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This article presents a detailed discussion of the problem of the localization and various methods
of describing it on the basis of plane waves multiply scattered in randomly layered media. It is
noted that the field of localized waves has a complicated structure, with sharp peaks and extended
“dark” regions, where the intensity of the wave is small. Itis shown that because of this
complicated structure the wave field in a randomly layered medium, the dynamic and statistical
characteristics of the wave behave in fundamentally different ways. For example, the statistical
moments of the intensity of the wave increase exponentially into the interior of the medium, while
the energy of the wave penetrating into randomly inhomogeneous medium can be finite with unity
probability. The concept of a majorant curve and of an isoprobability curve, helpful for
understanding the phenomenon of localization, are introduced. Also taken into account is the
effect of a small regular absorption on the statistical and dynamic properties of the wave, and the
localization of space-time pulses in a randomly layered medium is also studied.

1.INTRODUCTION

Recently, animated discussions have taken place con-
cerning the problem of the wave field localization in ran-
domly layered media with or without absorption in the me-
dium (see reviews'™). A unique answer is not always
obtained as to the presence of localization in any particular
physical situation. This is due to the fact that fields that exist
inside the medium are of a complex spatial structure, i.e., the
decrease in wave intensity with distance from the source into
the medium can alternate with increasingly infrequent but
increasingly strong intensity spikes which result from the
coherent summation of waves multiply scattered in the me-
dium. Eventually it can happen that in practically every ex-
perimentally obtained field realization localization will be
observed, whereas the behavior of the statistical averages,
for example, that of the average intensity and its higher mo-
ments, implies lack of localization. It thus seems expedient
to introduce two notions which in general do not coincide:
that of dynamic localization inherent in individual field real-
izations and the notion of statistical energy localization, i.e.,
localization of the average wave intensity, expressing the
properties of the whole statistical ensemble of realizations.

As an example that clearly illustrates the distinction
between statistical and dynamic localization one can consid-
er the problem of normal incidence of a plane wave on a
halfspace filled with a randomly layered nonabsorbing medi-
um. The average intensity of the wave inside such a medium
is the same everywhere, while the higher intensity moments
increase exponentially to infinity into the medium. This
shows unambiguously the absence of statistical wave local-
ization.** Nevertheless, as will be shown later in this article,
one can speak in this case about a dynamic localization
which manifests itself in that the total energy of the wave
penetrating into a randomly inhomogeneous medium is fi-
nite with probability 1 (that is in all realizations except for

231 Sov. Phys. Usp. 35 (3), March 1992

0038-5670/92/030231-17$03.00

those of zero measure), whereas each intensity realization is
bounded from above by a majorant curve that falls off expon-
entially into the interior of the medium. In this paper we
discuss in detail the mutually complementary notions of sta-
tistical and dynamic localization, using as an example plane
waves radiated within randomly layered media.

The concept of localization originated in the physics of
disordered systems (see, e.g., Ref. 8) described by the Schro-
dinger equation (time independent or time dependent) with
a random potential, which is identical in form to the Helm-
holtz equation with a random refractive index. This coinci-
dence, however, is an entirely superficial mathematical ef-
fect, stemming from the formalism used for describing
statistical phenomena in the cases considered. In the physics
of disordered systems the fundamental entities are the self-
averaging values, since they allow one to study the statistical
properties of an object using a single realization which is
large enough (because of the absence of an ensemble of ob-
Jjects in general), and the main mathematical tool (charac-
teristic of quantum mechanical systems in principle) is a
spectral expansion in the eigenfunctions of the correspond-
ing boundary-value problem for the Schrédinger equation.
In the problems of wave propagation in randomly inhomo-
geneous media the most important problems are considered
to be those based on the averaging over an ensemble of real-
izations of the parameters of the medium, and as mathemat-
ical tools here one makes use of the usual classical theory of
wave processes. Therefore, attempts to solve the problems of
wave propagation in random media by the quantum physics
methods, as has been demonstrated in some recent works
(see, e.g., Ref. 2), arouse a feeling of dissatisfaction and re-
mind one of “using the right hand for scratching the left ear”
speaking figuratively. Besides, for the problems of wave
propagation in random media a major factor is that of the
wave absorption in the medium (even though arbitrarily
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small): in some cases the statistical properties are singular
with respect to absorption. In this case by using the classical
method of analytic continuation of the solution of the steady
state problem into the complex plane of the parameter asso-
ciated with the absorption, one can obtain a solution to more
complex problems, such as nonstationary problems or those
concerning waves in layered media in three dimensions. At
the same time in the approach based on the quantum-me-
chanical analogy, there is no dissipation a priori. Therefore,
when solving the above-mentioned more complex problems
one has to start anew taking no advantage of the extensive
information at hand, inherent in the solution of stationary
problems (see, e.g., Ref. 2). And we have said nothing of the
situations where the limits of a vanishingly small absorption
and passage to an infinite half-space (or an infinite space)
simply do not commute. For these reasons it is not possible
to regard the results obtained on the basis of quantum me-
chanical analogy with due confidence.

An approach based on classic wave analysis is also dealt
with in the present paper.

2. THE PROBLEM OF SCATTERING OF WAVES RADIATED IN
A RANDOMLY-LAYERED MEDIUM

Let us consider a layer of a randomly layered medium
that occupies a portion of space L, <x<L, with a source of
plane waves at point x, (L, <x, <L) (seeFig. 1). The wave
field inside the layer is described by

2
%EG("’ xg) + KA(L + e(x))
XG(x, x) = 2ikd(x — xo)° QY

Here £(x) describes how random inhomogeneities and ab-
sorption in the medium affect the field of the radiated wave.
Outside the layer it will be assumed that £(x) =0 while in-
sideit £(x) = &, (x) + iy where £, (x) accounts for random
inhomogeneities of the medium and ¥ € 1 describes the weak
absorption of the wave in the layer.

Outside the layer the field appears as plane waves ema-
nating from the layer:

Tiexplik(x — L), x=z1L,

G* X0) =\ 7 expl—ik(x — L)), * = Ly,

where T, , are the complex coefficients of the waves radiated
from the layer. As boundary conditions for Eq. (1) we take
the continuity conditions of the field and its derivative at the
layer boundaries, which reduce to the following two-point
boundary conditions

id
G(Ly xg) + £ 42005 %) | (o, = 0,

G(LO, xo) %

o | R
i B

FIG. 1. Propagation pattern of a wave radiated by a source inside the
medium layer.

d
-d—;G(xO, x) I =1, 0. (2)
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In addition, the derivative of the field has a discontinuity at
the source point

d .
dx G(x, XO) I x=x+0 - EG("' XO) | x=xy~0 = 2ik, (3)
whereas the source field itself G(x,x, ) is continuous at point
x,. Therefore, the source field in a randomly complex ab-
sorbing medium is described by the boundary-value problem
(1)-(3), the solution of which is known to be*

"

exp(ik [ dEp @), x 5 x,,
G(x, x5) = G(xg, Xo)1 .
exp(ik [ dEy, @), * = xp,

)

where G(x,,X0) =2/[¢,(xy) + ¢2(x,)] and the func-
tions ¢, (x) satisfy the Riccati equations

Sy =2 k0 = L= ), (L) =Dy = 1.

Instead of functions ¢, (x) we introduce the auxiliary func-
tions R; (x).

= R(x)

-7 P =
TR L2

¥

Then the wave field of the source within the region x<x, will
take the form

(1 + Ry (xp)(1 + Ry(xg))
= Ry(xo)Ry(xg)

P 1I-R@®
©xp "‘fd‘*l +R:(§) J

(4)

G(x, xp) =

where R, (x) obeys the Riccati equation

1R(x) 20kR,(x) + K e(x)(1 + Ry ()2 Ry(Lg) = 0.(5)

The wave equation (1) gives rise to an important rela-
tion to be used later:

kyI(x, xo) = %S(x. X (6)

where I(x,x,) = |G(x,x,)|? is the intensity of the wave and
S(x,x,) is the energy flux density defined as

: 1 d d
S(x, xg) = %k (G(x, xg) = G*(x, xg) — G*(x, xp) o G(x, xp)).
Making use of equality (4) one can readily obtain the follow-

ing expression

|1+ R,(&))?
S(x, xg) = S(xq, Xp)exp kyf dg‘T:(_g;Tf

- |R|("o)|z)|l + Rz(-"o)lz
s(xO' xO) = |l - Rl(xO)RZ(XO)Tz . (7)

In what follows we shall be mainly concerned with the wave
behavior in an unbounded (L, - — o,L— ) and in a se-
mibounded (L, — — o) space with vanishing absorption
(y—0).Itis clear from Eq. (6) that these limits do not com-
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mute in general. If we set = O, then (6) implies conserva-
tion of the wave energy flux S(x,x,) over the whole half-
space x<X,, whereas if there is a finite but arbitrarily small
absorption, then integrating (6) over all x<x, we obtain a
limit on the value of energy included in this half-space

.\'0

%E = S(xy, X5) (E= Df dxl(x, xy)), (8)

where D has the dimension 1/x and acts as a diffusion coeffi-
cient for this problem (see below). In what follows when
calculating the limiting values corresponding, for example,
to Ly— — o, ¥—0 we shall first calculate a limit for
L, — — oo and then that for ¥ -0, inasmuch as the presence
of an arbitrarily small but finite damping automatically pro-
vides satisfaction of the radiation condition for L, = — oo.

