flux, because the divergence of this part is zero. Correspond-
ingly, the integral over a closed surface (flux) of the solenoi-
dal part of the Poynting vector is equal to zero. But the flux
of the solenoidal part of the Poynting vector through an ele-
ment dS of a closed surface can be different from zero. In this
case, the corresponding part of the flux through the surface
element dS does not give any real radiation. In the present
section we examine the flux of the Poynting vector through
the entire surface bounding a prescribed volume, so that the
question of the local flux electromagnetic field energy does
not arise.

The law of conservation of energy (1) relates the inte-
grated quantities of energy which determine the exchange of
energy between the field and the sources. These quantities
are the total electromagnetic field energy, the radiation ener-
gy losses of the source, and the work performed by the field
on the source. Even the form of the conservation law (1)
implies that the radiation energy flux (second term on the
right-hand side of Eq. (1)) does not equal only the work
performed by the field on the source, as one might think a
priori. Indeed, one would think that if the source radiates
electromagnetic fields, then the radiated field exerts reaction
forces on the source, and the work of these reaction forces is
equal to exactly the radiated energy (with opposite sign).
The law (1) shows that this is not the case. It would be the
case, if the total electromagnetic field energy remained con-
stant, i.e., if the left-hand side of Eq. (1) were equal to zero.
The change in the total field energy must be included in the
radiation balance.

We now examine some consequences of the law of con-
servation of energy (1) in application to the field of a moving
charge.

Consider a charged particle moving uniformly in empty
space. It is well known that a charge moving with constant
velocity in empty space does not radiate. The field of a uni-
formly moving charge is transported in space with the same
velocity as the charge that is the source of the field. The
proper field of the charge does not act in the way on the
moving charge: It does not retard, deflect, or accelerate the
charge. Therefore the field does not perform work on the
charge, i.e., in the conservation law (1) j-E = 0 and the first
term on the right-hand side of Eq. (1) is absent. This is evi-
dent at least from the fact that in the coordinate system in
which the charge is at rest the field of the charge is spherical-
ly symmetric and does not accelerate the charge. Then, in
accordance with the principle of relativity, the field will also
not act on a uniformly moving charge.

We construct a plane through the origin of coordinates
and perpendicular to the velocity of the charge. Let the
charge move along z-axis in the positive direction. Then the
chosen plane is also the (x,y) plane. Consider the half-space
z > 0. Let it be the volume V. Obviously, the chosen plane can
be taken as the surface 5 bounding the volume V.

We now choose two times r, and t2 as follows. At the
time tl the charge is located outside the volume V and far
away from the boundary S. In other words, the time tl lies
far in the past. The charge moves towards the surface S, but
this charge is located so far away from S that the entire field
of the charge is concentrated outside the volume V. Strictly

speaking, the field of the charge is also different from zero in
the volume V, but the charge is still located at a large dis-
tance from the volume Kand the field of the charge in the Vis
so small that it can be neglected.

We choose the time t2 so that by this time the charge has
already crossed the boundary 5 and is now located far away
from it. At the time t2 the charge is already located in the
volume К and, in addition, so far away from the boundary 5
that the field of the charge outside the volume Fis negligibly
small.

We now integrate the conservation law (1) over time
from /! to /2. As we have already stated, in the case of a
charge in uniform motion j-E = 0, and we obtain

t-t,

(9)

<l *.
The left-hand side of Eq. (9) is the difference of the values of
the total energy of the field generated by the moving charge
in the half-space У at the times f2 and Г,. We use the expres-
sion (3) for the total field energy and rewrite Eq. (9) as

(10)

<i s

We have chosen the times /, and t2 so that the quantity
W(tt) can be neglected compared with W(t2). Thus

(Ш')

We now extend the time f, even farther into the past and
the time t2 even farther into the future. In the limit the quan-
tity W(t2) will give the total energy of the electromagnetic
field generated by the moving charge in unbounded space,
because the part of the total field energy residing outside the
volume Kmakes a vanishingly small contribution. The right-
hand side of Eq. (10') gives the energy which has passed
through the surface S over all time. We obtain

( i i )

where

(12)
— CO — 00 —00

The volume integral extends over all space. The quanti-
ty ^obtained depends on the velocity of the charge u.

