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An analysis is made of the shape of the phase diagrams of substances in the neighborhood of the
Lifshitz point, which separates the second-order phase transitions going from the initial phase to a
commensurate and to an incommensurate phase. The conclusions of the thermodynamic theory
in the mean field approximation and in a treatment including the effects of the interaction of well-
developed fluctuations are compared. The possible complication of the phase diagram by a
crossing of the line of Lifshitz points with a line of tricritical points and the possible existence of a
tricritical Lifshitz point are discussed. The changes in the character of the critical behavior in the
neighborhood of the Lifshitz point are discussed in reference to the results of experimental studies
of the transformation of anomalies of the thermodynamic characteristics, principally for the
proper uniaxial ferroelectrics Sn2P2 (Se., S1-x) 6.

1. INTRODUCTION

Long-period structures have been receiving consider-
able attention of late in condensed-matter physics. Struc-
tures of this kind include charge-density waves in metals,
magnetic structures of the spin-wave type, helicoidal phases
in liquid crystals, concentration modulation in intercalcu-
lated compounds, and the long-period phases arising in
phase transitions on surfaces and in structural phase transi-
tions. If the wavelength of the modulation is not a multiple of
the lattice period of the initial high-symmetry phase, then an
incommensurate (1C) phase occurs. The problem of the
change in the translational symmetry at a phase transition
was first considered by Lifshitz.' Development of a theory of
1C phases in crystals was begun by Dzyaloshinskii2'3 for the
particular case of long-period magnetic structures. Its exten-
sion to ferroelectrics started with the papers by Levanyuk
and Sannikov.4'5

Hornreich6 examined the state diagram of a substance
having an 1C phase and noted that it can have a triple point,
viz., the Lifshitz point (LP), which separates the phase tran-
sitions occurring directly from the high-symmetry phase to a
low-symmetry commensurate phase from transitions occur-
ring to the 1C phase. The Lifshitz point is the most obvious
feature of the thermodynamics of phase transitions involv-
ing the formation of modulated structures in ferromagnets
or in proper ferroelectrics. Near the LP the period of the 1C
phase is large, and at the LP itself it goes to infinity. As the
LP is approached, the decrease in the correlation length
leads to expansion of the critical region of well-developed
fluctuation effects and substantial deviations from Landau
theory.

The Lifshitz point introduced in Ref. 6 has the property
that as it is approached, the wave vector of the modulation
continuously goes to zero (q0-»qc = 0), i.e., the commen-
surate phase is ferromagnetic. In the general case a commen-
surate phase with qc ̂ 0 can exist. Therefore, other types of
Lifshitz points are possible, on approach to which the wave

vector q0 of the 1C structure continuously approaches a non-
zero value qc T^O.7

Phase diagrams can also exhibit triple points of the LP
type.8~'' However, as these are approached the period of the
1C phase suffers a discontinuity, there is no modulation
wave with an infinitely large period, and the critical fluctu-
ations are of an ordinary order of magnitude.

Modulated structures of various types have been ob-
served in many (about a hundred) magnetic crystals.l2 The
existence of 1C phases has been established in dozens of fer-
roelectric crystals. Of the proper ferroelectrics they have
been studied most in NaNO2 (Ref. 13), and of the improper
ferroelectrics, in K2SeO4 (Ref. 14). At the same time, ex-
perimental information about LPs on phase diagrams is at
present extremely limited. The LP has been investigated in
magnets only for MnP (Refs. 15, 16) and in proper ferro-
electrics only for crystals of the system Sn2P2 (Se^Sj _x )6

(Refs. 17-20). The point is also accessible in ferroelectric
liquid crystals.21 Triple points, at which a high-symmetry,
an incommensurate, and a commensurate phase come to-
gether, have been observed on the state diagrams of the fer-
roelectrics RbH3(SeO3)2 (Ref. 22) and Ag3AsS3 (Ref. 23),
the improper ferroelastics [N(CH3)4]2MC14 (M = Mn, Fe,
Co, Zn; Ref. 24), [N(CH3)4]2CuBrxCl4_x (Ref. 25), and
the proper ferroelastics Cs2HgCl (Br) (Ref. 26), in the mag-
netic solid solutions NiBr2_ x l x (Ref. 27), and in alloys of
chromium with transition metals (Ref. 28).

Thus the experimental information on the critical be-
havior of solid substances near a true LP, on approach to
which the modulation period increases without bound, is
extremely limited—there are data only for MnP and
Sn2P2(SexS1_J(. )6. In addition to this, there is active theo-
retical research on systems with LPs on their state dia-
gram.29'33 The goal of the present review article is to analyze
the main conclusions of the thermodynamic theory, in the
mean field approach and also with the interaction of well-
developed fluctuations taken into account, as to the shape of
the phase diagrams of substances in the neighborhood of a
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Lifshitz point. The possible complication of the structure of
the diagrams due to the role of nonlinearity34 and due to a
crossing of a line of Lifshitz points and a line of tricritical
points and to the existence of a tricritical Lifshitz point35 are
discussed. The conclusions of the theory as to the transfor-
mation of the anomalies of the basic thermodynamic charac-
teristics on transition through the LP are adduced. They are
compared with the results of experimental studies, mainly
for ferroelectrics of the system Sn2P2S(Se)6, for the purpose
of tracking the principal feature of the Lifshitz point—the
growth of fluctuations of the order parameter as this point is
approached.

2. STATE DIAGRAMS OF SUBSTANCES WITH
INCOMMENSURATE PHASES

The existence of 1C phases on the state diagrams of sub-
stances can be explained in the framework of Landau theory
by considering the density of the nonequilibrium thermody-
namic potential2"5

Ф, (1)

where Ф, has the form of the classical Landau expansion in
the components of the order parameter TJ, (Xj), and Ф2 de-
pends on the components and their derivatives with respect
to the spatial coordinates Xj. The principal features of the
diagram are determined by the shape of the dispersion sur-
face for the stiffnesses of the components of the order param-
eter (the coefficients of the invariants that are quadratic in
the components of the order parameter) in the neighbor-
hood of a symmetric Lifshitz point qc of the Brillouin zone
(the point qc is where the wave vector of the modulation is
fixed at the phase transition to the low-temperature ordered
phase):

a(q) = «0(Г, x) (2)

here x is an external parameter (pressure, field, composition
of mixed crystals, etc.).