In addition to the general boundary-value problem Egs.
(1)-(3) of the scattering of a wave when the source is locat-
ed inside an inhomogeneous layer, some special cases in con-
nection with the problem of localization are of physical in-
terest. For example, if x, = L the boundary-value problem
Egs. (1) and (2) along with the jump condition Eq. (3)

yield a boundary-value problem for the field
u(x;L) =G(x,L):
2
j‘?u + k31 + e(x))u = 0, 9
d .. =— .

a;u(x, L) |x=l,, = —iku(Ly; L),

d . =i S L) —

3405 D) | o = #(u(L; 1) = 2),
describing the incidence of the plane wave

exp[ — tk(x — L)] on amedium layer from region x > L. In
this case the field outside the layer, for x > L, has the follow-
ing structure

u(x; Ly = exp[~ik(x — L)] + R(L)explik(x — L)],
where R(L) is the complex coefficient reflection of the wave
from a layer, and is related to the solution of boundary-value
problem (9) through equality R(L) = u(L;L) — 1. How-
ever, within the range x < L, the field has a structure of an
outgoing wave

u(x; L) = T(L)expl—ik(x — Ly)],

where T(L) = u(Ly;L) is the complex transmission coeffi-
cient of the wave through a layer of the medium (see Fig. 2).
Expression (4) for the field inside the medium, for the case
of x, = L considered here, goes over into

u(x; Ly = (1 + Ry(L))exp "‘f UTIRG ng

o =
y

FIG. 2. Propagation pattern of a wave incident on a layered medium.

(10)
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From this result and from the discussion above it follows
that R, (L) = R(L). Correspondingly, R, (x,) in formulas
(4) and (7) can be interpreted as the reflection coefficient
for a plane wave incident from free space x > x,, reflected
from a layer of an inhomogeneous medium (L, ,x, ). Analo-
gously, the quantity R, (x,) has the physical meaning of a
reflection coefficient of a wave incident from the left on a
layer (x,,L). With (10), the general expression for the field
(4) can be written as
1 + Ry(xy)

G(x, xg) = mmu(x, x) (x < xp), (11
where u(x;x,) is given by equality (10). The effect of the
other part of layer (x,,L) is taken into account only by the
coefficient R,(x,). In applications the problem of the field of
a source located near a reflecting boundary is of interest (see
Fig. 3). In particular, for the boundary at point x = x4, + 0
where the condition of total reflection dG /dx|,_,, =0 is
satisfied we have R, (x,) = 1 and consequently

U (X5 Xg) = 1——%}@"("; Xo)- (12)

Let us draw our attention to an outstanding fact that in
all physical situations considered here the spatial behaviour of
a wave field inside an inhomogeneous medium is described by
the same function u(x;x,) (10). The fields (10)—(12) differ
only in the coefficients for u(x;x,) describing resonance
properties of a stochastic cavity formed by a randomly inho-
mogeneous layer. In what follows, however, it becomes clear
that even though for each realization £, (x) of a randomly
layered medium the corresponding field realizations in all
problems considered vary in a similar manner in space, the
different resonance coefficients for random realizations
u(x;x,) lead to qualitatively different statistical properties
of the fields in question.

As follows from the method of embedding® the field
u(x;L) and R(L) as functions of the parameter L satisfy the
problems with initial conditions

u(x, L) = iku(x; L) + e(L)(l + R, (L))u(x; L), (13)

u(x; x) =1+ R (x),

L R,(L) = 2ikR, (L) + Ze@)(1 + RDYE R,(Ly =R
(14)

It should be noted as well that in the above considered case of
a layer conforming with a homogeneous space one should
use R, = 0 as an initial condition for Eq. (14). If, however,
for x< L, the wave number is equal to k, # k then we should
set Ry = (kK — k,)/(k + k) in the initial condition for Eq.

feW//%

FIG. 3. Propagation pattern of a wave radiated by a source located near
the reflecting boundary.

V. I. Klyatskin and A. |. Saichev 233



(14). In particular, if the boundary L, is totally reflecting
then R(Ly) = + 1.

In the sections that follow we shall not be concerned
with the field itself but with its intensity. Therefore, for the
wave intensity J(x;L) = |u(x;L)|? in the auxiliary problem
of the wave incident on the medium layer, we write an equa-
tion that results from Eq. (13)

= ;l;.L =- 52}:(2 + Ry (L) + R{())J(x; L)
+ %R 1) - R L,
J(x; L) = |1+R1(X)|2- (15)

In the case under consideration |e(x)| <€ 1 the wave field can
be represented as a superposition of counterpropagating
waves

u(x; L) = ay(x; Lye™** + a,(x; L)k,

with complex amplitudes g, (x;L) which change little on the
wavelength scale, while the intensities Y, (x;L) = Iaj (x;L)]2
satisfy the same Eq. (15) that was used for the full intensity
but with initial conditions of their own

¥ )= - 2@+ R + RIW)YSx L)

+ &R ) - ROV D),

Y(x; %) = 1, Yy(x %) = |R,(x)|2 (16)

3.STATISTICAL DESCRIPTION OF WAVES IN ARANDOMLY
LAYERED MEDIUM

Let us proceed now to a discussion of the statistical
properties of the problems posed above, assuming for defi-
niteness £, (x) to be a Gaussian field with zero average and a
prescribed correlation function

(el(x)el(x’)) = B,(x - x').

In this case the influence of random inhomogeneities on the
statistical properties of the intensity is expressed quantita-
tively through a diffusion coefficient®

=k72 f dsB,(s)cos(2ks).

Let us analyze first the statistical properties of the reflection
coefficient R(L) satisfying the Riccati equation (14). We
introduce the quantity W(L) = |R(L)|? satisfying, as a re-
sult of Eq. (14), the following stochastic equation

SW = ~2W — i % e (LR() - L)1 - W), an

W(Lg) = Wy = | Egl>

In the dissipative term we discard rapidly oscillating terms,
which do not make a noticeable contribution to the effects
building up with the layer thickness. Passing from Eq. (17)
to the Liouville equation with respect to function
P(W,L) =6(W(L)— W):

234 Sov. Phys. Usp. 35 (3), March 1992

ik
2 = s (W) + ey (Lys 5 1(1 - W(R ~ R,

and averaging the latter over an ensemble of realizations of
the random field £, (L) we obtain an equation for probabili-
ty density of the square of the modulus of the reflection coef-
ficient P(W:L) = (®(W.L)):

2P = Uy (WP) -

9 2y, 9
D1 = WP WP,

= (W - W,).

6
W[W(l - W)P]

P(W; Ly) (18)

In deriving this equation and all those to follow we use the
diffusion approximation for the statistical averages, which
involves the assumption that the influence of €, (x) on the
wave field is small on the scale of the correlation length /; of
the field ¢, (x).® The diffusion approximation holds as long
as DI, €1. Moreover, Eq. (18) takes into account that
D /k<1 and the phase @ (L) of the reflection coefficient
R(L) = yW(L)explip(L) ] oscillates rapidly (on the scale
of A /2) compared with function W (L), which varies slowly
within the wavelength scale. Consequently it is valid to use
an auxiliary averaging over the rapid oscillations of R(L) in
the derivation of Eq. (18) and others like it.

In the subsequent analysis it is convenient to write the
function W(L) as
u(l) -1
uEL; T UMD =q

(w(L) =z 1).

