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The classical concept of radiation in gauge theories is analyzed. It is concluded from a discussion
of three definitions of electromagnetic radiation, i.e., traditional, Dirac’s and Teitelboim’s
definitions, that only the last of these three represents correctly the structure of electromagnetic
self-action. Teitelboim’s definition is also satisfactory in the non-Abelian case in which the
radiation problem is intertwined with that of confinement. The exact solution of the Yang—Mills
equations with current formed by an arbitrarily moving color charge is used as a basis for a
description of the non-Abelian classical picture. In the confinement phase, the energy of the gauge
field is absorbed by the color charge, whereas the deconfinement phase involves the usual
emission of radiation, and the color charge (free or accelerated by non-Yang—Miiis forces)
produces only colorless converging or diverging waves. Certain other fundamental questions
concerning classical self-action in Abelian and non-Abelian gauge theories are also examined.

1.INTRODUCTION

Anyone with an education in the physical sciences will
know that radiation is a “wave process” that propagates
with the speed of light and conveys the effects of energy (i.e.,
a signal) to long distances from the source. Radiation has
only “transverse” degrees of freedom of the field and is ‘‘dy-
namically independent” of other degrees of freedom.

A generally acceptable, rigorous definition of radiation
has not as yet been formulated. Indeed, three different defi-
nitions coexist in electrodynamics. Textbooks (for example,
Refs. 1-5) traditionally define electromagnetic radiation as
the “long-range” part of the Liénard-Wiechert field that
decreases with distance as 1/r. The energy density of this
part of the field varies as 1/, so that multiplication of this
by the area of a sphere, 477+, gives an energy flux that does
not vary with distance. This is perceived as indicating the
possibility of signal transmission over long distances.

However, the “long-range” part of the field is not a so-
lution of the free-field equations, which means that the crite-
rion of ““dynamic independence” of radiation is not satisfied.
Dirac was able to rectify this omission by defining® radiation
as the difference between the retarded and advanced fields.
This combination satisfies the wave equation and, under cer-
tain particular conditions, decreases as 1/r.

Dirac’s definition is not, however, without its difficul-
ties when one considers the universal concept of radiation.
Indeed, in non-Abelian gauge theories it does not reduce to
the definition of the free field.

In the definition put forward by Teitelboim,” radiation
is identified not with a part of the field, but with a part of the
energy-momentum density of the field characterized by the
1/7 dependence. It will become clear later that this defini-
tion is closest to our intuitive perception of radiation in both
Abelian and non-Abelian cases.
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“Mehr Licht!”’-Goethe’s dying words

Each of these definitions is examined in Sec. 2 in the
context of the classical electrodynamics of self-action in the
case of a point source.

We should probably explain why it is in general neces-
sary to subdivide the original system into two “dynamically
independent” subsystems, one of which is identified with
radiation. The point is that we are essentially attempting to
uncover the structure of self-action. Even if we ignore funda-
mental aspects of the problem, we must acknowledge that an
understanding of this structure is important for practical
purposes. Thus, if we blindly accept the Lorentz-Dirac
equation (which includes the finite effects of self-action) we
encounter a number of difficulties and paradoxes, the treat-
ment of which and the methods used to overcome which may
be significantly different. This sometimes leads to differ-
ences between solutions obtained for special cases. The in-
formation about the structure of the electromagnetic self-
action presented in Sec. 2 leads to the conclusion that the
Lorentz-Dirac equation is free from the difficulties ascribed
to it; this determines the specific features of this approach to
the solution of particular problems.

Section 3 is devoted to the problem of radiation in clas-
sical Yang-Mills theory. The discussion is based on Ref. 8
which gives the exact solution of the Yang—Mills equation
with current due to a color charge moving along an arbitrary
world line. This solution is expressed in terms of the vector
potential and contains a term that increases linearly with
distance. This behavior of the vector potential is interpreted
in chromodynamics as the confinement condition (see, for
example, Refs. 9-11). It is assumed that the linear increase
in the vector potential is due to the compression of gluon
lines of force into a thin string-tube. We note, however, that
string-like solutions have not been found directly in chromo-
dynamics and that such solutions are known only for simpler
models.'? In the solution given in Ref. 8, the lines of force of
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the linearly growing term in the vector potential are distrib-
uted isotropically, and this does not appear to prevent the
possibility of confinement. According to the Wilson crite-
rion, i.e., the law of areas for the contour mean,!? the linear
increase in the vector potential ensures the confinement of
immobile quarks independently of other details, e.g., of
whether the lines of force are distributed isotropically or are
string-like.