Equation (11) gives a relation between the energy of
the electromagnetic field generated by a uniformly moving
charged particle and the energy flux of this field.

We now consider another example. Let the charged
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particle move in the positive direction along the z-axis, ap-
proaching the origin of coordinates, so that at large distances
from the origin the particle velocity is v,. In some region
with linear dimensions L near the origin the velocity of the
particle varies in some manner, which we do not specify (for
us it is sufficient to know that the velocity changes), both in
magnitude and direction. The particle then emerges from
this region and its velocity assumes the value v2, which
thereafter remains constant. For simplicity we assume that
the velocity v,, just as the velocity v2, is oriented in the posi-
tive z direction. This assumption in no way limits the genera-
lity of the arguments.

Since the particle is accelerated in a region of dimen-
sions L near the origin of the coordinate system, electromag-
netic waves are radiated. We apply to this process the con-
servation law (1). First, we choose a volume К and surface S
bounding it. The choice of volume and surface determines
the value of the integrals appearing in Eq. (1). We take for V
the volume bounded by two parallel planes Рг and P2. The
planes PI and P2 are perpendicular to the z-axis and are
positioned so that the region L where the charge is acceler-
ated lies between P, and P2. The plane P, intersects the z-
axis at a large negative value of z and the plane P2 intersects
the z-axis at a large positive value of z. Thus the chosen
planes are located on either side of and far away from the
region L. The arrangement of the planes P} and P2 and the
region L in which the charged particle is accelerated are
shown in Fig. 1.

We take for the volume V the space between the planes
P} and P2, and we take the planes themselves as the surface S
bounding the volume V. This specifies the region of integra-
tion for all integrals in the conservation law (1).

Before examining the law of conservation of electro-
magnetic field energy in the chosen volume V, we shall try to
envisage the physical characteristics of the field in the case
shown in Fig. 1. Before entering the region V the charge
moves with constant velocity vt. At this time the electro-
magnetic field is the field of a uniformly moving charge. This
field is strong near the charge and rapidly decays away from
the moving charge. The electromagnetic field of a charge
moving uniformly in empty space is a function of the argu-
ment r — v, t, i.e., the field moves in space with the same
velocity У, as the charge which generates this field. The field
at the moment the charge approaches the region is shown
schematically in Fig. 2. The shaded region is the region
where the field of the charge is strong.

For the time being, these qualitative remarks are suffi-
cient for us. When it enters the region L the charge is acceler-
ated. This acceleration is accompanied by radiation of elec-
tromagnetic waves, i.e., a wave packet arises, consisting of

FIG. 2.

waves which diverge in all directions from the region L and
escape to infinity with the velocity of light. These waves car-
ry away energy. In addition, the radiated waves act on the
moving charge, so that the quantity j-E in the conservation
law is different from zero. After it leaves the region L the
charge moves with constant velocity v2. The total electro-
magnetic field consists of the radiation field (i.e., waves
moving with the velocity of light away from the region L)
and the field of the charge moving uniformly with velocity
v2. The field of a uniformly moving charge is also sometimes
called the entrained field. This field depends on the coordi-
nates and time in the combination r — v21, i.e., it moves as a
whole in space with velocity v2. Since the field of the charge
moves in space with the velocity of the charge v2 and the
radiation field propagates with the velocity of light c, the
radiation wave packet will sooner or later separate from the
field of the charge, i.e., in the regions of space where the field
of the uniformly moving charge will be strong, the radiation
field will be negligibly small. Conversely, at locations where
the radiation field will be appreciable the field of the charge
will be negligibly small. In other words, the field of the
charge will be spatially separated from the radiation field.
The spatial picture of the field after separation is shown
schematically in Fig. 3.