=1+ W)

mn = —W(D)

(19)

Here the probability density of the random quantity u(L): is
P(u;L) = (6(u(L) — u)) is governed by equation

a

i} dJ

P(u; L)

where u, = (1 + W,)/(1 — W,) and for W, =0, 4, = 1.
If there is no wave absorption by the medium; thatisif y = 0,
then Eq. (20) acquires the form

a a a
P ) = E(u2 - I)EP(u; 1),

= d(u ~ uy),

P(u; 0) =0(u—1). 21

Here the dimensionless layer thickness is introduced
7=D(L — L,) and we take u, = 1. A solution of Eq. (21)
can be readily found using Mehler-Fock integral transform’

Plu; 1) = fdyyth(/m)exp [— (/42 + %)t] P—(l/2)+i44(“)' (22)
0

where P_,, , ,, (u) is Legendre function of the first kind
(conic function). Using Eq. (22) one can calculate for y =0
the statistical properties of the modulus square of the reflec-
tion and transmission coefficient |T{*=1—-W
=2/(u + 1) and, in particular, obtain the expression**

(i =] S Ko e - i+ )]
0

where
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2
Kn+1(,¢)=ﬁ[,,2+(n—%) }K"(u), K@) = 1.

The following asymptotic formula results from Eq. (23)

m_ 12n =N PZVa _ T
(AT = (2(';"_1)01-1)! ) mc"p(_ 4)' N

Thus, the asymptotic dependence of any moment of the
transmission and reflection coefficient on the layer thickness
has a universe nature, the only change being that of the nu-
merical coefficient. The vanishing of all the moments of |T |
with increase of the layer thickness means that the reflection
coefficient modulus |R | = W — 1 with a probability equal
to unity. Therefore a half-space of a randomly layered medi-
um reflects the incident wave completely.

In the presence of absorption a solution of Eq. (20) fora
layer of finite thickness 7 is supposed to be impossible. For a
half-space (Ly » — «,7— ), however, there exists a “sta-
tionary” probability distribution for W(L) = |R(L)|? and
u(L) which does not depend on L or 7

w
Poo(u’) = (1 _2ﬂw)2cxp (_ 126 W)v

Py (u) =pexpl—pu— 1)}

(25)

where B = ky/D is dimensionless absorption coefficient.
The physical meaning of the probability densities Egs. (25)
is obvious: they describe the statistical properties of the coef-
ficient of reflection from a rather extended randomly inho-
mogeneous layer that cannot be penetrated completely
through by an incident wave because of its dynamic absorp-
tion by the medium. Using the distributions Eqgs. (25) one
can calculate all the moments of the quantity
W(L) = |R(L)|* In particular, the following asymptotic
formulae are valid

W) = {} B f,

g >1, (26)

as well as the recurrence relation for the higher moments
(WY = 28 + n)(W™) + (W 1)y =0 (26")
(n=1,2.).

It should be noted in addition that for the problem under

consideration concerning a wave incident on a half-space of

arandomly layered medium the average values of the energy

flux and intensity of the wave field at the half-space bound-

ary are defined for 8 <1 through the asymptotic expressions
(S(L, D)) =1 ~(W(L)) =28In(1/P),
(L, L)y=1+(W(L)=2.

If the plane wave source is inside a half-space occupied
by a randomly layered medium, then the wave field and the
energy flux density at the source location point are described
by formulas (7) and (11). Within the diffusion approxima-
tion, the reflection coefficients R, (x,) and R, (x,) can be
viewed as statistically independent, since they are described
by stochastic equations in non-intersecting regions of space
in which random inhomogeneities €, (x) of the medium are
almost statistically independent. Taking this circumstance
into account for an unbounded space (Ly— — o0,L— o)
and using distribution (25) we come to

(27)
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(I(xg x)) =1+ 87", (S(xp xp)) = 1. (28)

Hence, it is clear that the average energy flux density at the
source point x, is independent of fluctuations of the param-
eters of the medium and coincides with the case of a source in
free space. An unlimited growth of the average intensity for
B -0 testifies, however, to the buildup of wave energy in a
randomly layered medium.

Inasimilar manner, when we have a source located on a
totally reflecting boundary x, = L, if we use Eq. (12) and
distribution (25) we obtain

(I (L) =4[1+Q2/B)), (S(L, L)=4. (29)

Therefore in this case, too, the energy flux density at a re-
flecting boundary is also independent of parameter fluctu-
ations of the medium and coincides with the flux density for
the case of a homogeneous space.

4. STATISTICALLOCALIZATION OF AWAVEINA
RANDOMLY LAYERED MEDIUM

Let us proceed now to analyze the possibility of statisti-
cal localization of a wave in a randomly layered medium.
Everywhere in what follows we shall assume that D =1,
which corresponds physically to a change to the dimension-
less coordinate X = Dx. Expressions (27)-(29) derived
above define the values of the wave intensity and the energy
flux averages only at fixed space points (on the boundary of a
randomly layered medium or at the source location point).
However, the relation established above between the flux S
and the energy of the wave F, according to which

(E) = {S(xq X))/ B,

allows one, on the basis of Egs. (27)—-(29), to draw general
semi-qualitative conclusions regarding the average intensity
inside a randomly inhomogeneous medium as well. Thus, for
a wave incident on a half-space x<L, in view of Eq. (27), we
obtain for S <1,

(E) =21In(1/8),

and, consequently, most of the wave energy is concentrated
within a region of space of thickness

Iy = (EY1) = In(1/B),

that is, we have statistical localization of the wave due to the
wave absorption in the medium. We note that /5 €/, ,i.e., the
localization length /; for 5«1 is much less than /, = 1/5,
the wave absorption length in a homogeneous absorbing me-
dium. The latter result can be attributed to the fact that for
B <1 absorption is accompanied by multiple scattering of
the wave at random inhomogeneities of the medium. As a
result, the wave arriving at point x covers an effective dis-
tance within the medium that is much more (L — x) than
that in the case of a homogeneous medium and, hence, is
absorbed more. For §—0 we have /; — o, and for the limit-
ing case of no absorption the statistical localization of the
wave disappears.

For a source in an unbounded randomly layered space
we obtain from expressions (28) and (30)

(BEy=1/B, (N=1+(1/p),

and, hence, for £ 0 statistical localization of the energy

(30)

{((L; L)) =2,

(31)

(32)
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takes place within the neighborhood of a source of a size of
the order /~ 1. Unlike the previous case, localization here is
retained in the absence of absorption as well and the localiza-
tion length is approximately equal to the thickness of a layer
of a randomly layered medium that reflects almost com-
pletely the incident wave.

For a source located on a reflecting boundary we have
correspondingly

(E) = 4/B,

and, hence, for a small 8 the wave localization occurs within
a region of thickness /~1/2.

Let us once again emphasize that such a difference in
the behavior of the average intensity for different boundary-
value problems is due to statistical averaging over an ensem-
ble, since for each individual realization of random inhomo-
geneities of the medium ¢£,(x), the corresponding
realizations of the wave field possess the same spatial struc-
ture according to formulas (11) and (12), differing only in a
constant random factor which can, however, be different for
different realizations of ¢, (x). Therefore this fundamental
difference between the behavior of the average intensity of
the wave incident on a randomly layered half-space and that
of the source-excited wave, for example, in an unbounded
randomly layered medium is brought about by correlation of
these constant factors which are responsible for the reso-
nance properties of a randomly layered medium with the
basic spatial structure of the field.

(L) =411 + (2/B)] (33)

5. AWAVE INCIDENT ON ARANDOMLY LAYERED SPACE

Let us now turn to a more detailed quantitative analysis
of the behavior of the average wave intensity in a randomly
layered medium and of the problem of statistical wave local-
ization. Consider first the case of a wave incident on a ran-
domly layered half-space (Fig. 2). We introduce the func-
tion
Q. (5 L, W) = (Y 7#(x; L)Y §(x; DS(IRAL)| - W)), (34)
where the intensities of the counterpropagating waves
Y,, (x;L) and the modulus squared of the reflection coeffi-
cient [R? (L)| satisfy stochastic equations (16) and (17).
The function Q, ,, describing the correlation of the counter-
propagating wave intensities and the modulus of the reflec-
tion coefficient averaged over the rapid oscillations of the
reflection coeflicient satisfy, to the diffusion approximation,
the equation:**

220l L W) = =B = 2550,

i) i)
— U5y =WIQ , + B+ 550 - WIPWQ,
(35)
QL‘“(X, X W) = W"‘PW(W),
where the probability distribution P_ (W) is described by
formula (25). In particular, without absorption in the medi-

um B = 0and for P_ (W) = §(W — 1) the solution of (35)
has the form

Q. u(x: L, W) = 8(W — Dexpldd — 1)(L — )],

and, consequently,
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(YA=#(x; L)Y#4(x; L)) = exp[A(d — 1)(L — x)]. (36)

In view of the arbitrary nature of parameters A, u relation
(36) shows that, with unity probability
Y, (x;L) = Y, (x;L) = Y(x;L) and the intensities of coun-
terpropagating waves match and each can be expressed as:**