If, for the moment, we ignore the quantum-mechanical
nature of chromodynamic phenomena and suppose that ra-
diation and confinement are due to the classical Yang-Mills
interaction, we obtain a formal classical world that presents
us with some interesting questions. Does confinement pre-
clude radiation? If the answer is yes, then what is the funda-
mental difference between an accelerated color charge and
an accelerated electric charge as sources of radiation? Is the
radiation regime restored during deconfinement? What is
the nature of gauge-field waves generated by a color charge
accelerated by non-Yang-Mills forces, i.e., are these retard-
ed, advanced, colored, or colorless waves? Is the radiation
regime affected by the properties of these waves? Is Gauss’
law obeyed in the presence of the color degrees of freedom
distributed uniformly in all space? Is the energy of the gluon
field finite or infrared-divergent?

These questions are discussed in Sec. 3. We emphasize
once again that we are dealing with the classical model
whose relation to the chromodynamic reality is not entirely
clear. The word “‘confinement” is used to denote the situa-
tion characterized by the presence of a linearly growing term
in the vector potential and, as will be shown later, by the
absorption of the gluon field, which obviously prevents the
detection of an accelerated color charge. On the contrary,
“deconfinement” corresponds to the situation in which the
growing term is absent from the vector potential, and all the
phenomena occur in complete analogy with the electromag-
netic situation. On the whole, the model is internally consis-
tent and does not contradict any fundamental physical prin-
ciples. The color degrees of freedom are distributed
uniformly in all space, have no effect on Gauss’ law, and do
not contribute to integral quantities such as the 4-momen-
tum, so that they are neither radiated nor absorbed.

2.ELECTRODYNAMICS

Consider the field due to an electric charge e moving
along an arbitrary world line z#(r) parametrized by the
proper time 7. We shall denote the 4-velocity and 4-accelera-
tion by v*=z"=dz"*/dr and a*=1", respectively. We shall
take the metric tensor in the form »** = diag( + — — —).
We shall adopt the Gaussian system of units and set the ve-
locity of light equal to unity. We shall define the projector
b(1) onto a hyperplane orthogonal to the nonisotropic vec-
tor b* by the formula

KLY, =1, — (5,5,/8).

The retarded solution of the inhomogeneous wave
equation

0A,(x) = 4ne f v”(t)é"(x — 2(7))dr (n
will be taken in the form®3-°

= g
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where the kinematic quantities refer to the retarded time 7.,
determined from the conditions

(x = 2t )2 =0, 0 > O

o)

We now recall some of the elements of the technique of
covariant retarded variables. Let R*=x* — z*(7,, ). On
the plane spanning the vectors R * and »* we construct the
imaginary unit vector #* orthogonal to v*, and the isotropic
vector ¢ = v* + u* (see Fig. 1). Analytically, this can be
described by :

=1, =-1, =0,

w=0, cv=-cu=1l1, (2)
R# =pcH, (3)
p=—Ru=Rv 4)

The invariant p can be interpreted as the separation be-
tween the points of emission and reception of the signal in
the reference frame with time arrow v* (see Fig. 1).

As the point x* varies, the point z#(7,,, ) will also vary in
accordance with the condition R 2= 0. Differentiating
R*(n,, —v17,) =0and using (2)-(4), we obtain

T ,=C, (5

Hence we find the derivatives of the kinematic quantities,
e.g., Uy, =a,c,. Differentiating the second equation in (4)
and using (2)-(5), we obtain

Pou="Y, +p(ac)c”. (6)

We are now ready to write down the Liénard—Wiechert
equation F = d4 in the form

F=ScAv, (7)
P
where
V,=v, +p(u(L)a),. (8)

We draw attention to the separability of the 2-form F,
i.e., the fact that it can be written in the form of a vector
product of ¢“ and V*. This can also be expressed in a differ-
ent way. The area of the parallelogram defined by vectors ¢
and P*iss=[ — V2(¥(1)c)?]"?, so that, in view of (8),
we have s = 1. Hence it follows that (7) is unaffected when
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¢“and V'* are replaced by any two vectors that lie in the same
plane and define a parallelogram of unit area. The Liénard—
Wiechert field does not depend on ¢* and V*# directly but
only on the orientation of the (¢, V) plane. In other words,
the quantity F is invariant under the group Sp(1,R) of sym-
plectic transformations of the (¢, ¥) plane that preserve the
area and the orientation of the parallelogram.