Depending on the symmetry of the system, two types of
transitions to the 1C phase are possible, and so there are two
possible types of triple points on the state diagrams. Type I
occurs for a two-component order parameter, when the ther-
modynamic potential (1) contains terms linear in the de-
rivatives, i.e., Lifshitz invariants; this is equivalent to the
presence of terms with odd powers of и in the dispersion
relation (2).33 In this case the transitions to the 1C phase are
symmetry-related.1 This type of transition obtains, in partic-
ular, in improper ferroelectrics such as K2SeO4 (Ref. 14).
The shape of the phase diagrams and the character of the
possible triple points on them depend on the maximum order
лтах of the terms included in the expansion of the dispersion
relation (2) and the values of the coefficients а„ (Refs. 8,
11). For example, the state diagrams of ferroelectric crystals
described by the space group C4 or С4„, whose order param-
eter transforms according to the two-dimensional irreduci-
ble representation E4, can have a triple point (of the LP
type) at which a line of second-order phase transitions from
the paraelectric to the 1C phase comes together with lines of
first-order transitions from the 1C to the ferroelectric phase

and from the paraelectric to the ferroelectric phase.9 The last
two have a common tangent at the triple point. At such a
point the wave vector of the modulation is discontinuous,
and the critical fluctuations are of an ordinary order of mag-
nitude. For two-dimensional representations Е„ with arbi-
trary n there can also exist triple points at which three lines
of second-order phase transitions between the paraelectric,
1C, and ferroelectric phases come together. These lines do
not have a common tangent at such a triple point of the LP
type.9

The diversity of possible situations becomes richer
when invariants cubic in the order parameter and linear in
the wave vector (of the type tjirijdrik/dX), which stabilize
the 1C phases,8'10 are allowed. These are possible, for exam-
ple, for the three-dimensional representation F2u of the
group Qh and are relevant to the state diagrams of supercon-
ducting materials having phases with a charge-density
wave.36

Type II transitions33 occur in systems having a one-
component order parameter, for which Lifshitz invariants
are not allowed in expansion (1). In this situation the exis-
tence of 1C phases is not dictated by symmetry (the Lifshitz
condition1 holds) but is due solely to the nature of the inter-
atomic interactions in the particular system.6'8 Here the dis-
persion relation (2) has only terms with even powers n. The
phase diagrams are also extremely diverse and depend on the
values of the coefficients а„ and the value of ятах (Refs. 8,
11). The simplest form of diagram is for nmax = 4, in which
case the diagram contains a Lifshitz point with the coordi-
nates a0(T,x) = a2(Trx) =0 (Ref. 6). The main conclu-
sions of the thermodynamic theory for this case will be the
subject of the rest of this article.

In the presence of a one-component order parameter
(ilH^f) and a single modulation direction (q||Z), which is
the situation for the systems that have been investigated ex-
perimentally (the ferromagnet MnP and the proper uniaxial
ferroelectrics 8п2Р2(8ех8,_,, )6), the thermodynamic po-
tential density (1) can be rewritten in the form6'29

(3)

here a = ат (Т — T0) and /3, S, and g are constants, with /3
and g > 0. After taking the Fourier transform and making
use of the fact that the wave vector of the modulation is fixed
at the Brillouin zone center (qc = 0), we get

Ф = Ф <5<?2
(4)

On the assumption that there is no dispersion of the effective
mass of the ferroelectric sublattice (m = const), the disper-
sion of the stiffness of the order parameter is characterized
by the form of the soft optical branch associated with the
phase transition along the modulation direction:

~ a (5)

If S < 0, then the minimum of this branch is shifted away
from the center of the Brillouin zone (Fig. la). From the
condition

=0
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FIG. 1. Schematic of the soft optical branch (a) and the phase diagram (b)
for compounds undergoing a phase transition to an incommensurate phase
in the neighborhood of a Lifshitz point. 1) Initial disordered phase, 2) com-
mensurate ordered phase, 3) incommensurate phase. The dashed line is a
line of second-order phase transitions; the solid line is a line of first-order
phase transitions.

it follows that at the temperature

т* — тT - T0 (6)

there occurs a phase transition to an 1C phase with a modula-
tion wave vector

2,,£• —

- (7)

The density of the thermodynamic potential of the 1C
and commensurate phases obtained by minimizing (4) with
respect to the amplitude of the equilibrium value of the order
parameter is described by the expression5

/ _ \2
Ф'с = Ф0 6Г~' ai = °T<Ti ~ Т0>>

When these potentials are equal, a first-order phase transi-
tion from the 1C to the commensurate phase occurs at a
temperature

from which one obtains the relation

т — т0 c -44; ~ ~^-f-

At the Lifshitz point ( 7"L ,XL ) on the phase diagram
(Fig. Ib) the coefficients a and 8 vanish simultaneously. If
one assumes a linear dependence S~(xL—x) and
g = const in the neighborhood of this point, it is expected
that29

ql ~ (x - XL ) T. - - (x - (9)

Consequently, on approach to the LP the critical wave vec-
tor should go continuously to zero, while the lines of second-
order transitions ГДх) and first-order transitions T c ( x )
that bound the 1C phase for X>X L merge smoothly (para-
bolically) into a line of second-order transitions T0(x)
for X < J C L .

LP Г„
О (- 3

Л i

TP

0

FIG. 2. Phase diagram of a system with the thermodynamic potential of Eq.
(3) with allowance for the invariant f (drj/dZ)" and the condition
(} = g = f = 1 (Ref. 32). 1) Paraphase, 2) commensurate phase, 3) incom-
mensurate phase, 4) rippled state. The dashed lines are lines of second-order
phase transitions; the solid line is a line of first-order phase transitions.

Another possible situation is when a2 > 0 and «4 < 0 in
the dispersion relation (2), and it is necessary to take into
account the term of sixth order in the wave vector, with a
coefficient «6>0 (Ref. 8). Then, as the triple point, with
coordinates a0 = 0, «4 = 0, is approached on the phase dia-
gram, the period of the modulation wave in the 1C phase
remains finite, and the critical fluctuations are not as large as
in the case of the LP considered above, with «0 = 0, a2 = 0
in (2) ora = 0, <5 = 0 in (3).