Y(x; L) = exp(n(L; 1) — n(x; 1)), (37

where n(£,a) is a Gaussian random function given by the
equality (A3). Its statistical properties are defined com-
pletely by the probability density (A6). Hence, as is pointed
out in the Appendix, the opposing wave intensities them-
selves are distributed according to the log-normal law while
the intensity moments corresponding to integral values of
the parameters A and 2 grow exponentially with depth into
the interior of a randomly-layered medium

(Y L)) =1, (Y& L))=expln(n— 1)L - x)). (38)

It is worthwhile noting that, as it is indicated in the Appen-
dix, the random function Y(x;L) Eq. (37) is statistically
equivalent to the random process
y(f) = €xp 7](511),

where £ = L — x. It follows from the structure of a log-nor-
mal process y(£), analyzed in the Appendix, that realiza-
tions of the counterpropagating wave intensities can have
infrequent but strong spikes above the average level
(Y ) = 1, which occur against a background of an exponen-
tial decrease of the function

exp({In Y(x; L))) = exp(—§),

into the depth of the medium. In the physics of disordered
systems, this is referred to as a typical realization of the ran-
dom function ¥(x;L). The exponential decrease of the typi-
cal realization (39) with £ is normally identified with the
localization property®® in the physics of disordered systems.
As is evident from the formulas (A57) and (A26), the term
“typical realization,” as applied to the function (39), is jus-
tified by the fact that (39) is an isoprobability curve of the
random function ¥(x;L) corresponding to the value
p = 1/2. In other words, within any interval along the axis
& = L — x the function Y(x;L) spends, on the average, half
of the interval above the typical realization and the other
half below it. It follows from (A26) for @ = 1 that the iso-
probability curves of the random function Y(x;L) are given
by the equality

2, p) = expl—§ + r(2£)"/2],

(39)

(40)

forany p < 1 where risaroot of equation ®(r) = p and ®(z)
is defined by formula (A8). Figure 4 depicts isoprobability
curves Eq. (40) forp>0.5(1),p=0.5(2) and p <0.5 (3).
These curves and formula (40) indicate that for any given
value of p <1 arbitrarily close to unity the isoprobability
curve tends exponentially to zero for a sufficiently large
£> 1. Therefore, the behavior of the isoprobability curves
gives additional support to the idea that the wave intensity is
localized in the vicinity of the boundary of the randomly
layered space. It should be noted as well that InY(x;L) is an
additive self-averaging random function formed from the
random intensity ¥(x;L),%° which, from another point of
view, justifies the term *“‘typical realization” as applied to the
exponential function (39).

V. I. Klyatskin and A. 1. Saichev 236



z2(&;p)

1 1
g [ 2

EE

FIG. 4. Plots of isoprobability curves of random function Y(x;L): 1.
p>05;2.p=0.5;3. p<0.5.

The statistical properties of the random intensity
¥Y(x;L) of the waves in the randomly layered half-space in-
vestigated above lead to contradictory results. On the one
hand, an analysis of the isoprobability curves leads to the
conclusion that the wave is localized near the boundary of
the medium. On the other hand, the behavior of the statisti-
cal moments of the wave intensity shows unambiguously
that there is no localization. The fact is that the behavior of
the wave intensity moments inside a randomly layered medi-
um with increasing £ is governed mainly by the infrequent
but strong intensity spikes. Because of this, the average in-
tensity of the wave inside the medium is the same at any
distance from its boundary. It is only with a finite (arbitrar-
ily small) absorption that exponential growth of intensity
moments at sufficiently large distances from the boundary
ceases and is replaced by an abrupt decay. In particular, for

& > 4{n - (1/2) In(n/B)

the moments (¥ "(x;L)) enter the universal localization re-
lation:®

(Y"(x; L)) = A, £~ 2exp(~£/4)3~ 1 Din(1/8),  (41)
specified by diffusion operator

B.2_ A

au(“ D dJu

in the corresponding Fokker-Planck equations [see, e.g.,
Eq. (20)].

It must be emphasized, however, that this behavior of
the statistical intensity moments, in particular, their expo-
nential growth inside a non-absorbing randomly layered me-
dium does not reflect the energy distribution of the wave
realizations in a randomly layered half-space. The sharp
spikes that govern the behavior of the intensity moments
contain a relatively small amount of energy and as a result,
with any given probability p < 1, total wave energy inside a
randomly layered half-space is bounded. For example, as is
demonstrated in the Appendix, the probability distribution
Z (G) of the total energy

L
G= fde(x; L) (42)

of one of the counterpropagating waves in a randomly
layered half-space is given by formula (A48). This probabil-
ity density is shown in Fig. 5.
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FIG. 5. Probability density of the area under the curve Y(x;L) for all
x<L.

Note that all the moments of the probability density
Z (G) starting from the first are infinite. This conclusion
can be drawn beforehand recalling that {¥(x;L)) = 1 and
thus,

L
(© = [ axves Ly = .

Nevertheless, from the formula Eq. (A48) it follows that the
area under the realization Y(x;L) for x < L is bounded by
the inequality

G < 1/In(1/p). (43)

for any preassigned probability p < 1.

The value of G, expression (42), equals the energy
stored by a particular realization of the wave over the whole
randomly layered half-space. More detailed probabilistic in-
formation concerning the spatial redistribution of the energy
inside the medium is contained in the integral distribution
function of the wave energy stored in the half-space
x <x(x<L):

G6x) = [ax'v(e; 1y (G() = 6). (44)

Asisshown in the Appendix, the integral distributions func-
tion, F(G,£) of the random energy (44) is described by
expression (A55). From this expression it follows that the
probability of satisfying inequality G(x) < G,, where G, is
an energy value specified in advance, tends to unity mono-
tonically with an increase of &.

Even though, as was found previously, the wave intensi-
ty field inside a randomly layered medium has a rather com-
plicated fine structure, it is convenient, as a rough quantita-
tive characteristic of the region of localization, to introduce
an effective wave intensity decay factor inside the layer

L
u =(Y(L; L)) fdxy(x; Ll =61,

based on the approximation of the wave behavior within the
medium by an exponential function

Y(x; L) ~ (Y(L; Lyexp(~ug) (¢ =L—x>0).
As follows from Eq. (A48), the probability density of the
random quantity ¢ has the form
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Pu) = exp(—p),

and its average and variance are equal to (1) = o, = 1. One
canuse/ = 1/(u) = 1 as the effective thickness of the region
of wave localization in this case.

As has been mentioned previously, the presence of ab-
sorption in a randomly layered medium (y>0) leads to a
qualitative change of behavior of the moments of the wave
intensity inside the medium. For example, the exponential
growth of the intensity moments, predicted above, Eq. (38),
is replaced by their abrupt decay formula (41). Neverthe-
less, for sufficiently weak absorption (8« 1) the wave inten-
sity realizations inside the medium show about the same be-
havior as that observed in a non-absorbing medium, and
their probability properties differ only slightly from those
studied above. We shall support these semi-qualitative re-
sults with a quantitative calculation. To this end we employ
an equation similar to Eq. (8)

BE = S(L, L), (45)
where E, as before, is the energy stored in a randomly layered
half-space. It has to be noted that as distinct from G [Eq.
(42) ], which is equal to the energy of one of the counterpro-
pagating waves in a randomly layered medium E describes
total energy contained in the two waves. In what follows it
will become evident that statistics of E, in a non-absorbing
medium at least, coincides with that of 2G. That means that
even though the intensities of the counterpropagating waves
are the same at each point in the medium,
Y, (x;L) = Y, (x;L), their phases are not correlated, coher-
ent effects are absent, and the total intensity averaged over
the phase difference, which varies rapidly in space, is equal
to the sum of the counterpropagating wave intensities.

Let us return to equality (45) which relates the total
energy of the wave stored in a randomly layered half-space
with the intensity flux on its boundary. In the case of a wave
incident on a randomly layered half-space we have
S = 1 — W so that the equality (45) becomes

BE=1-W.

Using the probability distribution (25) of the squared mod-
ulus of the coefficient of reflection from a randomly layered
absorbing half-space one can readily find probability distri-
bution of E:

2 1 1
gjﬁ(E)=Eiexp[—2(-E—ﬂ)]0(ﬂ—E), (46)
7
a5k sl
£=0.1
7 z 3 p
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which in the limit 8- 0 becomes
2 2
P = oo~ F)

which coincides with the probability distribution Eq. (A48)
if the equality £ = 2G'is taken into account. In formula (46)
6(z) is Heaviside step function, equal to zero for z < 0.