The two terms in (8) correspond to the two parts of the
field

e
F, =%
1 p2

cAv n Fy= /—fc/\(u(J.)a),
which are traditionally interpreted as the Coulomb and radi-
ated component (see, for example, Refs. 1-5).

The quantity Fy; is ‘transverse’ in the following sense. It
is clear from the equations Fijv,u, =0, *Fuvyv,u, =0
that, in the reference frame with time arrow v* in which v*

= {1,0,0,0}, u* = {0,n}, the fields E;; and B;; (the time
components of Fifv, and *F{{v,) are oriented across the
direction n of propagation of the wave front. On the con-
trary, F; contains the ‘longitudinal’ degrees of freedom:
Fv,u, =e/p*.

The fact that Fy; varies as 1/p is the main evidence that
it can be identified with radiation, but we still ask: is this a
justifiable conclusion? The Liénard-Wiechert field invar-
iants *F, F** =2EB =0, — f, F" =2(E*> — B?) =2¢"/
p4 show that there is a reference frame (for each point of
observation x*) in which B =0, |E|=¢//p?, i.e., the 1/p de-
pendence is excluded. This reference frame can be explicitly
identified. It follows from the identity cA V= (V(L)c) AV
that, when V2> 0, the field Fis a pure Coulomb field in the
reference frame with the time arrow V*, and that, when V*#
<0, the time arrow can be (V(l)c)*. The identity
cAV=UA(UL)V), where U=V + ¢ and the relations
U?=24+V?and (UL)V)?= — 1/U? show that, when
V2 =0, a suitable time arrow is U*.

The presence of the 1/p dependence in F is an artifact
associated with the use of the global Lorentz coordinate
frame. Information about the long-range interaction is held
not by the 2-form Fitself, but by a combination of the 2-form
F and the reference frame.

This explains why F; and F}; cannot be interpreted as
“dynamically independent™ quantities. They can be so inter-
preted if, for example, they are similar to Fin that they satis-
fy the homogeneous Maxwell equations d *F =0, dF =0
outside the world line. Instead, we have F{} = — F{,
= 2e(ac)c”/p*.

It follows that we cannot treat Fy; as radiation because
of the symplectic invariance (separability) of the 2-form F.
This property is in turn due to three factors: the retarded
character of the propagating field, the four-dimensional
character of the continuum under consideration, and the
time-like character of the world line of the source. Actually,
these factors [uniquely taken into account in (2)—(6)] en-
able us to conclude that, for the construction of the 2-form F
as a sum of linearly independent outer products, we have at
our disposal only the three linearly-independent vectors u*,
¢, and a*.

We note that F retains this property when the retarded
field condition is replaced by the advanced field condition.
For any other condition, e.g., for a linear combination of
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retarded and advanced conditions, the 2-form F ceases to be

separable.
Dirac® defined radiation by
Apd= A~ Aggy (9

where 4,,, and 4,4, are the retarded and advanced solutions

of (1). Since

adv

QA,, =0,

A, is the free field. This ensures the ‘dynamic indepen-
dence’ of the terms in the expansion

Aer = %(Aret A * %(Aret + A 400
interpreted as the “free” and “bound” parts of the retarded
field.

The Dirac definition of radiation lies at the basis of the
Wheeler-Feynman theory of action at a distance {14) {(fora
modern review, see Ref. 15 which contains references to oth-
er work in this field). This definition claims to describe elec-
tromagnetism without the electromagnetic field altogether.

The subdivision into ‘“longitudinal” and “‘transverse”
components is now performed in accordance with a different
principle: A #is written in the form of a Fourier integral, i.e.,
an integral over “waves” exp(/kx) that are longitudinal and
transverse relative to the direction of the “wave vector” k.
The transverse components are defined by the Lorentz gauge
condition 4%, = 0. However, ‘transversality’ is often under-
stood in the analogous three-dimensional sense defined by
the Coulomb gauge div A = 0.

We emphasize that the mathematical properties of 4,4
that express the properties of the free field are wholly deter-
mined by the linearity of the Maxwell equations. In non-
Abelian gauge theories, the linear combination of retarded
and advanced solutions ceases to play the role of the free
field, so that the definition given by (9) is meaningful only
within the framework of electrodynamics.

If the source world line consists of two straight lines
joined by a curvilinear segment, then as we depart from the
curved segment along the generator of the upper light cone,
only F,4 ‘survives’ asymptotically and F,,; — Fy; . In this sit-
uation, the Dirac and the traditional definitions of radiation
become asymptotically equivalent. We note that in the re-
gion in which F,, and F;; become identical, both can be
simulataneously removed by a suitable choice of the refer-
ence frame.