We designate by the index 1 the field (E,,H,) of a
charge moving uniformly with velocity u, and we designate
by (E2,H2) the field of a charge moving uniformly with
velocity v2. We designate the radiation field with primes:
(E',H'). We now integrate the conservation law (1) over
time from tt to t2. We obtain

2 + "2dv| - Г8л \t=t. J

(13)

The left-hand side is the difference of the total energies
of the field which are evaluated at the times (2 and f; . As one

P, P2

FIG. 1.
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can see from the right-hand side of the equation, this differ-
ence consists of the work performed by the retardation force
exerted by the field on the charge and the electromagnetic
energy flux through the surface S bounding the volume V,
where the work is the total work performed from tl to t2 and
radiated energy is the total energy radiated over the same
time interval.

We recall that the volume V and the surface S in the
formula (13) have already been chosen (see Fig. 1 and the
text referring to it). In addition, we place the plane P2 in the
region where the radiation wave packet has already separat-
ed from the field of the charge, and the field of the charge no
longer overlaps with the radiation field. Below, we estimate
the distance from the region L at which the field of the
charge becomes separated from the radiation field. We now
determine the times 11 and t2, i.e. we determine more accu-
rately the limits of integration over time. We choose the time
tl far in the past. At the time t^ the charge is still far away
from the plane Pl. Conversely, we choose the time t2 to be
large in absolute magnitude and positive. By the time t2 the
charge has already left the volume V, i.e., it has crossed the
plane P2 and has moved a large distance away from it. For
our choice of volume V and surface 5 the first term on the
left-hand side of Eq. (13) is equal to zero, since at the time r,
the charge is still far from the surface Pl, and the field in the
volume Vis equal to zero. The second term on the left-hand
side of Eq. (8) also vanishes, since by the time t2 the charge
is already far away from the volume Fand the radiation field
has left the volume V even earlier than the charge. For this
reason, at the time t2 there is no field in the volume V be-
tween the planes Pl and P2. Thus Eq. (13) assumes the form

(14)

(17)

= - * [ E H ]dS

Thus the work performed by the retardation field on the
charge is expressed in terms of the energy which has flowed
through the surface S over the same time interval.

We now examine the right-hand side of Eq. (14). In the
time interval from f, to t2 the energy flux associated with the
field of the charge which has entered the volume V with
velocity У, , flows through the surface S into the volume V.
We designated this field by (E, ,H,) (see above). Thus the
energy flowing into the volume К is

(15)

We now examine the energy flowing out of the volume
Fin the time interval (?, ,t2). First, this is the energy of the
radiation field (E',H')

(16)

This energy flows out of the volume V through the two sur-
faces PI and P2. Second, the energy flux associated with the
field of the charge, which has emerged from the volume V
with velocity v2, flows out of the volume V:

'l P2

On the basis of Eqs. (15)-(17) we can rewrite the conserva-
tion law as follows:

t-W2- W. (18)

We now extend f, even farther into the past and t2 even
farther into the future. In the limits f, -» — oo and t2 -» + oo
the left-hand side of the last equation gives the total work
performed by the field on the charged particle over the entire
time of the motion. According to Eqs. (11) and (13), the
quantity Wl becomes the total energy of the field of the
charged particle moving uniformly with velocity u,. The
quantity W2 becomes the total energy of the velocity field of
the charged particle moving uniformly with velocity v2. Fi-
nally, the quantity W gives the total radiation energy over
the entire time of the motion. Using the designation (12) for
the total energy of the velocity field, we can rewrite the limit-
ing form of the conservation law (18) in the form

(19)

In the formula (19) E is the total field on the path of the
particle and (E',H') is the radiation field.

Formula (19) shows that the radiation flux from the
volume Fis determined not only by the work performed by
the forces exerted by the field on the charge (the integral of
j«E) but also by the change in the total energy of the en-
trained velocity field. If the velocity of the charged particle is
the same in magnitude before and after the region of accel-
eration L, then the difference W\ — W2 in Eq. (19) vanish-
es. In this case the work performed by the field on the parti-
cle is exactly equal to the radiation energy (taken with the
opposite sign).