It should be noted in conclusion that the foregoing
probability analysis of the wave energy in a randomly
layered medium for a wave incident on a randomly layered
half-space can be applied to the waves excited by a source
located in the randomly layered medium. We shall calculate,
as an example, the probability energy distribution for a wave
excited by a source located near an ideally reflecting bound-
ary (see Fig. 3). Making use of formulas (7) and (8) and
taking into account that R, = 1 we have

BE/4 = (1 - W)/{1 - R|? (47)
and consequently
1/2 2
o= () ex,,[_%(l -2) ] )

for the wave energy in a randomly inhomogeneous medium.
This probability density for the cases #=1and 8= 0.1 is
plotted in Fig. 6. As in Eq. (46) this probability distribution
admits of a limiting process for #—0:

9@ = (Z5) ens(- 2)

We should point out that even though in a nonabsorbing
medium (S —0) the average wave intensity and energy, ex-
pressions (33), go to infinity, the total energy of each partic-
ular realization of a wave excited by a source in the medium
is bounded with unity probability while the main bulk of the
probability is concentrated in the energy range £~ 1.

The curves in Fig. 7, representing typical realizations of
the wave field, taken from Ref. 11, give a graphic illustration
of the behavior revealed by means of the statistical analysis
of waves that undergo multiple scattering in a randomly
layered medium, namely, the fine structure of the intensity
field, which contains alternating dark regions and sharp
spikes, as well as the tendency to localization of the wave.
This figure shows numerically calculated plots of I(x;L) in
rather thick layers DL = 5 for a single realization of random
inhomogeneities in the medium, €, (x) (white circles) and

(49)

FIG. 6. Probability density of the energy of a wave radiated by a source
near the reflecting boundary of a randomly layered half-space.
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FIG. 7. Plots of the wave intensity realizations I(x;L) in a layer of the
medium for = 0.08 based on numerical calculation—white circles.
Black circles are for the case with £, (x) replaced by — £, (x) over a
segment of the order of a wavelength. The continuous curve corresponds
to the case without inhomogeneities in the medium.

the parameter value 8 = 0.08. The black circles correspond
to the case where the function &, (x) is replaced by — &, (x)
over a section of the order of a wavelength. The solid line
corresponds to the absence of fluctuations over the whole
layer, i.e., €, (x) =0. The curves shown here provide semi-
qualitative information, since the realization values I{x;L)
have been selected with relatively large spacings (of the or-
der of ten wavelengths). The true curves of I(x;L) are, how-
ever, much more jagged and have a substantially greater
number of spikes. Even these smoothed curves cannot hide
the change spikes of I(x;L). The amplitudes of the spikes
increase with a decrease of the absorption parameter 5. Fig-
ure 7 also shows that the intensity spikes of the wave field
occur against a background of a rapid decrease, which can be
identified with the existence of localization for given realiza-
tions.

6. ASOURCE IN AN UNBOUNDED RANDOMLY LAYERED
SPACE

Let us proceed now to analyze the statistical localiza-
tion of a wave generated by a source in an unbounded ran-
domly layered medium (L,— — «o,L— ) (see Fig. 1).
From formulas (6) and (7) the following relation results for
the average wave intensity within the range

B, x9)) = = ((x, x),

where 1/(x,x, ) as a function of the parameter x, satisfies the
stochastic equation

+ R (xp)1?

a —__ e —————————
a—xo'p(xvxo)_ lR (x0)|2 ( xo) (50)

with

¥(xg xXp) = 1.
We introduce an auxiliary function
<V’(x, xo)a(u(xo) - u))v

where U(L) is defined by equality (19). The function ¢, to
the approximations adopted here, satisfies the equation

O(x, Xg u)y'=
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P (u) =B expl—-P(u - 1)1,

(31)

D0, u) = & =D|x - x,|.

The average wave intensity that we seek is expressed in terms
of ¢ by means of the equalities

BUGx, xp) = = 3¢ dud(E, w) = [awdE, . (52)
1 1

For B <1 the factor £ on the left-hand side of this equality
has the role of normalizing to the average wave intensity at
the source point Egs. (28). Therefore, as §—0itis natural to
call the limit curve

@y (§) = ;l;l_l.l(l) BU(x, x)) =;‘_‘3(1) {(x, Xo))/U(XO, xo))- (53)

alocalization curve, describing the statistical localization of
the wave in a non-absorbing medium. It can be easily demon-
strated that the localization curve is given by the expression

P, &)= fduu&(&, u),
1

where & satisfies the equation

FBE, ) = —ud + L) + 2w LW, (54)
B0, u) =74,

Solving Eq. {54) with the help of the Kantorovich-Lebedev
integral transform [7] yields [3]:

_ Tsh(rr) 1
m w1 1)
= - IO, (39

where |T(£)|* is the squared modulus of the transmission
coefficient for a layer of thickness £ in the case of an incident
plane wave [see formula (23)]. For small values of £ the
localization curve falls off very rapidly as exp( — 2£), while
for large £(&> ) it does so much slower following the uni-
versal law

2
. () = g ft‘f‘?"zexx)(— %) (56)

such that the total area under the localization curve is
§§déED, . (&) = 1. Figure 8 a localization curve, and the
dashed lines indicate the above-mentioned asymptotic
curves for comparison. We should stress a fact of fundamen-
tal importance, that the localization curve corresponds to
the double limit

©® =1 lim (I(x, /{I(xg, ,
N (3] ﬁl-l-l(l) l,o-Tuf. (%, xp))/{ (%o xo»

L >

(57)

and, as can be easily shown in this case, these limits do not
commute, and the limiting process performed in reverse or-
der yields

lim fl}im U (x, xp))/ {I(xg, X)) = (2/3)(D|x — x4| > 1),
11’-—00, -0

L-»co

V. l. Klyatskin and A. |. Saichev 239



0 7 2 k] 4 3

FIG. 8. Localization curves. Dashed lines show the formulas for the
asymptotic localization curve valid for £¢1 and £% 1.

which is similar to the case of a plane wave incident on a
layer of randomly inhomogeneous medium for which these
limits are commutative. Recall that the order of taking the
limits adopted in Eq. (57) corresponds to the physical sense
of the problem stated, inasmuch as the presence of an arbi-
trarily small but finite absorption for Ly » — w0, L— o au-
tomatically satisfies the radiation conditions.

We should note that a situation of this type can be ob-
served in the case of a source located on a reflecting bound-
ary as well (Fig. 3). Moreover, it can be shown that at dis-
tances § = D(L — x) R 1/3 from a reflecting boundary the
localization curve is given by

\" tm 7 (5 D)L ) = Low®.

while at smaller distances from the reflecting boundary
£ % 1/3 the localization curve oscillates because of interfer-
ence of the incident and reflected waves, which are mutually
coherent near the boundary. Recall also that the probability
distribution (49) of the energy of this wave, according to
which the energy of each particular wave realization is finite,
testifies to the localization of a wave excited near a reflecting
boundary in a randomly layered half-space. The finite ener-
gy implies in addition that in a non-absorbing randomly
layered medium bounded with an ideally reflecting mirror
the multiply scattered waves efficiently suffer mutual extinc-
tion.

7.NONSTATIONARY WAVE PROBLEMS

Until now we have discussed the spatial intensity be-
havior of a wave radiated by a monochromatic source in a
randomly layered medium. More directly relevant to the
problem of localization are nonstationary wave problems
concerning the radiation or incidence of wave pulses on the
medium. In the case of a pulsed source of plane waves locat-
ed within a layer of the medium at the point x, the wave field
u(x,x,;t) satisfies the following boundary-value problem

2
FYs 1 P a2 d.

ax2
(58)

ax
9 _
aix
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) ) ;
(—— + 5-{) u(x, X3 7) lng =0,

Q= 6|

a%) u(x, xo3 ) I =1, 0,

where the right-hand side describes the generation of a wave
pulse. In particular, in a homogeneous (¢(x) = ¢ = const)
and non-absorbing (¥ =0) medium the wave pulse
P(t+ (x — xg)/c) (x <xy) is generated on the left of the
source. When analyzing a nonstationary wave problem we
were able to use the results of the previous sections, applying
the spectral approach, according to which the solution of the
boundary-value problem Eq. (58) can be given as

u(x, 593 ) = o [ GG, (x, xp@)e ", (59)

where G, (x,x,) is the solution to the boundary-value prob-
lem (1), (2) with parameters k=w/c, y=v/o,
£,(x) = [¢*(x) — ¢*]/c% and @(w) is the Fourier trans-
form of the time pulse $(?).

‘As before, we shall be concerned with the behavior of
the wave field intensity in space and time

I(x, xg; 1) = u‘z(x, Xgs D).

