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1. Interest in moving media has increased in the last
decade due to the expansion of research on various methods
of accelerating charged particles. Tamm' and Veksler’ were
the first to focus attention on the possibility of accelerating a
charge in streams of matter moving faster than light. They
indicated that charges could also be accelerated in dense
beams of relativistic electrons. With the appearance of high-
current beams®* these investigations have been developed
into an entire new field, collective methods of particle accel-
eration.

Moving media are mainly understood to be media
which are moving as a whole with a constant velocity u.
Electromagnetic phenomena in these media are described as
usual by Maxwell’s equations®”’

_10D  4n, __lo (D
curlH_c6t+c‘l' curlE_—cat,
divD =4np, divB=0;

here p and j are the density of external charges and the den-
sity of currents and c is the speed of light in vacuum. For -
moving media, the main issue is the writing of the physical
equations which link the electric displacement D and mag-
netic inductions B with fields E and H. These equations were
obtained by Minkowski (see Ref. 8 or Ref. 5) for homoge-
neous isotropic and steady-state media

D+ [2] = e+ [88]), B+ [6] =ufus [0Y]).

(2)

where € and p are the permittivity and magnetic permeabil-
ity of the medium measured in its rest system, and u is the
constant velocity of the medium. The physical formulas in
Eq. (2) are obtained from analogous equations

D'=¢E’, B =uH’, (3)
written in the rest system of the medium (all quantities in it
are marked with primes) if one performs a Lorentz transfor-
mation on the field and induction (see, for example, Ref. 9)
into the laboratory system of coordinates. In media with dis-
persion, the formulas in Eq. (3) are written for a Fourier
component in the expansion of all quantities in terms of two-
dimensional electromagnetic waves of frequency @’ and with
a wave vector k'. Then £ and u are functions of " and k/,
which are linked with @ and k by the following equations'®
in the laboratory system, where the medium moves with a
velocity u
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, , u 1 u?
o =yw-ku, k=k+y5||l-Z|Uuk)-o73|, (4)
u Y C

wherey = (1 — %) ~ /%, and u = ¢B. For cold electron plas-
ma or a beam of relativistic electrons

47e?
’

2
N =ol= e’y (5)

2
w/ ‘=
P m

because m = ym’'~ym, and N = yN ', wheree, m’, and N’
are the charge, mass, and electron concentration. For quan-
titative estimates N~ 1.4- 10% and w? ~4.4-10"%j/y, where j
is the current density in the beam in amperes per square
centimeter.

Thus, using Egs. (1) and (2) and given functions € and
u of the arguments specified by Eq. (4) one can in principle
solve any electrodynamic problems in isotropic and homo-
geneous moving media. However, the solution of the equa-
tions is complex because of the vector nature of the equa-
tions. For simplicity, and in media at rest, one can introduce

the potentials®®!'! @ and A
E= —%%—?—grad P, B=curlA, (6)

because the velocity of the medium does not enter Maxwell’s
equations in Eq. (1). The equations for the potentials in
four-dimensional form are''-"*

N

£ [i] 2 X

m,
where the following four-dimensional vectors are intro-
duced

X=X X =y, X3=1z, x,=icl, A1,2,3 = Ax’y‘z, A, = ip;

j1,2.3 =jx.y,z’ j4 = icp; (8)

1 )
Up g3 ="y o0 Ug=ldy, y=(1-H)712 u=cp,

% = gu — 1, and repeating indices indicate summation from
1 to 4; 8, is Kronecker’s symbol. As a result, finding the
potentials from Eq. (7), calculating the vectors E and B with
them in Eq. (6), and using the physical formulas in Eq. (2)
in the form
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D=¢E + lnyz[ﬂzE — B(BE) + [BBI],
“ (9

H =,§B + ,%»yzmwm — BB + [BEI],

one can completely define the electromagnetic fields of any
sources.