The field F,,, /2 is not singular on the source world line.
If we substitute it into the expression for the Lorentz force,
we obtain*~® the Abraham vector I'*= (2/3)e(&* + v*a?)
that appears in the Lorentz—Dirac equation

ma"—%ez(&" +ukad) —fF =0 (10)
as the radiation reaction force. This has served as a powerful
argument in favor of the Dirac definition of radiation. How-
ever, this interpretation of I'* is in fact erroneous.’

Actually, recalling that aqv = 0, av = — 42, let us write
(10) in the form
w(L)p-1N=0, (11)
where
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p"=mv"—%eza". (12)

We note that, when Newton’s second law for a neutral
particle is written in terms of the geometry of Minkowski
space, it takes exactly the form given by (11) with p* = muv*.
The presence of v(1) in (11) shows that, in any instaneously
co-moving inertial frame, Newton’s second law is satisfied in
its orthodox form dp/dt = f.

Mathematically, the necessity for v(1) follows from the
invariance of the bare action

1
= —mof(v”v")l/zdt - efA”dz" - mfi‘lwi"“’d‘x (13)

under the group of reparametrized transformations 67 = ¢,
bz* = v*61, where £(1) is an arbitrary positive infinitesimal
function. According to Noether’s second theorem, '° this in-
variance generates the identity v, 85 /82" = 0, which shows
that the Eulerian 68 /8z* contains the factor v(L). The fact
that the Lorentz—Dirac equation can be written in the form
given by (11) shows that the reparametrization invariance
was not violated in the regularization-renormalization pro-
cedure used to derive this equation.

The Lorentz—Dirac equation is thus an expression of
Newton’s second law for an object with 4-momentum p* and
the somewhat unusual dependence on kinematic variables
given by (12). The Newtonian character of this object
(which we shall call the electromagnetic complex) means
that it is subject only to the external force f*.

The more conventional point of view is that equation
(10) describes an object with 4-momentum p* = my* that is
pictured as a ‘particle’. The behavior of this ‘particle’ does
not satisfy Newton’s second law, which is the origin of many
of the misunderstandings and paradoxes.

For example, consider the paradox of motion with uni-
form acceleration.>* The relativistic condition for uniform
acceleration v(1)a = 0, taken together with the equation I'*
= (2/3)€*(v(1)a)* means that the ‘particle’ does not expe-
rience any radiation reaction during this type of motion. The
paradox does not arise for the above complex: the complex
does not experience the radiation reaction at all, and the case
of uniform acceleration is now no longer special in any way.

The other striking example is the problem of “counter
acceleration” which shows that the departure from New-
ton’s second law by the “particle” is not necessarily equiva-
lent to a small correction. For uniform motion v** = {cosh ¢,
sinh @, 0,0}, f # = f{sinh a, cosh &, 0,0} and equation (10)
reduces to

a-ta= fim,
where 7, = 2¢*/3m. This equation has the solution

a@) = &'*B - 7;:11—0 [ ps)as),
0

where B is an arbitrary initial value of & at time 7 = 0. Sub-
stituting B = 0, we find that the acceleration & (7) and the
force f(7) point in opposite directions.

If we start with the concept of the complex, we see no
particular problem in “‘counter-acceleration.” The behavior
of the complex is controlled by Newton’s second law, but it
does not follow at all that acceleration and force must have
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the same direction, since the relation p* = mv* does not
hold.

It follows that the argument in favor of the Dirac defini-
tion of radiation, which is based on the interpretation of I'*
as the radiation reaction force, must be acknowledged as
unconvincing.

A system with action given by (13) has a symmetric
energy-momentum tensor of the form 7#" = @ 4 #¥
where

= 1id =%(F’“’Fa’+%ﬂ”’i‘api“’p), (14)
= mofv"(r)v’ @)8%(x - z(r))dr. (15)

Let us now substitute in (14) the general solution of the
field equations F = F,, + F,,, where F,, is the solution of the
homogeneous equations with arbitrary initial conditions
specified in the distant past and F,, is the retarded Liénard—
Wiechert solution. We then obtain ® = 0,, + O, + O,
where each term satisfies the continuity equation outside the
world line:

e, =0, em

mlu=0, er =0 (16)

retyu

Consider ®,,,. Using (7) and (8), we obtain
& 1
o = Zn—p“(d‘vv +cVE = Viche — o).