In what follows we shall often work with the fields ex-
panded in a Fourier integral with respect to time. In particu-
lar, the Fourier integral expansion of the fields E(r,t) and
H(r,f) with respect to the time has the form

E(r, 0 =

H<r' 0 = (20)

The expansions (20) represent the field as a superposition of
monochromatic oscillations. For example, the integrand in
the expansion (20) for E(r,r) has the form Еш (г )е ~'"". The
electric field described by this expression varies harmonical-
ly in time with frequency ы, and at a given point r the ampli-
tude of the electric field is equal to Еш (r). The expansion
(20) represents the field E(r,f) as a sum of oscillations of the
form Еш(т)е-'°" with all possible frequencies. The ampli-
tudes Е„ (r) and H ,̂ (r) in the expansion (20) can then be
represented as a superposition of plane waves of the form
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(21)

For what follows we shall need to express the integrals in the
conservation law Eq. (19) in terms of the amplitudes Еш (г)
and Нш(г). In order to obtain the corresponding expres-
sions, we now study, for example, the formula (11) for the
time integral of the flux of the Poynting vector through the
surface S. Expressions with precisely this structure appear
on both the right- and left-hand sides of the conservation law
(19):

(22)

We substitute here the expansions (20) for the fields E and
H and integrate over time. But we first call attention to the
following property of the amplitudes Еи(г) and Нш(т).
Changing the sign of со transforms these amplitudes into
their complex conjugates:

Н_» = H». (23)

This property of the amplitudes Еш and Нш follows from the
fact that the electric field E(r,f) and magnetic field H(r,r)
are real functions of the coordinates and time. The relations
(23) can be proved, for example, with the help of the inverse
Fourier transform

(24)

Using Euler's well-known formula .

e*"' = cos cot + i sin eat, (25)

we can rewrite the expression (24) for Еш (r) as follows

Е

ш(г) = /E(r, Osin cot dt\ .

(26)

Since E(r,f) is a real function, the expression (26) for
E _ a ( r ) transforms into its complex conjugate since sin cot is
odd. The property (23) for H^ can be proved analogously.
The amplitude jffl (r), appearing in the Fourier expansion of
the current density j ( r,t ) , and in general the amplitudes/^, of
any real function/(f) have the same property. We now sub-
stitute the expansions (20) into the integral expression (22)
for the energy flowing through the surface S over an infinite
time. We obtain

' [EJH,,,, (27)
— 00 —00 —00

The integration over time is easily performed with the help
of the well-known formula

ю + о)'). (28)

The integration over u/ is then easily performed using a
property of the delta function. We obtain finally

(29)

Using Eq. (23) we obtain

(30)

It follows from Eq. (23) that changing the sign of a> changes
the integrand in Eq. (30) into its complex conjugate. This
means that the imaginary part Im[Em XH* ] of the inte-
grand is an odd function of a> and the real part Re [Еш X H* ]
is an even function of a. The integral of the odd part over
infinite limits is equal to zero, and for this reason the expres-
sion (30) is real, as should be the case. On the basis of what
we have said above, we can rewrite Eq. (30) in the form

W cj da>j Re[E (31)

We now recall that the quantity W gives the total energy
flowing through the surface S over all time. The formula
(31) represents this energy as an integral of the expression

cIE.H'ldS (32)

over the frequency. It is natural to interpret this expression
as the energy of the field (at the frequency to) which has
passed through the surface S.

Expressing all integrals appearing in the conservation
law (19) in terms of the Fourier amplitudes, we obtain the
law of conservation of energy for the Fourier components
corresponding to the frequency <u:

Ref c[E;H;']dS - -*r Re /U^dK
s v

-i- ReJ cIE^HJJdS - ReJ
'

(33)

where j^ (r) is the Fourier component of the current density

(34)