Analysis of a thermodynamic potential of the form (3)
with an added invariant f (drj/dZ)4 shows that for f > 0 the
state diagram can have another triple point besides the LP
(Fig. 2); at this new triple point an 1C and a commensurate
phase coexist with a rippled state (polar 1C phase).34'37

Whereas in the ordinary 1C phase the order parameter rj
oscillates about a zero mean and the amplitude of the oscilla-
tions decreases and the wave vector increases with increas-
ing temperature, in the rippled state the order parameter
oscillates about a nonzero mean. The amplitude of the oscil-
lations increases with increasing temperature, while the
average value of the order parameter and the wave vector
decrease. At the first-order transition to the ordinary 1C
state the average value of rj drops discontinuously to zero,
and the amplitude and wave vector of the modulation also
change discontinuously. With decreasing temperature the
rippled state has a continuous (second-order) transition to
the commensurate phase. At the triple point with coordi-
nates as;—7.09 and 5s — 5.32 (under the condition
/J = g = f = 1) the slope of the two lines of first-order phase
transitions are expected to be equal. There is as yet no infor-
mation concerning the experimental observation of the rip-
pled state or of the triple point at which the rippled state
vanishes.

As one moves away from the LP into the 1C phase the
growth in amplitude of the order-parameter wave causes
nonlinear effects to become important, and the structure of
the phase diagram can become substantially more compli-
cated, with transitions between different types of incommen-
surate states (the so-called "devil's staircase").38

A substantially different phase diagram with a Lifshitz
point (in comparison with the form shown in Fig. 1) will
arise if /?<0 and the invariants 777* and Ar)2(dr]/dZ)2 are
taken into account in expansion (3), i.e., in the case when
the direct phase transition from the paraelectric to the fer-
roelectric phase is first order. If | — S\ — 0, then the lines of
transitions Г,(х) and T c ( x ) will come together at a finite
angle at the triple point, which is determined by the relation
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FIG. 3. Schematic phase diagram of a system with the thermodynamic
potential of Eq. (10). The dashed lines are lines of second-order transitions
from the paraphase to the ferrophase ( T 0 ) or to the incommensurate phase
( T , ) ; the solid lines are second-order transitions from the paraphase to the
ferrophase (Г,) or from the incommensurate phase to the ferrophase (T c ).
The regions of the incommensurate phase are shaded; the dotted lines in
these regions are lines of virtual transitions T0 for/? > 0 and T, for Д < 0. LP
is a Lifshitz point, TCP is a tricritical point. TCLP is a tricritical Lifshitz
point, VLP is a virtual Lifshitz point, and TP is a triple point. The line of
triple points entering the TCLP is shown by a dotted line.

S2 = 3g/?2/87 (Ref. 33). The LP is not reachable, i.e., it be-
comes virtual (Fig. 3).40

It is known that under the condition a = 0, /7 = 0 there
is a tricritical point (TCP), at which the phase transition
from the high-symmetry phase to a low-symmetry phase
commensurate with it changes from a second-order to a first-
order transition.41 The line of first-order phase transitions is
determined by the relation

On the state diagram with three "external" variables, e.g.,
temperature, pressure, and composition, there is a line of
TCPs, specified by the conditions a(p,x) =/3(p,x) = 0 and
S > 0. The relation a(p,x) = S(p,x) = 0 for /7> 0 specifies a
line of Lifshitz points. These lines cross at the tricritical
Lifshitz point (TCLP), for which a(p,x) =fi(p,x)
= S(p,x) = 0 (Refs. 35, 40). A line of certain higher triple

points also goes into the TCLP. Figure 3 shows a schematic
illustration of the phase diagram in the space of coefficients
a-p-8 on the assumption that the "temperature" a is not
altered by the external "field". The existence regions of the
1C phase for /? = const > 0 and & = const < 0 are indicated
by shading. The positive (3 semiaxis coincides with a line of
LPs and the negative semiaxis with a line of virtual LPs, The
axis 8 > 0 is a line of TCPs. In the neighborhood of the TCLP
(/7=0) the line of first-order phase transitions ac from the
1C to the ferroelectric phase is determined by the equality of
their thermodynamic potentials

1/2 г _ , . ,-ll/2
1 |Л31

Ф,

and has the form

a «-0.7—.c S

Thus in the mean field approximation the phase dia-
gram in the neighborhood of the TCLP (/3 = 0) has qualita-
tively the same form as for the LP (/3 > 0): for | — S \ — 0 the

lines of phase transitions bounding the 1C phase come to-
gether parabolically in both cases. However for/5<0 these
phase boundaries come together at a finite angle at a triple
point.

3. CHANGE IN THE ANOMALIES OF THE THERMODYNAMIC
PROPERTIES OF FERROELECTRICS ON TRANSITION
THROUGH THE LIFSHITZ POINT

Lifshitz points have been observed on the state dia-
grams of the ferromagnet MnP (Ref. 15), liquid crystals
(the NAC point; Refs. 21,42), and the proper ferroelectrics
Sn2P2(SexS1 _ x )6 (Refs. 17-20). The temperature interval
of the 1C phase in the improper ferroelectric RbH3(SeO3)2

decreases when an electric field is applied, and it has been
conjectured that the triple point that can be reached in this
way is also a Lifshitz point.22 Studies of the proper ferroelec-
tric NaNO2 in a transverse electric field have shown39 that
the transitions to the 1C phase in this compound are close to
a tricritical Lifshitz point. It has been established in studies
of the temperature-composition diagrams of liquid-crystal
mixtures that different relative positions of the tricritical
points and NAC point are possible, and, as a result, the latter
can become a triple point or an end critical point.42

A sufficiently complete set of experimental data on the
anomalies of the thermodynamic properties and their
change over the phase diagram has been obtained only for
the ferroelectrics Sn2P2(Se,tS| _ x )6. For this example it is
possible to compare the experimental situation with the con-
clusions of the phenomenological theory.

The shape of the concentration phase diagram of
Sn2P2(SexS]_x )6 crystals was determined previously.18'19

In Sn2P2S6 there is a second-order ferroelectric phase transi-
tion at Г0~338 К (P2l/c ->Pc) with no change in the num-
ber of formula units in the unit cell. As S is replaced by Se the
line T0(x) for x > 0.28 splits smoothly into a line of second-
order phase transitions T, (x) and a line of first-order phase
transitions Tc(x). For Sn2P2Se6 one has T, z;22l К and Tc

s:193 K. The intermediate phase is incommensurate. The
period of the transverse wave of spontaneous polarization in
the 1C phase of Sn2P2Se6 is close to 12 unit cells at Г, and
increases to 14 unit cells on cooling.20 The temperature
width of the 1C phase in Sn2P2(Se.cS1 _x )6 increases with
distance from the LP with coordinates 7"L~295 K, XL

~0.28 in accordance with the relation Г, — Г,. = 45.8
(x - XL )

2 (Ref. 43). This relation is plotted in Fig. 4. The
wave vector of the modulation on the line Tl (x) varies ac-
cording to Eq. (9), i.e., q]~x - XL (Ref. 44).