This expression is not invariant under Sp(1,R) transforma-
tions on the (¢, ¥) plane. It contains information not only
about the 2-form F,., but also about the reference frame.”
Hence a transformation of the reference frame cannot re-
duce to zero any of the terms in ®,. Since
V2=1 4 p*(u(l)a)? the quantity ®,,, splits into the sum
of two terms: @, = ®; + ©;; where

ef’=$p4(0"l”+c’l”‘—c"c"—%ﬂl“’), an
2
1-ig =éi(u(.l.)a)zc"c’. (18)

According to the Teitelboim definition,” @4 represents
radiation. It decreases with distance as 1/p*. The flux of &’
through the upper light cone (surface area element do,

= ,,pdedQ) is zero. This means that this part of the field

energy-momentum leaves the source in the form of a diverg-
ing spherical wave whose leading and trailing fronts propa-
gate with the velocity of light. This behavior of O} ensures
that the signal is transmitted to long distances from the
source.

Since @4} is formed entirely from F4}, and F4} is the
“transverse” part of the Liénard—Wiechert field, ®} con-
tains only the “transverse’ degrees of freedom.

The term @4 was interpreted by Teitelboim’ as the part
of energy-momentum dragged by the source. It follows from
(17) that the flux of @ through the upper half of the light
cone is nonzero. This part of the energy-momentum is there-
fore transported in a time-like direction that is uniquely re-
lated to the direction of the source world line.

We can now use (2)-(6) to verify that, outside the
world line,

(= Y-id

Lu=0 ©f,=0 (19)
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Teitelboim interpreted local conservation laws (16)
and (19) as a manifestation of the dynamic independence of
O,,, O..x» 01, and ©;;. We note that this treatment of “dy-
namic independence” is unrelated to the requirement that
the field from which these energy-momentum densities are
formed must be free.

Let us now consider the field 4-momentum, defined as
the integral of ®** over a hypersurface X that is orthogonal
to the world line at the point at which they cross, and con-
tains a small aperture of small radius £ cut around this
point.*’ This aperture is necessary for the regularization of
the divergent expression, and to ensure that the regulariza-
tion is Lorentz-invariant, the aperture must be described in a
Lorentz-invariant manner. In particular, the hyperplane =
must be specified without referring to the reference frame.
The hyperplane was therefore chosen to be rigidly attached
to the geometry of the world line.

Since ©,, is independent of e, the integral of ©®,, does
not vary along the world line of the charge. Its form is unim-
portant for our purposes here.

The integral of @, is readily evaluated:

T

P:'n.lx = fe }"‘daﬂ =—ef Ff‘l’,‘u”dr (20)
}: _

This expression can be understood as the 4-momentum ab-
sorbed from the external field F,, throughout the entire his-
tory of the charge between the distant past and the time 7.

Integrals of ®, and ®; are found in Ref. 7, and are
given by

& 2
= [ei#ag, =Lt~ 2241, @n
T
2 T
P‘I"l = fe }ﬁ‘da” = - §e2 fazu‘dr. (22)
z -~
It is clear from (21) that the 4-momentum P? is in fact

transported along a path that is close to the world line of the
charge. Expression (22) shows that P}, is the 4-momentum
of the radiation emitted (in accordance with the well-known
Larmor formula) throughout all history up to the time .

The tensor #**, defined in accordance with (15), is also
found to have zero divergence outside the world line. Com-
bining ¢“" and , we obtain a new “dynamically mdepen-
dent” quantity. It corresponds to the integral p* = my*
+ pi‘, which is identical with the 4-momentum of the com-
plex (12) if the finite quantity m is defined by

2
= lim (mo(e) + ) (23)
e+0

The conservation of the 4-momentum of the system is
described by

pA
P in 0,
pr+Pi+PL =0 (24)
On substituting (12), (20), and (22) into the second of
these expressions we transform it into (10), where f*
— P4, eF ’“‘v The Lorentz—Dirac equation is thus seen

to be an expression of the local balance of the 4-momentum
of the renormalized system: the 4-momentum dP?%, ab-
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sorbed from the external electromagnetic field is spent in
producing the increment dp in the 4-momentum of the com-
plex and the increment dP{; in the radiated 4-momentum.

From the point of view of ‘particle’” dynamics, the Lor-
entz-Dirac equation is not a representation of the 4-momen-
tum balance. This is prevented by the presence of the term
— (2/3)€*@*. To avoid this, equation (10) can be integrated
between infinite limits, subject to the asymptotic conditions
a*(t) -0, 7> 4+ oo:

my# (o) — mu#(—wo) - %—e2fa2v"dr = ff"dr.