Using the spectral representation of the field, Eq. (59), we
write the following expression for the intensity

I(x, % 1) - -

-= (ﬁ) : | idmdww(;, )P (w + 5;-) +° (w - 5;-) e,

2
H

(60)

In this formula a two-frequency analogue of the intensity of
plane monochromatic waves is introduced

’a_..w("" xp) = Gm+(¢/zj(x’ Xy — pr2)(*s %) (61)

The problem of the possible localization of the wave pulse in
a randomly layered medium is solved by analyzing the
asymptotic behavior of its intensity for £— «. Here the be-
havior of the average intensity is determined by that of the
integrand in (6) for small values of ¥ while an expression for
the average intensity can be given in a simplified form

(ICx, 5: ) = (ﬁ)z } dwlso(w)i? } dw(l,,,,,kx, xp)e™ ",

(62)
Proceeding from Eq. (1) the following relation can be readi-
ly obtained for the two-frequency intensity I,, , for low ¢ and
¥ which is similar to Eq. (6)

%Sw_v(x, xp) = %(7— iw)Im_¢<x, X0)» (63)

where S, , (x,x,) is a two-frequency analogue of the energy
flux density. Integrating (63) over a randomly layered half-
space — o <x< X, and taking Eq. (62) into account we
obtain

%o

Et) = f dx(I(x, xg; )

5 ] ol ] s o e

(64)
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for the energy contained within this half-space.

Let us consider now statistical description of the quan-
tities S,,, and I, ,. These quantities are related, by defini-
tion, with a two-frequency analogue of the modulus squared
of the reflection coefficient W, , =R, ,,, R%_ /. There-
fore, to calculate the averages (62), (64) knowledgg of the
statistics of the quantity W, , is required. For small y and ¢
it is governed by the stochastic equation

d
aWw.w

2, . W
== ?(7 - W’)Ww_.,, - 'Tcsl(x)(ka,+(¢/2)

~Ry_ )1 =W, ), (65)

where R, satisfies the equation

d 2i . . 2
a—;Rw = ?(w + tg)kw + l%el(x)(l + Ra;) ,

R(-)=0.

It should be emphasized that Eq. (65) for W,, , islinearin y,
¥ and ¢, (x). From Egs. (65) and (66) it follows that the
moments of W, , W), =([W,,]") are interrelated
through the sequence of equations

d _ 2. . 2, uAn+1)
WO, = = 2 - )WY, + D (WS

=200+ WO,

which is transformed, in the case of an unbounded randomly
layered medium, into

25— )W), = D)n(WsD - 20, + WD), (66)

Here and above the dependence of the diffusion coefficient
D(w) of the inhomogeneities of the random medium on the
frequency w is taken into account explicitly. In particular, if
€,(x) is white noise with the correlation function
(e, (x)e,(x")) = 20%],6(x —x'), the diffusion coefficient
will be D(w) = ?l,0* /2.

Note that recurrence relation (26’) resulting from
probability distribution P_ (W) Eqs. (25) is transformed
into the equation sequence (66) after replacing S with
(¥ — i) /cD. This means that the statistical properties of
W, in an unbounded randomly layered medium with no
absorption (¥ = 0) can be found with the help of distribu-
tion (25) continued analytically into the complex plane

B~ (0 - #p)/cD. (67)

As a result, for 77 =0and - o, i.e., for low values of  we
obtain
B D(w)c
Spspr TN =1, L, (%0 X)) = ,WJ:% ,
and, consequently, formulas (62) and (64) lead to the ex-
pressions

U 355 ) == [ dwD(@)lp@)I2,

B=) =5 [ dolp@)l (68)
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Thus, provided the integrals (68) exist, the average field
intensity at the source point and total wave energy in half-
space are finite, which implies spatial localization for the
average wave field intensity in the medium. The localization
length in this case obviously will be defined by the equality

1=E/ = [ dolp@)? ([ dwD@)lp@)|D".

By analogy, using the equalities (53), one can show that the
form of the localization curve of the wave pulse is

UCx, xgs =) = = [ d0D@)|p@)|200e . (69)

§ = D(@)|x - x,l,

where @, (£) is the localization curve (55) of the station-
ary problem. In particular, for the white-noise model and a
generated “videopulse” @(t) characterized by only one pa-
rameter—the pulse width—we have from Eq. (69)

{(x, X0 ®)) ~ |x - x0|—3f2.

If, however, a pulse with a high-frequency carrier is genera-
ted, with a spectrum concentrated within a narrow band Aw
around the central frequency w, (w, > Aw), then the asymp-
totic form of the localization curve will be

(I(x, x93 ®)) ~ &, &) (= D(wg)lx - x,|).

The asymptotic expression (69) for the localization curve of
the wave pulse (69) has a simple physical interpretation. At
long enough times the field of a multiply scattered pulse can
be represented as a superposition of statistically mutually
independent wave packets, each having width Aw. For
t— o0, Aw—0 and the field of every wave packet is localized
in space according to the laws described for the case of a
stationary problem. Figuratively, when t— o« a complete
randomization of the phases of all time harmonics of the
pulse is observed and each harmonic is localized in space
independently. As a result, for — o the localized pulse field
can be represented at each point in the region of localization
as a stationary random process with a spectral density of the
form ~D(w)|p(w)| % which is determined by the shape of
the generated pulse spectrum.

In conclusion we observe that when a time pulse is inci-
dent on a half-space the following expression'® is valid for
the asymptotic behavior of the back-scattered signal intensi-
ty for large ¢

el [ 2 D@)
UL L ) = £ _f“° dwlp@ 2o (0

from which we obtain for the pulses without a high-frequen-
cy carrier and with a high-frequency carrier, respectively,

(KL, L; ) ~ 32 and (I(L, L; ) ~ 2.

By analogy for the total energy in a half-space we obtain the
following expression for large ¢

E(t)=§ fda)lP(w)lzz—I_l;(T)a' 7D
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From expressions (70) and (71) it follows that for ¢— o«
radiation is completely emitted from a randomly inhomo-
geneous medium.

In this article we have presented a statistical description
of a wave pulse in a randomly layered medium. In a similar
way one can consider a problem of a space-time packet in a
randomly inhomogeneous medium. In this case it is clear
that the localization property described in this article will
also hold true for this situation, which can be interpreted as
the existence of a stochastic waveguide in the plane perpen-
dicular to the x axis.?

8.CONCLUSIONS

To complete our discussion let us point out that analysis
of wave localization in randomly layered media has been
essentially reduced to a study of statistical and dynamic
properties of realizations of a log-normal process equal to
the exponential function of the Wiener process. This fact is
of particular importance in that similar log-normal pro-
cesses are observed in practically all branches of physics
where a description of characteristics of positive-definite
physical quantities processes, and fields is required. This in-
cludes the description of intensity fluctuations of optical and
radio waves in turbulent media and the analysis of the behav-
ior of the amplitudes of radiophysical systems subject to
fluctuations in the parameter. In these physical problems,
among many others, a log-normal process emerges as the
simplest adequate model accounting correctly for principal
properties of the phenomena under investigation—positive
definiteness, conservation laws, parametric instability, alter-
nation of the ““fading signal” portions and large sharp spikes
in narrow regions.

Therefore, the importance of the analysis of the statisti-
cal and dynamic properties of a log-normal process reaches
far beyond the bounds of an important but yet relatively
narrow physical problem to which the present article is dedi-
cated.

At the same time, undeservedly little attention has been
paid to many outstanding features of such processes which
afford a deeper insight into the fundamentally important
properties of physical phenomena where the log-normal pro-
cess proves to be the simplest adequate model.

Among the aims of this article, the most important one
is, as we understand it, to draw closer attention of research-
ers in various fields of physics to log-normal processes and to
the nontraditional approaches to analyzing such processes
suggested in this paper. In particular, we wish to draw atten-
tion to a new understanding of isoprobability and majorant
curves, to the statistics of the areas under the realizations,
the fractal properties, understanding of the dynamical and
statistical properties, which necessarily arise in various
physical contexts in the most widely diverse physical con-
texts.

9. APPENDICES
9.1. Statistical and dynamic properties of Wiener and log-
normal processes

Consider a random function @ (&) of the argument &
which will be called time for definiteness. Let w(&) be a
continuous Gaussian random process with independent in-
crements. The latter condition means that if the intervals
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(£,,6,) and (£5,£,) do not overlap the process increments
(&) over these intervals

Ao, b ) =0,) -oE), i=1,3,

are statistically independent. Just as the process w (£) itself,
its increments have Gaussian statistics while their statistical
properties are specified entirely by the first two moments

(Aw) =0, (Ao, £+ A)YH =2|A]. (A1)

It will be assumed without loss of generality that the process
(&) is “tied to zero”

»(0) =0. (A2)

The process (&) with the aforementioned properties is
called a Wiener process. A typical realization of a Wiener
process is depicted in Fig. 9.