2. The formulas in Eq. (7) for the potentials 4; make it
possible to write their solution using the Green’s function
G,(r —r',t —t') of an instantaneous point source in the
moving medium. Calculations (see Refs. 12 and 13) done as
in Refs. 14-16 yield the following expressions

Afr, =

t
= (h)4fdr’f dt’G,.m(r -r, t- t’)jm(r’, '), (10)

where the tensor Green’s function G,, is linked with G, by
the equation

1
G, ==, Gy (11)

¢ im

here S, is as presented in Eq. (7), and G, is the solution of
the equation

£ @ G(r = 7'y 1 = 1) = drpu(2)*8(r = 1)3(1 = 1),(12)

which satisfies the radiation condition
Go(r—r',1—¢)=0 for t<?t. (13)

Integration of Eq. (12) by expansion into Fourier inte-
grals yields the following two equivalent expressions®® for
the Green’s function in a medium without dispersion mov-
ing along the z axis (u = ue,)

~

167%u eu — 2 R

G,(R,7) = dlt— =
0 [ (1 = A (en)'/? €
164 (1 +sgn<t

= ——Re—”—(—z——l'a (T _ Tl)

1 +sgnz,

T&(‘t - 12)) .

1/2
- -7,
R=|2A=B5 0 ¢ qu?|
eu—p
P=2+3, =%
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(14) -

=(x— =(y—y Rl B
x ('x x)’ y (y y)! ey—ﬂr
1/2
1- 2
Re= (;2+ l_eﬂz ?] ’

(0 =A@ 2R, = (o ~ 1T

ay 1 _e”ﬂ2 ’
(=AW PRt (e ~ 1T
2= eupt -1 ’
x _[+1 for x>0,
sg""*ﬁ‘{-l for x<0. (15)

Since the Green’s function in Eq. (14) is nonzero only at 7,
the second term with §(7 — 7, ) contributes only when the
medium is moving faster than light, ¥ > ¢/ (&u) /2. In a medi-
um at rest (¥ = 0) or in vacuum (& = g = 1) only the term
with §(r — 7, ) remains in Eq. (14), and the Green’s func-
tion G, is nonzero on a spherical surface which is expanding
at 7>0 in all directions from the point R =0, where the
source of disturbance is located, with a speed c/(gu) /2.

Now, if the medium in which the instantaneous point
source is located begins to move as a whole with a constant
velocity u in the direction of the z axis, due to Fresnel en-
trainment of light by the moving medium, the spherical sur-
face for the Green’s function in the medium at rest will be
deformed and will move as a whole in the direction of motion
of the medium. It is clear from the first expression for G, in
Eq. (14) that the Green’s function in a moving medium
without dispersion will be nonzero on a surface representing
an ellipsoid of revolution with an axis of symmetry along the
velocity of the medium. The equation of this ellipsoid has the
form

E-3)° (16)

(17)

The center of the ellipsoid (p = 0,2 = Z, ) moves in the direc-
tion of the motion of the medium with a speed

d;0 dzm() g —1
W T T ’7=e,u—ﬂ2' (18)
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A medium moving at this speed entrains any electromagnet-
ic disturbance in the direction of its movement. The coeffi-
cient of entrainment 7 for f< 1 coincides with the Fresnel
coefficient of entrainment,” and at S~ 1, =1, that s, in a
medium without dispersion moving at a relativistic speed,
any disturbance is completely entrained.