This equation describes the global balance of energy-mo-
mentum. Results of this kind lend support to the “nonlocal
nature of electromagnetic interactions.”!”!® However, in
reality, local balance was disturbed by the artificial and to-
tally unjustified segregation of the term mv* from (12). The
density corresponding to this term does not satisfy (19) and
is not a “dynamically independent” quantity.

We therefore conclude that self-action in classical elec-
trodynamics generates a significant rearrangement of the de-
grees of freedom as compared with the order that appears in
the bare action. Instead of the bare particle and the electro-
magnetic field, the renormalized objects, i.e., the complex
and the radiation, arise in the initial unseparated state. Teit-
leboim’s analysis’ shows that a correct allowance for this
arrangement must be introduced without violating the sym-
metries of the bare action in local conservation laws. The
dynamic equation obtained in this way is an expression of
Newton’s second law for the complex and, at the same time,
a representation of the local balance of 4-momentum of the
renomalized system. Other variants of the rearrangement of
degrees of freedom, in which the Liénard-Wiechert field is
split into “Coulomb” and “long-range” components, or the
“free” and ‘“‘bound” components, and also the segregation of
the object with 4-momentum p* = mv*, do not take into ac-
count the mathematical structure of the theory and thus lead
to different physically absurd results.

1. YANG-MILLS THEORY

The classical Yang-Mills field generated by an arbitrar-
ily moving point color charge Q “ can be described by the
equations®®

D BF#(x) = 4x [ Q) @)34(x — 2(x))dr, (25)
= & QM (26)

where D2 =6%d, —gf*™ A, is the covariant derivative

&, =0, A 2_4, A o +8f"*A %A% is the Yang-Mills field
tensor, and f @< are the structure constants of the gauge
group [for the group O(3) to which we confine our attention
here, £ = £**].

We now define the unit isovector f“’ = "/\/_7 It is
possible to choose two other unit vectors I"" and F" orthogo-
nal to each other and to I"" so that the conditions ¢, F”F”
= £ I" are satisfied. The basrs in 1so§pace is convemently
defined by the set of vectors F F" , I'° where F = F"
+ 5.

The retarded solution of (25) and (26) is now written
in the form®

B. P. Kosyakov 139



>

2

A +#T3R,, QN

+

|
She

where 2 is an arbitrary nonzero real parameter with the di-
mensions of / ~2. It is clear that, in addition to the genera’-
ized Liénard-Wiechert term, 4 ;, contains a term that in-
creases linearly with distance. This term could not have
arisen in electrodynamics, and since OR* = — 2v*/p, this
term is specific to the non-Abelian theory.

The Yang-Mills field tensor is now calculated from
27):

F=cAW, (28)

g
N':g)

V ~

—% + xr“;uﬂ, (29)

P

where the vector ¥, is determined in accordance with (8).
We draw attention to the imaginary unit in front of I'}

in (27) and (29). This arises from the condition
£Q% = -4, (30)

which ensures that the equations for the system are compati-
ble for x#0 (see Ref. 8 for further details). However, if
x = 0, then condition (30) is absent and instead of (27) we
have the real solution 4 §, = Q “v, /p.

The tensor F, contains a constant term that ensures
that the color degrees of freedom, represented by the factor
F“ , are distributed uniformly in space. This may cast doubt
on the validity of Gauss’ law.? This difficulty can be re-
moved formally relatively simply. If F;;, is the solution of
the equations given by (25) then substitution of F v iNtO
these equations converts them into identities. Integrating
the left hand sides of these identities with respect to the vol-
ume containing the source, we obtain 47Q ° since this result
follows from the integration of the right hand side. We note,
however, that the quantity 47 Q ° arises from one of the di-
vergent terms on the left hand side, and that the remaining
terms should mutually cancel out. It is precisely this cancel-
lation that we shall examine now.