Hydrostatic compression of Sn2P2S6 also causes split-
ting of the second-order phase transition into second-order
and first-order transitions.45 The coordinates of the triple
point on the T-p diagram of Sn2P2S6 are ГТР —295 К, ртр

г: 0.18 GPa. The line of triple points on the T-p-x diagram
ofSn2P2(Se^S! _x) 6 passes through the Lifshitz point on the
T-x diagram. This means that the intermediate phase on the
T-p diagram of Sn2P2S6 is also incommensurate. The change
in its temperature width 7", — Tc with distance from the tri-
ple point under increasing pressure, according to the data of
Ref. 45, is also shown in Fig. 4.

The concentration and pressure dependences of the
width of the 1C phase have been determined in comparable
intervals of composition and compression. At the same time,
the form of these dependences is qualitatively different. The
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FIG. 4. Concentration dependence of the temperature interval of the in-
commensurate phase in Sn2P2 (Sex S | _ „) 6 at atmospheric pressure (/) and
its pressure dependence in Sn2P2S6 (2).

width of the 1C phase increases quadratically as S is replaced
by Se, in fulfillment of the basic criterion for a Lifshitz point
(9). Under compression, the width Г, — Tc in Sn2P2S6 in-
creases linearly with p —/?Tp (Fig- 4). This indicates that
the triple point on the T-p diagram of Sn2P2S6 is not a Lif-
shitz point. In this case the line of triple points TP on the T-
p-x diagram of Sn2P2 (Sex Sj _ x) 6 should go over into a line
of Lifshitz points as x increases.

For proper uniaxial ferroelectrics with one-dimension-
al modulation in the 1C phase we expand the density of the
thermodynamic potential Ф in powers of the order param-
eter (the polarization P) and its spatial derivatives, follow-
ing (3):

Ф « Фп +0
+ 6 + + &P"2

4

u2 + kP2u, (10)

where a = ат (Т — T0); the rest of the coefficients are as-
sumed to be temperature independent. The last two terms in
expansion (10) describe the energy of the elastic strain and
the electrostriction interaction; here c=Cy are the elastic
stiffness constants, k is the electrostriction coefficient,
и = и& is the strain tensor. It is assumed that the coefficients
g, Л, с, and k do not depend on the composition of the mixed
crystals.

Using data on the temperature dependence of the iso-
baric specific heat cp (Refs. 40, 46) and of the spontaneous
polarization Ps and the permittivity e (Ref. 40) of
Sn2P2(SexS1_JC)6 crystals, and also information on their
thermal expansion46 and elastic constants ca (Refs. 18, 47,
48) and on the temperature dependence of the wave vector
q0 of the modulation of the 1C phase20 and the effect of hy-
drostatic compression on the phase transition tempera-
ture,45 we determined the thermodynamic paths in a-/3-8
space on compression of the Sn2P2S6 crystal or on changes in
the chemical composition in the system Sn2P2(SexS, _ x )6.
According to estimates40 of the pressure dependences of /3
and 8, as the pressure is increased on the T-p diagram of
Sn2P2S6, first the tricritical point is reached (the order of the
ferroelectric phase transition changes from second to first)
and then, at the triple point, the first-order ferroelectric
phase transition splits into second-order and first-order
transitions bounding an 1C phase (Fig. 5). In this case the
Lifshitz point is virtual.

т -

e-10 ,,J-m3/C2

FIG. 5. Concentration and pressure "thermodynamic paths" in the <5, P
plane (<5 and 0 are the coefficients in Eq. (10)); these paths are followed
through a change in the composition of the mixed crystals
Sn2P2(Se,S, _„) 6 and through hydrostatic compression of Sn2P2S6, re-
spectively.

As the selenium content is increased on the concentra
tion diagram of Sn2P2(Se.(:S, _x )6 at atmospheric pressure,
first the Lifshitz point (JCL ~0.28) is reached and then the
virtual tricritical point (*VTCP ;;0.6)—the expected direct
phase transitions from the paraphase to the ferrophase for
* > 0.6 are first order.

Thus the T-x diagram of Sn2P2(Se,cS1 _ x )6 has a Lif-
shitz point, while the T-p diagram of Sn2P2S6 has a triple
point. Both thermodynamic paths, the concentration path
and the pressure path, pass side by side toward the tricritical
Lifshitz point TCLP (see Fig. 5). Here the virtual ferroelec-
tric phase transition is more first order for x = 0 and/» = 0.5
GPa than for x = 1 and atmospheric pressure. The fact that
the expected direct phase transition from the paraelectric to
the ferroelectric phase is increasingly first order causes the
temperature interval in which the 1C phase exists to become
narrower.40'49

The fact that the coefficients 8 and /3 in the neighbor-
hoods of the LP and TCP are much smaller than their
"atomic" values justifies taking additional terms of higher
order into account in expansion (10), e.g., the term
(Л /2)P2P'2, which characterizes thebiquadraticcoupling of
the order parameter with its spatial derivative. Because of
this coupling, and also on account of the homogeneous and
inhomogeneous elastic strains, the coefficient of the P 4 term
in expansion (10) is renormalized. For the paraelectric-fer-
roelectric transition the renormalization of the coefficient/?
is due to the interaction of the order parameter with the
homogeneous strain,

P ~^~2с

(The thermodynamic "paths" shown in Fig. 5 actually cor-
respond to values of/? °.) In the 1C phase the inhomogeneous
distribution of the order parameter induces inhomogeneous
strains; because of this, a "gap" Д between the homogeneous
and inhomogeneous strains forms on account of the long-
range elastic forces. Then

The gap, which remains nonvanishing right to the LP, is
given by
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FIG. 6. Concentration dependence of the coefficients of the thermodynam-
ic potential (10) of Sn2P2(Se,S| _, )6 crystals.