The phenomenon of entrainment appears differently
depending on the speed of the medium. When the medium is
moving slower than light, u <c/(eu) '?, the instantaneous
source of the disturbance is always within the expanding
ellipsoid (Eq. (16)), because in this case Z, < b, that is, the
velocity of drift of the center of the ellipsoid in the direction
of motion of the medium is less than the velocity of expan-
sion of the ellipsoid in the opposite direction, in the — z
direction. Then a disturbance from the coordinate origin
(R =0), where the instantaneous point source is located,
always reaches any point of observation P. It is only due to
entrainment that the velocity of propagation of the distur-
bance in the direction of motion of the medium is greater
than the velocity of this disturbance against the direction of
motion of the medium: the moving medium carries all dis-
turbances “downstream.” At u = ¢/ (&) /* (medium mov-
ing at the speed of light) the expanding ellipsoids at any time
T are tangent to the plane Z = 0 at the coordinate origin
(p = 0,2 = 0), where the instantaneous point source is locat-
ed. In this case the entrainment is such that Z, = b, that is,
the drift velocity of the center of the ellipsoid ‘““downstream”
in the medium is exactly equal to the velocity of propagation
of the disturbance against the motion of the medium. Then
all disturbances from the coordinate origin may reach only
those observation points P that are in the half-plane Z> 0
(““downstream” in the medium). In the region Z < O the sig-
nal from the instantaneous point source located at the coor-
dinate origin (p = 0,2 =0) is always identically equal to
zero. Finally, when the medium is moving faster than light
(u>c/(gu)'?) the entrainment by the moving medium is
so strong that the instantaneous point source at the coordi-
nate origin is always outside (Z, > b) all expanding ellip-
soids, on the surface of which the disturbance is nonzero.
Then outside the conical surface

s? —1)2 2_ )2
~ P Elz el —~ —~ & -
z=P(1_ﬂ2J =(x2+y2)”2(1_ﬂ2] .

(19)

>0, eupt>1,

the field from the instantaneous point source is identically
equal to zero at any time 7. If the point of observation P is
within the cone (Eq. (19)) then the disturbance passes
through it twice: first by the leading edge of the expanding
ellipsoid, and afterwards by its trailing edge. According to
Eq. (15), the time interval between these two signals is equal
to

Av =1, -7 =21 = BH(ew)' 3R /e@up? - 1).  (20)

On the cone itself (Eq. (19)) the signal passes through the
point of observation only once. If one knows the Green’s
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function, one can calculate the fields of any sources placed in
the moving medium (see Refs. 12 and 13).

3. The fields of different types of sources in a moving
medium (see Refs. 12 and 13).

3.1. Apoint and extended charge at rest
Let there be a point charge g at the coordinate origin.

Then the charge density and the current density in Egs. (7),

(8), and (10) have the form

P, ) = (') = G(x W), v(r', 1) =0, j(', 1) =0.
(21)

Substituting these expressions into Eqgs. (14) and (15), and
then into Egs. (10) and (11), we obtain

- euB? fB) Ay =1 v

(r) = ~p(r),
i =8 R, L—eup?c ) (22)
where
2
R°=(22+1—1_:£%/’;_P2)m’ p? =x2+y, r=p+ze,
1 for euf? <1landanyzand P
f(rB)=42 for: E;lﬂ2>l and  z> by (x* + y*)'/3, 23)

0 for C[lﬁz > 1 and Z<b(;,(-x2 +y2)”21

2_ 1/2
o= ("'Iérgz“)

As before, the z axis is directed along the velocity of the
medium u, and the two-dimensional vector p lies in the x,p
plane perpendicular to u. The potentials ¢ and A of the
charge at rest do not depend on time. When the medium is
moving slower than light (euf > < 1), the equipotential sur-
faces on which the potentials are constant are a set of ellip-
soids of revolution with the axis along the velocity u of the
medium

1/2
2.2 k_ (Lo (1_8 -1 2)”2
2oz L 1-p2 1-p?%

The ratio of semiaxes I,/1, is such that these ellipsoids are
“flattened” in the direction of motion of the medium
(I, <1,). When the medium is moving faster than light
(euB *>1) the equipotential surfaces are hyperboloids of
revolution with the axis along the velocity u

1/2
2 _ Pl M (wff-1)
m;

5 (25)

The envelope of this set of hyperboloids is a conical surface
given by Eq. (19). The potentials are nonzero only within
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this surface at z> 0. Outside of it, the potentials and fields
are identically equal to zero.