Let us consider specific features of the dynamic behav-
ior of realization of a Wiener process. It is homogeneous in £
in that realizations of the processes w(£) and
Aw(&,,E, + &) as functions of £ are statistically equivalent
for any given parameter £,. Figuratively speaking, from the
realization form of these processes it is not possible to tell to
which process it belongs. The processes w(£) and w( — £)
are statistically equivalent and, hence, the Wiener process is
reversible in time in the sense indicated above. Realizations
of the Wiener process have another outstanding property,
the fractal property. According to this property the realiza-
tions of the Wiener process w(a&) compressed in time (for
a> 1) are statistically equivalent to the vertically extended
realizations yaw(£). The fractal property of the Wiener
process can be also interpreted as the statistical equivalence
of realizations of @ (&) and of the process w(af)/ Ja com-
pressed both in £ and along the vertical coordinate.

Let us consider a more general process

n(§; a) = o) - af, (A3)
satisfying the stochastic differential equation
%} +a = f(¢), (A4)

where f(£) is Gaussian white noise with a correlation func-
tion

VEME + ) = 23(s).
Like the Wiener process, the process 7(&,a) ishomogeneous
in time and has statistically independent increments in £,

Because of the increment independence the process 7(£,a)
is Markovian and its probability density.

Plr: & a) = 6 - n&; a))
satisfies the Fokker—Planck equation

doy_ e, o
fP-a S+ <9,

(A5)
P; 0, a) = d(n),

which can be derived as a result of stochastic equation (A4).
The solution of equation (A5) has the form

[_ (1L+a§)2]
L

(A6)

. 1
P @ s,a)—zﬁgxp
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FIG. 9. Typical realization of the Wiener process w(£).

v

The corresponding integral distribution function, which is
equal to the probability that 7(&,a) <7 is

F(n; & a) = P(&, @) <)
n 1/2
-/ dnﬁ’(n;s,a)=¢((—2§m+a(§) ]

(AT)
where

(A8)

¢>(z)=—f,1&:f dy‘exp(— ;)

In addition to the initial condition, we shall impose the
following boundary condition on Eq. (A5)

P =h E,a)=0 E>0), (A9)

which terminates the realization of the process 17(£,a) when
they reach the boundary 4. A solution to the boundary prob-
lem (AS) and (A9) denoted as Z (n;£,a,h) describes, for
7 < h, the probability distribution of the values of those real-
izations of the process 7(£,a) that “survive” to the time &;
that is, they never reach the boundary 4 over the whole time
interval (0,£). Correspondingly, the probability density
Z (n;£,a,h) is not normalized to unity but to the probability
that £ * > £ where £ * is the time at which the process 7 (&£;a)
reaches the boundary 4 for the first time

h

[ anPys &2y = PE < ).

—o0

(A10)

Let us introduce the integral distribution function and
probability density of the random time of the first arrival

h .
FEaiy=1-PE<E) =1~ [Pt a b, (AlD

P& anhy =5 = - 5w Pmi &, o, D) on (A12)
For a > 0, where the process 7(£;a) moves away from the
boundary A with increasing £ and for £ — « the probability
P(£ <£*) (A10) converges to the probability that the pro-
cess 7(&;a) never reaches the boundary A. In other words,
the limit

h
Elim f dr)ﬂq; & a, )= POy < h) (A13)

243 Sov. Phys. Usp. 35 (3), March 1992

is equal to the probability that absolute maximum of the
process

ny(@) = max 7(; a) (A14)
£E(0,%)

is less than A. Therefore, it follows from Egs. (A13) and
(A10) that the integral distribution function for the abso-
lute maximum values 7, is

: h
.F(h, a)=Py<h= Elinl f dr;?(r]; £ a,h). (A15)

Solving the boundary-value problem (AS5) and (A9), and
using the reflection method, we obtain

P& a, b

1 . 2
B 2(::5)“2{“" [“ = ]

- exp[—ha—'(y—g)—_?’;;a 2]} (A16)

Substituting this expression into (A 12) we find the probabil-
ity density of the time £* at which the process 7(&,a)
reaches the boundary 4 for the first time

VI _ (bt aty?
g(g’“’h)'zs(na)"z“p[ 5 ]

Finally, integrating (A 16) over 7 and with £ - « we obtain,
according to (A15) the integral distribution function for the

absolute maximum 7, :
F(h; a) = 1 = exp(—ha). (A17)

Let me turn now to a description of the statistical prop-
erties of the log-normal process

W, § @) = exp(n(; a) - 1(; a))

= exp[Aw(r, §) — a(r — §)]. (A18)
It can be still written as
Hr, & a) = f(v; @)/ nE; a), (A19)
where
AT a) = 109, (A20)

We should bear in mind that the process in the argument of
the exponential, 7(7,a), has independent increments. In

V. I. Klyatskin and A. |. Saichev 243



physics this property is called the additive property of the
process 7(7,a). Correspondingly, the process y(7;a) has a
multiplicative feature, according to which the process
y(7,a) can be expressed as the product of statistically inde-
pendent processes

W1 a) = W& a)N, &; ),

so that realizations of the process y(7,£,a) as functions of
the argument x = 7 — £ are statistically equivalent to real-
izations of the process y(x,a). The latter property of the
process y(7,a) can be naturally called the property of multi-
plicative homogeneity in time.

Let us discuss in more detail the log-normal process
y(r,a) (A20). It satisfies the stochastic equation

(A21)

(—‘:':- +ay=fr)y, W0 =1. (A22)

From this result it follows that the probability density of the
process

P v, @) = B((x; @) - )
satisfies the Fokker-Planck equation

d@_ 9 FIRK

7 P=a o + S0P

Py 0,@) =80 - 1),

whose solution is a log-normal probability density. It can be
found by noting that the probability of fulfilling the inequali-
ty

W a)<y

(A23)

(A24)
is equal exactly to the probability of satisfying the inequality
7(r;a) <lny. (A25)

Then using (A7), we see that integral distribution function
for the process y(7,a) is

F(y; 7, a)
n 1/2 1
. T .
=¢ El%i'i'a(i) ] =d>(m1n(ye‘")j.

(A26)

Differentiating it with respect to y and taking definition
(A8) into account, we come to the solution of equation
(A23)

G

1ok
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- 1 1
Py 7, a) = WXP [- Hlﬂz()'f')] . (A27)
The log-normal probability density (27) is plotted in Fig. 10
for 7 = 0.5 and @ = 1. With the help of this probability den-
sity or, which is even simpler, directly from Eq. (A23) one

can find moments of the process y(r;a)

O(z; a)) = ‘exp[n(rli —a)l. (A28)
In particular, for the process
WT) = W(7; 1) = exp(w(t) — 1), (A29)

which plays the most significant role in this paper, the mo-
ments are equal to

(1)) = expln(n — )z

The average of the process y(7):(y(7)) = 1 is the same for
any 7 while all other moments of y(7) increase exponentially
with 7.

The exponential growth of the higher moments of a log-
normal process y(7) is attributed to a slow decrease of tails
of the probability density Eq. (27) for y> 1. In terms of real-
izations, this means that in the realizations of the process
y(7) we should observe increasingly rare but increasingly
high spikes that are responsible for the exponential growth
of the moments of y(7). At the same time, as seen from Eq.
(27) and Fig. 10, the bulk of the probability of the process
y(7)

Py =Pyr,a=1)

is concentrated within the range of small values of y. Indeed,
according to Eq. (26) the probability of satisfying inequality
y(r)<lis

(A30)

P(y) < 1) = F(1; 7, 1) = d((z/2)!/2)

and tends exponentially to unity for 7> 1:

P((r) <1)=1 —(;;l—,zexp(— %)

(A31)

Thus, although the statistical moments of the process y(7)
are mainly determined by its large spikes, during the over-
whelming majority of the time of the plot the realization of
the plot lies below its average value (y(7)) = 1.

The observed discrepancy between the behavior of the
statistical moments of the process y(7) and its realizations
prompts a more detailed investigation of the dynamics of the

FIG. 10. Log-normal probability density for r = 0.5, a = 1.
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realizations of the process y(7) and the more general process
y(r;a). For this purpose we introduce the idea of majorant
curves. We denote a curve as a majorant curve that curve
M(r,p,a) for which for any 7 the inequality

v, a) < M(z, p, a). . (A32)

is satisfied with probability p. In other words, 100 p percent
of all realizations of the process y(7 ;) are located under the
majorant curve M (7,p,a). The above-studied statistics of an
absolute maximum (A 14) of the process 7 (7 ;a) permits us
to outline a substantially rich class of majorant curves. Let
the probability that the absolute maximum 7,,(8) of an
auxiliary process (7 ;3) with an arbitrary value of the pa-
rameter 3, lying between 0 < 8 < a satisfies the inequality

B <h=InA (A33)

beequal to p. Then, obviously, with the same probability p all
the realizations of the process y(7 ;&) will lie below the ma-
jorant curve

M@, p,a,B)y=Aexp [(B~a)r].