Д = ~(К - К),

where (in the isotropic approximation)
ь2 „ j.2

„. _ К „ AC
" - — • / * _ • A. — ^ r .

and x and ̂  are the bulk and shear moduli, respectively.
Figure 6 shows the concentration dependence of ther-

modynamic potential (10), as determined in Ref. 49 from
the experimental data for Sn2P2(SexS,_x)6. The effective
value of the coefficient /ff * decreases linearly like /7 ° as x
increases from 0 to XL , and then at XL it jumps upward by the
value of the gap A and subsequently increases linearly. It is
important to note that for Sn2P2S6 the expected direct phase
transition from the paraelectric to the ferroelectric phase is
first order (P° <0), whereas the observed phase transition
from the paraelectric to the 1C phase is second order

To illustrate the reliability of the estimates of the coeffi-
cients, in Fig. 7 we compare the experimental concentration
dependence of the discontinuity in the specific heat on the
line of phase transitions T,(x) with the values calculated

300

I 200
6

100

0,5
x, mol. %

1.0

FIG. 7. Concentration dependence of the jump in the specific heat of
Sn2P2(SexS] _, )6 crystals on the line T0(x) for X<XL and on the line
T,(x) for X > X L . The points are experimental and the continuous lines,
theoretical.

from the formula Дср = а г Г, /3/9 *. The good agreement in-
dicates that the phase transitions in mixed crystals
Sn2P2 ( Se^ S , _ ,, ) 6 can be described with the help of potential
(10) with allowance for the closely spaced Lifshitz and tri-
critical points.

However, there are features of the anomalies in the
physical properties of the Sn2P2 ( Sex S t _ x ) 6 crystals that do
not admit a phenomenological description in the mean field
approximation. These include, for example, the fact that the
anomalies of the temperature dependence of the specific
heat,50 coefficient of thermal expansion,46 and velocity of
ultrasound18 extend deeper into the paraelectric phase as the
composition approaches XL , and also the low value of the
critical exponent for the order parameter.50 Possible causes
of these deviations from mean field theory are the onset of
appreciable fluctuation effects and the influence of defects.

4. THE ROLE OF FLUCTUATIONS IN THE NEIGHBORHOOD
OF THE LIFSHITZ POINT. MANIFESTATION OF PROXIMITY
TO THE TRICRITICAL LIFSHITZ POINT

As we have said, the principal feature of the Lifshitz
point is that the wavelength of the modulation in the 1C
phase approaches infinity on account of the decrease in the
coefficient 5 in ( 3 ) as x -> XL . This is analogous to a decrease
in the correlation length ( /^ ~ 8 ) and it promotes the growth
of fluctuations of the order parameter.6 The widening of the
critical region can be estimated with the help of the Ginz-
burg-Levanyuk criterion.51'52 For a transition to an 1C
phase with one-dimensional modulation, this criterion has
the form53

where

if it is assumed that with respect to directions of reciprocal
space that are orthogonal to the modulation vector, the coef-
ficients of the quadratic term in dispersion relation ( 5 ) have
the ordinary "atomic" value Sa .

The critical behavior of substances near the Lifshitz
point have been studied theoretically in a number of papers
(see the review by Hornreich7). Particular attention has
been paid to the analysis of systems with short-range interac-
tion, in application to magnets. Here, in a «/-dimensional
space one singles out a sector of dimension т in which the
wave vectors of the modulation lie.6 The system is assumed
isotropic in the т and (d-m ) -dimensional spaces. The upper
critical dimensionality, above which classical behavior is
expected, is determined by the condition

with /и<8, and it is equal to 4 in the ordinary situation (for
m = 0). Thus the regions of (d,m)-space in which classical
or nonclassical critical behavior occur are divided by a line
of critical dimensionality (dl,ml). The critical exponents
for the system associated with the point (d,m) in the non-
classical region have been calculated by the renormaliza-
tion-group method by expanding in the small quantities
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£а = m
6

— т and ee = — m7 ) — (of — m). It has been
shown6 that to lowest order in a ea and ee, all the critical
properties depend only on the linear combination

4 - d + у. (H)

A distinctive feature of the Lifshitz point is the aniso-
tropic nature of the correlation function for the order pa-
rameter. Fluctuations with wave vectors whose components
lie in the m-dimensional space are characterized by a pair of
exponents VL and T;L , while fluctuations with wave vectors
in the (d-m)-space correspond to the pair v£ and r}^. It is
found that

(12)

where n is the number of components of the order param-
eter. Consequently, the critical exponents for the correla-
tions of the order parameter in the directions along which
the modulation wave arises differ by a factor of 2 from those
for the other directions.

It is important to determine the lowest critical dimen-
sionality d,. Fluctuations prevent the formation of an or-
dered state for d<,d,, and therefore the phase transition tem-
perature as a function of the dimensionality d goes to zero as
d-^d,. For the Lifshitz point d, = 2 + (m/2) (Ref. 35).
Since d, = 4 for the isotropic case (m — d), an isotropic Lif-
shitz point cannot exist in real three-dimensional space.
Only the uniaxial Lifshitz point (m = 1) is experimentally
accessible: d, = 2.5 < 3. The temperature of the biaxial Lif-
shitz point (m = 2) is О К, since for it d, = 3.

Let us examine the effect of fluctuations on the form of
the phase diagram near the Lifshitz point. In the neighbor-
hood of this point the disordered phase is separated from the
two ordered phases by a critical line with two branches,
which cross at Т = TL and x = XL . In ferroelectrics, for ex-
ample, these are lines of phase transitions from the paraelec-
tric to the ferroelectric phase at Tf (x) for x < XL (S > 0) and
to the incommensurate phase at T ( ( x ) for x>xL(S<0).
According to renormalization-group calculations, to zeroth
order in e, the shape of the critical branches is given by the
expression54

+ Лг(<51/ф - д2) for Ь > О,

(13)

+ Л/(|с5|1/* - и2) + Q- + ce;jc52 for S < 0,

which in the limit S~xL — x->0 take the form

rf - А<51/ф(6 > 0), r. ~ A.\611/ф (<5 < 0); (14)

here T{ = [Tf(8) -Т^]/Тъ,т^(Т,(8) - TL)/Гь;аДс
= O(E, ). The crossover exponent Ф and the amplitude ratio

Af/Af are universal quantities that do not depend on the de-
tails of the interaction in the system. It has been found6'54 that

(15)

(16)

It follows from (16) that

£ = Л _ JL

'For example, for a one-component order parameter and a
one-dimensional modulation in three space, formulas (15)
and(16)give«I>:=0.625,/lf;= - 1/8,Л,=;1/8,Л,/Л,. ~ - 1-
We note that in the approximation used, the amplitude ratio is
independent of the number of components of the order pa-
rameter.

For e, -* 0 formulas (13) and (15) yield the form of the
branches of the critical line in the mean field approximation:

<52

Tf - T0 = 0 (d > 0), Tt - T0 = -т- (d < 0).

In this approximation Ф = 0.5, A, > 0, and A( = 0, in agree-
ment with relation (9). Figure 8 shows the shapes of the criti-
cal lines in the neighborhood of a Lifshitz point according to
mean field and renormalization-group calculations.