Knowing the potentials in Eq. (22) one can use Egs.
(6) and (9) to determine the fields and inductions (see the
equations in Refs. 12 and 13). It turns out that the vector of
the electric field E lies in the (p,z) plane, and is perpendicu-
lar to the surfaces of Egs. (24) or (25). When the medium is
moving slower than light (£uf * < 1) the vector E is pointed
away from the coordinate origin, that is, it forms an acute
angle with the radius vector r drawn from the coordinate
origin. When the medium is moving faster than light, the
vector E is pointed toward the coordinate origin, that is, it
forms an obtuse angle with vector r. Due to the equation div
D = 47p, the vector D is always pointed along radius r. Only
for euB * < 1it is parallel tor, and for eu *> 1 it is antipar-
allel to r. The magnetic induction B is proportional to the
velocity of the medium and to the electric field, and the vec-
tor B is perpendicular to the vectors u and E. The force lines
of magnetic induction, to which the vector B is tangent, are
circles whose centers lie on the z axis, and the planes are
perpendicular to this axis. The magnetic field of a charge at
rest in the moving medium is always exactly equal to zero.

When the medium is moving faster than light the poten-
tials and fields of the point charge (see Eq. (22)) have a
discontinuity on a surface specified by Eq. (19). In order to
track the transition through this special surface more accu-
rately, let us examine the potentials and the fields of an infi-
nitely thin charged segment of length / with a total charge ¢
situated along the velocity of the medium. The details of the
calculations and the formulas for the potentials and fields
are given in Ref. 13. Here we describe their features qualita-
tively. First, as in the case of a point charge at rest, the mag-
netic field is identically equal to zero. Second, the entire
space is divided into three regions by conical surfaces (for
euB*>1)

~1

-8’

(26)

2=+, @-D =B +P), §= ‘:"

whose apexes are at the beginning (z =0,p = 0) and end
(z=1,p =0) of the segment. Then the potentials become
continuous functions, of the coordinates and the fields and
inductions, as before, have a discontinuity on the surfaces
specified by Eq. (26). The fields are identically equal to zero
in the first region z < bop = b, (x> + y*)"/*. In the remaining
regions, byp<z<byp + ! (second region) and z>byp + /
(third region), they are nonzero. In the second region, the
vector E is perpendicular to the radius vector r and is pointed
toward the axis of motion of the medium (the z axis). In the
third region the vector E is pointed toward the coordinate
origin. As /-0, the two conical surfaces (Eq. (26) ) contract
into one z = b,p and the field on it goes to infinity. However,
Gauss’s theorem is always satisfied for the charged segment,
because the infinite contribution from the fields in the sec-
ond region always cancelled by an analogous infinite contri-
bution from fields in the third region. Heaviside'” solved a
similar inverse problem for the fields of a charged segment
moving with a constant speed greater than light in a medium
at rest. Using analogous methods one can calculate the fields
of point electric and magnetic dipoles and fields far from an
arbitrary set of charges (see Refs. 12 and 13).
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3.2. Fields of a charged particle in uniform motion

Let there be a point particle with charge ¢ moving in a
medium moving with a constant velocity v. Then the charge
density p and current density j in Egs. (7), (8), and (10)
acquire the form

P, 1) = @3(r' — v,

Substituting these expressions and the Green’s function
from Eq. (14) into Egs. (11) and (10) we obtain

1/2 2
o(r, £) = ("f) q[l - 1—’*’%(1 - %)]L%”B),

j', vy =gvd(r’ - vt). (27)