Consider an arbitrary point z* on the world line, and let
us draw through this point a hyperplane = with normal v*,
On = we define a region & with boundary % that is the
intersection of 2 with the hypersurface .7 described by the
equation p = L = const. According to Gauss’ theorem

va"”d3x—va" d2x, (31)

v au

where p, is the normal to 7. The integrand on the right
after the substitution of (8), (28), and (29) becomes

~

o ary .
Pu,=\*t—
alpu g P2

The element of measure on % is d °x = L °d(Q}. Integration
with respect to the solid angle Q of expressions containing an
odd power of the vector «* gives O, so that the term pau in
(32) can be discarded, and (31) finally becomes

xS (1 = paw). (32)

47r(+ &)rﬂ+4 Lzr"’ (33)
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where, in view of (30), the first term is equal to 47Q°.
To find the integral of GI=ge®™ 44F¢,
= —2xp~'T% V, over &, we use Gauss’ theorem. The
four-dimensional region bounded by 2.7, and the upper
light cone ¢ with apex at z** does not contain any sources, so
that the flux of the vector G ¢ across = is equal to the sum of
the fluxes across 7 and % . The element of measure do,, on
J isp, drL *dQ and, since ¥ *p , = pau, the flux across .7
which contains integration of #* over the solid angle, must
vanish. The flux across % is

[eoar =] de;dpp-?x;":ch’ ——
c 0

This quantity cancels with the second term in (33).

The case x # 0 is associated with the confinement phase
in chromodynamics. The case x =0, on the other hand,
must be related to deconfinement.

Since F F =0, F =0, only the generalized Lién-
ard-Wiechert term contrlbutes to the energy momentum
tensor

1 1
@M = (FAFY +3nMF o, FY)

The confinement is found to require not only the expendi-
ture of energy, but also is not even characterized by any
change in energy indicators, contrary to energy consider-
ations underlying string models of quark confinement.’"

The Teitelboim approach can be almost entirely trans-
ferred to the Yang-Mills theory with the exception of the
portion-dealing with the superposition of solutions. We shall
not, therefore, repeat the above discussion and merely note
the properties of the non-Abelian picture associated with the
presence of the imaginary unit in front of F“ ¥

If the color charge is accelerated by forces other than
Yang-Mills forces, the radiated intensity

dE _ 8 » (34)

dt  3g2

has the “wrong” sign i.e., the energy of the Yang-Mills field
is absorbed rather than radiated during confinement. More-
over, this is the absorption of colorless waves because I'{(7)
= const.

The proper energy of the point color charge is negative.
If the renormalized mass m is positive, it follows from (23)
that the bare mass m, is also positive.

The equation of motion of the color complex is

mia¥ +1(a¥ + vha?)) - f# =0, (35)

where 7, = 8/3mg? and f* is the non-Yang-Mills force that
differs from (10) by the sign in front of the parentheses, so
that there are no self-accelerating solutions.

We note that m is a poorly defined quantity. There is a
number of models that ascribe a small positive mass (of the
order of a few MeV) to current quarks. However, in the
model proposed in (20), for example, the quark propagator
does not have a pole and is described by an entire function.
Hence, at this stage, we cannot exclude the possibility that
m <0 or m = 0. The former leads to self-accelerating solu-
toins of the familiar type, {a| ~ep(7/7,), and the latter signi-
fies the presence of uniform self-accelerations |a| = const.
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In the first case, m, may be a positive or a negative divergent
quantity, but in the second case m,> 0.

In the deconfinement phase, all the phenomena are de-
scribed by the formulas established in electrodynamics ex-
ceptthat e”is replaced with Q 2. In particular, the accelerated
color charge radiates and, instead of (35), we have the Lor-
entz-Dirac equation (10).

Equations (25) and (26) have an advanced solution as
well. This is obtained from the retarded solution by reversing
the sign in front ofp(u(l)a),‘ in (8) and in front of /I'] in
(27) and (29). All the final conclusions, including (34) and
(35), remain unaltered. This confirms the irrelevance of the
“delayed/advanced dilemma” in relation to the question of
whether radiation or absorption takes place.

We now turn to the problem of self-acceleration. We
note, first, that self-accelerated motion can be accompanied
by radiation (deconfinement) or by absorption (confine-
ment with m<0) of the energy-momentum of the gauge
field. At any rate, this does not violate the conservation of
energy-momentum. Actually, the equation of motion of a
color complex in the absence of external forces can be writ-
ten in accordance with (24) as the conservation of total 4-
momentum of the system:

pr+ Pl =0,

where P1; represents radiated or absorbed 4-momentum, de-
pending on the sign. This is, indeed, the case because of the
translational invariance that must hold in the absence of ex-
ternal forces.

The real problem with self-acceleration is that integral
quantities such as the field 4-momentum are infrared-diver-
gent when world lines corresponding to self-accelerated mo-
tion are present. This is clear, for example, from (22) which
diverges when the asymptotic condition a*(7) -0, 7— —
is not satisfied.