Thus fluctuations can have a substantial effect on the
shapes of the phase boundaries in the neighborhood of the LP.
For example, without fluctuations the branch T ( ( x ) coin-
cides with the line T0(x) as x-*x^, and the branch T t ( x )
deviates quadratically from this line. When fluctuations are
taken into account, e.g., for the case m = n = \, both
branches T{(x) and ГДх) converge smoothly with the tan-
gent to the phase boundary at XL , with curvatures that are
equal in magnitude but opposite in sign, i.e., the LP coincides
with an inflection point of the critical line.

Mean field calculations also give a line of first-order tran-
sitions Tc (x) from the 1C phase to an ordered commensurate
phase (8).29 Renormalization-group calculations do not give
any information about this line. Nevertheless, the generalized
scaling approach is assumed to be valid for this line also.54'55

Consequently, the shape of the line Tc (x) as X-»XL is deter-
mined by the same crossover exponent as for the line T, (x).

FIG. 8. The shape of the branches of the critical line in
the neighborhood of Lifshitz points separating the
paraelectric phase from the incommensurate phase
Tf (x) and from the commensurate phase Tf (x) in the
mean field approximation (a) and according to the re-
normalization-group calculation of Ref. 54 (b).
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The region of validity of the scaling laws, e.g., for the
order parameter т/' or for the susceptibility x - is
largest for the optimum choice of linear scaling axes т and x.
At a certain point of the critical line the orientation of the т
axis can be chosen parallel to any direction in the (T,x) plane
except the direction tangent to this line. The same asymptotic
behavior is expected in all nontangential directions. The opti-
mum direction is determined from renormalization-group
calculations. One assumes55 that the т axis is perpendicular to
the critical line at the LP (then the value of ? is determined by
the "distance" to the critical line in the (T,x) plane), while
the x axis is tangent to it. If the dependence of the phase
transition temperature on the variable x in the neighborhood
of the LP is found to be weak, then the scaling axes т and x are
close to the axes Г and x, respectively. In such a case the
temperature width of the 1C phase on approach to the LP can
be described by a power law: T,• - Tc ~ (x - JCL )

1/ф.
For the LP one introduces6 a new critical exponent /34,

which characterizes the change in the wave vector of the mod-
ulation on the line Ti (x):

(17)

In mean field theory Д, = 0.5 (see Eq. (9)).29 Fluctuation
effects can alter this value of £)4, just as they do the shape of
the phase boundaries near the LP. However, according to
renormalization-group studies6'7 there is no correction to the
classical value of 13q to first order in e,.

For a Lifshitz point, because of the two correlation
lengths, there are new scaling relations:6

+ (d-m)v'i = 2 - a'L,

The three-exponent relation

(18)

(19)

remains unchanged. Formulas (11), (12), (18), and (19)
can be used to calculate the exponents for the correlation
length (v), specific heat ( a 1 ) , susceptibility (7'), and order
parameter (/?')• In Landau theory a' = 0, Y = 1, /3' = 0.5,
and v — 0.5. Renormalization-group calculations for a three-
dimensional space in the case of a one-component order pa-
rameter and a one-dimensional modulation give the following
values of the critical exponents for the LP:6 /?'L s;0.25 and
y'L zz 1.25. However, these values are not exact, since for real
space the parameter et is equal to 1.5, as follows from (11),
and cannot be considered small. The values/?' = 0.19 + 0.02,
/ = 1.4 + 0.06, and a' =; 0.2 have been obtained32 for this
case by the method of statistical modeling. These effective
values are expected in the temperature interval

The degree of deviation from the conclusions of mean
field theory depends on the force of interaction between fluc-
tuations, i.e., on the value of the coefficient /3 of the fourth-
degree invariant rj4 in ( 3 ) . On approach to a tricritical point
/3->0, and its upper critical dimensionality dl = 3. Conse-
quently, in the neighborhood of a TCP the behavior of the
system conforms to the conclusions of mean field theory with
weak fluctuational corrections. As one moves along the line of
LPs toward the tricritical Lifshitz point (TCLP) the size of

the fluctuation effects also decreases, but they remain impor-
tant: for a uniaxial (m = 1) TCLP one has dl =3.5 (Ref.
36). The lower critical dimensionality in this case is d, = 2.5,
i.e., the uniaxial TCLP can exist in real space. Renormaliza-
tion-group calculations56'57 give/?'~0.14 and 7';; 1.07 for
the TCLP. Although such calculations give only approximate
results, they do reveal the tendency of the critical exponents to
change as one moves around on the phase diagram in the
neighborhood of the TCLP. For example, normal Ising-like
behavior corresponds to an exponent/3' г; 0.33. This exponent
decreases as one approaches both the TCP and the LP. As one
moves along the line of TCPs or along the line of LPs toward
the TCLP, the exponent/?' continues to decrease, reaching its
minimum value at the TCLP.

In uniaxial ferroelectrics fluctuations are suppressed by
the long-range Coulomb forces; this can be taken into account
by increasing the dimensionality of the space to four.58 The
critical behavior of uniaxial ferroelectrics corresponds to
mean field theory with logarithmic corrections. At the same
time, for antiferroelectrics, in spite of the long-range dipole
interaction, the critical behavior is the same as for the corre-
sponding Ising system with short-range forces. In other
words, mean field theory is sufficiently accurate only in the
limit of a homogeneous long-range Coulomb interaction.59

A theoretical analysis of the critical behavior has been
carried out for a "dipole" LP-a system with two modulation
axes and a dipole interaction directed perpendicular to the
plane of the modulation axes.60'61 For such a system one ex-
pects quasi-one-dimensional critical behavior, since fluctu-
ations are correlated only along the "long-range" axis. The
temperature of the "dipole" LP goes to О К. It is noteworthy
that for a "dipole" LP the critical exponents for the correla-
tion length in the plane of the modulation axes ( v " ) and in
the direction of the polarization axis ( v L ) differ by a factor of
three.61

It is important to note that uniaxial ferroelectrics, like
the uniaxial LP in a system with short-range forces, has criti-
cal fluctuations characterized by two correlation lengths with
different critical exponents v. Therefore, the uniaxial LP in a
uniaxial ferroelectric is characterized by three correlation
lengths and in this sense is a most complex system. In spite of
the fact that d = 4 in uniaxial ferroelectrics, for a Lifshitz
point in them d<dl, and fluctuation effects remain impor-
tant. For a TCLP here d>dj, and in the neighborhood of
such a point one expects classical tricritical behavior.