1

(28)
y_ xr? u 1w
A 1 ¢ T+xec| — 2 /
™3 1_H)T‘r' 4
1+x 32
where
§1=[<Blr;>2+——L(r')2(l—€" 5 BZ)]V u=cB,

r=xe +y +ze, r=r-vi=xe +ye +ze,

’

v
X Y2
X=x-ut y'=y—vyt, 2 =z-uy, ﬁx'y'z= YL

c
(29)
2 1/2
p e +ﬁe +ﬁrel 2 ez’ Brel =pz—7’p’
(1 B
2 1/2
’ = ’ + ! + [
= xeTYeyTe [eﬂ(l —ﬁz)]
x=¢eu—-1,
- eu — 1
e, y=(=p7% n=Tmp
and the function
0 for (— tll'2<0,
firtB) =12 for t-— tl"z >0,
1, if ¢- tl'.z have opposite signs
here
— B2y,2 ~
C(t—tl"7)= Tl 4 [(riB) FR,], (30)

1 — (e — B2y 2

where the upper sign before R, refers to ¢}, and the lower
sign refers to ¢ ;. The formulas in Eq. (28) give potentials at
the point of observation r and at time ¢. The delay of the
signal is taken into account in these formulas by using the
function f(r,z,B): according to Eq. (29), the inequalities
t —t1, >0 define space-time regions in which the field is
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nonzero. The reverse inequalities ¢ — ¢ | , <0 define regions
where the fields are identically equal to zero at any time ¢.
Equations (28)-(30) for a charge at rest (v = 0) in a mov-
ing medium reduce to the formulas of the previous section
3.1 with all the features which have already been studied. If,
on the other hand, the charge moves in a2 medium at rest
(u=0), then we obtain a picture (see Ref. 16, Vol. 2,
Chapter 5) which is analogous to the picture of the fields of a
charge at rest in a moving medium (inverse problem), so we
can switch from one problem, a charge moving in a medium
at rest, to another problem, a charge at rest in a moving
medium, using the ordinary Lorentz transformation. In-
deed, for a medium at rest (u=cf = 0) for v<c/(gu)'?
the equipotential surfaces are ellipsoids of revolution with
their axis directed along the velocity of the charge. The cen-
ter of these ellipsoids is at the location of the charge at obser-
vation time t. As v—c/(gu)/? these ellipsoids “flatten” in
the direction of motion of the charge in full accordance with
the Lorentz length contraction. In the transition of the
charge speed v through light speed in the medium,
¢/ (u) 12, the field rearranges itself so that for v> ¢/ (gu) '
it is identically equal to zero in front of the moving charge,
where r'v> 0. Behind this charge, which is moving faster
than light, the field is nonzero only within the conical sur-
face with an apex at the location of the charge at time ¢ and
with an aperture of half-angle ¢@,, such that sin
@o = ¢/v(eu) * = 1/B,(gu)*?. The normal to this surface
forms an angle 6, = (7/2) — @, with the velocity of the
particle v. For this angle

coseo=W. (31)

Cherenkov radiation is generated at this angle when the
charged particle is moving uniformly faster than light.'® The
equipotential surfaces within this cone (potentials ¢ and A
are constant on them) at time ¢ are a set of hyperboloids of
revolution with their axis along the velocity of the charge v
(z' axis)

PR (ey-zz-z— -2+ y?)=const, z'=z-— vt1<0,
(32)

x’=x—vxt,. y'=y-vyt.

Now let the medium at rest begin to move with a constant
velocity u in the direction of the z axis. Then the field of the
charged particle begins to be entrained by the moving medi-
um. This entrainment occurs in the following manner (for
the details of the calculations see Ref. 13). The centers of the
ellipsoids of revolution (in the case of motion slower than
light) and of the hyperboloids of revolution (in the case of
motion faster than light) are found as before at the location
of the charge at time ¢. The axis of symmetry is directed
along the vector

Yy

(33)

oy -yl = Diler( = Y2 + 11 — (uv/ ) Kew ~ 2!/
leuten — B = PO Ien(l = BHT/2 + (eu ~ A1)
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which is rotated by an angle o, in a counterclockwise direc-
tion relative to the vector v

ﬂp'ﬂz - ﬂ]zl
B +BVAB+ BTV

sin a, =
(34)