Asisevident from Eq. (A17), the probability with which the
process y( 7 ;a) nowhere exceeds majorant curve Eq. (A34)
depends on its parameters in the following way

(A34)

p= 1~ A_ﬂ. (A35)

If we apply these ideas to the process y(7) (A29) it will
become evident that its realizations are bounded from above,

with probability given by Eq. (A35), by the majorant curve
M= Aecxpl(f - l)f]. (A36)

Let us draw attention to an important point, that despite the
fact that the statistical average (y(7)) = 1is a constant and

L 1
! 2 3 T

FIG. 11. Typical realization of the process y(7) and of the majorant curve
under which one half of the realizations of the process y(7) are located.
Dashed straight line is for the statistical average {(y(7)).
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the higher moments of the process y(r) increase exponen-
tially, one can always distinguish an exponentially decreas-
ing (for B < 1) majorant curve Eq. (A36), below which are
located realizations of the process y(7) with any probability
p <1 prescribed in advance. In particular, one half of the
realizations of y(7) are located below the exponentially de-
creasing majorant curve

M = 4 exp(-1/2). (A37)

A typical realization of the process y(7) and the majorant
curve (A37) are depicted in Fig. 11.

The existence of an exponentially decreasing majorant
curve leads to two conclusions useful for understanding the
statistics and dynamics of the realizations of the y (7 ;a) pro-
cess. First, even though the behavior of the higher moments
of these processes is governed by the presence of large spikes
in their realizations these spikes themselves are not observed
in all process realizations. This means, for example, that the
constant nature of the average of (y(7)) = 1 and exponen-
tial growth of higher moments of y(r) are entirely statistical
effects attributed to the averaging over the whole ensemble
of realizations, among which, together with those dropping
rather rapidly, realizations with large spikes are observed.
Second, the area under the exponentially decaying majorant
curves is finite. Consequently, the large spikes, while causing
the exponential growth of the higher moments, do not make
a significant contribution to the area under the realizations,
which is also finite for almost all realizations of the processes
y(r;a).

It therefore seems interesting to analyze the statistics of
the random area under the realizations of process

G(a) = f dry(t; a). (A38)
0

Consider an auxiliary random process G(7 ;a) satisfying the
stochastic equation

d

wC=1-aG+ /)G, GO;a)=0. (A39)
The solution of equation (A39) is
(A40)

G(r; a) = fdﬁy(r, & a),
0

where the process to be integrated is given by equality
(A19). From the time-inversion invariance of the Wiener
process it follows that process G(r;a), Eq. (A40), has a
single-moment probability density which coincides with
that of the random quantity

2(5;a) = [ dbstt; ),
0

equal to the area under realization of y(£;a) over the inter-
val (0,7). Therefore if we find the probability density

9XG; 1, @) =(3(G(; a) - G)), (A41)

then in the limit 7— o it will coincide with the probability
density of the area under all the realizations of the process
y(r;a)

P(G; a) = lim (G; v, a). (A42)
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Finally, for a = 1 the latter probability density coincides
with that of the area under realizations of the process y(7)
(A29)

P©G) =P(G;a=1).

Knowing Z (G;a) one can readily find the probability den-
sity of the random integrals

(A43)

y A4
G,= f dry’'(z). ( )
0

Indeed, it follows from the fractal property of the Wiener
process that the process y"(7) is statistically equivalent to
the time-compressed process y(n?7,1/n). This means that

P (G) = n9\n?G; 1/n). (A45)

The above defined probability density & (G;7,a) satis-
fies the Fokker-Planck equation resulting from Eq. (A39)

2P+ 5 Pe @) + 55 G|,
&(G; 0, a) = 8(G).

For 7— « the solution of this equation tends to the station-
ary probability density & (G;a) (A42) governed by equa-
tion

P aGPr G—(G?)

(A46)

Solving it we find
: 1 1 a+l 1\
9@ -rafe) o(-o)

Then setting @ = 1 we obtain the probability density (43) of
the random area under the realizations of the process y(7)

P@ = Gewa|- ). (A43)

(A47)

The corresponding integral distribution function is equal to
F(G) = exp(— —é—) (A49)

Additional information on the dynamics of the behav-
ior of the realization of the processes y(7,&;a) and y(§;a) in
time is contained in the dependence of the probability distri-

bution of the random process
1—

déyr, §ia) (v >0)

(A50)

on the time y. It can be easily shown that this process is
statistically equivalent to the process

[atxe: (A3D
14

In its turn, from the multiplicative property of the process
y(&a) (21) it follows that the single-moment probability
distribution of the processes (A50) and (AS51) coincides
with the probability density of the process

G(y; a) = ¥(7; a)G(a),

where y(¥;a) and G(a) are statistically independent and

(A52)
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their probability densities are given by expressions (A27)
and (A47), respectively. In particular, it follows from this
that integral distribution function of the random process

6@ = %G,

coinciding with the distribution function for the area under
realizations of the process y(£) over an infinite interval
(7,0), is equal to

(AS3)

F(G; 1) = (TITI)W [ ﬂyx exp [— z- ,}—,ln’(w’)] . (ASS)
o B

and the probability of satisfying the inequality G(7) <G
with an increase of 7 tends monotonically to unity for any
given value of G. This confirms once again that each individ-
ual realization of the process y() tends to zero with an in-
crease of 7 despite the exponential growth of the higher mo-
ments y(7) due to the large spikes observed in some
realizations of y(7).

9.2. Isoprobability curves

Consider an arbitrary random process y(7) with an in-
tegral distribution function

F(y; 1) = (6(y = (@)

where 6(z) is the step function, equal to zero for z <0 and
unity for z > 0. Let us denote as an isoprobability curve of the
process y(7) the determinate function z(7;p) whose value at
each given time 7 is obtained from the equation

F(z(z; p); 1) = p.

Integrating this equality over an arbitrary interval yields

(A56)

(AST)

f dtF(z(z; p); 1) = p(r, — 7). (A58)

n

On the other hand, it follows from definition (A56) of the
distribution function that the integral on the left-hand side
of this equality is

f drF(2(z; p); 1) ={T(z,, 1)) (A59)

N

where
N
T(r, 1) = 2 Az,
i=1

is the total time spent by a realization of the process y(7)
under the isoprobability curve over the interval (7,,7,).
Correspondingly, A7, are durations of time intervals over
which a realization of y(7) is located below z(7;p) (see Fig.
12) and N is the number of such time lengths over the inter-
val (7,,7, ). Comparing equalities (A58) and (A59) we find
that

(TG, 1)) =p(r3— 7))
the average time spent by the process y(7) within the inter-

val (7,,7,) under the isoprobability curve z(7;p), is propor-
tional to a duration of this interval 7, — 7,. The coefficient

(A60)
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FIG. 12. Plots for the realization of the process y(7) and for the corre-
sponding isoprobability curve z(7,p).

of proportionality p is equal to the fraction of the time during
which inequality y(7) <z(7;p) is satisfied. Therefore, if p is
sufficiently close to unity, the realization plots of the process
y(7) will lie almost always below the isoprobability curve
within any interval (r,,r,) while for p = 1/2, for example,
the realization of the process y(7) will pass back and forth
across the isoprobability curve, spending, on the average,
half of the time above the curve and half below it. Because of
this behavior, the isoprobability curve z(7;1/2) can be natu-
rally called a typical realization of the process y(7) although
the plot z(7;1/2) can, no doubt, differ significantly from that
of any particular realization of the process y(7). An inter-
pretation of isoprobability curves as typical realizations sug-
gesting the idea of dynamic behavior of the corresponding
random process realizations is supported by the limiting
property of the isoprobability curves formulated below. Asis
well known, one can use as a quantitative measure of the
randomness of the process y(r) its variance
o (1) = (Y*(1)) — (p(7))% For o—0 the process y(7)
tends to some determinate process y, (7) = (¥(7)). It fol-
lows from the definition of the isoprobability curves that in
the limit 0—0 and for any p < 1
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lin; z(1;p) =yo(7),

that is the isoprobability curve is contracted towards the
determinate process.

YFormula (A54) is missing on the Russian original.
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