As we mentioned in the introduction, the LP has been
investigated experimentally in the magnet MnP (Refs. 15,
55) and in the proper ferroelectrics Sn2P2(SexS, _x )6 (Refs.
17, 40). On the T-H diagram (temperature versus magnetic
field perpendicular to the ferromagnetic axis) of MnP the line
of second-order phase transitions from the paramagnetic
phase to an 1C phase with a modulated (fan) ordering of the
spins and the line of first-order transitions from the 1C phase
to the ferromagnetic phase merge smoothly into a line of sec-
ond-order transitions directly from the paramagnetic to the
ferromagnetic phase. As the system approaches the triple
point with coordinates TL ~ 121 K, #L ~ 16.5 kOe at which a
second-order phase transition occurs, the wave vector of the
modulation of the 1C phase goes continuously to zero. It has
been established by careful experiments that the crossover
exponent for the phase diagram of MnP in the neighborhood
of the LP is Ф = 0.64 + 0.04. This value is in good agreement
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with the value expected from renormalization-group calcula-
tions for such a case (m = n = 1), viz., Ф~0.625 (Ref. 55).
In addition, the triple point coincides with an inflection point
of the critical line. Thus the data on the triple point on the T-
H diagram of MnP are in complete agreement with the theo-
retical conclusions about the LP. However, there is no infor-
mation in the literature as to the critical exponents for the
thermodynamic parameters nor on the influence of tricritica-
lity in this compound.

It has been reported that the critical behavior at TCPs
induced by compression in crystals of the type RbCaF3 (Ref.
62) and NH4C1 (Ref. 63) and in NbO2 (Ref. 64) is close to
that expected for the TCLP. In particular, a value/9'=; 0.19
has been found for the critical exponent of the order param-
eter, which is substantially smaller than the value/?' = 0.25
characteristic for a TCP. The fact that the soft branch asso-
ciated with structural phase transitions in these substances is
quite gently sloping63 also indicates that the TCP and LP that
they have will be close together. However, doubt has been
cast62 as to whether the higher-order critical point reached in
these cases can be interpreted unambiguously as a TCLP. For
example, the value of /?' can be decreased by logarithmic fluc-
tuational corrections. It also decreases on approach to a
fourth-order critical point, in which case /?'~ 0.17.65 Most
importantly, no 1C phases have been observed on the state
diagrams of the substances mentioned, which, if present,
would permit immediate identification of the LP and would
establish the existence of a TCLP.

The anomalies of the thermodynamic characteristics in
the mean field approximation have been investigated and ana-
lyzed most fully for the crystals Sn2P2(SeJCSl_je)6, whose
concentration phase diagram has not only a Lifshitz point at
*L ~0.28 but also a "virtual" tricritical point at JCVTCP srO.06
(Ref. 49). Information about the positions of the multicritical
points on the state diagram permits interpretation of the com-
plicated nature of the critical behavior of the thermodynamic
functions. As the system approaches the second-order ferroe-
lectric phase transition one should observe a change in its
behavior (crossover) from tricritical to critical. Further-
more, another type of crossover is possible in the critical re-
gion—a transition from classical behavior, conforming with
the conclusions of mean field theory, to fluctuational behav-
ior. The region in which the latter type of crossover appears
and its particular properties are determined by the dimension-
ality of the system and the number of components of the order
parameter. For uniaxial ferroelectrics, as we know,58 the ef-
fective spatial dimensionality is d = 4, which is equal to the
upper critical dimensionality dt for a second-order phase
transition. However, for a first-order Lifshitz point (L = 1,
i.e., the coefficient of the q2 term in the expansion of the stiff-
ness for fluctuations of the order parameter in even powers
q2L is equal to zero) with a single modulation direction one
has d<dl =4.5. The critical behavior corresponding to a Lif-
shitz point in principle is intermediate between the critical
behavior for the «/-dimensional and (d — 1)-dimensional
cases (the latter is identical to a Lifshitz point of infinite or-
der, L-> oo). This is manifested in a widening of the fluctu-
ation region as the LP is approached, and also in a change of
the critical exponents.

Whereas for x<x^ the second-order transition on the
line T0(x) is characterized by a one-component order param-
eter (the eigenvector of the nondegenerate optical phonon at

the Brillouin zone center is q = Q), for X > X L the second-
order phase transition from the paraelectric to the 1C phase
on the line T t ( x ) has a two-component order parameter
(и = 2) — the dynamic instability of the lattice is character-
ized by a two-pronged star of wave vectors. Consequently, as
x increases away from the LP one observes a crossover to
Heisenberg behavior.

Thus, in analyzing the experimental data one must take
into account the possible presence of four types of crossover:

1. From tricritical behavior to critical behavior;
2. From classical critical behavior to fluctuational;
3. From fluctuational in the rf-dimensional case to fluc-

tuational in the nearly (d — 1 ) -dimensional case;
4. From fluctuational Ising-like (n = 1 for X<XL) to

fluctuational Heisenberg-like (n = 2 for x > XL ).
Let us examine the change in the effective values of the

critical exponents for the specific heat (a') and for the order
parameter (/?') as determined from the thermooptical data
for Sn2P2(Se,tS1 _x )6 crystals66 by the Senarmont method.
This method was used to measure the change in the angle of
rotation of the polarization of light, <p, which is proportional
to the birefringence Ли. As we know, in the region of weak
fluctuational
throughout

corrections Ди~л2~т2/* . In addition,
the temperature interval we have

Figure 9 shows the temperature dependence of the
effective exponents /3 ' and a' for the ferroelectric phase of
Sn2P2S6, as obtained by processing the data on <p( Г). As r
decreases, /?' increases from 0.3 to 0.5 and then decreases
somewhat in the immediate neighborhood of TQ. This is
consistent with a crossover from tricritical behavior
(j8'=0.25) to classical critical behavior (/3'=0.5). The
temperature of this crossover, as obtained from the relation
a = P 2/4f with the values of the coefficients of potential (10)
from Fig. 6 corresponds to T0 — 7Ъ4 К for Sn2P2S6. It
should be noted that the number Gi defined according to Ref.
51 corresponds to approximately the same temperature dis-
tance to T0. Consequently, for Sn2P2S6 and also for mixed
crystals with composition close to XL , the crossover from tri-
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FIG. 9. Temperature dependence of the birefringence (a) and its derivative
(b) for the Sn2P2S6 crystal. The insets show the temperature dependence of
the critical exponents of the order parameter ( P ' ) and specific heat (a').
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critical behavior to critical behavior is actually a crossover
from tricritical behavior to fluctuational behavior.