1/2
_|ew=p - 2 _ g2 4 g2

Simultaneous with the rotation of the axis of symmetry, the
movement of the medium “flattens” the equipotential sur-
facesin the direction of the velocity u of the medium (z axis).
The rotation and deformation of the ellipsoids or hyperbo-
loids is such that, depending on the parameters of the medi-
um £ and u, and the velocity of the charge v, the ellipsoids of
the case of motion slower than light may be transformed into
the hyperboloids of the case of motion faster than light, and
vice versa.
If the parameter

2
rep,) =(2=Lpi - 1)(p,~1.p=2.p,-2)
1-p5 c c c

(35)
is positive, then the case of motion faster than light is real-
ized with hyperboloids of revolution, and if I is negative,
then the case of ellipsoids of revolution is realized (for more
details see Ref. 13). One can show" that at
v, = (V; + 1) >¢/(en)'?, T is positive for any velocity
of the motion of the medium, and the radiation field is non-
zero within the conical surface with an apex at the location of

the charge at time ¢ and with an aperture half-angle ¢,

tan @, = (36)

1
r'(.B,)
In a medium at rest (u = 0) this cone is located behind the
moving particle, as in the case of Cherenkov radiation.'®
Now if the medium begins to move along the z axis, then
according to Egs. (33) and (34) the radiation cone begins to
rotate by an angle a, counterclockwise from vector v, and
simultaneously the aperture angle ¢, changes. As the veloc-
ity of the medium increases, the rotation angle , increases
so that when the medium is moving at relativistic speeds, the
bottom of the cone is pointed in the direction of the velocity
of the medium, along the z axis: the rapidly moving medium
sharply “blows” the radiation cone away. When the rotation
angle a, becomes greater than the angle ¢,, the radiation
field is completely on one side of the trajectory of the uni-
form motion of the charge: the field of the charge “shines to
the side” of the trajectory. Now if v, <c/(gu)"? but
v= (V2 +v2)"?>c/(en)"?, then as the velocity of the me-
dium increases, the hyperboloids (in the case of motion fas-
ter than light) will change into the ellipsoids of the case of
motion slower than light, and then back into hyperboloids.'?*
The simplest way to track this is in the special example of a
charge and medium moving along the same path, when both
velocities v and u are parallel along the 2z axis
(v, = (v2 4+ ;)2 =0). In this case, when the charge is
moving faster than light (v> ¢/ (gx) '?) in a medium at rest
its field is nonzero behind the charge within the conical sur-
face with an apex at the location of the charge at time ¢. In
front of the charge the field is identically equal to zero. Now
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if the medium begins to move in the same direction, due to
entrainment of the field by the medium the cone begins to
“open up’’: it is as if the moving medium “blows” into this
cone. Since the radiation condition in this case has the
form'*"3

v—u

1 - (uv/c?)’ (37

c . —
lvrell > —(;’T)T/_z’ vrel -

at some velocity of the medium u < v it is disrupted, and the
field of the charge again acquires the characteristic form of a
Coulomb field “flattened” along the z axis and being carried
along with this charge. There is no radiation. A further in-
crease in the speed of the medium u will lead to a change in
the sign of v,,, so that the medium begins to overtake the
charge (u > v). Finally, the condition in Eq. (37) will again
be satisfied, but the cone of radiation (inside the cone the
field is nonzero) will now be turned forward along the move-
ment of the charge and medium. Outside this cone and be-
hind the charge the field is identically equal to zero.

In conclusion of this section we note that if the charged
particle moves in a medium moving with a constant velocity
v for a finite time interval 27, when the medium is moving
faster than light (g1 > > 1) afield of radiation of frequency
w is generated in the form of a wave of radiation at an angle
to the z axis at distances

v
ha=Tia = 3, 0
(38)
a, ,0) =1 _ uaByA(1 — x8%%sin20) /2 F (1 + 1)1 %c0s 0
i ¢ Y- 1)1 - xpYsin%) 2
where x=eu—1, y=(1—-B)""" 8% =¢

(guf3 * — 1). These quantities define the length of the path of
formation (see Ref. 19) of the field of radiation with fre-
quency o in a moving medium. For £uf8 > <1 the path of
formation is determined only by /,.