An analogous situation arises in quantum field theory
because of the presence of nonequivalent unitary representa-
tions of canonical commutation relations and the Haag
theorem (see, for example, Ref. 21). If the Hamiltonian #°
and the state WV are translationally invariant, then

vl = [ ammonasay =9, e B0

We usually employ the Fock representation because of its
clear physical meaning and technical convenience. Never-
theless, the use of these ““strange” representations of com-
mutation relations is wholly consistent with fundamental
physical principles.

Uniform Galilean motion is a normal variant of transla-
tionally invariant dynamics in the absence of external forces.
It would appear that self-acceleration must be regarded as a
“strange’” variant of this state. It does not contradict Newto-
nian mechanics because it is described by the solution of
(11) which is an expression of Newton’s second law. It does
not violate any other physical laws or principles. The total
energy of the system in this state is constant because the
energy of a complex is not a sign-definite quantity: a reduc-
tion in this energy compensates exactly the radiated energy
and, conversely, a rise in the energy covers exactly the loss of
energy by absorption. It would be erroneous to consider (as
is often done) that self-acceleration is a ““nonphysical state.”
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In classical Yang-Mills theory, the infrared divergence
of integral quantities such as the field 4-momentum arises
only during deconfinement as a result of the presence of self-
acceleration. As far as confinement is concerned, this prob-
lem is not generated by a linearly growing potential nor by
self-acceleration (for positive m). It is possible that this
casts new light on the connection between confinement and
the infrared behavior of the gluon propagator defined in
Fock vacuum.

CONCLUSION

The correct formulation of the concept of radiation is
hardly a semantic problem. The concept characterizes a
form of self-action in which the field system is split into two
“dynamically independent” subsystems, namely, the emit-
ted subsystem and the subsystem bound to the source. Be-
fore Teitelboim’s paper, the “dynamic independence” of ra-
diation used to be reduced to the trivial condition in which
radiation was compared with the free field. However, as we
have seen, it is more natural to consider the “dynamic inde-
pendence” of a subsystem means that the equation of conti-
nuity is satisfied for the energy-momentum density of the
subsystem. The fields forming this subsystem need not be
free, which is important from the point of view of non-Abe-
lian gauge theories in which the “free field” satisfies nonlin-
ear equations and is therefore qualitatively indistinguishable
from the interacting field.

The subdivision of a system in accordance with an ener-
gy criterion enables us to characterize a more general form of
self-action as well. This can produce an absorbed rather than
radiated subsystem. This form of self-action is realized in a
non-Abelian gauge system in the confinement phase. The
absorption regime then occurs as a result of the complexifi-
cation of the Yang—Mills field that, in the final analysis, is
due to the nonlinearity of the field equations. The Yang-
Mills field remains real in the deconfinement phase, and we
have the radiation regime. It is interesting that the color
charge (brought into motion by non-Yang-Mills forces) ra-
diates or absorbs only colorless waves.

The asymmetry between diverging and converging
wave processes was surprising and gave rise to a debate that
has continued throughout the history of physics. The recur-
ring question has been: why is it that an electric charge radi-
ates but does not absorb light waves despite the fact that the
Maxwell equations are invariant under time reversal?

This question does not arise in quantum theory: a quan-
tum of light is just as readily emitted as it is absorbed. This is
clear, for example, from the description based on the func-
tional integral. In contrast to the classical object with its
unique (extremal) behavior, the quantum system has a con-
tinuum of variants of behavior characterized by probability
amplitudes exp(iS /#). Emission and absorption are sym-
metric phenomena precisely because of the extensive beha-
vioral repertoir of quantum mechanical systems.

Nevertheless, the problem has persisted in classical the-
ory. In view of the foregoing discussion, we propose the fol-
lowing solution. We have to consider not diverging or con-
verging (i.e., retarded or advanced) solutions of field
equations, but the direction of the energy flux, i.e., whether it
is toward the source or away from it. The direction of this
flux is not sensitive to the replacement of the retarded condi-
tion with the advanced condition. It is determined by the
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form of the self-action. In Yang-Mills theory, we have self-
action that allows either radiation or absorption of energy by
a color charge, depending on the phase state. At the same
time, in electrodynamics, self-interaction produces an ener-
gy flux that can only point away from the source.

The author is indebted to L. B. Okun’ for suggestions
that have contributed to a substantial review of the initial
draft of this paper. There were also useful discussions with 1.
Ya. Arefeva, A. A. Ansel’m, G. K. Savvidi, and I. B. Khri-
plovich to whom the author is greatly indebted. M. V. Teren-
t’ev’s critique has led to the filling of certain gaps and the
correction of inaccuracies for which the author is grateful.
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getically unfavorable.
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