The temperature dependence of the exponent a' agrees
with the above: it decreases from 0.5 to 0.1 as the temperature
is raised. As T0 is approached, at In r< — 6, the value of a'
increases, tending toward the value 1.5, which is characteris-
tic for behavior governed by defects.67 Consequently, in the
immediate vicinity of TQ the critical behavior of the Sn2P2S6

crystal is probably governed by defects.
For the sample with x = 0.29, which is closest to the LP

(XL ;s0.28), the exponent is /?' = 0.20 + 0.02 throughout
the temperature interval. The critical exponent a' varies
somewhat about the value 0.5 (Ref. 66). According to an
estimate based on the values shown in Fig. 6 for the coeffi-
cients of the thermodynamic potential (10), for compositions
nearjcL one should observe tricritical behavior all the way to a
fraction of a degree from T0. This reflects the proximity of the
LP on the state diagram to the TCLP (Fig. 5). However, the
experimental value of /?' is clearly lower than the classical
tricritical value, which should obtain near a TCLP in the case
of one-dimensional modulation in a uniaxial ferroelectric
(с?, =3.5<J = 4). The probable reason for such a low value
of P' is crossover to the critical behavior characteristic for a
biaxial TCLP, for which dl = 4. That this system is close to a
state with two-dimensional modulation is indicated by calcu-
lations of the lattice dynamics of Sn2P2 (Sex S [ _ x) 6 crystals in
the rigid-ion model,68 according to which the dispersion of the
soft optical branch is insignificant along both axes (z and y)
perpendicular to the direction of the spontaneous polariza-
tion (Ps is close to the Cartesian axis x).

For states with x > JCL Heisenberg-like critical behavior
is expected on the line of transitions T t ( x ) from the para-
electric to the 1C phase. The most convenient crystal for anal-
ysis of the critical exponents is Sn2P2Se6, which has the largest
temperature width of the 1C phase. According to Fig. 6 (see
Ref. 49), the second-order phase transition at Г, is quite far
from the TCP. In the 1C phase near T, one finds
/?' = 0.35 + 0.01 and a' = 0.0 + 0.1 (Ref. 66). These values
agree with the results of calculations69 for the two-component
three-dimensional Heisenberg model.

On the whole, the results of the analysis of the critical
behavior of the ferroelectrics Sn2P2 (Sex S, ^ л ) 6 indicate that
when 1C phases are present on the state diagram, it is neces-
sary to take into account the possibility of a complicated com-
bination of crossovers involving tricriticality, the character of
the spatial anisotropy of the order-parameter fluctuations,
and changes in the number of components of the order param-
eter.

Another remarkable finding is the similarity of the criti-
cal behavior of quasi-two-dimensional systems such as
RbCaF3 and BaMnF4 and that of Sn2P2 ( Sex S, __ x ) 6 crystals.
In principle it is possible to trace the evolution of the tricritical
Lifshitz behavior as the symmetry of the crystal lattice
changes: tetragonal (uniaxially compressed RbCaF3) to
rhombic (NaNO2) tomonoclinic (Sn2P2(SeA.S, _ J C ) 6 ) .

In conclusion we note that the relationships established
by studying substances in the neighborhood of the LP are
useful for analyzing the thermodynamic properties at phase
transitions in different compounds. In addition, the results
that have been obtained to date indicate that substances in
states near LPs on the phase diagrams are softer than normal.

This promotes strong nonlinearity of their physical proper-
ties, e.g., the high optical cubic nonlinearity in the 1C phase
near the LP in Sn2P2(SexS1 _x )6 (Ref. 70). In the neighbor-
hood of the LP the width of the 1C phase can change not only
under "conventional" influences such as mechanical com-
pression, a change in the chemical composition, or a static
electric or magnetic field which is not conjugate to the order
parameter, but also in the field of an electromagnetic wave,70

the creation of a metastable population of the energy levels in
semiconducting materials by illumination or a rapid change
in temperature.71

In this review we have not discussed the results of studies
(see, e.g., Refs. 72 and 73) of the changes in the shape of the
phase diagrams of ferroelectrics in the neighborhood of the
LP in a static electric field conjugate to the order parameter
(the E-T-x diagrams). Such studies are of interest for the
purpose of establishing the evolution of the shape of the E-T-
x diagrams upon a change in the distance to the TCLP, of
searching for polar 1C phases and observing fourth-order
points (at which polar 1C phases vanish) on the E-T-x dia-
grams.74

The evolution of the shape of the modulation wave on
cooling toward the low-temperature boundary of the 1C
phase in proper ferroelectrics must be handled separately. An
urgent problem is to extend the results of theoretical stud-
ies75"78 to the description of phase transitions from the 1C to
the ferrophase with allowance for higher harmonics of the
modulation, nonlinearities, and coupling with strains, in or-
der to explain how the anomalies of the thermodynamic prop-
erties, in particular the dielectric susceptibility, change along
the line Tc (x) at various distances for the LP and TCLP.

The microscopic mechanisms for the onset of 1C phases
and the presence of LPs on the state diagrams have been ana-
lyzed in other reviews.79'80 For Sn^^Se^S, _ x )6 com-
pounds some experimental results on the lattice dynamics and
an analysis of the microscopic mechanisms for the phase tran-
sitions and the reasons for the presence of the LP on the con-
centration diagram are given in Refs. 68 and 81. From the
standpoint of studying microscopic models it is assuredly of
interest to develop an understanding of the conditions for the
presence of a TCLP on the state diagrams.

For analysis of the experimental data in the neighbor-
hood of the LP it is particularly important to continue the
research (not discussed in this article) on the effects of metas-
tability of the 1C phases. Finally, there is an urgent need to
study the kinetic properties and to elucidate the features of the
dynamic critical phenomena in the neighborhood of LPs.

5. CONCLUSION

The critical behavior of the majority of crystals in the
neighborhood of phase transitions differs from the behavior
predicted for the corresponding universality classes. One can
see that the relative disparity between the observed and stan-
dard values of the critical exponents for the thermodynamic
functions are correlated with the anisotropy of the dispersion
of the stiffness for fluctuations of the order parameter. One
manifestation of this anisotropy is the Lifshitz point, which
separates on the state diagram the second-order transitions
going from the initial phase to commensurate and incommen-
surate phases. Another decisive factor is the interaction be-
tween fluctuations, with a force proportional to the distance
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to the tricritical point on the state diagram. It follows from the
present review that the identification of such higher-order
critical points is an important prerequisite for determining the
mechanisms governing the anomalies of the phenomenologi-
cal properties of substances at phase transformations.
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