3.3. The Lienard-Wiechert potentials in amoving medium

If a point particle with a charge g travels in a moving
medium according to an arbitrary law r = r, (¢) with a ve-
locity v = v, (¢) = dr, (¢)/dt then the charge and current
densities are given by

P, ) = BT =160, I ) = (DO = (D).

Substituting these expressions and the Green’s function into
formulas (11) and (10) we obtain (for details of calcula-
tions see Ref. 13)

(39)

§(t) Vo)
’P(rvt)='q':;zlo(r t t)’ A(l‘,t) Hazln(lgt,t)’

(40)

where
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a2 1/2
a=[6ﬂ(l-ﬂ2)] ’

»  (uve(t) -1
E(t)) = euna [[B ‘c’z ] r;=—‘-‘———;_ﬂ2,

(S

1/2
r a C ¥ r
= Ry(r, t, t;) — —(-E)-——(c Ry(r, t, v, (1)), u= cB=ue,

r=p+ze, Tyt =po(r;) + zg(t)e,,

Ry(r, ¢, 1) = |R| (41)
=[(p — po(t;)?+ a¥(z — z(t) — nu(t — 1)))21'/?,

V() = {voa;) — e [1 _ Wt) }

vi(t) = {vo(t;) — fau [1 -1 :a (UVzgts)):l ]

The quantities (r,¢) determine the space-time coordinates of
the observation point, while (r, (¢.),¢.) are similar coordi-
nates of the point where the charged particle is situated at
time ¢ . The instants ¢ ; over which summation is carried out
in Eq. (40) are determined as solutions of equation

c , ‘
W(: -t)= aR(r, t, t),
which satisfy the causality condition ¢! < ¢ In a vacuum Egs.
(40)-(42) reduce to the well-known ones of Ref. 6. In this
case disturbances are propagated with the speed of light
from each point of the trajectory as spherical waves, and Eq.
(42) has only a single solution, since the spherical wave
passes through the observation point only once. In a moving
medium in virtue of the drift of the ellipsoids of perturba-
tions for the Green’s function (14) in the direction of motion
of the medium such situations are possible, particularly
when the medium moves at a speed exceeding that of light in
it, and the field is identically equal to zero at any time ¢ in the
entire region of space “upstream” from the medium.

4. The energy losses of charged particles in a moving
medium.

Once we know the fields of charged particles in a mov-
ing medium we can calculate the energy losses per unit
length or per unit time. If the energy losses AW, of achargeq
over a length L or during a time 7 = L /v are much less than
the total energy W, of this charge, we can assume that the
charge moves almost uniformly in this interval, that is, its
velocity v is constant. In this case the energy losses of a point
charged particle per unit length are defined by the braking
force acting on the charge at its location, and it is directed
along the velocity of the particle v (see, for example, Ref. 13
or Ref. 20). In a medium at rest with frequency dispersion, a
charged particle moving uniformly along the z axis
(v = ve, ) loses energy in Vavilov—Cherenkov (V.-Ch. radi-
ation and in the excitation of (longitudinal-subscript /) plas-
ma oscillations in the medium?!3*°

(42)
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Uy
dz P_,O’
dw. dw,
= |qE, (r,t) ,:v=< ") +( ">, (43)
|q 'Pﬂol' dz /v.cn dz /i
where
(&)
dz Jv.cn
2 (44)
T (———
e(w)u(w)ﬂz>l. >0 e(a))/t(w)ﬂ
dw. 2 2o @ v
[52) =~ & Sl o) -2
! 9w w=w

o, is the sth positive root of the equation: £(w,) = 0; here
K, (x) is the modified Bessel function; r = p + ze,, and
Pmin =7"p 18 the Debye screening radius, which in the plasma
model of the medium has the form

1/2
= (£T) "L 9,2
= ('"0) @ wy = dneN/m,

where m,, N, and T are the mass, concentration, and tem-
perature of electrons, and & is Boltzmann’s constant.