We recall that the field (E',H') is the radiation field, while
(E, ,H2) and (E2 ,H2) are the fields of a charge moving uni-
formly with velocity y, and v2. respectively. The volume УК
included between the two planes P, and P2. These two
planes comprise the surface S bounding the volume V. The
entire arrangement is shown schematically in Fig. 1.
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The preceding analysis, based on the law of conserva-
tion of energy, was made for the case of a field in empty
space. It is easy to extend the result to the case where the
charge moves in a refracting medium. Let the medium be
uniform, and assume that the charged particle moves in the
medium in the same manner as in the case of empty space
analyzed above. This means that before entering the region L
the particle moved uniformly with velocity v, and in L the
particle was accelerated. After leaving L the particle moved
uniformly with velocity v2, which remained constant. We
therefore regard the motion as the same as in empty space.
The difference lies only in the fact that this time the particle
moves in a uniform refracting medium with permittivity e
and magnetic permeability fi. In this case the conservation
laws have the same form as Eqs. (19) and (33). The differ-
ence lies only in the fact that this time all fields—the radi-
ation field (E',H'), the entrained field (Е^Н,) of the ap-
proaching charge and the entrained field (E2,H2) of the
receding charge—are calculated taking the medium into ac-
count.

Assume now that the medium is not uniform. We exam-
ine the case where the properties of the medium vary along
the z-axis, so that the permittivity and magnetic permeabil-
ity approach some limiting values el andju, asz-» — oo and
different limiting values e2 and /j,2 as z-> oo. We assume that
the motion of the charge is of the same character as in the
case of empty space, i.e., after leaving the region L the parti-
cle moves with uniform velocity v2. The motion of the
charge is shown schematically in Fig. 4. The difference from
the case shown in Fig. 1 lies in the fact that the charge leaves
a region with constant values of EI and//, and enters a region
with different constant values £2 and fj,2', thus the permittivi-
ty £ and magnetic permeability ц change along the path of
the charge from one limiting value to the other. This change
can occur abruptly, if a sharp interface is present in the path
of the charge.

We draw the planes Pl and P2 perpendicular to the z-
axis. The plane f, lies in a practically uniform medium
where the values off and// are equal to the limiting values £,
and/u,. The plane P2 lies in a practically uniform medium
where the values off and/* are equal to the limiting values e2

andjU2. Both planes are located at such a large distance from
the region L that for the corresponding values of z the radi-
ation field (E',H') does not interfere with the entrained
fields (E,,H! ) and (E2,H2). In the case studied the en-
trained field (E, ,H,) is the field of a charged particle mov-
ing uniformly with velocity v, in an infinite medium with
constant £, and fj,t. Correspondingly, the entrained field
(E2,H2) is the field of a charged particle moving with uni-

form velocity v2 in an infinite medium with constant e2 and
fj,2. We assume here that there is no absorption. We note that
in free space the radiation field eventually separates from the
entrained field of the charge. This is explained by the fact
that the velocity of the radiation packet is equal to the veloc-
ity of light in empty space, i.e., it is always greater than the
velocity of the charge. In a medium, however, the radiation
field does not always separate from the entrained field, be-
cause the phase velocity of the radiation waves is equal to
С/(ЕЦ) 1/2 and can be equal to or even less than the velocity of
the charge. In this case there exist directions in which the
propagating radiation may not separate from the field of the
charge along a path of any length. For the time being we
ignore this possibility.

Choosing planes Pt and P2 satisfying all requirements
imposed above, we denote the volume between P, and P2 by
V. Then the planes P, and P2 together form the surface S
bounding the volume V.

For this case the law of conservation of energy can be
written in the form of Eq. (19) or, in terms of Fourier com-
ponents, in the form (33). It should be remembered, how-
ever, that the meaning of some quantities appearing in these
relations changes. Thus, for example, in the case of a refract-
ing medium W^ is the energy of the entrained field of the
particle moving with velocity v, in the medium et and ц^.
Similarly, W2 is the energy of the velocity field of the particle
moving with velocity v2 in the medium £2 and f i 2 . These
velocity fields are themselves (E,,!!,) and (E2,H2), re-
spectively. The quantity Wl is calculated in one medium and
the quantity W2 is calculated in the other medium. There-
fore, these two energies can differ even when v, = v2. A
charge of the same magnitude and moving with the same
velocity generates different fields in different media. For this
reason, the total energy of the entrained field is different in
different media, even if the charge is of the same magnitude
and has the same velocity. This circumstance can be under-
scored by denoting as Wг (v i ) the energy of the velocity field
in the medium e t and jU, and by W2 (v2) the energy of the
velocity field in the medium £2 and ц2 • Then the conserva-
tion law Eq. (19) assumes the form