Now if the medium begins to move as a whole with a
velocity uin the direction of the motion of the particle (along
the z axis), calculations of the braking force (see Ref. 13)
lead to the formulas in Eq. (44) with a small but significant
addition: each of the expressions in Eq. (44) is multiplied by
a sign function of the difference in the speeds of the charge
and the medium: sgn(v—u)= +1 for v>u and
sgn(v — u) = — 1for v < u. Moreover, the speed of the par-
ticle v in the formulas in Eq. (44) is replaced with the rela-
tive speed of motion of the charge and medium (see v, in
Eq. (37)), and all functions £(w) and u (@) depend on the
frequency ' = wy(v — u)/v measured in the rest system of
the medium. The sign function points out the phenomenon
of the reversal of the sign of the energy loss of a charge in a
moving medium. Indeed, in a medium at rest, when ¥ =0
and v — u > 0 the right sides of the formulas in Eq. (44) are
always negative. This means that the charge loses energy in
radiation of waves or in excitation of plasma oscillations of
electrons in a medium at rest. In a moving medium, when
u > v, that is, when the medium is overtaking the charge, the
expressions for loss change sign, becausesgn(v — u) = — 1.
As a result, the moving medium begins to accelerate the
charge in it with simultaneous emission of Vavilov—Cheren-
kov radiation waves and the excitation of plasma oscillations
of electrons in the medium. Physically this is explained by
the instability of states with negative photon energies
fiw' = fiwy (v — u)/vin a medium moving with a speed u > v
(see Ref. 21 about this). Actually the change in the sign of
the braking force is linked with the following. Let the medi-
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um be at rest and let the charge move in the + z direction.
Then the braking force is pointed in the — z direction. Now
let us switch to the rest system of the charge. In this system
the medium is moving with the velocity of the charge in the
— z direction and the charge is at rest. However, the force
F, = gE, in Eq. (43) in this system, as before, is pointed in
the — z direction because the component E, remains un-
changed in such Lorentz transformations. As a result, in the
rest system of the charge, the moving medium accelerates
the charge in the direction of its motion.

As an example of the application of the formulas ob-
tained here we calculate the energy acquired per unit length
of the path by a charge ¢ in a dense beam of relativistic
(u=c) electrons with energy W., = m,c*y and with a con-
centration N. The electromagnetic properties of this beam
are described by the formulas in Eq. (5). Since £<1,
(dW,/dz)y ¢, = 0. Thus, losses are determined only by the
excitation of plasma oscillations in the beam of relativistic
electrons by charge ¢ and acquire the form'?

d Wq 2 4Jrr0

= (45)

N lnz)';,

where Ay/y is the relative scatter of energy in the beam of
electrons, r, =e*/myc?~2.8-10"" cm, N=1.4-10% in
cm ~?, j is the current density of the beam in amperes per
square centimeter. The increase in the energy of a particle
with charge g isindependent of its mass (even heavy ions can
be accelerated) and is proportional to the square of the
charge of the accelerated particles. In today’s high-current
electron beams with y =4, Ay ~0.3y and with current densi-
ties j=~30 kA/cm? (N=6-10'> cm~?) the increase in ener-
gy for bunches of accelerated particles with concentrations
of the order of 10'° cm ~* is 5 keV/cm per accelerated parti-
cle. Alpha particles have been obtained in this way with en-
ergies* of tens of MeV. Of course to calculate the real accel-
eration mode one must solve the problem self-consistently,
that is, one must consider the inverse effect of accelerated
particles on the accelerating electron beam.
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