-7- df[E'H']dS< -'H (35)

FIG. 4.
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Неге Е is the field in the path of the particle.
If the particle moves uniformly in a nonuniform medi-

um, then the difference Wl (v) — W 2 ( v ) , where v is the par-
ticle velocity, appears on the right-hand side of Eq. (35).
This quantity is often written in terms of the change in the
mass of the moving particle. Let

(36)

Then Дш is the change in the mass associated with the en-
trained field. This change occurs when a uniformly moving
charged particle crosses from one medium into another.1

Garibyan calculated the quantities W l ( v ) and W2 (v), i.e.,
the energy W{ (v) of the field accompanying a particle hav-
ing charge q and velocity v in the first medium and the energy
W2 (v) in the second medium.

The field at high frequencies makes the main contribu-
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tion to this expression. In both media the permittivity at high
frequencies has a similar form:

(37)

where for the medium 1 the constant со1 is expressed in terms
of the number и, of electrons per unit volume of the medium
1:

; (38)

where e and m are the electron charge and mass. The con-
stant to, has the dimension of frequency, and it is the natural
frequency of oscillations of an electron plasma having den-
sity л,.

Similarly, the constant to2

 m the expression for the per-
mittivity of the second medium has the form

*%-4хп**/т, (39)

where л2 is the electron density in the second medium.
For the case of a point charge the quantities Wt and W2

are infinite. The field of a point charge grows without bound
with decreasing distance from the charge and the energy
density of the field increases so rapidly that the volume inte-
gral of the energy density diverges. The integral can be made
finite by assuming that the charge which generates the field
is not point-like but rather extended—for example, distrib-
uted uniformly in a small sphere of radius r0. Then the inte-
gral of the energy density is cut off at short distances, and the
quantities Wlr2 become finite. If the electromagnetic field of
the moving charge is represented as a collection of waves,
then when the point charge is replaced by an extended
charge only the waves whose wavelength is greater than the
"size" r0 of the charge need be taken into account. Corre-
spondingly, the wave vectors of the significant waves must
be shorter than some limiting value

- i/r.. (40)

where r0 is the radius of the charge (or, which is the same
thing, the linear size of the volume over which the charge q is
distributed). It is obvious that in this case all Fourier inte-
grals must be cut off at the upper limit of integration at x0.
Then the following expressions are obtained for the quanti-
ties Wl2:

ell -
(41)

We recall that W, is the total energy of the entrained
field of the particle in the first medium (the medium is as-
sumed to be infinite) and W2 is the analogous quantity for
the second medium. The properties of the medium enter into
the expression (41) through the constants u>, (37) and ca2

(38).
If, for example, the first medium is empty, then л, = О,

u>i = 0, and W\ assumes the form

(42)

It should be remembered that the limit x0 -> oo corre-
sponds to approaching a point charge, and then the quantity
(42) diverges and the quantities Wl and W2 (41) diverge
with it. It is obvious that the character of the divergence for a
medium is determined by the singularities of the field in
empty space.

Comparing Eqs. (41) and (42) shows that the medium
contributes a definite and finite correction and, generally
speaking, an indeterminate and infinite value W (in the limit
of a point charge). This correction is always negative, per-
haps because the medium screens the field of view.

The difference Wt (v) — W2 (v) is finite and does not
depend on the cutoff parameter x0:

(43)-<wV?)p

w,-
ell -

This quantity determines the difference between the total
energy of the transition radiation and the work which the
radiation field performs on the particle. We note that the
permittivity can change not only in space (nonuniform me-
dium) but also in time (nonstationary medium). In the last
case the renormalization must be taken into account in the
energy balance.2
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